JP2008239541A - Infection prophylactic of fish and shellfish - Google Patents

Infection prophylactic of fish and shellfish Download PDF

Info

Publication number
JP2008239541A
JP2008239541A JP2007081527A JP2007081527A JP2008239541A JP 2008239541 A JP2008239541 A JP 2008239541A JP 2007081527 A JP2007081527 A JP 2007081527A JP 2007081527 A JP2007081527 A JP 2007081527A JP 2008239541 A JP2008239541 A JP 2008239541A
Authority
JP
Japan
Prior art keywords
infection
fish
disaccharide
shellfish
shellfishes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007081527A
Other languages
Japanese (ja)
Inventor
Shin Nagai
慎 永井
Yutaka Nonaka
裕 野中
Tadashi Yamamoto
正 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANMONKAI KK
Kanmonkai Co Ltd
Original Assignee
KANMONKAI KK
Kanmonkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANMONKAI KK, Kanmonkai Co Ltd filed Critical KANMONKAI KK
Priority to JP2007081527A priority Critical patent/JP2008239541A/en
Publication of JP2008239541A publication Critical patent/JP2008239541A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

<P>PROBLEM TO BE SOLVED: To improve infectious diseases of fishes and shellfishes in farms by providing an infection prophylactic having high prophylactic effects to infectious diseases of fishes and shellfishes without orally administering to the fishes and the shellfishes, and an infection prophylactic method of fishes and shellfishes, comprising administration of the prophylactic. <P>SOLUTION: An infection prophylactic of fishes and shellfishes, which comprises a sulfation-treated disaccharide as an active ingredient, the infection prophylactic of fishes and shellfishes, whose monosaccharides composing the disaccharide are substituted their all H of hydroxy groups with SO<SB>3</SB>group, the infection prophylactic of fishes and shellfishes, whose disaccharide is maltose and/or sucrose, and a prophylactic method of infectious diseases of fishes and shellfishes, which comprises administering an effective amount of the infection prophylactic of fishes and shellfishes, are provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ウイルス又は病原性細菌などによる魚介類の感染を予防する薬剤、これを投与することによる魚介類の感染予防方法に関する。   The present invention relates to a drug for preventing infection of fish and shellfish by viruses or pathogenic bacteria, and a method for preventing infection of fish and shellfish by administering the drug.

クルマエビ(Penaeus japonicus)、ウシエビ(Penaeus monodon)などの甲殻類、ブリ、マダイ、ヒラメなどの養殖場では、魚介類が高い密度で飼育されているため、病気が発生することが多い。病気の原因としては、病原性細菌、ウイルス、寄生虫などによる感染が主であり、従来から様々な対策が講じられている。   Crustaceans such as prawns (Penaeus japonicus) and cattle shrimp (Penaeus monodon), and fish farms such as yellowtail, red sea bream, and flounder often cause diseases due to the high density of seafood. The cause of the disease is mainly infection by pathogenic bacteria, viruses, parasites, etc., and various countermeasures have been taken conventionally.

前記感染症の中でも、近年、エビを死滅させるウイルス感染症であるクルマエビ類急性ウイルス血症(Penaeid acute viremia(PAV))は、深刻な被害を発生させている。この感染症は、1993年に日本において初めて確認された感染症であるが、ピネイッド桿状DNAウイルス(Penaeid rod-shaped DNA virus(PRDV)、ニマウイルス科 ウィスポウイルス属)という病原性ウイルスにより媒介される。また、同様の病原性ウイルスとして、イエローヘッド病を引き起こすイエローヘッドウイルス(Yellowhead virus)が知られている。また、養殖される魚類においてもウイルス感染症や連鎖球菌症など発生頻度の高い感染症が知られており、いずれも重篤な被害をもたらしている。   Among the infectious diseases, in recent years, prawne acute viremia (PAV), which is a viral infection that kills shrimp, has caused serious damage. This infectious disease was first confirmed in Japan in 1993, but is mediated by a pathogenic virus called Penaeid rod-shaped DNA virus (PRDV). . As a similar pathogenic virus, yellowhead virus causing yellowhead disease is known. In addition, infects with high incidences such as viral infections and streptococcal diseases are known in fishes to be cultivated, all of which cause serious damage.

これらの感染症に対しては、これまで抗生物質や免疫活性物質などを投与するなどの対応処置がとられている。しかしながら、抗生物質を投与する場合、養殖している魚介類などへの残留が懸念され、またその効果は必ずしも満足できるものではなかった。   For these infectious diseases, countermeasures such as administration of antibiotics and immunologically active substances have been taken. However, in the case of administering antibiotics, there is concern about remaining in the fish and shellfish that are cultivated, and the effect is not always satisfactory.

一方、近年、海藻由来のフコイダンを用いて養殖場などにおける魚介類の感染を予防・治療する試みが行われているものの、まだ被害の発生は減少しておらず、より効果の高い新たな感染の予防・治療剤が要望されている(特許文献1〜8参照)。
特開2004−30736号公報 特開2000−336035号公報 特開平11−80003号公報 国際公開第2002/092114号公報 国際公開第98/42204号公報 特開平6−234651号公報 特開平11−180813号公報 特開平6−234652号公報
On the other hand, in recent years, attempts have been made to prevent and treat seafood infections at farms using seaweed-derived fucoidan, but the incidence of damage has not been reduced, and new infections that are more effective. (See Patent Documents 1 to 8).
JP 2004-30736 A JP 2000-336035 A Japanese Patent Laid-Open No. 11-80003 International Publication No. 2002/092114 International Publication No. 98/42204 JP-A-6-234651 Japanese Patent Laid-Open No. 11-180813 Japanese Patent Laid-Open No. 6-234652

魚介類の養殖池では、感染症、特に致死的な感染症が発生した場合に、いかに素早く感染の拡大を抑えるかが問題であるが、フコイダンのような従来の予防・治療剤では、魚介類が摂食しなければその作用効果を十分に発揮できないという問題がある。また、養殖池中の魚介類を従来の予防・治療剤につけて処理する方法もあるがこの場合も十分な作用効果が奏されているとはいえない。
したがって、本発明の目的は、魚介類の感染症に対して、魚介類の経口を経ずに高い予防効果を有する感染予防剤、及びこの予防剤を投与することによる魚介類の感染予防方法を提供し、養殖場における魚介類の感染症を改善することにある。
In aquaculture ponds, there is a problem of how quickly the spread of infection can be controlled when an infection, especially a fatal infection occurs, but with conventional preventive and therapeutic agents such as fucoidan, However, there is a problem that the effect cannot be fully exerted unless eating. In addition, there is a method of treating fish and shellfish in the aquaculture pond with a conventional preventive / therapeutic agent, but in this case too, it cannot be said that sufficient effects are achieved.
Therefore, an object of the present invention is to provide an infection preventive agent having a high preventive effect on fish and shellfish infections without oral administration of fish and shellfish, and a method for preventing infection of fish and shellfish by administering this preventive agent. To provide and improve seafood infections in the farm.

そこで、本発明者らは、鋭意研究を行った結果、硫酸化処理された二糖類が、従来のフコイダンのような経口系予防治療剤に比べて、魚介類が体内に取り込まなくてもウイルスなどによる魚介類の感染症のさらなる拡散を予防する効果が顕著に高いことを見出し、本発明を完成させた。   Therefore, as a result of intensive studies, the present inventors have found that disaccharides that have undergone sulphation treatment are less susceptible to viruses and the like even if fish and shellfish are not taken into the body, compared to oral preventive and therapeutic agents such as conventional fucoidan. It was found that the effect of preventing further spread of fish and shellfish infectious diseases was significantly high, and the present invention was completed.

すなわち、本発明の要旨は、
〔1〕 硫酸化処理された二糖類を有効成分とする魚介類の感染予防剤、
〔2〕 二糖類を構成する単糖において、すべての水酸基の水素がSO3基に置換されている前記〔1〕記載の魚介類の感染予防剤、
〔3〕 二糖類がマルトース及び/又はスクロースである前記〔1〕又は〔2〕記載の魚介類の感染予防剤、
〔4〕 前記〔1〕〜〔3〕いずれか記載の魚介類の感染予防剤の有効量を魚介類の養殖池に投与することを特徴とする魚介類の感染症の予防方法
に関する。
That is, the gist of the present invention is as follows.
[1] Infection preventive agent for fish and shellfish containing a sulfated disaccharide as an active ingredient,
[2] The anti-infection agent for fish and shellfish according to [1] above, wherein in the monosaccharide constituting the disaccharide, hydrogens of all hydroxyl groups are substituted with SO 3 groups,
[3] The fish and shellfish infection preventive agent according to [1] or [2], wherein the disaccharide is maltose and / or sucrose,
[4] The present invention relates to a method for preventing fish and shellfish infections, which comprises administering an effective amount of the fish and shellfish infection preventive agent according to any one of [1] to [3] to a fishery pond.

本発明の感染予防剤を使用することにより、養殖池中の魚介類の感染症を顕著に予防することができる。これにより感染で生じる魚介類の死亡や商品価値の低減を防ぎ、魚介類の養殖業者の経済的損失を最小限に抑えることができる。   By using the infection preventive agent of the present invention, it is possible to remarkably prevent infectious diseases of fish and shellfish in the culture pond. This can prevent the death of fish and shellfish caused by infection and the reduction of commercial value, and can minimize the economic loss of fish farmers.

本発明の魚介類の感染予防剤(以下、感染予防剤という)は、硫酸化処理された二糖類を有効成分とするものである。   The fish and shellfish infection preventive agent of the present invention (hereinafter referred to as infection preventive agent) comprises a disaccharide subjected to a sulfation treatment as an active ingredient.

本発明で用いられる二糖類とは、単糖2個が、一方の単糖のアノメリック炭素と他方の単糖の水酸基との間でグリコシド結合を形成した構造をもつものである。前記二糖類としては、マルトース、スクロース、セロビオース、ラクトース、及びトレハロースが挙げられ、中でも、魚介類の感染症の予防効果に優れる観点から、マルトース、スクロースが好ましく、スクロースがより好ましい。これらの二糖類は、2種以上を混合して用いてもよい。   The disaccharide used in the present invention has a structure in which two monosaccharides form a glycosidic bond between the anomeric carbon of one monosaccharide and the hydroxyl group of the other monosaccharide. Examples of the disaccharide include maltose, sucrose, cellobiose, lactose, and trehalose. Among them, maltose and sucrose are preferable, and sucrose is more preferable from the viewpoint of excellent effects of preventing fish and shellfish infections. Two or more of these disaccharides may be mixed and used.

本発明では、前記二糖類を硫酸化処理したものを用いる。
硫酸化処理とは、二糖類を構成する単糖において、すべての水酸基の水素がSO3基に置換されている処理をいう。
In the present invention, the disaccharide obtained by sulfation treatment is used.
The sulfation treatment refers to a treatment in which all hydroxyl group hydrogens are replaced with SO 3 groups in monosaccharides constituting disaccharides.

本発明において硫酸化処理は、例えば、前記二糖類を硫化アミン系化合物と混合することで行う。   In the present invention, the sulfation treatment is performed, for example, by mixing the disaccharide with an amine sulfide compound.

前記硫化アミン系化合物としては、硫酸基を含有するピリジン錯体、硫酸基を有するトリメチルアミン錯体、サルファオキサイドなどが挙げられる。これらの硫化アミン系化合物は、単独で又は2種以上を混合して用いてもよい。   Examples of the amine sulfide compound include a pyridine complex containing a sulfate group, a trimethylamine complex having a sulfate group, and sulfoxide. These sulfurized amine compounds may be used alone or in admixture of two or more.

前記二糖類と硫化アミン系化合物との混合割合については、特に限定はないが、例えば、二糖類:硫化アミン系化合物(重量比)が1:2〜1:15となるように調整することが好ましい。   The mixing ratio of the disaccharide and the sulfurized amine compound is not particularly limited. For example, the disaccharide: sulfurized amine compound (weight ratio) may be adjusted to be 1: 2 to 1:15. preferable.

また、硫化アミン系化合物は、必要であればアミンなどの他の成分を併用してもよい。アミンなどの量としては、特に限定はない。   Further, if necessary, the amine sulfide compound may be used in combination with other components such as amine. There are no particular limitations on the amount of amine or the like.

また、前記硫酸化処理は、前記二糖類と硫化アミン系化合物を有機溶媒と混合して行うことが好ましい。有機溶媒は、硫化アミン系化合物及び二糖類を溶解させるために用いられ、かかる状態で硫化アミン系化合物と混合することで、二糖類の硫酸化が効率よく行える。
前記有機溶媒としては、メタノール、クロロホルム、ジオキサン、ジメチルホルムアミド、トルエン、エチルエーテルなどが挙げられる。これらの有機溶媒は、単独で又は2種以上を混合して用いることができる。中でも、効率よく反応を行える観点から、ジメチルホルムアミドが好ましい。
The sulfation treatment is preferably performed by mixing the disaccharide and the sulfurized amine compound with an organic solvent. The organic solvent is used for dissolving the sulfurized amine compound and the disaccharide. By mixing with the sulfurized amine compound in such a state, the disaccharide can be efficiently sulfated.
Examples of the organic solvent include methanol, chloroform, dioxane, dimethylformamide, toluene, ethyl ether and the like. These organic solvents can be used individually or in mixture of 2 or more types. Of these, dimethylformamide is preferable from the viewpoint of efficient reaction.

前記有機溶媒の量としては、二糖類1gに対して有機溶媒が10〜30mLとなるように調整することが望ましい。   The amount of the organic solvent is preferably adjusted so that the organic solvent is 10 to 30 mL with respect to 1 g of the disaccharide.

前記二糖類、硫化アミン系化合物を前記有機溶媒に混合して行う硫酸化処理条件としては、例えば、常温を越える温度で混合する場合、1〜2日程度静置することが好ましく、硫酸化処理を効率よく行える観点から、60℃付近で20〜30時間程度静置することがより好ましい。また、混合時には攪拌などしてもよい。   As a sulfation treatment condition performed by mixing the disaccharide and the amine sulfide compound with the organic solvent, for example, when mixing at a temperature exceeding room temperature, it is preferable to leave it for about 1 to 2 days. From the viewpoint of efficiently carrying out the treatment, it is more preferable to leave it at around 60 ° C. for about 20 to 30 hours. Moreover, you may stir etc. at the time of mixing.

前記硫酸化処理後、前記混合物を遠心分離することで沈殿物を得、この沈殿物を3〜8倍溶のアセトニトリルなどの前記沈殿物を溶解しない有機溶媒で洗浄することで、硫酸化処理された二糖類(以下、硫酸化二糖類という)を得ることができる。なお、洗浄後、沈殿物をトリフルオロ酢酸と混合して、常温にて0.5〜2時間程度放置することで、残った硫酸アミン系化合物を分解させてもよい。   After the sulfation treatment, the mixture is centrifuged to obtain a precipitate, and the precipitate is washed with an organic solvent that does not dissolve the precipitate such as acetonitrile having a concentration of 3 to 8 times. Disaccharide (hereinafter referred to as sulfated disaccharide) can be obtained. After washing, the precipitate may be mixed with trifluoroacetic acid and left at room temperature for about 0.5 to 2 hours to decompose the remaining amine sulfate compound.

また、硫酸化二糖類は、前記のように洗浄した処理物から有機溶媒などを脱気して除去したのち、乾燥させることで固形物とすることができる。   In addition, the sulfated disaccharide can be made solid by degassing and removing the organic solvent from the washed product as described above and then drying.

前記のようにして得られた硫酸化二糖類は、硫酸化処理前の二糖類に比べて、その表面張力が高くなる。例えば、25℃、湿度40%の条件における硫酸化二糖類の表面張力が5%濃度で66.2mN/m以上であることが好ましく、70.0mN/m以上であることがより好ましい。   The sulfated disaccharide obtained as described above has a higher surface tension than the disaccharide before sulfation treatment. For example, the surface tension of the sulfated disaccharide at 25 ° C. and a humidity of 40% is preferably 66.2 mN / m or more at a 5% concentration, and more preferably 70.0 mN / m or more.

本発明の感染予防剤は、前記硫酸化二糖類を有効成分として含有するものであり、前記硫酸化二糖類1種以上をそのまま用いてもよいし、その形態により、他の成分を含有してもよい。   The infection-preventing agent of the present invention contains the sulfated disaccharide as an active ingredient, and one or more of the sulfated disaccharides may be used as they are, and depending on the form, other ingredients may be contained. Also good.

前記他の成分としては、例えば、予防効果がより向上する観点から、硫酸化処理した単糖を含有してもよい。単糖としては、グルコース、マンノース、フルクトース、ガラクトースなどが挙げられる。硫酸化処理は上記の硫酸化処理された二糖類を得る方法と同様にすればよい。また、感染予防剤の形態に応じて、他の成分を配合してもよい。   As said other component, you may contain the monosaccharide which carried out the sulfation process from a viewpoint which the prevention effect improves more, for example. Examples of monosaccharides include glucose, mannose, fructose, galactose and the like. The sulfation treatment may be performed in the same manner as the method for obtaining the sulfated disaccharide. Moreover, you may mix | blend another component according to the form of an infection prevention agent.

本発明の感染予防剤の形態は、特に限定されず、例えば、シロップ剤、乳剤、懸濁剤、注射剤などの液剤、錠剤、細粒剤、顆粒剤、散剤、丸剤、カプセル剤、トローチ剤などの固形製剤などとすることができる。これらの製剤の調製には製剤の種類に応じて、慣用の担体成分を用いることができる。   The form of the agent for preventing infection according to the present invention is not particularly limited, and for example, liquids such as syrups, emulsions, suspensions, injections, tablets, fine granules, granules, powders, pills, capsules, troches It can be a solid preparation such as an agent. In preparing these preparations, conventional carrier components can be used depending on the kind of preparation.

固形製剤の調製には、例えば、賦形剤、結合剤、潤沢剤、崩壊剤、崩壊助剤、糖類、保湿剤、界面活性剤などを使用することができる。また、液剤の調製には、例えば、溶剤、溶解補助剤、緩衝剤、懸濁剤、等張化剤、界面活性剤、無痛化剤、ブドウ糖、アミノ酸などを使用することができる。また、固形製剤や液剤には、保存剤、抗酸化剤、可溶化剤、乳化剤、増粘剤、可塑剤、吸着剤、香料、着色剤、分散剤、甘味剤、防腐剤なども使用できる。   For the preparation of solid preparations, for example, excipients, binders, lubricants, disintegrants, disintegration aids, sugars, humectants, surfactants and the like can be used. In addition, for example, a solvent, a solubilizing agent, a buffering agent, a suspending agent, a tonicity agent, a surfactant, a soothing agent, glucose, an amino acid, and the like can be used for preparing the liquid agent. In addition, preservatives, antioxidants, solubilizers, emulsifiers, thickeners, plasticizers, adsorbents, fragrances, colorants, dispersants, sweeteners, preservatives, and the like can be used for solid preparations and liquids.

本発明の感染予防剤は、その形態に応じて、例えば、混和、混練、造粒、打錠、コーティング、滅菌処理、乳化などの慣用の方法により、製造することができる。   The infection-preventing agent of the present invention can be produced by a common method such as mixing, kneading, granulation, tableting, coating, sterilization, emulsification, etc., depending on the form.

また、本発明では、前記のように製造された感染予防剤の有効量を養殖池に投与することで、魚介類の感染症の予防を行うことができる。   Moreover, in this invention, the infectious disease of fishery products can be prevented by administering the effective amount of the infection prevention agent manufactured as mentioned above to a culture pond.

前記投与方法としては、常套手段に従って行えばよく、本発明の感染予防剤をそのまま、又は担体成分に担持したもの、あるいはこれらの剤の水溶液を養殖池に投与してもよい。なお、有効量とは、予防効果が奏される量をいう。   The administration method may be carried out according to conventional means, and the infection preventive agent of the present invention may be used as it is or on a carrier component, or an aqueous solution of these agents may be administered to the culture pond. In addition, an effective amount means the amount with which a preventive effect is show | played.

前記養殖池としては、予防効果が高い観点から、閉鎖系のものが好ましい。閉鎖系養殖池としては、田、池、陸地に設けられた養殖槽などが挙げられる。なお、河川、海などの大きな水環境中において、開き目の細かい網などを用いて外部との水の循環の程度が低められた養殖場も本発明の養殖池に含まれる。   The culture pond is preferably a closed type from the viewpoint of high preventive effect. Examples of closed aquaculture ponds include rice fields, ponds, and aquaculture tanks on land. In addition, in a large water environment such as a river or the sea, a farm where the degree of water circulation to the outside is reduced by using a fine mesh or the like is also included in the culture pond of the present invention.

本発明の感染予防剤の投与量は養殖池中の水の容量、魚介類の種類、体重、症状等により異なり、これらを考慮して適宜設定されるが、例えば、エビ類であれば、有効成分である硫酸化二糖類の量としては、養殖池中の水中濃度の容量が1g/L以上が好ましい。エビ類以外の魚介類であれば上記のエビ類に準じて投与量を調整すればよい。   The dose of the infection preventive agent of the present invention varies depending on the volume of water in the culture pond, the kind of seafood, body weight, symptoms, etc., and is appropriately set in consideration of these. As the amount of the sulfated disaccharide as a component, the capacity of the water concentration in the culture pond is preferably 1 g / L or more. In the case of seafood other than shrimps, the dosage may be adjusted according to the above-mentioned shrimps.

また、本発明の感染予防剤は、例えば、エビ類の養殖場においてPRDVなどの病原性ウイルスの感染が確認された場合、その養殖場内のエビ類を本発明の感染予防剤を含有する処理液で洗ったり、該処理液中にエビ類を所定の時間浸漬させてもよい。前記処理液は、例えば、養殖場付近の海水、真水、生理食塩水などに、本発明の予防剤を有効量配合することで調製することができる。   In addition, the infection preventive agent of the present invention is, for example, a treatment liquid containing shrimp in the aquaculture farm containing the infection preventive agent of the present invention when infection with a pathogenic virus such as PRDV is confirmed in the shrimp farm. Or by immersing shrimp in the treatment solution for a predetermined time. The treatment liquid can be prepared, for example, by blending an effective amount of the preventive agent of the present invention in seawater, fresh water, physiological saline, or the like near the farm.

本発明の感染予防剤は、例えば、クルマエビ、ウシエビ(ブラックタイガー)、コウライエビ、クマエビ、イセエビ、ペナエウス・バンナメイ(Penaeus vannamei)、ガザミなどの甲殻類、コイ、フナ、ウナギ、ニジマス、アユ、キンギョなどの淡水魚、フグ、タイ、ヒラメ、カレイ、アジ、ブリ等の海水魚に対して投与することができる。   The infection preventive agent of the present invention includes, for example, tiger shrimp, cattle shrimp (black tiger), tiger shrimp, bear shrimp, lobster, Penaeus vannamei, crustacean and other crustaceans, carp, crucian carp, eel, rainbow trout, ayu, goldfish, etc. It can be administered to seawater fish such as freshwater fish, puffer fish, puffer fish, tie, flounder, flatfish, horse mackerel and yellowtail.

また、適用できる感染症としては、PRDV、イエローヘッドウイルス、イリドウイルス、ビルナウイルスなどのウイルス感染症、ビブリオ、シュードモナス、連鎖球菌などの細菌感染症が挙げられる。中でも、感染後の致死率の高いPRDV、イエローヘッドウイルスに対しても効果が高く好ましい。   Infectious diseases that can be applied include viral infections such as PRDV, yellow head virus, iridovirus and birnavirus, and bacterial infections such as Vibrio, Pseudomonas and Streptococcus. Among them, it is preferable because it is highly effective against PRDV and yellow head virus having a high lethality after infection.

本発明に用いられる感染予防剤が、魚介類の感染症の予防に顕著な効果を示すメカニズムは未だ明確ではないが、硫酸化二糖類を構成する単糖中の硫酸基及び一方の単糖のアノメリック炭素と他方の単糖のとの間でグリコシド結合している酸素がウイルスや病原菌に作用することで、感染を防ぐことが考えられる。例えば、硫酸化二糖類において、立体構造的にグリコシド結合の酸素の隣接した空間に硫酸基が多く存在することで、ウイルスや病原菌へ硫酸化二糖類が結合し易くなること、また、硫酸化二糖類の分子量が小さいため結合するまでの速度も高いこと、硫酸化二糖類が結合したウイルスや病原菌の細胞などへの感染力を顕著に低減できること、結合強度が高いため魚介類の体内に取り込まれても病原性を発現し難いことなどが推察される。
また、本発明の感染治療剤は、フコイダンなどのような顕著な免疫活性化作用は見られないことから、従来の経口系予防治療剤とは異なるメカニズムで作用していると推察される。
Although the mechanism by which the infection preventive agent used in the present invention has a remarkable effect in preventing fish and shellfish infections is not yet clear, the sulfate group in the monosaccharide constituting the sulfated disaccharide and one of the monosaccharides It is conceivable that the oxygen bonded to the glycoside between the anomeric carbon and the other monosaccharide acts on viruses and pathogens to prevent infection. For example, in sulfated disaccharides, the presence of many sulfate groups in the space adjacent to the oxygen of glycosidic bonds in the three-dimensional structure facilitates the binding of sulfated disaccharides to viruses and pathogens. Because the molecular weight of saccharides is small, the rate of binding is high, the infectivity of viruses and pathogenic bacteria cells to which sulfated disaccharides are bound can be significantly reduced, and the binding strength is high, so it is taken into the body of seafood. However, it is inferred that pathogenicity is difficult to develop.
Moreover, since the therapeutic agent for infection according to the present invention does not exhibit a significant immune activation effect such as fucoidan, it is presumed that it acts by a mechanism different from that of conventional oral preventive and therapeutic agents.

(実施例1) 硫酸化処理された二糖類(スクロース)の調製方法
スクロース200mgと硫酸トリメチルオクサイド400mgをジメチルホルムアミド6mLに入れて60℃、130rpmで24時間攪拌混合して硫酸化処理した。次いで、遠心分離(6000g、10分間)を行って、沈殿物を回収し、アセトニトリルで2回洗浄した後、40℃で乾燥させ、いずれも白色の粉末状固形物を得た(収率:硫酸化スクロース93%)であった。
(Example 1) Preparation method of sulfated disaccharide (sucrose) 200 mg of sucrose and 400 mg of trimethyl octoside were placed in 6 mL of dimethylformamide and stirred and mixed at 60 ° C. and 130 rpm for 24 hours for sulfation treatment. Next, centrifugation (6000 g, 10 minutes) was performed, and the precipitate was collected, washed twice with acetonitrile, and then dried at 40 ° C. to obtain a white powdery solid (yield: sulfuric acid). Sucrose (93%).

得られた硫酸化スクロース中の硫酸基(SO3基)の位置を確認するために構造解析を以下のようにして行った。 In order to confirm the position of the sulfate group (SO 3 group) in the obtained sulfated sucrose, structural analysis was performed as follows.

〔合成品の構造解析〕
前記合成物を80%アセトニトリルに溶解してサンプルとし、下記の条件でHPLCに供した。溶出時間15〜16分のピーク面積の合計を算出し定量を行った。また、それぞれのピ−クをLC−MS/MSで構造解析をおこなった。
カラム:「Amide80」(5μm、4.6mm×250mm)
カラム温度:65℃
流速:1.0mL/min
溶離液:80%アセトニトリル
injection量:10μL
検出器:PDA
[Structural analysis of synthetic products]
The synthesized product was dissolved in 80% acetonitrile to prepare a sample, which was subjected to HPLC under the following conditions. The total peak area with an elution time of 15 to 16 minutes was calculated and quantified. Each peak was subjected to structural analysis by LC-MS / MS.
Column: “Amide80” (5μm, 4.6mm x 250mm)
Column temperature: 65 ° C
Flow rate: 1.0mL / min
Eluent: 80% acetonitrile
Injection volume: 10μL
Detector: PDA

前記HPLCで分離した結果、14分付近に出てきたピーク(8%)と15分付近に出てきたピーク(91.5%)との2つがあり、それぞれをLC−MS/MSで構造解析した結果、15分付近の91.5%存在する物質は、図1に示すようにM.W.413.4のフラグメントピークが強く確認されたことから、硫酸化スクロースはスクロース(M.W.:342.3)を構成するグルコースとフルクトース中にあるOH基のHが全てSO3に変換したものであることがわかる。なお、14分付近のピークは、スクロースのOH基の7つがバラバラに結合した物質であった(M.W.:395.4)。 As a result of separation by HPLC, there are two peaks, a peak (8%) that appeared in the vicinity of 14 minutes and a peak (91.5%) that appeared in the vicinity of 15 minutes. As shown in Fig. 1, the MW413.4 fragment peak was strongly confirmed in the substance present at 91.5% in the vicinity of 15 minutes. Therefore, sulfated sucrose is contained in glucose and fructose constituting sucrose (MW: 342.3). It can be seen that the H of a certain OH group is all converted to SO 3 . The peak near 14 minutes was a substance in which seven of the OH groups of sucrose were bound together (M.W .: 395.4).

(実施例2) 硫酸化処理された二糖類(マルトース)の調製方法
マルトース200mgと硫酸トリメチルオクサイド400mgをジメチルホルムアミド6mLに入れて60℃、130rpmで24時間攪拌混合して硫酸化処理した。次いで、遠心分離(6000g、10分間)を行って、沈殿物を回収し、アセトニトリルで2回洗浄した後、40℃で乾燥させ、いずれも白色の粉末状固形物を得た(収率:硫酸化マルトース91%)であった。
(Example 2) Preparation method of sulfated disaccharide (maltose) 200 mg of maltose and 400 mg of trimethyl octoside were placed in 6 mL of dimethylformamide, and stirred and mixed at 60 ° C. and 130 rpm for 24 hours for sulfation treatment. Next, centrifugation (6000 g, 10 minutes) was performed, and the precipitate was collected, washed twice with acetonitrile, and then dried at 40 ° C. to obtain a white powdery solid (yield: sulfuric acid). Maltose (91%).

得られた硫酸化マルトース中の硫酸基(SO3基)の位置を確認するために、実施例1と同様にして構造解析を行った。硫酸化マルトースを構成する一方のグルコースの水酸基のHは全てSO3基に置換され、他方のグルコースの水酸基のHも全てSO3基に置換された化合物であることがわかった。 In order to confirm the position of the sulfate group (SO 3 group) in the obtained sulfated maltose, structural analysis was performed in the same manner as in Example 1. It was found that the hydroxyl groups of one glucose constituting sulfated maltose were all substituted with SO 3 groups, and the other hydroxyl groups of glucose were all substituted with SO 3 groups.

(実験例1) 〔予防剤としての作用効果1〕
(クルマエビの調製)
クルマエビ(松本水産(株)より購入、1尾あたり約12g)を3日間海水の入った水槽(60L容、水温23℃、43mL/分でエアレーション)内で休ませた後、予防効果の実験に供した。
(Experimental example 1) [Functional effect 1 as a preventive agent]
(Preparation of prawns)
Shrimp (purchased from Matsumoto Suisan Co., Ltd., about 12 g per fish) was rested in a tank of seawater (60 L, aeration at 23 ° C, 43 mL / min) for 3 days, and then tested for preventive effects Provided.

(PRDV液の調製)
PRDVに感染した2尾のクルマエビの心臓を取り出し、生理食塩水内で粉砕した後、10倍希釈したものをPRDV液とした。
(Preparation of PRDV solution)
The heart of two prawns infected with PRDV was taken out, pulverized in physiological saline, and diluted 10 times to obtain a PRDV solution.

(感染予防液の調製)
実施例1、2で得られた硫酸化二糖類を生理食塩水中に1mg/mLとなるよう混合して感染予防液を調製した。なお、コントロールとしては、生理食塩水のみのものを用いた。
(Preparation of infection prevention solution)
The sulfated disaccharides obtained in Examples 1 and 2 were mixed in physiological saline so as to be 1 mg / mL to prepare an infection prevention solution. As a control, a physiological saline alone was used.

(実験手順)
前記感染予防液にPRDV液を等量入れて、室温で30分間静置した後、目開き0.45μmのフィルターに通して3種類の注射用処理液を得た。
型番28Gの注射針を用いて、各注射用処理液を200μL/尾となるように第一関節にインジェクションしたクルマエビ(1試験区あたり15尾)を水槽に戻し、水温23℃、エアレーション(43mL/分)を行った。
(Experimental procedure)
An equal amount of PRDV solution was added to the infection prevention solution and allowed to stand at room temperature for 30 minutes, and then passed through a 0.45 μm aperture filter to obtain three types of treatment solutions for injection.
Using an injection needle of model No. 28G, each prawn (15 fish per test section) was injected into the first joint so that each injection treatment solution was 200 μL / tail, returned to the water tank, water temperature 23 ° C., aeration (43 mL / Min).

水槽に戻してから1〜8日目のクルマエビの体重、生存率を計測した。これらの結果を図2に示す。   The body weight and survival rate of the prawn 1-8 days after returning to the water tank were measured. These results are shown in FIG.

図2に示すように、硫酸化スクロース、硫酸化マルトースは、いずれもコントロールに比べて、死亡率が有意に低いことがわかる。特に、硫酸化スクロースは8日目でも70%近い生存率を維持していることから、致死的なPRDVが養殖池中に多量に存在している場合でも、顕著な予防効果を有することがわかる。
また、図2の結果より、硫酸化スクロース及び硫酸化マルトース、中でも硫酸化スクロースはPRDVへの結合性に優れたものであり、PRDVがエビの体内に取り込まれた場合でも、その病原性の発現を顕著に抑制できることがわかる。
As shown in FIG. 2, it can be seen that sulfated sucrose and sulfated maltose both have a significantly lower mortality rate than the control. In particular, sulfated sucrose maintains a survival rate of nearly 70% even on the 8th day, so that it can be seen that even when a large amount of lethal PRDV is present in the culture pond, it has a significant preventive effect. .
In addition, from the results shown in FIG. 2, sulfated sucrose and sulfated maltose, particularly sulfated sucrose, have excellent binding properties to PRDV, and even when PRDV is taken into the shrimp body, its pathogenicity is expressed. It can be seen that it can be significantly suppressed.

(実験例2) 〔予防剤としての作用効果2〕
以下のようにクルマエビに対して浸漬実験を行ない、経時的に死亡率の変化を確認し、抗PRDV薬の有効を確認した。その結果を図3に示す。
(Experimental example 2) [Operation effect 2 as a preventive agent]
An immersion experiment was conducted on prawns as follows, and the change in mortality over time was confirmed, and the effectiveness of the anti-PRDV drug was confirmed. The result is shown in FIG.

〔方法〕
供試サンプル : クルマエビ(約16g)松本水産より、購入後、2日間水槽にて休ませた後、浸漬実験に使用した。
PRDV溶液: PRDVに感染した4頭のエビの頭全てを取り出し、生理食塩水内にて粉砕した後に10倍希釈したものをPRDV溶液とし、2Lの水槽にて、2時間感染させる。
抗PRDV浸漬用溶液 : 抗PRDV3溶液(A区、B区、C区)をそれぞれ1mg/mlを作製した溶液を抗PRDV攻撃用溶液とし、10分間それぞれの溶液につける。
試験区 : 硫酸化スクロース(A区)、フコイダン(B区)、ヨード2ppm(C区)
実験使用尾数 :1試験区当たり15尾
水槽の状態 : 水温 23℃、 エアレーション(43 ml/min)
死亡確認時間 : クルマエビを水槽に戻してから1、3、5、7、9日
測定項目 : 死亡数、時間
〔Method〕
Test sample: Shrimp (about 16 g) from Matsumoto Suisan, purchased, rested in a water tank for 2 days, and used for immersion experiments.
PRDV solution: Remove all 4 shrimp heads infected with PRDV, crush them in physiological saline and dilute 10-fold to make a PRDV solution, and infect in a 2 L water bath for 2 hours.
Anti-PRDV dipping solution: A solution prepared by preparing 1 mg / ml each of the anti-PRDV3 solution (A group, B group, C group) is used as an anti-PRDV attack solution, and is applied to each solution for 10 minutes.
Test group: Sulfated sucrose (A group), Fucoidan (B group), iodine 2ppm (C group)
Number of experimental animals: 15 water tanks per test area: Water temperature 23 ° C, Aeration (43 ml / min)
Death confirmation time: 1, 3, 5, 7, 9 days after returning prawns to water tank Measurement item: Number of deaths, time

図2の結果に示すように、A〜C区の中で、現在の養殖現場で使用されているフコイダン(B区)や、PRDVの感染が見られた養殖池中のエビ処理に推奨されている2ppmのヨード溶液(C区)に比べて、硫酸化スクロースが既にPRDVに感染したエビにおいても顕著に高い生存率を示すことがわかる。
また、図3の結果より、PRDVへの結合性に優れた硫酸化スクロースは、すでにエビの体に付着しいているPRDVに対しても速やかに結合することで、その病原性の発現を顕著に抑制できることが考えられる。
As shown in the results of FIG. 2, among the A to C zones, it is recommended for fucoidan (B zone) used in the current aquaculture site and shrimp treatment in aquaculture ponds where PRDV infection was seen It can be seen that sulfated sucrose shows a significantly higher survival rate even in shrimp already infected with PRDV, compared to the 2 ppm iodine solution (section C).
In addition, from the results of FIG. 3, sulfated sucrose excellent in binding to PRDV rapidly binds to PRDV that is already attached to the body of shrimp, thereby significantly manifesting its pathogenicity. It can be suppressed.

(実験例3)(安全性試験)
100 mg/mlの濃度の硫酸化スクロース水溶液を2Lつくり、そこにクルマエビを2時間ほど浸漬させて、60L水槽に戻し、死亡率を確認したところ、10日間たっても全く、死亡は確認されなかった。したがって、硫酸化スクロースは安全性に優れたものであることがわかる。また、硫酸化マルトースでの同様に優れた安全性を示した。
(Experiment 3) (Safety test)
2L of 100 mg / ml concentration of sulfated sucrose aqueous solution was made, and prawns were dipped there for about 2 hours, returned to the 60L water tank, and mortality was confirmed. No death was confirmed even after 10 days. . Therefore, it can be seen that sulfated sucrose is excellent in safety. Moreover, the safety | security which was similarly excellent in the sulfated maltose was shown.

(実験例4)
原料スクロースの5%溶液及び実施例1で得られた硫酸化スクロースの5%溶液における25℃、湿度40%での表面張力を測定したところ、原料スクロース66.2mN/m、硫酸化スクロース70.2mN/mであった。
(Experimental example 4)
The surface tension at 25 ° C. and 40% humidity in the 5% solution of raw material sucrose and the 5% solution of sulfated sucrose obtained in Example 1 was measured to find that raw material sucrose was 66.2 mN / m, sulfated sucrose 70.2 mN / m. m.

図1は、実施例1で得られた硫酸化スクロースの構造解析の結果を示すグラフである。1 is a graph showing the results of structural analysis of sulfated sucrose obtained in Example 1. FIG. 図2は、実験例1における予防効果の結果を示すグラフである。FIG. 2 is a graph showing the results of the preventive effect in Experimental Example 1. 図3は、実験例2における予防効果の結果を示すグラフである。FIG. 3 is a graph showing the results of the preventive effect in Experimental Example 2.

Claims (4)

硫酸化処理された二糖類を有効成分とする魚介類の感染予防剤。   An infection preventive agent for fish and shellfish containing a sulfated disaccharide as an active ingredient. 二糖類を構成する単糖において、すべての水酸基の水素原子がSO3基に置換されている請求項1記載の魚介類の感染予防剤。 The agent for preventing infection of fish and shellfish according to claim 1, wherein in the monosaccharide constituting the disaccharide, hydrogen atoms of all hydroxyl groups are substituted with SO 3 groups. 二糖類がマルトース及び/又はスクロースである請求項1又は2記載の魚介類の感染予防剤。   The agent for preventing infection of fish and shellfish according to claim 1 or 2, wherein the disaccharide is maltose and / or sucrose. 請求項1〜3いずれか記載の魚介類の感染予防剤の有効量を魚介類の養殖池に投与することを特徴とする魚介類の感染症の予防方法。   A method for preventing fish and shellfish infections, comprising administering an effective amount of the fish and shellfish infection preventive agent according to any one of claims 1 to 3 to a fish and fish culture pond.
JP2007081527A 2007-03-27 2007-03-27 Infection prophylactic of fish and shellfish Pending JP2008239541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081527A JP2008239541A (en) 2007-03-27 2007-03-27 Infection prophylactic of fish and shellfish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081527A JP2008239541A (en) 2007-03-27 2007-03-27 Infection prophylactic of fish and shellfish

Publications (1)

Publication Number Publication Date
JP2008239541A true JP2008239541A (en) 2008-10-09

Family

ID=39911300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081527A Pending JP2008239541A (en) 2007-03-27 2007-03-27 Infection prophylactic of fish and shellfish

Country Status (1)

Country Link
JP (1) JP2008239541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342850A (en) * 2022-02-08 2022-04-15 江苏省海洋水产研究所 Penaeus vannamei farming method based on detection of shrimp liver enterocytozoon infection amount

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017282A1 (en) * 1996-10-23 1998-04-30 Vertex Pharmaceuticals Incorporated Methods of using sucrose octasulfate to treat or prevent enveloped virus infection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017282A1 (en) * 1996-10-23 1998-04-30 Vertex Pharmaceuticals Incorporated Methods of using sucrose octasulfate to treat or prevent enveloped virus infection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342850A (en) * 2022-02-08 2022-04-15 江苏省海洋水产研究所 Penaeus vannamei farming method based on detection of shrimp liver enterocytozoon infection amount
CN114342850B (en) * 2022-02-08 2023-02-28 江苏省海洋水产研究所 Penaeus vannamei farming method based on detection of shrimp liver enterocytozoon infection amount

Similar Documents

Publication Publication Date Title
Harikrishnan et al. Scuticociliatosis and its recent prophylactic measures in aquaculture with special reference to South Korea: Taxonomy, diversity and diagnosis of scuticociliatosis: Part I Control strategies of scuticociliatosis: Part II
Amatul-Samahah et al. Vaccination trials against vibriosis in shrimp: A review
Srisapoome et al. Immunostimulation and yellow head virus (YHV) disease resistance induced by a lignin-based pulping by-product in black tiger shrimp (Penaeus monodon Linn.)
Fu et al. Pharmacokinetics and pharmacodynamics of sulfamethoxazole and trimethoprim in swimming crabs (Portunus trituberculatus) and in vitro antibacterial activity against Vibrio: PK/PD of SMZ-TMP in crabs and antibacterial activity against Vibrio
Donati et al. Phage-mediated control of Flavobacterium psychrophilum in aquaculture: In vivo experiments to compare delivery methods
WO2012002379A9 (en) Fish parasite extermination agent and extermination method
Hu et al. Evaluation on the antiviral effect of natural product arctigenin against Micropterus salmoides rhabdovirus (MSRV) in vitro and in vivo
Chong et al. Phytotherapy in aquaculture: Integration of endogenous application with science
Mondal et al. Viral infections in cultured fish and shrimps: current status and treatment methods
JPH1180003A (en) Agent for preventing and treating infectious disease
WO2000010558A1 (en) Natural physiologically active substances efficacious against fish diseases and fish feeds containing the same
EP2564835A1 (en) Fast-dissolving solid pharmaceutical form for treating bacterial infections
JP4331824B2 (en) Infectious disease prevention and treatment for seafood
Wang et al. Pharmacokinetic study of florfenicol in healthy and vibriosis-infected Pseudosciaena crocea after oral administration
JP2008239541A (en) Infection prophylactic of fish and shellfish
Bhat et al. Alternatives to antibiotics for combating the antimicrobial resistance in aquaculture
Makled et al. Dietary surface-modified zirconium silicate nanoparticles enhance immune response, antioxidant activity and cytokine genes expression of the white shrimp Litopenaeus vannamei against Vibrio harveyi
Delves-Broughton Preliminary investigations into the suitability of a new chemotherapeutic, Furanace, for the treatment of infectious prawn diseases
JP2008169181A (en) Agent for preventing and/or treating infectious disease of fish-and-shellfish
JP7128466B2 (en) Effective remedy for downy mildew of marine fish and its administration method
CN114146071A (en) Application of paeonol and its derivatives in preventing and treating leukoplakia syndrome
KR20000075860A (en) Infectious disease preventive/remedy for fishes and shellfishes
CN106667984A (en) Small-molecule substance capable of enhancing antibacterial drug effects of florfenicol
JPH08131089A (en) Feed composition for preventing infectious disease of crustacea
US9603900B2 (en) Use of PACAP for the treatment of viral infections in aquatic organisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122