JP2008240058A - Electrolytic cell and method of manufacturing fluorine-containing gas - Google Patents

Electrolytic cell and method of manufacturing fluorine-containing gas Download PDF

Info

Publication number
JP2008240058A
JP2008240058A JP2007081463A JP2007081463A JP2008240058A JP 2008240058 A JP2008240058 A JP 2008240058A JP 2007081463 A JP2007081463 A JP 2007081463A JP 2007081463 A JP2007081463 A JP 2007081463A JP 2008240058 A JP2008240058 A JP 2008240058A
Authority
JP
Japan
Prior art keywords
separator
electrolytic cell
gas
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007081463A
Other languages
Japanese (ja)
Inventor
Toshihiro Isogai
智弘 磯貝
Hideki Nakatani
英樹 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007081463A priority Critical patent/JP2008240058A/en
Publication of JP2008240058A publication Critical patent/JP2008240058A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new electrolytic cell capable of effectively preventing double-polarization phenomenon. <P>SOLUTION: The electrolytic cell 10 at least part of which is immersed in an electrolyte and which is provided with a partition body 7 for preventing gases respectively generated from an anode 3 and a cathode 5 from being mixed with each other, uses a partition body 7 formed from a metal and forming an insulating passive film 9 of a metal fluoride. The electrolytic cell 10 can prevent the double-polarization phenomenon and provide a high current efficiency by using the insulating passive film 9, which is superior in mechanical strength and hardly causes peeling or deterioration. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電解槽およびこれを用いる含フッ素ガス製造方法に関する。   The present invention relates to an electrolytic cell and a method for producing a fluorine-containing gas using the electrolytic cell.

フッ素ガス(Fガス)や三フッ化窒素ガス(NFガス)などの含フッ素ガスは、一般的に溶融塩電解法により製造される。 Fluorine-containing gases such as fluorine gas (F 2 gas) and nitrogen trifluoride gas (NF 3 gas) are generally produced by a molten salt electrolysis method.

このような含フッ素ガス製造方法は、図3に示すような常套の電解槽60を用いて実施されている。電解槽60は、電解液を保持する容器61と、容器61の底面に配置される絶縁板62と、電解液に浸漬される陽極63および陰極65と、これらの間に位置して空間を仕切る隔板67とを備え、容器61の内壁面が陰極65となっており、隔離体67はこの陰極65と板状の陽極63との間で、陽極63の周りを囲んで配置されている。例えばFガスを製造する場合、電解液としてKF−HF系溶融塩を容器61に入れ、外部電源(図示せず)より陽極63と陰極65との間に電圧を印加して電解反応を起こすこと、すなわち電解操作を行うことによって、陽極63にてFガスが、陰極65にてHガスが生じる(図中、模式的にそれぞれ黒丸および白丸にて示す)。生じたFガスおよびHガスは互いに混合しないように、隔板67により仕切られた別個の空間に捕集され、容器61の蓋に設けられた各開口部よりそれぞれ取り出される。三フッ化窒素ガス(NFガス)を製造する場合には、電解液としてNHF−HF系またはKF−NHF−HF系溶融塩が用いられ、陽極63にてNFガスが、陰極65にてHガスが生じる。 Such a fluorine-containing gas production method is carried out using a conventional electrolytic cell 60 as shown in FIG. The electrolytic cell 60 is located between the container 61 that holds the electrolytic solution, the insulating plate 62 that is disposed on the bottom surface of the container 61, the anode 63 and the cathode 65 that are immersed in the electrolytic solution, and partitions the space. The separator 61 is provided with an inner wall surface of the container 61 as a cathode 65, and the separator 67 is disposed between the cathode 65 and the plate-like anode 63 so as to surround the anode 63. For example, when producing F 2 gas, a KF-HF molten salts in a container 61 as the electrolytic solution, it causes the application to electrolytic reaction voltage between the anode 63 and cathode 65 from an external power source (not shown) it, namely by carrying out the electrolysis operation, F 2 gas at the anode 63, (shown in the figure, schematically, respectively black circles and white circles) H 2 gas is generated at the cathode 65. The generated F 2 gas and H 2 gas are collected in separate spaces partitioned by the partition plate 67 so as not to mix with each other, and are taken out from the respective openings provided in the lid of the container 61. When producing nitrogen trifluoride gas (NF 3 gas), NH 4 F—HF or KF—NH 4 F—HF molten salt is used as the electrolyte, and NF 3 gas is used at the anode 63. H 2 gas is generated at the cathode 65.

このような溶融塩はHFを含んでいるため腐食性が極めて高いので、溶融塩を保持する容器61だけでなく、溶融塩と接触する隔板67も高い耐食性を示すものであることが望ましい。従来、隔板67の材料にはモネル(銅とニッケルとの合金)などの高耐食性金属が通常用いられている。   Since such a molten salt contains HF and is extremely corrosive, it is desirable that not only the container 61 for holding the molten salt but also the partition plate 67 in contact with the molten salt exhibit high corrosion resistance. Conventionally, a highly corrosion-resistant metal such as Monel (an alloy of copper and nickel) is usually used as the material of the partition plate 67.

しかしながら、モネルのような金属から成る隔板67を用いると、複極化現象により、隔板67の陽極63と対向する面67aがあたかも陰極のように機能し、面67aにてHガスが発生する。更に、この面67aにて発生したHガスは、付近に存在するFガスと直ちに反応してHFを形成し得る。 However, when the partition plate 67 made of a metal such as Monel is used, the surface 67a facing the anode 63 of the partition plate 67 functions as a cathode due to the bipolarization phenomenon, and H 2 gas is generated on the surface 67a. appear. Further, the H 2 gas generated on the surface 67a can immediately react with F 2 gas existing in the vicinity to form HF.

ガスはそれ自体可燃性であり、また、FガスにHガスが混入することは安全性の観点から好ましくない。更に、HF形成の際に大きな反応熱が発生するので、HFが高温状態で存在することとなり、陽極63、隔板67(特に面67aの液面近傍)および容器61の腐食を招くという問題がある。 H 2 gas itself is flammable, and it is not preferable from the viewpoint of safety that H 2 gas is mixed into F 2 gas. Furthermore, since a large reaction heat is generated during the formation of HF, HF exists at a high temperature, and there is a problem that corrosion of the anode 63, the partition plate 67 (particularly near the liquid surface of the surface 67a) and the container 61 is caused. is there.

このような複極化現象を防止するため、隔板の少なくとも片面をフッ素系樹脂で被覆すること(特許文献1を参照のこと)、あるいは、隔板をフッ素系樹脂そのもので構成すること(特許文献2を参照のこと)が提案されている。また、FガスとHガスとの分離性を高めるべく、フッ素樹脂から成る隔板を気相部に用いつつ、フッ素樹脂から成る目開きの粗い隔膜を電解液浸漬部に用いて電極の下端より深く浸漬することも提案されている(特許文献3を参照のこと)。 In order to prevent such a double-polarization phenomenon, at least one surface of the partition plate is covered with a fluorine-based resin (see Patent Document 1), or the partition plate is configured with the fluorine-based resin itself (patent) Reference 2) has been proposed. Further, in order to improve the separation between F 2 gas and H 2 gas, a diaphragm made of fluororesin is used for the gas phase part, and a diaphragm having a coarse mesh made of fluororesin is used for the electrolyte immersion part. It has also been proposed to immerse deeper than the lower end (see Patent Document 3).

特開昭63−130789公報JP-A-63-130789 特開昭63−130790公報JP 63-130790 A 特開2006−283158号公報JP 2006-283158 A 特開平1−503631号公報Japanese Patent Laid-Open No. 1-503631 田坂明政著、「HF含有溶融フッ化物のニッケルおよびカーボン陽極による電解フッ素化(Electrochemical fluorination of molten fluorides containing HF with nickel and carbon anodes)」、カレント・トピックス・イン・エレクトロケミストリー(Current Topics in Electrochemistry)、2004年、第10巻、p.1−36Tamasaka Akimasa, “Electrochemical fluorination of molten fluorides containing HF with nickel and carbon anodes”, Current Topics in Electrochemistry, 2004, Vol. 10, p. 1-36

しかしながら、少なくとも片面がフッ素系樹脂で被覆された隔板を用いる方法(特許文献1)では、隔板はフッ素系樹脂被膜を母材にライニングして得られ、このような樹脂ライニングにより形成される被膜は機械的強度に乏しく、剥離し易いという問題がある。加えて、フッ素系樹脂は安定であって、溶融塩中のHFや生成するFと基本的には反応しないとされているが、長期的見地からは熱および反応による劣化は無視できないという問題がある。より詳細には、フッ素樹脂はFとの反応により徐々に分子量低下を起こして機械的に脆くなることや、また、FやHFがフッ素樹脂を透過し、母材金属の表面に達して腐食を起こし、次第に隙間が拡大して、再び複極化現象が起こることがある。 However, in the method (Patent Document 1) using a partition plate coated at least on one side with a fluororesin, the partition plate is obtained by lining a fluororesin film on a base material, and is formed by such a resin lining. The film has a problem that it has poor mechanical strength and is easily peeled off. In addition, it is said that fluororesin is stable and basically does not react with HF in molten salt or F 2 to be produced, but from the long-term viewpoint, deterioration due to heat and reaction cannot be ignored. There is. More specifically, the fluororesin gradually decreases in molecular weight due to reaction with F 2 and becomes mechanically brittle, or F 2 and HF permeate the fluororesin and reach the surface of the base metal. Corrosion may occur and the gap gradually expands, and the bipolar phenomenon may occur again.

また、全体がフッ素系樹脂から成る隔板および/または隔膜を用いる方法(特許文献2および3)では、フッ素系樹脂は金属に比較して機械的強度が低いので十分な強度を得るには隔板/隔膜の厚さをより厚くする必要があり、絶縁性のフッ素系樹脂が、隔板および/または隔膜の全体に亘る厚さで存在するため、高い電流効率が得られないという問題がある。更に、フッ素系樹脂を大量に使用することとなるので高コストであるという難点もある。また、上記と同様、フッ素系樹脂の劣化の問題もある。   In the method using a diaphragm and / or a diaphragm made entirely of a fluororesin (Patent Documents 2 and 3), the fluororesin has a lower mechanical strength than that of a metal, so that a sufficient strength can be obtained. The thickness of the plate / diaphragm needs to be increased, and there is a problem in that high current efficiency cannot be obtained because the insulating fluororesin exists in the entire thickness of the diaphragm and / or the diaphragm. . Furthermore, since a large amount of fluorine-based resin is used, there is a problem of high cost. In addition, as described above, there is a problem of deterioration of the fluorine-based resin.

本発明は、複極化現象を効果的に防止しつつ、上記のような従来の問題を少なくとも低減し、好ましくは解消することができる新規な電解槽およびこれを用いる含フッ素ガス製造方法を提供することにある。   The present invention provides a novel electrolytic cell capable of at least reducing, and preferably eliminating, the above-mentioned conventional problems while effectively preventing a bipolar phenomenon, and a fluorine-containing gas production method using the same There is to do.

ところで、陽極に銅部材を用いて、銅表面に不動態化層(保護層)を形成する方法が知られており、これはフッ素製造用の電解槽に設けられる陽極接続部などの銅製部品の保護に利用できるとされている(特許文献4を参照のこと)。   By the way, a method of forming a passivation layer (protective layer) on the copper surface using a copper member for the anode is known, and this is a method for copper parts such as an anode connection portion provided in an electrolytic cell for fluorine production. It can be used for protection (see Patent Document 4).

また、HF含有溶融塩を用いた電解操作に関して、陽極に種々の金属部材を用いて、被膜形成の有無、および被膜が形成される場合にはその性質について研究がされており、これによれば、銀、銅、コバルト、鉄、亜鉛を用いた場合に絶縁性不動態被膜が形成される旨が報告されている(非特許文献1、特に表2を参照のこと)。   In addition, regarding the electrolysis operation using the HF-containing molten salt, various metal members are used for the anode, and whether or not a film is formed, and when a film is formed, research has been conducted on the properties. It has been reported that an insulating passive film is formed when silver, copper, cobalt, iron, or zinc is used (see Non-Patent Document 1, especially Table 2).

本発明者らは、複極化現象を防止し得る新規な隔板・隔膜材料について鋭意検討した結果、本発明を完成するに至った。   The inventors of the present invention have intensively studied a novel diaphragm / membrane material capable of preventing the bipolar phenomenon, and as a result, have completed the present invention.

本発明の第1の要旨によれば、少なくとも一部が電解液に浸漬され、陽極および陰極からそれぞれ発生するガスの混合を防止する隔離体を備える電解槽であって、隔離体が、フッ化金属の絶縁性不動態被膜を形成する金属から成ることを特徴とする電解槽が提供される。   According to a first aspect of the present invention, there is provided an electrolytic cell including a separator that is at least partially immersed in an electrolyte solution and prevents mixing of gases generated from an anode and a cathode, respectively, An electrolytic cell is provided that is made of a metal that forms an insulating passivation film of metal.

フッ化金属の絶縁性不動態被膜を形成する金属(本発明を通じて「母材金属」とも言う)には、例えば銀、銅、コバルト、鉄、亜鉛などが用いられ得るが、好ましくは銅である。銅は市販で比較的安価に入手し易く、また、従来一般的に隔板材料として使用されていたモネルの一成分であるので、既存の製造プロセスに適用し易い。鉄も安価ではあるが、電解液中でFe2+とFe3+とが存在し、これらが陰極および陽極で酸化還元反応を繰り返すことによって電流効率が低下するため好ましくない。 For example, silver, copper, cobalt, iron, zinc, or the like can be used as a metal (also referred to as “base metal” throughout the present invention) that forms an insulating passive film of a metal fluoride, but copper is preferable. . Copper is commercially available and relatively inexpensive, and is a component of Monel that has been conventionally used as a diaphragm material, and is therefore easily applied to existing manufacturing processes. Although iron is also inexpensive, Fe 2+ and Fe 3+ are present in the electrolytic solution, and these are not preferable because current efficiency is lowered by repeating the redox reaction at the cathode and the anode.

本発明の上記電解槽を、電解操作により含フッ素ガスを製造する方法に用いれば、電解操作と同時に、隔離体の金属からフッ化金属の絶縁性不動態被膜が形成され、絶縁性不動態被膜が少なくとも隔離体の浸漬部の陰極と対向する面を覆う(以下、この方法を本明細書において単に「被膜形成方法」とも言う)。   If the electrolytic cell of the present invention is used in a method for producing a fluorine-containing gas by an electrolysis operation, an insulating passive film of metal fluoride is formed from the metal of the separator simultaneously with the electrolysis operation, and the insulating passive film Covers at least the surface of the separator immersed portion facing the cathode (hereinafter, this method is also simply referred to as “film formation method” in this specification).

含フッ素ガスを製造するための電解液に隔離体を浸漬しておくだけでも、浸漬部全体にフッ化金属被膜が形成され得るが、「絶縁性不動態」の被膜を得るには長時間を要する。これに対して、本発明の上記被膜形成方法は、電解操作と同時に、より詳細には隔離体の母材金属が電解液に対して露出している含フッ素ガス製造プロセス初期において、複極化現象を積極的に利用して、隔離体の浸漬部の陰極と対向する面をあたかも陽極のように機能させ、少なくともこの面を覆う絶縁性不動態被膜を短時間で形成することができる。   Even if the separator is only immersed in the electrolyte for producing the fluorine-containing gas, a metal fluoride film can be formed on the entire immersion part, but it takes a long time to obtain an “insulating passive” film. Cost. On the other hand, the film forming method of the present invention is bipolarized at the initial stage of the fluorine-containing gas production process in which the base metal of the separator is exposed to the electrolyte simultaneously with the electrolysis operation. By actively utilizing the phenomenon, the surface of the separator immersed portion facing the cathode functions as if it were an anode, and an insulating passive film covering at least this surface can be formed in a short time.

尚、本発明において「絶縁性」とは電気的に絶縁性であり、電気化学的反応が実質的に生起し得ないことを意味し、電気的絶縁性は、被膜の厚さにもよるが、複極化現象を防止し得る程度であればよい。また、「不動態」とは電解液に対して安定であり、電解液の成分と実質的に反応しないことを意味する。   In the present invention, “insulating” means electrically insulating and means that an electrochemical reaction cannot substantially occur. The electrical insulating property depends on the thickness of the film. As long as it can prevent the double polarization phenomenon. Further, “passive” means that it is stable to the electrolytic solution and does not substantially react with the components of the electrolytic solution.

このような本発明の被膜形成方法は、含フッ素ガス製造プロセスの初期において、特段の操作を要することなく、絶縁性不動態被膜を極めて簡便に形成することができる。絶縁性不動態被膜は、少なくとも隔離体の浸漬部の陰極と対向する面を覆うように一旦形成されれば、それ以後、複極化現象を防止することができる。   Such a film forming method of the present invention can form an insulating passive film very easily without requiring any special operation in the initial stage of the fluorine-containing gas production process. Once the insulating passive film is formed so as to cover at least the surface of the separator immersed portion facing the cathode, the bipolarization phenomenon can be prevented thereafter.

複極化現象を防止するためには、少なくとも隔離体の浸漬部の一方の面が絶縁性不動態被膜で覆われていればよいが、隔離体に耐食性を付与するためには、隔離体の浸漬部全体が絶縁性不動態被膜で覆われていることが好ましい。上記のような被膜形成方法によれば、最初、隔離体の浸漬部の陰極に対向する面にて被膜形成が著しいが、やがて被膜形成は隔離体の浸漬部全域に亘って進行し、好ましくは隔離体の浸漬部全体がフッ化金属の絶縁性不動態被膜で覆われる。   In order to prevent the bipolarization phenomenon, it is sufficient that at least one surface of the immersion part of the separator is covered with an insulating passive film, but in order to impart corrosion resistance to the separator, It is preferable that the whole immersion part is covered with an insulating passive film. According to the film forming method as described above, the film formation is remarkable at the surface facing the cathode of the immersion part of the separator, but the film formation eventually proceeds over the entire immersion part of the separator, preferably The entire immersion part of the separator is covered with an insulating passive film of metal fluoride.

上記のようにして電気化学的に形成されたフッ化金属の絶縁性不動態被膜は、緻密で機械的強度に優れ、剥離し難いという利点がある。加えて、絶縁性不動態被膜は極めて安定であり、電解液中に含まれ得るHF等の成分や生成する含フッ素ガスと反応せず、被膜の劣化が問題とならない。また、電気化学的に形成された絶縁性不動態被膜は一般的に薄く、高い電流効率を得ることができるという利点もある。   The insulating passivation film of metal fluoride formed electrochemically as described above has the advantage of being dense and excellent in mechanical strength and difficult to peel off. In addition, the insulating passive film is extremely stable, does not react with components such as HF that can be contained in the electrolytic solution and the fluorine-containing gas that is generated, and deterioration of the film does not become a problem. Further, the insulating passive film formed electrochemically is generally thin, and there is an advantage that high current efficiency can be obtained.

また、隔離体には複雑な構造が要求される場合があるが、上記のような被膜形成方法によれば、母材金属に加工の容易な材料(好ましくは銅)を利用でき、かつ、構造の複雑な母材に絶縁性不動態被膜を極めて容易に形成できる。   In addition, a complicated structure may be required for the separator, but according to the film forming method as described above, an easily workable material (preferably copper) can be used for the base metal, and the structure It is very easy to form an insulating passive film on the complicated base material.

本発明の上記第1の要旨による電解槽は、本発明の被膜形成方法と組み合わせて使用でき、これと同様の効果を奏し得る。   The electrolytic cell according to the first aspect of the present invention can be used in combination with the film forming method of the present invention, and can exhibit the same effects as this.

本発明の第2の要旨によれば、少なくとも一部が電解液に浸漬され、陽極および陰極からそれぞれ発生するガスの混合を防止する隔離体を備える電解槽であって、隔離体が母材金属(上記母材金属と同じであり得る)から成り、かつ、母材金属より形成されたフッ化金属の絶縁性不動態被膜により、隔離体の浸漬部の陰極と対向する面および陽極と対向する面の少なくとも一方が覆われていることを特徴とする電解槽が提供される。   According to a second aspect of the present invention, there is provided an electrolytic cell comprising a separator that is at least partially immersed in an electrolyte and prevents mixing of gases generated from an anode and a cathode, respectively, the separator being a base metal (Which can be the same as the above-mentioned base metal), and the insulating passive film of metal fluoride formed from the base metal faces the anode and the surface facing the cathode of the immersion part of the separator An electrolytic cell is provided in which at least one of the surfaces is covered.

このような本発明の第2の要旨による電解槽は、本発明の上記第1の要旨による電解槽を、上記被膜形成方法と組み合わせて得られたものであり得る。あるいは、上記被膜形成方法と異なる方法、例えば陽極として母材金属を用いて不動態化処理することによって予め作製した隔離体を用いたものであってもよく、この場合、隔離体の浸漬部の陰極と対向する面および陽極と対向する面の少なくとも一方、好ましくは隔離体の浸漬部全体が絶縁性不動態被膜で覆われていればよい。いずれにせよ、このような本発明の電解槽は、上記と同様に、複極化現象を防止することができ、かつ、被膜の機械的強度に優れ、剥離や劣化が起こり難く、高い電流効率が得られるという利点がある。   Such an electrolytic cell according to the second aspect of the present invention may be obtained by combining the electrolytic cell according to the first aspect of the present invention with the above-described film forming method. Alternatively, it may be a method different from the above-described film forming method, for example, using a separator prepared in advance by performing a passivation treatment using a base metal as an anode. It suffices that at least one of the surface facing the cathode and the surface facing the anode, preferably the entire immersion part of the separator is covered with an insulating passive film. In any case, like the above, the electrolytic cell of the present invention can prevent the bipolar phenomenon, has excellent mechanical strength of the film, hardly peels off or deteriorates, and has high current efficiency. There is an advantage that can be obtained.

本発明のいずれの電解槽も、電解操作により含フッ素ガスを製造する方法に好適に使用され得る。含フッ素ガスは、例えばフッ素ガス(Fガス)および三フッ化窒素ガス(NFガス)などであってよく、好ましくはフッ素ガス(Fガス)である。 Any electrolytic cell of the present invention can be suitably used in a method for producing a fluorine-containing gas by electrolysis. The fluorine-containing gas may be, for example, fluorine gas (F 2 gas) and nitrogen trifluoride gas (NF 3 gas), and is preferably fluorine gas (F 2 gas).

このような含フッ素ガスを製造するための電解液は、通常、HFを含む溶融塩である。HFを含む溶融塩としては、例えば、任意の比率のKF−HF、NaF−HF、CsF−HF、NHF−HF、およびそれらの混合物を挙げることができる。また、例えばLiF、CaFのような添加物を含有しても良い。HFから解離するFイオン、より詳細にはHF イオンは、母材金属(例えばCu)より溶出する金属イオン(例えばCu2+)と反応して、フッ化金属の絶縁性不動態被膜を形成することができる。 The electrolytic solution for producing such a fluorine-containing gas is usually a molten salt containing HF. Examples of the molten salt containing HF include any ratio of KF-HF, NaF-HF, CsF-HF, NH 4 F-HF, and a mixture thereof. Further, for example LiF, it may contain additives such as CaF 2. F ions dissociated from HF, more specifically, HF 2 ions react with metal ions (eg, Cu 2+ ) eluted from the base metal (eg, Cu) to form an insulating passive film of metal fluoride. Can be formed.

本発明によれば、複極化現象を防止することができ、かつ、被膜の機械的強度に優れ、剥離や劣化が起こり難く、高い電流効率が得られる電解槽が提供され、およびこれを用いた含フッ素ガス製造方法が提供される。   According to the present invention, there is provided an electrolytic cell capable of preventing the phenomenon of bipolarization, having excellent mechanical strength of the coating film, hardly causing peeling and deterioration, and obtaining high current efficiency. A fluorine-containing gas production method was provided.

本発明の1つの実施形態における電解槽およびこれを用いるフッ素ガス(Fガス)製造方法(被膜形成方法を含む)について、図1を参照しながら以下に説明する。 An electrolytic cell and a fluorine gas (F 2 gas) manufacturing method (including a film forming method) using the electrolytic cell in one embodiment of the present invention will be described below with reference to FIG.

本実施形態の電解槽10は、電解液を保持する容器1と、容器1の底面に配置される絶縁板2と、電解液に浸漬される陽極3および陰極5と、これらの間に位置して空間を仕切る隔離体7とを備え、容器1内において、板状の陽極3および陰極5が隔離体7を間に挟んで平行に配置されている。容器1の蓋には、陽極3および陰極5を収容する各空間と連通した開口部が設けられている。陽極3および陰極5は支持部材(図示せず)で支持され、外部電源(図示せず)に接続されている。尚、容器1の材質によっては絶縁板2を必ずしも要しない。   The electrolytic cell 10 of this embodiment is located between the container 1 that holds the electrolytic solution, the insulating plate 2 that is disposed on the bottom surface of the container 1, the anode 3 and the cathode 5 that are immersed in the electrolytic solution, and between these. In the container 1, a plate-like anode 3 and a cathode 5 are arranged in parallel with the separator 7 interposed therebetween. The lid of the container 1 is provided with an opening communicating with each space for housing the anode 3 and the cathode 5. The anode 3 and the cathode 5 are supported by a support member (not shown) and connected to an external power source (not shown). Note that the insulating plate 2 is not necessarily required depending on the material of the container 1.

隔離体7は少なくとも一部が電解液に浸漬される。隔離体7の構造は、例えば気相部および浸漬部上方(液面近傍)では板状であり、浸漬部下方は複数の孔(図示せず)が設けられたスクリーン状であってよい。しかしながら、陽極3から発生するFガスと陰極5から発生するHガスとの混合を効果的に防止し得る限り任意の形状を有し得、一般的に隔板、隔膜、隔壁等と称されるようなものであり得る。隔離体7の浸漬深さは、その構造により適宜選択され得る。 At least a part of the separator 7 is immersed in the electrolytic solution. The structure of the separator 7 may be, for example, a plate shape above the gas phase portion and the immersion portion (near the liquid surface), and may be a screen shape provided with a plurality of holes (not shown) below the immersion portion. However, it can have any shape as long as the mixing of the F 2 gas generated from the anode 3 and the H 2 gas generated from the cathode 5 can be effectively prevented, and is generally referred to as a diaphragm, a diaphragm, a partition, etc. It can be like that. The immersion depth of the separator 7 can be appropriately selected depending on its structure.

隔離体7は、フッ化金属の絶縁性不動態被膜を形成する母材金属から成る。本実施形態においては、母材金属に銅(Cu)を用いるものとする。銅は市販で比較的安価に入手し易く、また高硬度のモネルに比べてやわらかいので加工が容易であり、複雑な構造にも適する。   The separator 7 is made of a base metal that forms an insulating passive film of metal fluoride. In the present embodiment, copper (Cu) is used as the base metal. Copper is commercially available and relatively easy to obtain, and is softer than high hardness Monel, so it is easy to process and suitable for complex structures.

次に、この電解槽10を用いたフッ素ガス製造方法(被膜形成方法を含む)について説明する。   Next, a fluorine gas manufacturing method (including a film forming method) using the electrolytic cell 10 will be described.

まず、電解液としてKF−HF系溶融塩を容器1に入れ、電解操作に付す。即ち、外部電源(図示せず)より陽極3と陰極5との間に電圧を印加して電解反応を起こすことによって、陽極3にてFガスを、陰極5にてHガスを生じさせる。 First, KF-HF molten salt as an electrolytic solution is put in the container 1 and subjected to electrolysis. That is, brought about by causing the application to electrolytic reaction voltage between the anode 3 and the cathode 5 from an external power source (not shown), an F 2 gas at the anode 3, H 2 gas at the cathode 5 .

隔離体7が電解液に浸漬された直後は、隔離体7の母材金属(Cu)が電解液に対して露出しており、そこから金属イオン(Cu2+)が溶出し得る。そして、電解操作を行うと、隔離体7の母材金属にて複極化現象が起こり、隔離体7の浸漬部の陰極5と対向する面があたかも陽極のように機能し、電解液のフッ素成分、特にHFから生じるHF イオンと、溶出した金属イオンとが反応して、少なくともこの面を覆う絶縁性不動態被膜9が短時間で形成される。絶縁性不動態被膜9の形成は、最初、隔離体7の浸漬部の陰極5に対向する面で著しく起こるが、やがて隔離体7の浸漬部全域に亘って被膜が形成されていき、最終的には、図示するように隔離体7の浸漬部全体がフッ化金属の絶縁性不動態被膜9で覆われる。本発明を限定するものではないが、フッ化金属を形成する電気化学反応を以下に示す。 Immediately after the separator 7 is immersed in the electrolytic solution, the base metal (Cu) of the separator 7 is exposed to the electrolytic solution, and metal ions (Cu 2+ ) can be eluted therefrom. When the electrolysis operation is performed, a bipolar phenomenon occurs in the base metal of the separator 7, and the surface of the separator 7 facing the cathode 5 functions as if it were an anode, and the electrolyte fluorine The component, particularly HF 2 - ions generated from HF, and the eluted metal ions react with each other, and the insulating passive film 9 covering at least this surface is formed in a short time. The formation of the insulative passive film 9 first occurs remarkably on the surface facing the cathode 5 of the immersion part of the separator 7, but eventually the film is formed over the entire immersion part of the separator 7. As shown in the figure, the entire immersion part of the separator 7 is covered with an insulating passive film 9 made of metal fluoride. Without limiting the present invention, the electrochemical reaction to form the metal fluoride is shown below.

Figure 2008240058
Figure 2008240058

以上のようにして、Fガス製造プロセスの初期にて、Fガスを製造するための電解操作と同時に、隔離体7の銅からフッ化銅の絶縁性不動態被膜9が形成され、隔離体7の浸漬部を覆う。絶縁性不動態被膜9の厚さは、隔離体7の被覆部位により不均一であってもよい。 As described above, at the initial stage of the F 2 gas production process, simultaneously with the electrolysis operation for producing the F 2 gas, the insulating passive film 9 made of copper fluoride is formed from the copper of the separator 7, and is isolated. The immersion part of the body 7 is covered. The thickness of the insulating passive film 9 may be nonuniform depending on the covering portion of the separator 7.

このような隔離体7の浸漬部を覆う被膜9は、隔離体7の構造によらず簡便に形成でき、この被膜形成方法は樹脂ライニングより極めて容易に実施できる。   Such a coating 9 covering the immersion part of the separator 7 can be easily formed regardless of the structure of the separator 7, and this coating forming method can be carried out extremely easily than the resin lining.

また、このようにして電気化学的に形成されたフッ化金属の絶縁性不動態被膜9は、樹脂ライニングなどよりも、機械的強度に優れ、剥離し難いという利点がある。   In addition, the electrochemically formed insulating metal fluoride passivation film 9 is superior in mechanical strength to resin lining and has the advantage of being difficult to peel off.

その後、電解操作を継続して、Fガスを製造する。得られたFガスと、副生成物であるHガスは、互いに混合しないように、隔離体7により仕切られた別個の空間に捕集され、容器1の蓋に設けられた各開口部よりそれぞれ取り出される。 Thereafter, the electrolytic operation is continued to produce F 2 gas. The obtained F 2 gas and by-product H 2 gas are collected in separate spaces partitioned by the separator 7 so as not to mix with each other, and each opening provided in the lid of the container 1 Respectively.

電解操作条件は、被膜形成時とFガス製造時とで同様とすることが簡便で好ましいが、本発明はこれに限定されず、異なるものとしてもよい。また、隔離体7が銅から成っており、銅は従来一般的に使用されていたモネルの一成分であるので、既知の電解操作条件に基づいて容易に設定できる。 Although it is simple and preferable that the electrolytic operation conditions are the same at the time of film formation and F 2 gas production, the present invention is not limited to this, and may be different. Moreover, since the separator 7 consists of copper and copper is one component of the monel generally used conventionally, it can set easily based on known electrolysis operation conditions.

図示するように、隔離体7の浸漬部全体が絶縁性不動態被膜9で覆われると、隔離体7の母材金属である銅が絶縁性不動態被膜で保護されて高い耐食性を示すようになるので、HFを含む腐食性の溶融塩と接触していても、腐食を効果的に低減できる。加えて、絶縁性不動態被膜9は極めて安定であり、電解液に含まれるHF等の成分や生成するFガスと反応せず、被膜9の劣化は長期的にみても無視して差し支えない。更に、何らかの偶発的事由により被膜9が剥離したとしても、絶縁性不動態被膜9が速やかに再生されるので、自己修復可能であるという利点もある。 As shown in the figure, when the entire immersion part of the separator 7 is covered with the insulating passive film 9, the copper which is the base metal of the separator 7 is protected by the insulating passive film and exhibits high corrosion resistance. Therefore, even if it contacts with the corrosive molten salt containing HF, corrosion can be reduced effectively. In addition, the insulating passive film 9 is extremely stable, does not react with components such as HF contained in the electrolytic solution or the generated F 2 gas, and the deterioration of the film 9 can be ignored even in the long run. . Furthermore, even if the film 9 is peeled off for some accidental reason, the insulating passive film 9 is quickly regenerated, so that there is an advantage that self-repair is possible.

また、隔離体7の浸漬部が絶縁性不動態被膜9で覆われると、その絶縁性により複極化現象が防止されるので、隔離体7の陽極3に対向する面にてHガスが発生せず、よって、このHガスが陽極3にて発生したFガスと反応して発熱しながらHFを形成することもない。この結果、Fガス製造プロセスの安全性が向上する。 In addition, when the immersion part of the separator 7 is covered with the insulating passive film 9, the bipolarization phenomenon is prevented by the insulating property, so that the H 2 gas is generated on the surface of the separator 7 facing the anode 3. Therefore, the H 2 gas does not react with the F 2 gas generated at the anode 3 to generate heat and generate HF. As a result, the safety of the F 2 gas production process is improved.

本実施形態における隔離体7は、従来一般的に隔板材料として使用されていたモネルと比較して寿命が長いという利点がある。モネルは複極化現象を招き、高温状態で存在するHFにより(特に陽極3に対向する面の液面近傍にて)腐食を受けるのに対し、本実施形態における隔離体7では絶縁性不動態被膜9により複極化現象を防止できるので、高温状態でHFが存在することを回避でき、腐食を効果的に低減できるからである。加えて、陽極3(特にその支持部や支持部材)および容器1の腐食も効果的に低減できる。   The separator 7 according to the present embodiment has an advantage that it has a long life compared to a monel that has been conventionally used as a material for a diaphragm. Monel causes a bipolar phenomenon, and is corroded by HF present at high temperature (especially in the vicinity of the liquid surface of the surface facing the anode 3), whereas in the separator 7 in the present embodiment, the insulating passivation is used. This is because the coating 9 can prevent the phenomenon of bipolarization, so that the presence of HF at high temperatures can be avoided and corrosion can be effectively reduced. In addition, the corrosion of the anode 3 (particularly, its support part and support member) and the container 1 can be effectively reduced.

更に、本実施形態によれば、上記のように、隔離体7の陽極3に対向する面にてHガスが発生せず、よって、このHガスが陽極3にて発生したFガスと反応してHFを形成することもないので、このようなHF形成で電流が消費されず、より高い電流効率が得られる。 Furthermore, according to the present embodiment, as described above, H 2 gas is not generated on the surface of the separator 7 facing the anode 3, and therefore, the F 2 gas generated by the H 2 gas is generated at the anode 3. Since no HF is formed by reaction with HF, no current is consumed in such HF formation, and higher current efficiency can be obtained.

また、上記のように電気化学的に形成された絶縁性不動態被膜9は一般的に薄いので、隔離体7の全体をフッ素系樹脂などの絶縁体材料とした場合に比べ、より一層高い電流効率を得ることができる。またこのような場合に比べて低コストであるという利点もある。   In addition, since the insulating passive film 9 formed electrochemically as described above is generally thin, the current is much higher than when the entire separator 7 is made of an insulating material such as a fluororesin. Efficiency can be obtained. There is also an advantage that the cost is lower than in such a case.

以上、本発明の1つの実施形態について説明したが、本発明はこれに限定されず、種々の改変が可能である。   As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to this, and various modifications are possible.

例えば、上記実施形態ではFガス製造プロセスの初期にて絶縁性不動態被膜9を形成することとしたが、隔離体7に絶縁性不動態被膜9を予め形成したものをFガス製造プロセスに用いることもできる。この場合、絶縁性不動態被膜9は、隔離体7の浸漬部の陽極に対向する面および陰極に対向する面の少なくとも一方を覆っていれば、複極化現象を防止することができる。しかしながら、上記実施形態のように電解液が腐食性で、隔離体7の母材金属が電解液で腐食されないようにするには、隔離体7の浸漬部全体が絶縁性不動態被膜で覆われていることを要する。隔離体7の浸漬部より広い部分、例えば隔離体7の全面が絶縁性不動態被膜で覆われていてもよく、これは例えば、Fガス製造プロセスに先立って、隔離体7を陽極として用いてその表面に絶縁性不動態被膜9を形成することにより予め作製され得る。 For example, in the embodiment above, while forming an insulating passivation film 9 at the initial F 2 gas production process, to the separator 7 that preformed insulating passivation film 9 F 2 gas production process It can also be used. In this case, if the insulating passive film 9 covers at least one of the surface facing the anode and the surface facing the cathode of the immersion part of the separator 7, the bipolarization phenomenon can be prevented. However, in order to prevent the electrolytic solution from corroding and the base metal of the separator 7 from being corroded by the electrolytic solution as in the above embodiment, the entire immersion portion of the separator 7 is covered with an insulating passive film. It is necessary to be. A part wider than the immersion part of the separator 7, for example, the entire surface of the separator 7 may be covered with an insulating passive film. For example, prior to the F 2 gas manufacturing process, the separator 7 is used as an anode. It can be prepared in advance by forming an insulating passive film 9 on the surface thereof.

また例えば、図1の電解槽10に代えて、図2に示す電解槽20を用いることもできる。図2の電解槽20は、電解液を保持する容器11と、容器11の底面に配置される絶縁板12と、電解液に浸漬される陽極13および陰極15と、これらの間に位置して空間を仕切る隔離体17とを備え、容器11の内壁面が陰極15となっており、隔離体17はこの陰極15と板状の陽極13との間で、陽極13の周りを囲んで配置されている。このような電解槽20を用いても、実施形態1と同様にして、隔離体17の浸漬部全体を覆う絶縁性不動態被膜19を形成することができる。   Further, for example, the electrolytic cell 20 shown in FIG. 2 can be used instead of the electrolytic cell 10 of FIG. The electrolytic cell 20 in FIG. 2 is located between the container 11 that holds the electrolytic solution, the insulating plate 12 that is disposed on the bottom surface of the container 11, the anode 13 and the cathode 15 that are immersed in the electrolytic solution, and the like. And a separator 15 that partitions the space, and the inner wall surface of the container 11 is a cathode 15, and the separator 17 is disposed between the cathode 15 and the plate-like anode 13 so as to surround the anode 13. ing. Even if such an electrolytic cell 20 is used, the insulating passive film 19 covering the entire immersion part of the separator 17 can be formed in the same manner as in the first embodiment.

また例えば、上記実施形態では含フッ素ガスとしてFガスを製造するものとしたが、NFガスを製造することもできる。この場合には、電解液としてNHF−HF系またはKF−NHF−HF系溶融塩を用いてよく、陽極3ではNFガスが、陰極5ではHガスが生じる。 Further, for example, in the above embodiment it is assumed that the production of F 2 gas as a fluorine-containing gas, it is also possible to produce NF 3 gas. In this case, NH 4 F—HF or KF—NH 4 F—HF molten salt may be used as the electrolyte, and NF 3 gas is generated at the anode 3 and H 2 gas is generated at the cathode 5.

(実施例)
電解槽にフッ素樹脂(より詳細にはポリテトラフルオロエチレン樹脂)製の容器を用いて絶縁板を使用しなかった点、およびFガスに代えてNFガスを製造した点を除き、図1に示すような電解槽を用いて実施形態1の方法を実施した。
(Example)
Except for the point that an insulating plate was not used using a container made of fluororesin (more specifically, polytetrafluoroethylene resin) in the electrolytic cell, and that NF 3 gas was produced instead of F 2 gas, FIG. The method of Embodiment 1 was implemented using the electrolytic cell as shown in FIG.

予めKF・HFと無水フッ酸(HF)とを混合してKF・2HFを調整した後、これをNHF・2HFと混合してKF・NHF・4HF溶融塩を電解液として得た。
容器1には容量684mlの直方体状内壁面を有するものを用いた。隔離体7は、縦30mm、横40mm、厚さ0.30mmの銅板(支持部を含む質量3.6198g)とした。陽極3および陰極5はいずれも縦40mm、横10mm、厚さ10mmの炭素板とした。陽極3および陰極5は500mmの間隔で平行に配置し、それらの中央に隔離体7を同じく平行に配置した。
容器1において、隔離体7はその下端から12mmまでを、陽極3および陰極5はそれら下端から7mmまでを電解液に浸漬させた。
このような状態で電解操作を行った。電解温度(電解液の温度)は100℃、電解電流は80mAに設定した。電解操作中、電圧は約8.0〜8.8Vであった。電解操作時間は168時間とした。
KF · HF and hydrofluoric acid (HF) were mixed in advance to prepare KF · 2HF, and then mixed with NH 4 F · 2HF to obtain a KF · NH 4 F · 4HF molten salt as an electrolyte. .
The container 1 used had a rectangular parallelepiped inner wall with a capacity of 684 ml. The separator 7 was a copper plate having a length of 30 mm, a width of 40 mm, and a thickness of 0.30 mm (mass including support portion: 3.6198 g). Each of the anode 3 and the cathode 5 was a carbon plate having a length of 40 mm, a width of 10 mm, and a thickness of 10 mm. The anode 3 and the cathode 5 were arranged in parallel at an interval of 500 mm, and the separator 7 was also arranged in parallel in the center thereof.
In the container 1, the separator 7 was immersed up to 12 mm from the lower end, and the anode 3 and the cathode 5 were immersed up to 7 mm from the lower end in the electrolytic solution.
Electrolysis operation was performed in such a state. The electrolysis temperature (temperature of the electrolytic solution) was set to 100 ° C., and the electrolysis current was set to 80 mA. During the electrolysis operation, the voltage was about 8.0-8.8V. The electrolysis operation time was 168 hours.

電解操作後、隔離体(銅板)を取り出して目視により観察したところ、この隔離体に腐食跡は殆ど認められなかった。   After the electrolytic operation, the separator (copper plate) was taken out and visually observed. As a result, almost no trace of corrosion was observed on this separator.

取り出した隔離体を無水フッ酸で洗浄して電解液を除去した後、質量測定を行ったところ、3.6436gであり、電解操作前と比較して0.0238g増加していた。そして、これをXPS分析に付したところ、Cu−F結合の存在が確認できた。よって、この質量変化は、隔離体の表面に存在する銅がフッ化銅を形成したことによるものと理解される。   The removed separator was washed with anhydrous hydrofluoric acid to remove the electrolytic solution, and mass measurement was performed. As a result, it was 3.6436 g, which was increased by 0.0238 g compared to before electrolysis. And when this was attached | subjected to XPS analysis, presence of a Cu-F bond has been confirmed. Therefore, this mass change is understood to be due to the copper existing on the surface of the separator forming copper fluoride.

その後、隔離体を温水で10分間超音波洗浄した後、再度質量測定を行ったところ、3.4255gであり、無水フッ酸洗浄後より0.2181g減少していた。超音波洗浄により、隔離体の表面のフッ化銅が除去されたものと考えられ、この減少分がフッ化銅被膜に相当するものと理解される。   Thereafter, the separator was ultrasonically washed with warm water for 10 minutes, and mass measurement was performed again. As a result, it was 3.4255 g, which was 0.2181 g less than that after washing with anhydrous hydrofluoric acid. It is considered that the copper fluoride on the surface of the separator was removed by the ultrasonic cleaning, and it is understood that this decrease corresponds to the copper fluoride coating.

以上より、フッ化金属被膜の形成が確認され、この被膜により隔離体の腐食が防止されたものと考えられる。   From the above, formation of a metal fluoride film was confirmed, and it is considered that corrosion of the separator was prevented by this film.

(比較例)
隔離体として、厚さ0.30mmの銅板に代えて厚さ0.50mmのモネル板(支持部を含む質量5.8196g)を用いたこと以外は、上記実施例と同様の操作を行った。
(Comparative example)
The same operation as in the above example was performed except that a monel plate (mass 5.8196 g including a support portion) having a thickness of 0.50 mm was used as the separator instead of the copper plate having a thickness of 0.30 mm.

電解操作後、隔離体(モネル板)を取り出して目視により観察したところ、この隔離体には、特に液面近傍において、著しい腐食跡が認められた。   After the electrolysis operation, the separator (Monel plate) was taken out and observed with the naked eye. As a result, remarkable corrosion marks were observed on the separator, particularly near the liquid surface.

取り出した隔離体を、実施例と同様に無水フッ酸で洗浄して電解液を除去した後、質量測定を行ったところ、5.8309gであり、電解操作前と比較して0.0113g増加していた。そして、これをXPS分析に付したところ、Cu−F結合およびNi−F結合の存在が確認できた。よって、この質量変化は、隔離体の表面に存在する銅およびニッケルなどがフッ化銅およびフッ化ニッケルなどのフッ化金属を形成したことによるものと理解される。   The removed separator was washed with anhydrous hydrofluoric acid in the same manner as in the Example to remove the electrolytic solution, and then mass measurement was performed. As a result, it was 5.8309 g, an increase of 0.0113 g compared to before the electrolysis operation. It was. Then, when this was subjected to XPS analysis, the presence of Cu-F bond and Ni-F bond could be confirmed. Therefore, it is understood that this mass change is due to the formation of metal fluoride such as copper fluoride and nickel fluoride by copper and nickel existing on the surface of the separator.

その後、隔離体を実施例と同様に温水で10分間超音波洗浄した後、再度質量測定を行ったところ、5.5141gであり、無水フッ酸洗浄後より0.3168g減少していた。超音波洗浄により、隔離体の表面のフッ化金属が除去されたものと考えられ、この減少分がフッ化金属被膜に相当するものと理解される。   Thereafter, the separator was ultrasonically washed with warm water for 10 minutes in the same manner as in the Example, and mass measurement was performed again. As a result, it was 5.5141 g, which was reduced by 0.3168 g from that after washing with anhydrous hydrofluoric acid. It is considered that the metal fluoride on the surface of the separator was removed by ultrasonic cleaning, and it is understood that this decrease corresponds to the metal fluoride film.

以上より、フッ化金属被膜の形成が確認されたが、この被膜によっては隔離体の腐食を防止することができなかった。   From the above, it was confirmed that a metal fluoride film was formed, but this film could not prevent the corrosion of the separator.

これら実施例および比較例の結果を表1にまとめる。

Figure 2008240058
The results of these examples and comparative examples are summarized in Table 1.
Figure 2008240058

表1を参照して、質量変化(2)−(1)は、隔離体からの金属イオン溶出による減少分と、フッ化物形成のためのフッ化物イオン取込みによる増加分と、表面に付着残留し得る溶融塩による増加分とを合算したものに相当すると考えられる。質量変化(2)−(1)については、実施例と比較例とで大きな差は認められず、よって、形成される被膜量に大きな差はないと考えられる。
質量変化(3)−(2)は、隔離体表面に形成された被膜の除去による減少分であり、その大きさは被膜量に相当すると考えられる。質量変化(3)−(2)については、実施例の方が比較例よりも小さく、よって、実施例で形成された被膜は比較例で形成された被膜より薄かったものと考えられる。
また、質量変化(3)−(1)は、隔離体を構成している金属の電解操作前後の質量変化であり、その大きさは腐食量として定義され得るものである。質量変化(3)−(1)については、実施例の方が比較例よりもかなり小さく、よって、実施例では比較例よりも母材金属の腐食が効果的に低減されたものと考えられる。
以上より、実施例および比較例の双方でフッ化金属の被膜形成が認められたものの、実施例では、比較例よりも薄い被膜で腐食を効果的に防止することができたと言える。
Referring to Table 1, the mass change (2)-(1) is caused by the decrease due to elution of metal ions from the separator, the increase due to fluoride ion incorporation for fluoride formation, and the residue on the surface. This is considered to correspond to the sum of the increase due to the molten salt obtained. About mass change (2)-(1), a big difference is not recognized by an Example and a comparative example, Therefore It is thought that there is no big difference in the amount of the coating films formed.
The mass change (3)-(2) is a decrease due to the removal of the coating formed on the surface of the separator, and the magnitude is considered to correspond to the coating amount. About mass change (3)-(2), the Example is smaller than a comparative example, Therefore It is thought that the film formed in the Example was thinner than the film formed in the comparative example.
Moreover, mass change (3)-(1) is a mass change before and behind electrolytic operation of the metal which comprises the separator, The magnitude | size can be defined as a corrosion amount. Regarding the mass change (3)-(1), the example is considerably smaller than the comparative example, and therefore, it is considered that the corrosion of the base metal is effectively reduced in the example than in the comparative example.
From the above, although the formation of a metal fluoride film was observed in both the example and the comparative example, it can be said that in the example, corrosion could be effectively prevented with a thinner film than in the comparative example.

尚、隔離体表面に形成される被膜量および腐食量は、隔離体の表面積および比重に依存し得る。実施例および比較例において、隔離体の縦および横の寸法は同じであり、これら寸法に比して厚さの差は微小であるので、表面積は実質的に同じである。また、これら寸法および電解操作前の質量より算出される比重も実質的に同じである。よって、上記の実施例および比較例につき、隔離体の表面積および比重差を考慮せず、上記のように質量変化のみを直接比較して差し支えない。   Note that the amount of coating and the amount of corrosion formed on the surface of the separator can depend on the surface area and specific gravity of the separator. In the examples and comparative examples, the vertical and horizontal dimensions of the separator are the same, and the difference in thickness is small compared to these dimensions, so the surface area is substantially the same. The specific gravity calculated from these dimensions and the mass before the electrolysis operation is also substantially the same. Therefore, for the above-described Examples and Comparative Examples, it is possible to directly compare only the mass change as described above without considering the surface area and specific gravity difference of the separator.

実施例と比較例とで腐食防止効果が相違したのは、モネルから形成される不動態被膜は導電性であるために複極化現象を防止できなかったのに対して、銅から形成される不動態被膜は絶縁性であって、複極化現象を防止して、腐食が効果的に低減されたためであると考えられる。   The corrosion prevention effect was different between the Example and the Comparative Example because the passive film formed from Monel was conductive and could not prevent the bipolar phenomenon, whereas it was formed from copper. The passive film is insulative, which is thought to be due to the fact that the bipolarization phenomenon was prevented and corrosion was effectively reduced.

本発明の1つの実施形態における電解槽およびこれを用いるフッ素ガス製造方法を説明する図であり、図1(a)は断面図、図1(b)は上面図である。It is a figure explaining the electrolytic cell in one embodiment of this invention, and the fluorine gas manufacturing method using the same, FIG. 1 (a) is sectional drawing, FIG.1 (b) is a top view. 図1の電解槽の改変例を説明する図であり、図2(a)は断面図、図2(b)は上面図である。It is a figure explaining the modification of the electrolytic cell of FIG. 1, FIG. 2 (a) is sectional drawing, FIG.2 (b) is a top view. 従来の電解槽およびこれを用いるフッ素ガス製造方法を説明する図であり、図3(a)は断面図、図3(b)は上面図である。It is a figure explaining the conventional electrolytic cell and the fluorine gas manufacturing method using the same, Fig.3 (a) is sectional drawing, FIG.3 (b) is a top view.

符号の説明Explanation of symbols

1、11、61 容器
2、12、62 絶縁板
3、13、63 陽極
5、15、65 陰極
7、17 隔離体(母材金属)
67 隔板(モネル)
9、19 絶縁性不動態被膜(フッ化金属)
10、20、60 電解槽
1, 11, 61 Container 2, 12, 62 Insulating plate 3, 13, 63 Anode 5, 15, 65 Cathode 7, 17 Separator (base metal)
67 Separation board (Monel)
9, 19 Insulating passive film (metal fluoride)
10, 20, 60 Electrolyzer

Claims (7)

少なくとも一部が電解液に浸漬され、陽極および陰極からそれぞれ発生するガスの混合を防止する隔離体を備える電解槽であって、隔離体が、フッ化金属の絶縁性不動態被膜を形成する金属から成ることを特徴とする電解槽。   An electrolytic cell comprising a separator that is at least partially immersed in an electrolyte and prevents mixing of gases generated from an anode and a cathode, respectively, wherein the separator forms an insulating passive film of metal fluoride. An electrolytic cell comprising: 請求項1に記載の電解槽を、電解操作により含フッ素ガスを製造する方法に用いて、電解操作と同時に、隔離体の金属からフッ化金属の絶縁性不動態被膜を形成し、絶縁性不動態被膜が少なくとも隔離体の浸漬部の陰極と対向する面を覆う方法。   The electrolytic cell according to claim 1 is used in a method for producing a fluorine-containing gas by an electrolysis operation, and at the same time as the electrolysis operation, an insulating passive film of metal fluoride is formed from the metal of the isolator, thereby A method in which the dynamic coating covers at least the surface of the separator immersed portion facing the cathode. 少なくとも一部が電解液に浸漬され、陽極および陰極からそれぞれ発生するガスの混合を防止する隔離体を備える電解槽であって、隔離体が母材金属から成り、かつ、母材金属より形成されたフッ化金属の絶縁性不動態被膜により、隔離体の浸漬部の陰極と対向する面および陽極と対向する面の少なくとも一方が覆われていることを特徴とする電解槽。   An electrolytic cell comprising a separator that is at least partially immersed in an electrolyte and prevents mixing of gases generated from the anode and the cathode, respectively, the separator made of a base metal and formed from the base metal An electrolytic cell characterized in that at least one of the surface facing the cathode and the surface facing the anode of the immersion part of the separator is covered with an insulating passive film of metal fluoride. 金属が銅である、請求項1または3に記載の電解槽。   The electrolytic cell according to claim 1 or 3, wherein the metal is copper. 請求項1、3および4のいずれかに記載の電解槽、または請求項2の方法を実施して得られる電解槽を用いて、電解操作により含フッ素ガスを製造する方法。   A method for producing a fluorine-containing gas by electrolysis using the electrolytic cell according to any one of claims 1, 3 and 4, or the electrolytic cell obtained by carrying out the method of claim 2. 含フッ素ガスがフッ素ガスである、請求項2または5に記載の方法。   The method according to claim 2 or 5, wherein the fluorine-containing gas is a fluorine gas. 電解液がHFを含む、請求項2、5および6のいずれかに記載の方法。   The method according to claim 2, wherein the electrolytic solution contains HF.
JP2007081463A 2007-03-27 2007-03-27 Electrolytic cell and method of manufacturing fluorine-containing gas Pending JP2008240058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081463A JP2008240058A (en) 2007-03-27 2007-03-27 Electrolytic cell and method of manufacturing fluorine-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081463A JP2008240058A (en) 2007-03-27 2007-03-27 Electrolytic cell and method of manufacturing fluorine-containing gas

Publications (1)

Publication Number Publication Date
JP2008240058A true JP2008240058A (en) 2008-10-09

Family

ID=39911742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081463A Pending JP2008240058A (en) 2007-03-27 2007-03-27 Electrolytic cell and method of manufacturing fluorine-containing gas

Country Status (1)

Country Link
JP (1) JP2008240058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087885A1 (en) * 2017-10-31 2019-05-09 関東電化工業株式会社 Electrolytic bath for producing nitrogen trifluoride gas, and partition therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087885A1 (en) * 2017-10-31 2019-05-09 関東電化工業株式会社 Electrolytic bath for producing nitrogen trifluoride gas, and partition therefor
JPWO2019087885A1 (en) * 2017-10-31 2020-11-12 関東電化工業株式会社 Electrolytic cell for producing nitrogen trifluoride gas and its partition wall
JP7082135B2 (en) 2017-10-31 2022-06-07 関東電化工業株式会社 Electrolytic cell for producing nitrogen trifluoride gas and its partition wall
US11401614B2 (en) 2017-10-31 2022-08-02 Kanto Denka Kogyo Co., Ltd. Electrolytic cell for producing nitrogen trifluoride gas and partition therefor
TWI810214B (en) * 2017-10-31 2023-08-01 日商關東電化工業股份有限公司 Electrolytic cell and partition wall for nitrogen trifluoride gas production

Similar Documents

Publication Publication Date Title
CN101603194B (en) Corrosion-resistant material and manufacturing method of the same
KR101467643B1 (en) Method for manufacturing aluminum foil
JP4341838B2 (en) Electrode cathode
Chade et al. Deactivation mechanisms of atmospheric plasma spraying Raney nickel electrodes
JP5405544B2 (en) Method for generating germane by electrolysis
JP2010129458A (en) Corrosion resistant conductive material, method for manufacturing the same, polymer electrolyte fuel cell, and separator for the polymer electrolyte fuel cell
JP6252832B2 (en) Aluminum foil, electrode using the same, and power storage device
US20210292923A1 (en) Anode for electrolytic synthesis and method for producing fluorine gas or fluorine containing compound
JP2008240058A (en) Electrolytic cell and method of manufacturing fluorine-containing gas
EP3872235A1 (en) Fluorine gas production device
JP2014143191A (en) Magnesium battery
CN103320799A (en) Method for restraining secondary electron yield on silver coating surface of microwave component
JP4426383B2 (en) Method for forming oxide film on aluminum or aluminum alloy
CN201292408Y (en) High-capacity corrosion resistant electrolytic tank for production of fluorine
JP5929000B2 (en) Method for producing porous aluminum foil
JP5600011B2 (en) Hydrogen gas production method
RU2691967C1 (en) Method of making an electrode from reinforced lead dioxide
JP6500683B2 (en) Method of surface modification of titanium base material
JP6146545B2 (en) Titanium material, separator, cell and polymer electrolyte fuel cell
US2534638A (en) Electrolytic production of fluorine
JPH0417689A (en) Electrode for electrolyzing water and production thereof
JPH11269688A (en) Electrolytic electrode
KR102208619B1 (en) Method for improving corrosion resistance of aluminum alloy surface
TWI743360B (en) The method of electrochemical production of germane
KR101989519B1 (en) Metal Electrode with Enhanced Durability and Manufacturing Method thereof