JP2008238006A - Phosphorous scavenger, and method for removing phosphorous in water to be treated - Google Patents

Phosphorous scavenger, and method for removing phosphorous in water to be treated Download PDF

Info

Publication number
JP2008238006A
JP2008238006A JP2007079964A JP2007079964A JP2008238006A JP 2008238006 A JP2008238006 A JP 2008238006A JP 2007079964 A JP2007079964 A JP 2007079964A JP 2007079964 A JP2007079964 A JP 2007079964A JP 2008238006 A JP2008238006 A JP 2008238006A
Authority
JP
Japan
Prior art keywords
phosphorus
water
scavenger
treated
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007079964A
Other languages
Japanese (ja)
Inventor
Akiko Suzuki
昭子 鈴木
Ryuko Kono
龍興 河野
Toshihide Takahashi
利英 高橋
Kenji Sano
健二 佐野
Katsuya Yamamoto
勝也 山本
Mari Iwashita
真理 岩下
Nobuyuki Ashikaga
伸行 足利
Satoshi Haraguchi
智 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007079964A priority Critical patent/JP2008238006A/en
Publication of JP2008238006A publication Critical patent/JP2008238006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scavenger capable of efficiently catching phosphorous. <P>SOLUTION: The phosphorous scavenger has a structure of specified general formula, and comprises a zinc complex compound having affinity to an organic solvent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リン捕捉剤、それを用いた被処理水中のリンの除去方法に関する。   The present invention relates to a phosphorus scavenger and a method for removing phosphorus in water to be treated using the same.

川や湖などの水域での富栄養化をもたらす主要な成分の一つはリンであり、これを水域中から除去することでアオコの大量発生などは効果的に防止することができる。リン化合物は、工場排水よりも一般家庭や家畜の生活排水中に多く存在する。このため、生活排水を含む廃水中のリンを効率的に除去する技術が求められている。   One of the main components that brings about eutrophication in water areas such as rivers and lakes is phosphorus, and by removing this from the water area, large-scale occurrence of blue sea bream can be effectively prevented. Phosphorus compounds are more present in domestic household and domestic livestock wastewater than in factory wastewater. For this reason, a technique for efficiently removing phosphorus in wastewater including domestic wastewater is required.

特許文献1および非特許文献1には、溶液中に含まれるリン酸イオンを検出するためのリンを捕捉する化合物が記載されている。これらの化合物は、リン酸イオンとのイオン交換により蛍光を発する、または変色するため、リン酸イオンの検出に使用できる。しかしながら、廃水中のリン除去に適用してもリン酸塩として溶解して廃水に存在するため、結果としてリン(リン酸イオン)を廃水から除去することができない。   Patent Document 1 and Non-Patent Document 1 describe a compound that captures phosphorus for detecting phosphate ions contained in a solution. Since these compounds emit fluorescence or change color by ion exchange with phosphate ions, they can be used for detection of phosphate ions. However, even if it is applied to the removal of phosphorus in wastewater, it dissolves as a phosphate and exists in the wastewater. As a result, phosphorus (phosphate ions) cannot be removed from the wastewater.

また、特許文献2には二価のリン酸モノエステルアニオンのようなアニオン性置換基を有する物質を捕捉可能な亜鉛錯体が記載されている。この特許文献2の段落[0058]の錯体の利用の欄には、捕捉対象がリン酸モノエステルアニオンであること、亜鉛錯体を高分子膜、カラム担体、プレート孔などの担体に担持させて捕捉剤として利用することが記載されている。錯体を担体に担持させる方法としては、錯体の配位子であるピリジン骨格に導入した置換基(アミノ基や水酸基など)を高分子などの担体に架橋剤で共有結合する方法、高分子原料をバインダーにして錯体と混合し、その混合物を発泡・造粒させる方法が記載されている。   Patent Document 2 describes a zinc complex capable of capturing a substance having an anionic substituent such as a divalent phosphate monoester anion. In the column of utilization of the complex in paragraph [0058] of Patent Document 2, the capture target is a phosphate monoester anion, and the zinc complex is supported on a support such as a polymer membrane, a column support, or a plate hole. It is described that it is used as an agent. As a method of supporting a complex on a carrier, a method of covalently bonding a substituent (amino group, hydroxyl group, etc.) introduced into a pyridine skeleton, which is a ligand of the complex, to a carrier such as a polymer with a crosslinking agent, A method is described in which a binder is mixed with a complex and the mixture is foamed and granulated.

しかしながら、特許文献2に記載の亜鉛錯体は水に対する溶解性が高いため、錯体を担体に単にバインダーを介して担持させる後者の方法では、廃水中でのリン酸モノエステルアニオンを捕捉した亜鉛錯体が廃水中に溶解して廃水から分離することが困難になる。すなわち、廃水中のリン酸モノエステルアニオンを除去することが困難になる。   However, since the zinc complex described in Patent Document 2 has high solubility in water, in the latter method in which the complex is simply supported on a carrier via a binder, a zinc complex that captures a phosphate monoester anion in wastewater is used. It becomes difficult to dissolve in the wastewater and separate from the wastewater. That is, it becomes difficult to remove the phosphate monoester anion in the wastewater.

錯体を高分子の担体に共有結合により担持させる前者の方法は、亜鉛錯体が廃水に溶解せずに存在させることが可能になり、廃水中でのリン酸モノエステルアニオンを捕捉した後に高分子を分離することにより廃水中のリン酸モノエステルアニオンを除去することが可能になる。しかしながら、高分子に共有結合させる亜鉛錯体の部位がリン酸モノエステルアニオンの捕捉に直接関与するZnの配位子であるため、亜鉛錯体を高分子に担持させたときに亜鉛錯体の配位構造が変化してリンの捕捉性が低下する虞がある。
特開2003−246788 WO2003/053932 Angew. Chem. Int. Ed. 2002, 41, No.20, 3809-3811
The former method in which the complex is covalently supported on the polymer carrier allows the zinc complex to exist without being dissolved in the wastewater, and after the phosphate monoester anion in the wastewater is captured, the polymer is removed. By separating, the phosphate monoester anion in the wastewater can be removed. However, since the site of the zinc complex that is covalently bonded to the polymer is a Zn ligand that is directly involved in the capture of the phosphate monoester anion, the coordination structure of the zinc complex is supported when the zinc complex is supported on the polymer. May change, and the phosphorus capturing ability may be reduced.
JP2003-246788 WO2003 / 053932 Angew. Chem. Int. Ed. 2002, 41, No. 20, 3809-3811

本発明は、リンを効率的に捕捉し得る捕捉剤、および廃水のような被処理水の水質浄化としてのリンの除去を効率的に行うことが可能な被処理水中のリン除去方法を提供することを目的とする。   The present invention provides a scavenger capable of efficiently capturing phosphorus, and a method for removing phosphorus in treated water that can efficiently remove phosphorus as water purification of treated water such as wastewater. For the purpose.

本発明によると、下記に示す一般式(I)にて表され、有機溶媒に対して親和性を有する化合物を含むことを特徴とするリン捕捉剤が提供される。

Figure 2008238006
According to the present invention, there is provided a phosphorus scavenger characterized by containing a compound represented by the following general formula (I) and having an affinity for an organic solvent.
Figure 2008238006

ただし、式中のR1は炭素数が4〜20であって、脂肪族炭化水素あるいは芳香族炭化水素から選ばれる炭化水素基、R2,R3,R4,R5はHまたは脂肪族炭化水素基を示し、同じでも、異なってもよく、XはNまたはOを示す。 R 1 in the formula has 4 to 20 carbon atoms and is a hydrocarbon group selected from aliphatic hydrocarbons or aromatic hydrocarbons, and R 2 , R 3 , R 4 and R 5 are H or aliphatic. Represents a hydrocarbon group, which may be the same or different, and X represents N or O;

また本発明によると、リンを含む被処理水に下記に示す一般式(I)にて表される化合物を含むリン捕捉剤と前記リン捕捉剤の回収溶媒とを共存させて撹拌した後、静置して前記リン捕捉剤を取り込んだ前記回収溶媒を前記被処理水に対して相分離させることを特徴とする被処理水中のリン除去方法が提供される。

Figure 2008238006
According to the present invention, the water to be treated containing phosphorus is stirred together with a phosphorus scavenger containing a compound represented by the following general formula (I) and a recovery solvent for the phosphorus scavenger, There is provided a method for removing phosphorus in water to be treated, characterized in that the recovered solvent that has been placed and has taken in the phosphorus scavenger is phase-separated from the water to be treated.
Figure 2008238006

ただし、式中のR1は炭素数が4〜20であって、脂肪族炭化水素あるいは芳香族炭化水素から選ばれる炭化水素基、R2,R3,R4,R5はHまたは脂肪族炭化水素基を示し、同じでも、異なってもよく、XはNまたはOを示す。 R 1 in the formula has 4 to 20 carbon atoms and is a hydrocarbon group selected from aliphatic hydrocarbons or aromatic hydrocarbons, and R 2 , R 3 , R 4 and R 5 are H or aliphatic. Represents a hydrocarbon group, which may be the same or different, and X represents N or O;

本発明によれば、リンを効率的に捕捉し得る捕捉剤、および廃水のような被処理水の水質浄化としてのリンの除去を効率的に行うことが可能な被処理水中のリン除去方法を提供できる。   According to the present invention, there is provided a scavenger capable of efficiently capturing phosphorus, and a method for removing phosphorus in treated water that can efficiently remove phosphorus as water quality purification of treated water such as wastewater. Can be provided.

以下、本発明の実施形態に係るリン捕捉剤およびリン除去方法を詳細に説明する。   Hereinafter, a phosphorus scavenger and a phosphorus removal method according to an embodiment of the present invention will be described in detail.

(第1実施形態)
実施形態に係るリン捕捉剤は、下記に示す一般式(I)にて表され、有機溶媒に対して親和性を有する化合物を含有する。この化合物は、液状で水に難溶性である。

Figure 2008238006
(First embodiment)
The phosphorus scavenger according to the embodiment is represented by the following general formula (I) and contains a compound having an affinity for an organic solvent. This compound is liquid and hardly soluble in water.
Figure 2008238006

ただし、式中のR1は炭素数が4〜20であって、脂肪族炭化水素あるいは芳香族炭化水素から選ばれる炭化水素基、R2,R3,R4,R5はHまたは脂肪族炭化水素基を示し、同じでも、異なってもよく、XはNまたはOを示す。 R 1 in the formula has 4 to 20 carbon atoms and is a hydrocarbon group selected from aliphatic hydrocarbons or aromatic hydrocarbons, and R 2 , R 3 , R 4 and R 5 are H or aliphatic. Represents a hydrocarbon group, which may be the same or different, and X represents N or O;

一般式(I)中のR1としては炭素数4〜20の脂肪族炭化水素基、もしくは芳香族炭化水素基が用いられる。炭素数が4未満であると被処理水中のリン捕獲後に被処理水から分離が困難になる虞があり、炭素数が20を超えると有機溶媒への親和性が失われる虞がある。より好ましくは炭素数7〜15の脂肪族炭化水素基、あるいは芳香族炭化水素基が用いられ、これらの脂肪族炭化水素基は飽和、不飽和、直鎖状もしくは分岐状のいずれでもよい。例えば、アルキル基、シクロアルキル基、アルキルシクロアルキル基、アリール基、アリールアルキル基、アルカリール基、アリール基、アラルキル基、アルケニル基、アルキニル基、脂環式及び飽和または不飽和複素環式基で、具体的な芳香族炭化水素基は、下記に示す(1)〜(7)の構造を有するものを用いることができる。

Figure 2008238006
As R 1 in the general formula (I), an aliphatic hydrocarbon group having 4 to 20 carbon atoms or an aromatic hydrocarbon group is used. If the carbon number is less than 4, separation from the treated water may be difficult after capturing phosphorus in the treated water, and if the carbon number exceeds 20, the affinity for the organic solvent may be lost. More preferably, an aliphatic hydrocarbon group having 7 to 15 carbon atoms or an aromatic hydrocarbon group is used, and these aliphatic hydrocarbon groups may be saturated, unsaturated, linear or branched. For example, an alkyl group, cycloalkyl group, alkylcycloalkyl group, aryl group, arylalkyl group, alkaryl group, aryl group, aralkyl group, alkenyl group, alkynyl group, alicyclic and saturated or unsaturated heterocyclic group Specific aromatic hydrocarbon groups having the following structures (1) to (7) can be used.
Figure 2008238006

脂肪族炭化水素基、芳香族炭化水素基は被処理水からのリン除去を容易にするため無極性基であることが好ましいが、例えばカルボキシル基(−COOH)、ヒドロキシル基(−OH)のような反応活性基を有していてもよい。   The aliphatic hydrocarbon group and the aromatic hydrocarbon group are preferably nonpolar groups in order to facilitate removal of phosphorus from the water to be treated. For example, a carboxyl group (—COOH) and a hydroxyl group (—OH) are preferred. May have various reactive groups.

<合成方法>
一般式(I)で表される化合物、例えばR1がドデシル基(n−C1225−)、R2,R3,R4,R5がH、XがOである化合物は、例えば以下の方法により合成することができる。
<Synthesis method>
A compound represented by the general formula (I), for example, a compound in which R 1 is a dodecyl group (n—C 12 H 25 —), R 2 , R 3 , R 4 , R 5 is H and X is O It can be synthesized by the following method.

まず、p−ドデシルフェノール、2,2’−ジピコリルアミンおよびパラホルムアルデヒドを純水およびエタノールの溶媒中で還流下にて撹拌する。つづいて、この溶液にクロロホルムを加えて(p−ドデシルフェノール、2,2‘−ジコミルアミン及びパラホルムアルデヒドを含む有機溶媒を)抽出した後、この抽出液を飽和塩化ナトリウム溶液で塩析する。有機物層を硫酸ナトリウムで乾燥し、減圧濃縮し、ジエチルエーテル/ヘキサン=1/1で再結晶してR1としてドデシル基が導入された白色結晶の配位子となる化合物である2,6−ビス{[ビス(2−ピリジルメチル)アミノ]メチル}4−ドデシルフェノールを得る。次いで、この化合物をアセトン中に溶解させ、亜鉛の塩(例えば過塩素酸亜鉛六水和物)を加え、アセトンを減圧濃縮することにより一般式(I)のR1がドデシル基(n−C1225−)、R2,R3,R4,R5がH、XがOである化合物を合成する。 First, p-dodecylphenol, 2,2′-dipicolylamine and paraformaldehyde are stirred under reflux in a solvent of pure water and ethanol. Subsequently, chloroform is added to this solution to extract (an organic solvent containing p-dodecylphenol, 2,2′-dicomylamine and paraformaldehyde), and then this extract is salted out with a saturated sodium chloride solution. The organic layer is dried over sodium sulfate, concentrated under reduced pressure, recrystallized with diethyl ether / hexane = 1/1, and is a compound that becomes a ligand of white crystals having a dodecyl group introduced as R 1 , 2,6- Bis {[bis (2-pyridylmethyl) amino] methyl} 4-dodecylphenol is obtained. Next, this compound is dissolved in acetone, a zinc salt (for example, zinc perchlorate hexahydrate) is added, and acetone is concentrated under reduced pressure, whereby R 1 in the general formula (I) is converted to a dodecyl group (n-C 12 H 25- ), a compound in which R 2 , R 3 , R 4 and R 5 are H and X is O is synthesized.

合成された化合物は、例えばNMRスペクトルデータから同定することができる。   The synthesized compound can be identified from, for example, NMR spectrum data.

実施形態に係るリン捕捉剤は、一般式(I)で表される化合物を各種の担体に担持させた形態で用いることができる。担体としては、金属の酸化物、塩化物、硫化物あるいはケイ酸塩鉱物、炭化物、ポリマー等を用いることができ、例えば酸化マグネシウム、水酸化マグネシウム、水酸化アルミニウム、ポリ塩化アルミニウム、アルミン酸ナトリウム、硫酸アルミニウム、擬ベーマイト構造を有するアルミナ水和物、Si−Al−Ca系酸化物、Si−Fe−Ca系酸化物、ケイ酸カルシウム水和物、水酸化カルシウム、硫酸カルシウム、酸化チタン、塩化チタン、水酸化鉄、電解鉄、塩化鉄、パライト、非結晶質ヒドロオキシ硫酸鉄、鉄粉、磁性酸化鉄(微粒子)、水酸化銅、水酸化亜鉛、ジルコニウムフェライト、ジルコニウムケイ酸塩、希土類水酸化物、活性アルミナ、硫酸アルミニウム添着アルミナ、メソポーラスシリカ、難透水性土壌、火山灰、高炉スラグ、活性炭、多孔質炭化物、セメント、シリカゲル、を挙げることができる。   The phosphorus scavenger according to the embodiment can be used in a form in which the compound represented by the general formula (I) is supported on various carriers. As the carrier, metal oxides, chlorides, sulfides or silicate minerals, carbides, polymers, and the like can be used. For example, magnesium oxide, magnesium hydroxide, aluminum hydroxide, polyaluminum chloride, sodium aluminate, Aluminum sulfate, alumina hydrate with pseudoboehmite structure, Si-Al-Ca oxide, Si-Fe-Ca oxide, calcium silicate hydrate, calcium hydroxide, calcium sulfate, titanium oxide, titanium chloride , Iron hydroxide, electrolytic iron, iron chloride, pearlite, amorphous iron iron sulfate, iron powder, magnetic iron oxide (fine particles), copper hydroxide, zinc hydroxide, zirconium ferrite, zirconium silicate, rare earth hydroxide Activated alumina, aluminum sulfate impregnated alumina, mesoporous silica, poorly permeable soil, volcanic ash, high Mention may be made of slag, activated carbon, porous carbide, cement, silica gel, a.

以上、実施形態に係るリン捕捉剤は一般式(I)で表される化合物を含み、この化合物がZnと配位結合されるX(例えばO)に対して芳香環を結合させた構造を有するため、Znの配位子でのリン(リン酸イオン)に対して高い捕捉性能を発揮できる。また、一般式(I)で表される化合物は配位子に疎水基、例えば特定の炭素数の脂肪族炭化水素基を導入することによって、有機溶媒に対する親和性が付与される。   As described above, the phosphorus scavenger according to the embodiment includes the compound represented by the general formula (I), and the compound has a structure in which an aromatic ring is bonded to X (for example, O) coordinated with Zn. Therefore, it is possible to exhibit high trapping performance with respect to phosphorus (phosphate ion) in the Zn ligand. In addition, the compound represented by the general formula (I) is imparted with an affinity for an organic solvent by introducing a hydrophobic group, for example, an aliphatic hydrocarbon group having a specific carbon number, into the ligand.

<被処理水中のリン除去方法>
次に、実施形態に係る被処理水中のリン除去方法を詳細に説明する。
<Method of removing phosphorus in treated water>
Next, the phosphorus removal method in to-be-processed water which concerns on embodiment is demonstrated in detail.

例えば一般家庭や家畜の生活排水のようなリンを含む被処理水に前記一般式(I)にて表される化合物を含むリン捕捉剤とリン捕捉剤の回収溶媒とを共存させて撹拌した後、静置して前記リン捕捉剤を取り込んだ前記回収溶媒を前記被処理水に対して相分離させる。このとき、被処理水中のリン(リン酸イオン)が一般式(I)で表される化合物のZn配位子に捕捉され、リンを捕捉した化合物を含むリン捕捉剤は回収溶媒に取り込まれる。   For example, after mixing and stirring a phosphorus scavenger containing a compound represented by the general formula (I) and a phosphorus scavenger recovery solvent in treated water containing phosphorus, such as domestic household or domestic livestock wastewater Then, the recovered solvent that has been allowed to stand to take in the phosphorus scavenger is phase-separated from the water to be treated. At this time, phosphorus (phosphate ion) in the water to be treated is captured by the Zn ligand of the compound represented by the general formula (I), and the phosphorus scavenger containing the compound capturing the phosphorus is captured in the recovery solvent.

前記被処理水への前記リン捕捉剤および前記回収溶媒の共存は、具体的には
(1)前記被処理水に前記リン捕捉剤を添加し、撹拌して被処理水とリン捕捉剤を接触させた後、さらに前記回収溶媒を添加する方法、
(2)前記リン捕捉剤と前記回収溶媒とを予め混合して前記被処理水に添加する方法、
が採用される。
Specifically, the coexistence of the phosphorus scavenger and the recovery solvent in the water to be treated is (1) adding the phosphorus scavenger to the water to be treated and stirring to contact the water to be treated and the phosphorus scavenger. And then adding the recovered solvent further,
(2) A method in which the phosphorus scavenger and the recovery solvent are mixed in advance and added to the water to be treated.
Is adopted.

前記方法の中で、(2)の方法は一般式(I)で表される化合物のZn配位子によるリンの捕捉性を向上できるために好ましい。   Among the above methods, the method (2) is preferable because it can improve the phosphorus scavenging ability of the compound represented by the general formula (I) by the Zn ligand.

リン捕捉剤の回収溶媒は例えば有機溶媒であり、水と相溶または混和しないものであればいかなるものでもよく、クロロホルム、酢酸エチル、トルエン、キシレン等を用いることができる。   The recovery solvent for the phosphorus scavenger is, for example, an organic solvent, and any solvent may be used as long as it is compatible or immiscible with water, and chloroform, ethyl acetate, toluene, xylene and the like can be used.

特に、被処理水がpH6〜12、より好ましくはpH9〜11の弱アルカリにおいて、リンをリン捕捉剤に対して捕捉し易い2価のリン酸イオン(HPO4 2-)として被処理水に多く存在させることが可能になり、リンの捕捉性を向上させることが可能になる。なお、被処理水のpH値が6〜12から外れている場合にはpH調整剤を添加する。ここに用いるpH調整剤としては、例えば水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウムのようなアルカリ剤、塩酸、硝酸のような酸を挙げることができる。 In particular, when the water to be treated is a weak alkali having a pH of 6 to 12, more preferably pH 9 to 11, a large amount in the water to be treated as divalent phosphate ions (HPO 4 2− ) that easily capture phosphorus with respect to the phosphorus scavenger. It becomes possible to make it exist, and it becomes possible to improve the capture | acquisition property of phosphorus. In addition, when the pH value of to-be-processed water remove | deviates from 6-12, a pH adjuster is added. Examples of the pH adjuster used here include alkaline agents such as potassium hydroxide, sodium hydroxide, potassium carbonate and sodium carbonate, and acids such as hydrochloric acid and nitric acid.

また捕捉剤は、被処理水中のリン酸イオンに対して2等量以上添加することが好ましい。   The scavenger is preferably added in an amount of 2 equivalents or more with respect to phosphate ions in the water to be treated.

次いで、リン捕捉剤を取り込んだ状態で被処理水に対して相分離された回収溶媒を採取して被処理水と分離することにより、被処理水中のリンを除去する。   Next, the phosphorus in the water to be treated is removed by collecting the recovered solvent phase-separated from the water to be treated in a state in which the phosphorus scavenger is taken in and separating it from the water to be treated.

分離した回収溶媒に取り込んだリン捕捉剤は、適切な塩の添加によってリンを解離、回収することが可能である。例えば、回収溶媒に塩化カルシウムまたは炭酸カルシウムのようなカルシウム塩を添加し、pH4以下またはpH11以上の水溶液を添加した後、撹拌してリン捕捉剤に捕捉されたリンとカルシウムとを反応させてリン酸カルシウムとして沈澱させることによりリンを回収する。また、回収溶媒に塩化カルシウムまたは炭酸カルシウムのようなカルシウム塩を含む水溶液を添加し、用いた回収溶媒の沸点以下の温度、例えば40〜60℃の温度で加熱しながら、撹拌してリン捕捉剤に捕捉されたリンとカルシウムとを反応させてリン酸カルシウムとして沈澱させることによりリンを回収する。   The phosphorus scavenger incorporated in the separated recovery solvent can dissociate and recover phosphorus by adding an appropriate salt. For example, a calcium salt such as calcium chloride or calcium carbonate is added to the recovery solvent, an aqueous solution having a pH of 4 or less or a pH of 11 or more is added, and the phosphorus and the calcium trapped in the phosphorus scavenger are reacted by stirring to react with calcium phosphate The phosphorus is recovered by precipitation as Further, an aqueous solution containing a calcium salt such as calcium chloride or calcium carbonate is added to the recovery solvent, and the mixture is stirred and heated at a temperature below the boiling point of the recovery solvent used, for example, at a temperature of 40 to 60 ° C. Phosphorus is recovered by reacting phosphorus trapped in calcium with calcium to precipitate calcium phosphate.

以上、本実施形態によればリンを含む被処理水に一般式(I)にて表される化合物を含むリン捕捉剤とリン捕捉剤の回収溶媒を共存させ撹拌した後、静置してリン捕捉剤を取り込んだ前記回収溶媒を前記被処理水に対して相分離させ、回収溶媒層を回収することによって、被処理水のリンを効率よく除去することができる。   As described above, according to the present embodiment, the phosphorus scavenger containing the compound represented by the general formula (I) and the phosphorus scavenger recovery solvent coexist in the water to be treated containing phosphorus and stirred, and then left to stand for phosphorus. Phosphorus in the water to be treated can be efficiently removed by phase-separating the recovered solvent in which the scavenger is taken into the water to be treated and collecting the recovered solvent layer.

すなわち、リン捕捉剤を構成する一般式(I)の化合物は脂肪族炭化水素基のような疎水基がR1として配位子に導入され、有機溶媒に対して親和性を有し、水に難溶性であるものの、液状であるため、被処理水中のリンをリン捕捉剤で捕捉した後においてその捕捉剤を被処理水から分離、回収することが困難である。 That is, in the compound of the general formula (I) constituting the phosphorus scavenger, a hydrophobic group such as an aliphatic hydrocarbon group is introduced into the ligand as R 1 , and has an affinity for an organic solvent. Although it is sparingly soluble, it is liquid, so that it is difficult to separate and recover the scavenger from the water to be treated after capturing phosphorus in the water to be treated with the phosphorus scavenger.

このようなことから一般式(I)の化合物が有機溶媒に対して親和性を有することを利用し、リン捕捉剤と回収溶媒とを被処理水に共存させて撹拌した後、静置することによって、回収溶媒にリン捕捉剤を取り込むことができると共に、回収溶媒を被処理水に対して相分離させることができる。つまり、被処理水からの分離が困難であったリン捕捉剤を被処理水に対して相分離された回収溶媒に取り込むことによって、被処理水から分離することができる。その結果、被処理水と相分離した回収溶媒を回収することによって、その回収溶媒に取り込まれ、リンを捕捉したリン捕捉剤を被処理水の系外に分離して被処理水のリンを除去することができる。   For this reason, utilizing the fact that the compound of the general formula (I) has an affinity for an organic solvent, allowing the phosphorus scavenger and the recovery solvent to coexist in the water to be treated, and then allowing to stand. Thus, the phosphorus scavenger can be taken into the recovered solvent and the recovered solvent can be phase-separated from the water to be treated. In other words, the phosphorus scavenger that has been difficult to separate from the water to be treated can be separated from the water to be treated by incorporating the phosphorus scavenger into the recovery solvent phase-separated from the water to be treated. As a result, by recovering the recovered solvent phase-separated from the water to be treated, the phosphorus scavenger trapped in the recovered solvent and trapping phosphorus is separated out of the water to be treated to remove phosphorus from the water to be treated. can do.

特に、水に難溶性のリン捕捉剤を被処理水に添加する前に親和性のある有機溶媒(回収溶媒)と予め混合し、有機溶媒を介して被処理水中のリン(リン酸イオン)との接触をさせることによって、効率よくリン酸イオンが捕捉できる。   In particular, before adding a water-insoluble phosphorus scavenger to the water to be treated, it is mixed in advance with an affinity organic solvent (recovered solvent), and phosphorus (phosphate ions) in the water to be treated is passed through the organic solvent. Thus, phosphate ions can be efficiently captured.

以下、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(合成例1)
100mLのフラスコにp−ドデシルフェノール1.0g、2,2’−ジピコリルアミン2.89gおよびパラホルムアルデヒド0.44gを入れ、純水10mLおよびエタノール5mLの溶媒中にて三日間80℃の還流下で攪拌した。この溶液に50mLのクロロホルムを加えて抽出し、飽和塩化ナトリウム溶液で塩析を行った。有機物層を硫酸ナトリウムで乾燥し、減圧濃縮し、ジエチルエーテル/ヘキサン=1/1で再結晶を行って下記に示す構造式(A)の白色結晶の化合物を得た。つづいて、得られた化合物50mgをアセトン中に溶解させ、過塩素酸亜鉛六水和物54mgを加え、さらにアセトンを減圧濃縮することにより液状の化合物を得た。
(Synthesis Example 1)
A 100 mL flask was charged with 1.0 g of p-dodecylphenol, 2.89 g of 2,2′-dipicolylamine and 0.44 g of paraformaldehyde, and refluxed at 80 ° C. for 3 days in a solvent of 10 mL of pure water and 5 mL of ethanol. And stirred. This solution was extracted by adding 50 mL of chloroform, and salted out with a saturated sodium chloride solution. The organic layer was dried over sodium sulfate, concentrated under reduced pressure, and recrystallized with diethyl ether / hexane = 1/1 to obtain a white crystalline compound of the structural formula (A) shown below. Subsequently, 50 mg of the obtained compound was dissolved in acetone, 54 mg of zinc perchlorate hexahydrate was added, and acetone was further concentrated under reduced pressure to obtain a liquid compound.

なお、構造式(A)は1H−NMR分光法により得られた以下の1H−NMRアセトン−d6(室温)でのスペクトル、13C−NMR分光法により得られた以下の13C−NMRアセトン−d6(室温)でのスペクトルおよび高速原子衝撃イオン化質量分析法(FAB−MS法)からから同定された。 The structural formula (A) 1 H-NMR spectra at 1 obtained following the spectroscopy H-NMR Acetone-d6 (room temperature), 13 C-NMR spectroscopy by obtained following 13 C-NMR Identified from spectrum in acetone-d6 (room temperature) and fast atom bombardment ionization mass spectrometry (FAB-MS method).

1H−NMRアセトン−d6(室温):
・8.56−6.70ppm;18H,NC54
・3.30−4.30ppm;12H,CH2−N,(s)、
・0.10−2.00ppm;25H,C1225,(m)
13C−NMRアセトン−d6(室温):
・170−105ppm;NC54
・65−50ppm;CH2−N
また、FAB−MS法によって得られた分子量ピーク(m/e) は1013であった。
1 H-NMR acetone-d6 (room temperature):
· 8.56-6.70ppm; 18H, NC 5 H 4,
· 3.30-4.30ppm; 12H, CH 2 -N , (s),
· 0.10-2.00ppm; 25H, C 12 H 25, (m)
13 C-NMR acetone-d6 (room temperature):
· 170-105ppm; NC 5 H 4,
· 65-50ppm; CH 2 -N
Moreover, the molecular weight peak (m / e) obtained by FAB-MS method was 1013.

m/e は、化合物の分子量を価数で割った数字を示している。

Figure 2008238006
m / e indicates a number obtained by dividing the molecular weight of the compound by the valence.
Figure 2008238006

(合成例2)
100mLのフラスコにp−トリフェニルメチルフェノール1.2g、2,2’−ジピコリルアミン2.65gおよびパラホルムアルデヒド0.41gを入れ、純水10mLおよびエタノール5mLの溶媒中にて三日間80℃の還流下で攪拌した。この溶液に50mLのクロロホルムを加えて抽出し、飽和塩化ナトリウム溶液で塩析を行った。有機物層を硫酸ナトリウムで乾燥し、減圧濃縮した後、クロロホルム/メタノール=29/1を用いるシリカゲルカラムコロマトグラフィーで精製し、さらにジエチルエーテル/ヘキサン=1/1で再結晶を行って下記に示す構造式(B)の白色結晶の化合物を得た。つづいて、得られた化合物50mgをアセトン中に溶解させ、過塩素酸亜鉛六水和物54mgを加え、さらにアセトンを減圧濃縮することにより液状の化合物を得た。
(Synthesis Example 2)
A 100 mL flask was charged with 1.2 g of p-triphenylmethylphenol, 2.65 g of 2,2′-dipicolylamine and 0.41 g of paraformaldehyde, and the mixture was kept at 80 ° C. for 3 days in a solvent of 10 mL of pure water and 5 mL of ethanol. Stir under reflux. This solution was extracted by adding 50 mL of chloroform, and salted out with a saturated sodium chloride solution. The organic layer was dried over sodium sulfate, concentrated under reduced pressure, purified by silica gel column chromatography using chloroform / methanol = 29/1, and recrystallized with diethyl ether / hexane = 1/1. A white crystalline compound of structural formula (B) was obtained. Subsequently, 50 mg of the obtained compound was dissolved in acetone, 54 mg of zinc perchlorate hexahydrate was added, and acetone was further concentrated under reduced pressure to obtain a liquid compound.

なお、構造式(B)は1H−NMR分光法により得られた以下の1H−NMRアセトン−d6(室温)でのスペクトル、13C−NMR分光法により得られた以下の13C−NMRアセトン−d6(室温)でのスペクトルからおよびFAB−MS法から同定された。 The structural formula (B) is 1 H-NMR spectra at 1 obtained following the spectroscopy H-NMR Acetone-d6 (room temperature), 13 C-NMR spectroscopy by obtained following 13 C-NMR Identified from the spectrum at acetone-d6 (room temperature) and from the FAB-MS method.

1H−NMRアセトン−d6(室温):
・8.55−6.8ppm;33H,NC54(またはC65),(d)、
・4.3−3.2ppm;12H,CH2−N,(s)、
13C−NMRアセトン−d6(室温):
・165−115ppm;NC54(またはC65)、
・50−65ppm;CH2−N
また、FAB−MS法によって得られた分子量ピーク(m/e)は1086であった。

Figure 2008238006
1 H-NMR acetone-d6 (room temperature):
· 8.55-6.8ppm; 33H, NC 5 H 4 ( or C 6 H 5), (d ),
· 4.3-3.2ppm; 12H, CH 2 -N , (s),
13 C-NMR acetone-d6 (room temperature):
165-115 ppm; NC 5 H 4 (or C 6 H 5 ),
· 50-65ppm; CH 2 -N
The molecular weight peak (m / e) obtained by the FAB-MS method was 1086.
Figure 2008238006

(実施例1)
容器内に20ppmのリン酸イオンをNa2PO4の形態で含むpH8.4の水溶液50mLを収容した。この水溶液にリン捕捉剤である合成例1で得た液状の化合物40mg(リン酸イオンと等量)をクロロホルム10mLに混合させたものを添加し、撹拌して分散させながら水溶液と化合物とを接触させて水溶液中のリン(2価のリン酸イオン:HPO4 2-)を化合物に捕捉させた。5分間撹拌してクロロホルムと懸濁させた後静置し、クロロホルムが相分離して容器内の水溶液下層に沈んだ。この後、水溶液とクロロホルムとを分離した。分離後の水溶液の残留リン酸イオン濃度をモリブデン吸光光度法で測定した。その結果を下記表1に示す。
Example 1
In the container, 50 mL of a pH 8.4 aqueous solution containing 20 ppm phosphate ions in the form of Na 2 PO 4 was accommodated. To this aqueous solution, 40 mg of the liquid compound obtained in Synthesis Example 1 which is a phosphorus scavenger (equivalent to phosphate ions) mixed with 10 mL of chloroform was added, and the aqueous solution and the compound were contacted while being stirred and dispersed. Thus, phosphorus (divalent phosphate ion: HPO 4 2− ) in the aqueous solution was captured by the compound. After stirring for 5 minutes and suspending with chloroform, the mixture was allowed to stand, and chloroform was phase-separated and settled in the lower layer of the aqueous solution in the container. Thereafter, the aqueous solution and chloroform were separated. The residual phosphate ion concentration of the aqueous solution after separation was measured by molybdenum spectrophotometry. The results are shown in Table 1 below.

また、前記水溶液にリン捕捉剤である合成例1で得た液状の化合物を2等量、4等量でそれぞれ加えた以外、同様な方法でリン酸イオンの捕捉、クロロホルムを分離後の水溶液の残留リン酸イオン濃度のモリブデン吸光光度法による測定を行った。その結果を下記表1に示す。   Further, except that the liquid compound obtained in Synthesis Example 1 which is a phosphorus scavenger was added in 2 equivalents and 4 equivalents to the aqueous solution, respectively, phosphate ions were captured in the same manner, and the aqueous solution after separation of chloroform was separated. The residual phosphate ion concentration was measured by molybdenum spectrophotometry. The results are shown in Table 1 below.

(実施例2)
容器内に20ppmのリン酸イオンをNa2PO4の形態で含むpH8.3の水溶液50mLを収容した。この水溶液にリン捕捉剤である合成例2で得た液状の化合物40mg(リン酸イオンと等量)を加え、撹拌して分散させながら水溶液と化合物とを接触させて水溶液中のリン(2価のリン酸イオン:HPO4 2-)を化合物に捕捉させた。つづいて、この混合溶液にクロロホルム10mLを添加し、5分間撹拌してクロロホルムを懸濁させた後、静置した。このとき、クロロホルムが相分離して容器内の水溶液上に浮遊した。この後、水溶液とクロロホルムとを分離した。分離後の水溶液の残留リン酸イオン濃度をモリブデン吸光光度法で測定した。その結果を下記表1に示す。
(Example 2)
In the container, 50 mL of an aqueous solution of pH 8.3 containing 20 ppm phosphate ions in the form of Na 2 PO 4 was accommodated. To this aqueous solution, 40 mg of the liquid compound obtained in Synthesis Example 2 which is a phosphorus scavenger (equivalent to the phosphate ion) is added, and the aqueous solution and the compound are brought into contact with stirring to disperse the phosphorus (divalent) in the aqueous solution. Of phosphate ion: HPO 4 2− ) was captured by the compound. Subsequently, 10 mL of chloroform was added to this mixed solution, and the mixture was stirred for 5 minutes to suspend the chloroform, and then allowed to stand. At this time, chloroform separated and floated on the aqueous solution in the container. Thereafter, the aqueous solution and chloroform were separated. The residual phosphate ion concentration of the aqueous solution after separation was measured by molybdenum spectrophotometry. The results are shown in Table 1 below.

また、前記水溶液にリン捕捉剤である合成例2で得た液状の化合物を2等量、4等量でそれぞれ加えた以外、同様な方法でリン酸イオンの捕捉、クロロホルムを分離した。その後水溶液中の残留リン酸イオン濃度のモリブデン吸光光度法による測定を行った。結果を下記表1に示す。

Figure 2008238006
Further, phosphate ions were captured and chloroform was separated in the same manner except that the liquid compound obtained in Synthesis Example 2 as a phosphorus scavenger was added in 2 equivalents and 4 equivalents to the aqueous solution. Thereafter, the residual phosphate ion concentration in the aqueous solution was measured by molybdenum spectrophotometry. The results are shown in Table 1 below.
Figure 2008238006

前記表1から明らかなようにリン酸イオンを含む水溶液にリン捕捉剤である合成例1、2で得られた化合物をクロロホルムに混合して添加し、クロロホルムの分離を行う実施例1,2の方法はリン捕捉剤でリンを十分に捕捉できることがわかる。したがって、リンを捕捉した捕捉剤をクロロホルムと一緒に水溶液から分離することによりリンを水溶液から除去できる。   As is clear from Table 1 above, the compounds obtained in Synthesis Examples 1 and 2 which are phosphorus scavengers are mixed with chloroform in an aqueous solution containing phosphate ions and added to chloroform to separate chloroform. It can be seen that the method can sufficiently capture phosphorus with a phosphorus scavenger. Therefore, phosphorus can be removed from the aqueous solution by separating the capture agent that has captured phosphorus from the aqueous solution together with chloroform.

特に、リン捕捉剤である合成例1、2で得られた化合物をリン酸イオンを含む水溶液にそのリン酸イオンに対してそれぞれ4等量添加する方法では、リンの捕捉性能が高く、水溶液中のリンをより効率的に除去できることがわかる。   In particular, the method of adding 4 equivalents of each of the compounds obtained in Synthesis Examples 1 and 2 that are phosphorus scavengers to an aqueous solution containing phosphate ions with respect to the phosphate ions has high phosphorus scavenging performance, It can be seen that phosphorus can be removed more efficiently.

また、一般式(I)のR1としてトリフェニルメチルを導入した合成例2で得られた化合物をリン捕捉剤としてリン酸イオンを含む水溶液に2等量添加する実施例2の方法は、一般式(I)のR1としてドデシルを導入した合成例1で得られた化合物をリン捕捉剤としてリン酸イオンを含む水溶液に同じ量(2等量)添加する実施例1の方法に比べてリンの捕捉性能が高く、水溶液中のリンの除去率が格段に向上できることがわかる。 In addition, the method of Example 2 in which 2 equivalents of the compound obtained in Synthesis Example 2 in which triphenylmethyl is introduced as R 1 of the general formula (I) is added to an aqueous solution containing phosphate ions as a phosphorus scavenger is Compared to the method of Example 1 in which the same amount (2 equivalents) of the compound obtained in Synthesis Example 1 in which dodecyl is introduced as R 1 of formula (I) is added as a phosphorus scavenger to an aqueous solution containing phosphate ions, It can be seen that the scavenging performance of is high and the removal rate of phosphorus in the aqueous solution can be remarkably improved.

(実施例3)
容器内に20ppmのリン酸イオンをNa2PO4の形態で含み、かつアニオンとしてNO3 -,SO4 2-,Cl-,Br-をそれぞれ20ppm含むpH8.3の水溶液50mLを収容した。この水溶液にリン捕捉剤である合成例1で得た液状の化合物40mg(リン酸イオンと等量)をクロロホルム10mLに混合させたものを添加し、撹拌して分散させながら水溶液と化合物とを接触させて水溶液中のリン(2価のリン酸イオン:HPO4 2-)を化合物に選択的に捕捉させた。5分間撹拌してクロロホルムを懸濁させた後静置し、クロロホルムが相分離して容器内の水溶液上下層に沈んだ。この後、水溶液とクロロホルムとを分離した。分離後の水溶液の残留リン酸イオン濃度をモリブデン吸光光度法で測定した。その結果を下記表2に示す。
(Example 3)
In the container, 50 mL of an aqueous solution having a pH of 8.3 containing 20 ppm phosphate ions in the form of Na 2 PO 4 and containing 20 ppm of NO 3 , SO 4 2− , Cl , and Br as anions was accommodated. To this aqueous solution, 40 mg of the liquid compound obtained in Synthesis Example 1 which is a phosphorus scavenger (equivalent to phosphate ions) mixed with 10 mL of chloroform was added, and the aqueous solution and the compound were contacted while being stirred and dispersed. Then, phosphorus (divalent phosphate ion: HPO 4 2− ) in the aqueous solution was selectively captured by the compound. After stirring for 5 minutes and suspending chloroform, the mixture was allowed to stand, and chloroform was phase-separated and settled on the upper and lower layers of the aqueous solution in the container. Thereafter, the aqueous solution and chloroform were separated. The residual phosphate ion concentration of the aqueous solution after separation was measured by molybdenum spectrophotometry. The results are shown in Table 2 below.

また、前記水溶液にリン捕捉剤である合成例1で得た液状の化合物を2等量、4等量でそれぞれ加えた以外、同様な方法でリン酸イオンの選択捕捉、クロロホルムを分離後の水溶液の残留リン酸イオン濃度のモリブデン吸光光度法による測定を行った。その結果を下記表2に示す。   The aqueous solution after selective capture of phosphate ions and separation of chloroform by the same method except that the liquid compound obtained in Synthesis Example 1 as a phosphorus scavenger was added to the aqueous solution in 2 equivalents and 4 equivalents, respectively. The residual phosphate ion concentration was measured by molybdenum spectrophotometry. The results are shown in Table 2 below.

(実施例4)
リン酸イオンおよび多種アニオンを含む水溶液にリン捕捉剤である合成例1で得た液状の化合物80mg(リン酸イオンと2等量)を加え、有機溶媒として酢酸エチルを使用した以外、実施例3と同様な方法により残留リン酸イオン濃度をモリブデン吸光光度法で測定した。その結果を下記表2に示す。
Example 4
Example 3 except that 80 mg (2 equivalents of phosphate ion) of the liquid compound obtained in Synthesis Example 1 as a phosphorus scavenger was added to an aqueous solution containing phosphate ions and various anions, and ethyl acetate was used as the organic solvent. The residual phosphate ion concentration was measured by molybdenum absorptiometry by the same method as described above. The results are shown in Table 2 below.

(実施例5)
容器内に20ppmのリン酸イオンをNa2PO4の形態で含み、かつアニオンとしてNO3 -,SO4 2-,Cl-,Br-をそれぞれ20ppm含むpH8.3の水溶液50mLを収容した。この水溶液にリン捕捉剤である合成例2で得た液状の化合物40mg(リン酸イオンと等量)を加え、撹拌して分散させながら水溶液と化合物とを接触させて水溶液中のリン(2価のリン酸イオン:HPO4 2-)を化合物に選択的に捕捉させた。5分間撹拌してクロロホルムを懸濁させた後静置、クロロホルムが相分離して容器内の水溶液下層に沈んだ。この後、水溶液とクロロホルムとを分離した。分離後の水溶液の残留リン酸イオン濃度をモリブデン吸光光度法で測定した。その結果を下記表2に示す。
(Example 5)
In the container, 50 mL of an aqueous solution having a pH of 8.3 containing 20 ppm phosphate ions in the form of Na 2 PO 4 and containing 20 ppm of NO 3 , SO 4 2− , Cl , and Br as anions was accommodated. To this aqueous solution, 40 mg of the liquid compound obtained in Synthesis Example 2 which is a phosphorus scavenger (equivalent to the phosphate ion) is added, and the aqueous solution and the compound are brought into contact with stirring to disperse the phosphorus (divalent) in the aqueous solution. The phosphate ion: HPO 4 2− ) was selectively captured by the compound. After stirring for 5 minutes and suspending chloroform, the mixture was allowed to stand, and chloroform was phase-separated and settled in the lower layer of the aqueous solution in the container. Thereafter, the aqueous solution and chloroform were separated. The residual phosphate ion concentration of the aqueous solution after separation was measured by molybdenum spectrophotometry. The results are shown in Table 2 below.

また、前記水溶液にリン捕捉剤である合成例2で得た液状の化合物を2等量、4等量でそれぞれ加えた以外、同様な方法でリン酸イオンの選択捕捉、クロロホルムを分離後の水溶液の残留リン酸イオン濃度のモリブデン吸光光度法による測定を行った。その結果を下記表2に示す。

Figure 2008238006
The aqueous solution after selective capture of phosphate ions and separation of chloroform by the same method except that the liquid compound obtained in Synthesis Example 2 as a phosphorus scavenger was added to the aqueous solution in 2 equivalents and 4 equivalents, respectively. The residual phosphate ion concentration was measured by molybdenum spectrophotometry. The results are shown in Table 2 below.
Figure 2008238006

また、リン酸イオンの選択捕捉、クロロホルムを分離後の水溶液中のNO3 -,SO4 2-,Cl-,Br-のイオン濃度をイオンクロマトグラフィーで定量した。その結果、有機溶媒としてクロロホルムを用い、合成例1,2の液状化合物の亜鉛のカウンターアニオンに塩素が含まれていることから、検量線を越える値になったが、その他のイオンは原液とほぼ同量の残留イオンとして検出された。 Further, the selective capture of phosphate ions and the ion concentrations of NO 3 , SO 4 2− , Cl and Br in the aqueous solution after separation of chloroform were quantified by ion chromatography. As a result, chloroform was used as the organic solvent, and chlorine was contained in the zinc counter anion of the liquid compounds of Synthesis Examples 1 and 2, which exceeded the calibration curve. It was detected as the same amount of residual ions.

前記表2およびイオンクロマトグラフィーの定量結果から明らかなようにリン酸イオンにNO3 -,SO4 2-,Cl-,Br-が共存する、つまり多種アニオンが共存する水溶液に一般式(I)のR1としてドデシルを導入した合成例1で得られた化合物をリン捕捉剤として添加し、クロロホルムの添加、クロロホルムの分離を行う実施例3の方法は、同合成例1で得られた化合物を用い、多種アニオンが共存しない前記表1の実施例1と同様なリンの捕捉性能を有する、すなわちリンの選択的な捕捉性能を有することがわかる。したがって、リンを選択的に捕捉した捕捉剤をクロロホルムと一緒に水溶液から分離することによりリンを水溶液から除去できる。 As is apparent from Table 2 and the quantitative results of ion chromatography, the general formula (I) is used in an aqueous solution in which NO 3 , SO 4 2− , Cl and Br coexist with phosphate ions, that is, various anions coexist. The compound obtained in Synthesis Example 1 in which dodecyl was introduced as R 1 was added as a phosphorus scavenger, and the method of Example 3 in which chloroform was added and chloroform was separated was the same as the compound obtained in Synthesis Example 1. It can be seen that it has the same phosphorus scavenging performance as Example 1 in Table 1 in which various anions do not coexist, that is, it has phosphorus selective scavenging performance. Therefore, phosphorus can be removed from the aqueous solution by separating the capture agent that selectively captures phosphorus from the aqueous solution together with chloroform.

また、多種アニオンが共存する水溶液に一般式(I)のR1としてドデシルを導入した合成例1で得られた化合物をリン捕捉剤として添加し、酢酸エチルの添加、酢酸エチルの分離を行う実施例4の方法は、同合成例1で得られた化合物を用い、有機溶媒としてクロロホルムを添加した実施例3の方法に比べて高いリンの捕捉性能(すなわちリンの選択的な捕捉性能)を有することがわかる。 Further, the compound obtained in Synthesis Example 1 in which dodecyl is introduced as R 1 of the general formula (I) into an aqueous solution in which various anions coexist is added as a phosphorus scavenger, and ethyl acetate is added and ethyl acetate is separated. The method of Example 4 has higher phosphorus capture performance (that is, phosphorus selective capture performance) than the method of Example 3 using the compound obtained in Synthesis Example 1 and adding chloroform as an organic solvent. I understand that.

さらに、リン酸イオンに多種アニオンが共存する水溶液に一般式(I)のR1としてトリフェニルメチルを導入した合成例2で得られた化合物をリン捕捉剤として添加し、クロロホルムの添加、クロロホルムの分離を行う実施例5の方法は、同合成例2で得られた化合物を用い、多種アニオンが共存しない前記表1の実施例2に比べてリンの捕捉性能が低下する。これは、トリフェニルメチルがドデシルのような脂肪族炭化水素基に比べて電子供与性が高いために、リンの吸着場(捕捉場)となる亜鉛の電子状態に作用し、アニオン選択性に影響を及ぼしていると考えられる。したがって、リン酸イオンに多種アニオンが共存する水溶液からリンを除去する場合には、一般式(I)のR1として脂肪族炭化水素基のように電子供与性を持たない疎水基を導入した化合物をリン捕捉剤として用いることが好ましい。 Furthermore, the compound obtained in Synthesis Example 2 in which triphenylmethyl was introduced as R 1 of the general formula (I) into an aqueous solution in which various anions coexist with phosphate ions was added as a phosphorus scavenger, and chloroform was added. The method of Example 5 in which the separation is performed uses the compound obtained in Synthesis Example 2 and has lower phosphorus capture performance than Example 2 in Table 1 in which various anions do not coexist. This is because triphenylmethyl has higher electron donating properties than aliphatic hydrocarbon groups such as dodecyl, so it affects the electronic state of zinc, which is the adsorption field (capture field) of phosphorus, and affects the anion selectivity. It is thought that it is exerting. Therefore, when removing phosphorus from an aqueous solution in which various anions coexist with phosphate ions, a compound in which a hydrophobic group having no electron donating property such as an aliphatic hydrocarbon group is introduced as R 1 in the general formula (I) Is preferably used as a phosphorus scavenger.

(実施例6)
容器内に20ppmのリン酸イオンを含み、pH4.6、pH8.3およびpH10.2の水溶液50mLをそれぞれ収容した。これらの水溶液にリン捕捉剤である合成例2で得た液状の化合物80mg(リン酸イオンと2等量)を加え、撹拌して分散させながら水溶液と化合物とを接触させて水溶液中のリン(2価のリン酸イオン:HPO4 2-)をクロロホルム10mLに混合させたものを添加し、5分間撹拌してクロロホルムを懸濁させた後、静置した。静置後、クロロホルムが相分離して容器内の水溶液下層に沈んだ。この後、水溶液とクロロホルムとを分離した。分離後の各水溶液の残留リン酸イオン濃度をモリブデン吸光光度法で測定した。その結果を下記表3に示す。

Figure 2008238006
(Example 6)
Each container contained 50 mL of an aqueous solution containing 20 ppm phosphate ions and having pH 4.6, pH 8.3, and pH 10.2. To these aqueous solutions, 80 mg of the liquid compound obtained in Synthesis Example 2 as a phosphorus scavenger (2 equivalents to phosphate ions) was added, and the aqueous solution and the compound were brought into contact with stirring to disperse the phosphorus ( A mixture of divalent phosphate ion: HPO 4 2- ) mixed with 10 mL of chloroform was added, and the mixture was stirred for 5 minutes to suspend the chloroform, and then allowed to stand. After standing, chloroform was phase-separated and settled in the lower layer of the aqueous solution in the container. Thereafter, the aqueous solution and chloroform were separated. The residual phosphate ion concentration of each aqueous solution after separation was measured by molybdenum spectrophotometry. The results are shown in Table 3 below.
Figure 2008238006

前記表3から明らかなようにリン酸イオンを含む水溶液を弱アルカリ性(pH10.2)にし、この水溶液に合成例2で得られた化合物をリン捕捉剤として添加する方法では、リンの捕捉性能が高く、水溶液中のリンを効率的に除去できることがわかる。   As is clear from Table 3, the method of making the aqueous solution containing phosphate ions weakly alkaline (pH 10.2) and adding the compound obtained in Synthesis Example 2 to this aqueous solution as a phosphorus scavenger has phosphorus scavenging performance. It can be seen that phosphorus in the aqueous solution can be efficiently removed.

Claims (5)

下記に示す一般式(I)にて表され、有機溶媒に対して親和性を有する化合物を含むことを特徴とするリン捕捉剤。
Figure 2008238006
ただし、式中のR1は炭素数が4〜20であって、脂肪族炭化水素あるいは芳香族炭化水素から選ばれる炭化水素基、R2,R3,R4,R5はHまたは脂肪族炭化水素基を示し、同じでも、異なってもよく、XはNまたはOを示す。
A phosphorus scavenger comprising a compound represented by the following general formula (I) and having an affinity for an organic solvent.
Figure 2008238006
R 1 in the formula has 4 to 20 carbon atoms and is a hydrocarbon group selected from aliphatic hydrocarbons or aromatic hydrocarbons, and R 2 , R 3 , R 4 and R 5 are H or aliphatic. Represents a hydrocarbon group, which may be the same or different, and X represents N or O;
前記一般式(I)のR1は、トリフェニルメチルであることを特徴とする請求項1記載のリン捕捉剤。 The phosphorus scavenger according to claim 1, wherein R 1 in the general formula (I) is triphenylmethyl. リンを含む被処理水に下記に示す一般式(I)にて表される化合物を含むリン捕捉剤と前記リン捕捉剤の回収溶媒とを共存させて撹拌した後、静置して前記リン捕捉剤を取り込んだ前記回収溶媒を前記被処理水に対して相分離させることを特徴とする被処理水中のリン除去方法。
Figure 2008238006
ただし、式中のR1は炭素数が4〜20であって、脂肪族炭化水素あるいは芳香族炭化水素から選ばれる炭化水素基、R2,R3,R4,R5はHまたは脂肪族炭化水素基を示し、同じでも、異なってもよく、XはNまたはOを示す。
The phosphorus scavenger containing the compound represented by the general formula (I) shown below and the phosphorus scavenger recovery solvent coexisted in the water to be treated containing phosphorus and stirred, and then left to stand to capture the phosphorus. A method for removing phosphorus in water to be treated, wherein the recovered solvent in which the agent is incorporated is phase-separated from the water to be treated.
Figure 2008238006
R 1 in the formula has 4 to 20 carbon atoms and is a hydrocarbon group selected from aliphatic hydrocarbons or aromatic hydrocarbons, and R 2 , R 3 , R 4 and R 5 are H or aliphatic. Represents a hydrocarbon group, which may be the same or different, and X represents N or O;
前記捕捉剤が接触される前記被処理水は、pH9〜11の弱アルカリであることを特徴とする請求項3記載の被処理水中のリン除去方法。   The method for removing phosphorus in water to be treated according to claim 3, wherein the water to be treated which is in contact with the scavenger is a weak alkali having a pH of 9 to 11. 前記被処理水への前記リン捕捉剤および前記回収溶媒の共存は、前記リン捕捉剤と前記回収溶媒とを混合して前記被処理水に添加することによりなされることを特徴とする請求項3記載の被処理水中のリン除去方法。   4. The coexistence of the phosphorus scavenger and the recovery solvent in the water to be treated is performed by mixing the phosphorus scavenger and the recovery solvent and adding them to the water to be treated. The phosphorus removal method in the to-be-processed water of description.
JP2007079964A 2007-03-26 2007-03-26 Phosphorous scavenger, and method for removing phosphorous in water to be treated Pending JP2008238006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079964A JP2008238006A (en) 2007-03-26 2007-03-26 Phosphorous scavenger, and method for removing phosphorous in water to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079964A JP2008238006A (en) 2007-03-26 2007-03-26 Phosphorous scavenger, and method for removing phosphorous in water to be treated

Publications (1)

Publication Number Publication Date
JP2008238006A true JP2008238006A (en) 2008-10-09

Family

ID=39909982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079964A Pending JP2008238006A (en) 2007-03-26 2007-03-26 Phosphorous scavenger, and method for removing phosphorous in water to be treated

Country Status (1)

Country Link
JP (1) JP2008238006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050878A (en) * 2009-09-02 2011-03-17 Ishii Shoji Kk Water-bloom suppressing material, method of using the same and water-bloom suppressing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050878A (en) * 2009-09-02 2011-03-17 Ishii Shoji Kk Water-bloom suppressing material, method of using the same and water-bloom suppressing device

Similar Documents

Publication Publication Date Title
Gao et al. Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light
Xing et al. The Uncommon Channel‐Based Ln‐MOFs for Highly Selective Fe3+ Detection and Superior Rhodamine B Adsorption
Rankine et al. Control of framework interpenetration for in situ modified hydroxyl functionalised IRMOFs
JP5913436B2 (en) Boron remover
Saha et al. A mechanistic insight into enhanced and selective phosphate adsorption on a coated carboxylated surface
JP2007327085A (en) Extractant for rare earth metal, and extracting method therefor
JP2009056457A (en) Phosphorus compound adsorbent, phosphorus compound adsorption system, and method of using phosphorus compound adsorbent
AU2005292337A1 (en) Chelating agents for heavy metal removal
CA2968495C (en) Adsorbent, method for using same, and method for producing same
CN105579845B (en) The method of detection, capture and/or release chemical element
US10315185B2 (en) Polyfunctional sorbent materials
Wan et al. A 3D porous luminescent terbium metal-organic framework for selective sensing of F− in aqueous solution
Radi et al. Quantitative removal of Zn (II) from aqueous solution and natural water using new silica-immobilized ketoenol–pyridine receptor
JPWO2008029804A1 (en) Perchlorate ion scavenger
Belaye et al. Preparation and adsorption behavior of Ce (III)-MOF for phosphate and fluoride ion removal from aqueous solutions
JP4963032B2 (en) Phosphorous adsorbent
JP2010274206A (en) Water purifying material, water purifying method, phosphatic fertilizer precursor, and method of manufacturing phosphatic fertilizer precursor
JP2004224715A (en) Method for producing formic acid from carbon dioxide and hydrogen and method for fixing carbon dioxide and method for accelerating the reactions by irradiation of light
JP2010284607A (en) Phosphorus adsorbent and system for recovering phosphorus
JP2008238006A (en) Phosphorous scavenger, and method for removing phosphorous in water to be treated
JP2010042403A (en) Method for purifying water
JP2007001835A (en) Phosphorus adsorbent
KR20210105436A (en) Polyamine phosphorus dendrimer materials for metal sequestration
JP5484702B2 (en) Water purification material and water purification method using the same
JP4862148B2 (en) Metal separation and recovery method