JP2008237618A - Light irradiation device for photodynamical therapy - Google Patents

Light irradiation device for photodynamical therapy Download PDF

Info

Publication number
JP2008237618A
JP2008237618A JP2007083068A JP2007083068A JP2008237618A JP 2008237618 A JP2008237618 A JP 2008237618A JP 2007083068 A JP2007083068 A JP 2007083068A JP 2007083068 A JP2007083068 A JP 2007083068A JP 2008237618 A JP2008237618 A JP 2008237618A
Authority
JP
Japan
Prior art keywords
light
irradiation
emitting diode
light emitting
photodynamic therapy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007083068A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kosobe
俊之 古曽部
Hironori Ono
裕基 大野
Norimichi Kawashima
徳道 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toin Gakuen
Original Assignee
Toin Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toin Gakuen filed Critical Toin Gakuen
Priority to JP2007083068A priority Critical patent/JP2008237618A/en
Publication of JP2008237618A publication Critical patent/JP2008237618A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light irradiation device for efficiently performing photodynamic therapy by accelerating the removal of tissue cells of a lesion part by causing no pain to a patient by overcoming accompanying various defects in conventional photodynamic therapy. <P>SOLUTION: The light irradiation device is used when photodynamic therapy is applied to the lesion part by irradiating the abnormal tissue of the lesion part where a photosensitive substance having the maximum absorption in a wavelength region of 400-550 nm is preliminarily accumulated and equipped with a light emitting means composed of a high output light emitting diode for emitting light within a wavelength range of 400-550 nm and a high output light emitting diode for emitting light within a wavelength of 590-690 nm and a control means for performing the time-shaving of irradiation light as a pulse so as to impart a predetermined irradiation time to the lesion part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガン組織、シュヨウ組織などの病変部異常組織に光感受性物質を蓄積させ、それに光を照射して病変部の治療を行う際に用いる光力学的治療用光照射装置に関するものである。   The present invention relates to a photoirradiation device for photodynamic therapy that is used when a photosensitizer is accumulated in abnormal tissue such as cancer tissue or shuyo tissue and irradiated with light to treat the lesion. .

ガンや悪性シュヨウの治療には、早期発見、早期治療が最も必要とされる要件であるが、その治療法の1つとして、光感受性物質を利用した光力学的治療(Photodynamic Therapy)が知られている。
この光力学的治療は、光感受性物質が病変部組織に特異的に蓄積される性質を利用し、病変部を早期発見するとともに、これらの物質に光を照射して光感受性物質を活性化し、活性酸素や酸素ラジカルを発生させ、これにより病変部の異常組織細胞を撲滅したり、増殖能力を消失させる治療方法である。
Although early detection and early treatment are the most important requirements for the treatment of cancer and malignant shoots, photodynamic therapy using a photosensitizer is known as one of the treatment methods. ing.
This photodynamic treatment utilizes the property that photosensitizers accumulate specifically in the lesion tissue, and early detection of the lesions, and irradiates these substances with light to activate the photosensitizers, This is a treatment method that generates active oxygen and oxygen radicals, thereby eradicating abnormal tissue cells in the lesion or losing proliferation ability.

そして、このような光力学的治療方法又は装置としては、光感受性物質としてヘマトポルフィリン誘導体を用い、光源としてエキシマレーザで励起される色素レーザを用いる装置(特許文献1参照)、プロトポルフィリンDをその代謝前駆体から選択的に蓄積する、急速に成長する組織の検出又は処理するための光化学的治療用又は診断用組成物を用いる方法(特許文献2参照)、先端側が被治療体内に挿入される先端が閉じたチューブと、先端側が上記チューブ内に配置された光ファイバとを備えたカテーテルと、複数個の発光ダイオードからなる光源とこの発光ダイオードをパルス駆動するパルス駆動回路と、発光ダイオードからの光を活性化光として上記光ファイバに入射する光学系とを含むガン治療器(特許文献3参照)、光感受性物質を活性化可能な波長の光を、生体にバルス照射する照射手段と、この照射手段により照射する光のピーク強度を制御する制御手段を有し、光感受性物質が活性化する生体内の深度を病変部近傍に制御し、この病変部より光照射手段に近い生体浅部では光感受性物質が活性化しないようにした光線力学的治療装置(特許文献4参照)、5‐アミノレブリン酸誘導体又はその塩を光感受性物質として用い、投与後ガン細胞に2以上の異なる波長の光を2回以上に分けて照射する光力学的ガン治療方法(特許文献5参照)、フォトリアーゼを病変部に塗布し、100〜11000nmの波長域を含む出力10〜3000mW/cmの光を病変部に照射する光化学療法(特許文献6参照)、シュヨウ組織に光感受性物質を蓄積する工程と、このシュヨウ組織に第1の波長をもつ光を照射する工程と、第1光照射手段により光を照射されたシュヨウ組織に、第1の波長よりも長い波長をもつ光を照射する工程を含むシュヨウ治療方法(特許文献7参照)などがこれまでに提案されている。   As such a photodynamic treatment method or apparatus, an apparatus using a hematoporphyrin derivative as a photosensitive substance and a dye laser excited by an excimer laser as a light source (see Patent Document 1), protoporphyrin D is used. A method using a photochemical therapeutic or diagnostic composition for detecting or processing a rapidly growing tissue that selectively accumulates from metabolic precursors (see Patent Document 2), the distal side is inserted into the body to be treated A catheter provided with a tube having a closed tip, an optical fiber disposed in the tube on the tip side, a light source comprising a plurality of light emitting diodes, a pulse driving circuit for driving the light emitting diodes in a pulsed manner, A cancer treatment device including an optical system that enters light into the optical fiber as an activation light (see Patent Document 3), photosensitivity An irradiation means for irradiating the living body with light having a wavelength capable of activating the quality, and a control means for controlling the peak intensity of the light irradiated by the irradiation means, and the in-vivo depth at which the photosensitive substance is activated Is controlled in the vicinity of the lesion, and a photodynamic therapy device (see Patent Document 4) that prevents the photosensitizer from being activated in the shallow part of the living body that is closer to the light irradiation means than the lesion (see Patent Document 4) or 5-aminolevulinic acid derivative or the like A photodynamic cancer treatment method (see Patent Document 5) in which salt is used as a photosensitive substance, and cancer cells are irradiated with two or more different wavelengths of light twice or more after administration, and photolyase is applied to the lesion. Photochemotherapy for irradiating the lesion with light having an output of 10 to 3000 mW / cm including a wavelength region of 100 to 11000 nm (see Patent Document 6), a step of accumulating a photosensitive substance in the shoot tissue, Irradiating with light having a first wavelength to the iodine tissue, and irradiating light having a wavelength longer than the first wavelength to the iris tissue irradiated with light by the first light irradiating means. A method (see Patent Document 7) has been proposed so far.

特開昭59−40830号公報(特許請求の範囲その他)JP 59-40830 (Claims and others) 特表平4−500770号公報(特許請求の範囲その他)Japanese Patent Publication No. 4-500770 (Claims and others) 特開平9−103508号公報(特許請求の範囲その他)JP-A-9-103508 (Claims and others) 国際公開第04/112902号パンフレット(特許請求の範囲その他)WO04 / 112902 pamphlet (Claims and others) 特開2005−132766号公報(特許請求の範囲その他)JP-A-2005-132766 (Claims and others) 特開2005−246013号公報(特許請求の範囲その他)JP 2005-246013 A (Claims and others) 特開2005−349026号公報(特許請求の範囲その他)JP-A-2005-349026 (Claims and others)

ところで、これまで知られている光力学的治療法においては、光源としてYAGレーザ励起色素レーザのような高出力レーザや必要な光を選択的にろ波したキセノンランプが用いられている。
しかしながら、上記の高出力レーザは大規模な装置及びそれを収納するための特別な部屋などを必要とするため、莫大な設備費を要する上に、操作に専門のオペレータを必要とするなどコスト面で多くの負担を伴うために利用が制限されるのを免れない。
By the way, in the known photodynamic therapy, a high-power laser such as a YAG laser-excited dye laser or a xenon lamp that selectively filters necessary light is used as a light source.
However, since the above high-power laser requires a large-scale device and a special room for storing it, it requires huge equipment costs and requires a specialized operator for operation. However, it is inevitable that the use will be restricted because it involves a lot of burden.

一方、キセノンランプの場合、十分な治療効果を得るには、光感受性物質が吸収する光エネルギーを高くする必要があり、ランプ自体を高電力化しなければならず、操件の簡便性が著しく低下するとともに、排熱処理を付加しなければならない点で、設備費、処理費がかさむという欠点がある。   On the other hand, in the case of a xenon lamp, in order to obtain a sufficient therapeutic effect, it is necessary to increase the light energy absorbed by the photosensitive substance, and the lamp itself must have a high power, which greatly reduces the convenience of operation. In addition, there is a disadvantage that the equipment cost and the processing cost are increased in that a waste heat treatment must be added.

しかも、キセノンランプやハロゲン電球は、人体組織の表面付近にしか侵入できない波長域(600nm以下)の光や熱感を与える波長域(800nm以上)の光を大量に含んでいるため、必要とされる光感受性物質の吸収帯の波長域以外の波長域の光も強い放射強度で放射され、フィルタでろ波しても、その放射光の一部が直接患部に熱感を生じ、患部に苦痛を与えることになる。そして、これらの光の放射効果が不十分な場合には、長時間にわたって連続的に照射を継続しなければならないので、その苦痛はさらに加重されることになる。   In addition, xenon lamps and halogen light bulbs are required because they contain a large amount of light in a wavelength range (600 nm or less) that can only penetrate near the surface of human tissue or light that gives a thermal feeling (800 nm or more). Light in a wavelength band other than the wavelength band of the photosensitive material absorption band is also emitted with strong radiant intensity, and even when filtered by a filter, part of the radiated light directly gives a hot sensation to the affected area, causing pain to the affected area. Will give. And when the radiation effect of these lights is inadequate, since irradiation must be continued over a long time, the pain will be further weighted.

そのほか、半導体レーザや発光ダイオードを光源として用いることも行われているが、いずれも十分な出力が得られず、光感受性物質が機能を果すまでに長時間を要する上に、光照射時間当りの病変部組織細胞の除去数が少なく、治療速度が遅いという欠点がある。   In addition, semiconductor lasers and light-emitting diodes are also used as light sources, but none of them can provide sufficient output, and it takes a long time for the photosensitive material to perform its function, and the light per irradiation time There are disadvantages in that the number of removed tissue cells is small and the treatment speed is slow.

本発明は、このような事情のもとで、従来の光力学的治療において伴う種々の欠点を克服し、患者の苦痛なしに、病変部組織細胞の除去を促進し、効率よく治療を行うための装置を提供することを目的としてなされたものである。   Under such circumstances, the present invention overcomes various drawbacks associated with conventional photodynamic therapy, promotes the removal of diseased tissue cells and efficiently performs treatment without suffering for the patient. It was made for the purpose of providing the apparatus.

本発明者らは、光力学的治療装置について種々研究を重ねた結果、異なった波長域の光を発光する2種の高出力発光ダイオードを光源として用い、使用した光感受性物質に適合する波長を含む波長域とそれ以外の波長域との異なった2種の波長域の光を同時に、かつパルス照射することにより、その目的を達成しうることを見出し、この知見に基づいて本発明をなすに至った。   As a result of various studies on photodynamic therapy devices, the present inventors have used two types of high-power light emitting diodes that emit light in different wavelength ranges as light sources, and set wavelengths suitable for the photosensitive materials used. It is found that the object can be achieved by irradiating light in two different wavelength ranges, including a wavelength range including the wavelength range and other wavelength ranges, simultaneously, and based on this knowledge. It came.

すなわち、本発明は、400〜550nmの波長域に極大吸収を有する光感受性物質をあらかじめ蓄積させた病変部異常組織に光を照射させて光力学的治療を施こす際に用いる治療用光照射装置であって、波長400〜550nmの範囲内の光を発光する高出力発光ダイオードと波長590〜690nmの範囲内の光を発光する高出力発光ダイオードとからなる発光手段と、上記病変部に対し、所定の照射時間を与えるように照射光をパルスとして時分割するための制御手段とを具備したことを特徴とする光力学的治療用照射装置を提供するものである。   That is, the present invention relates to a therapeutic light irradiation device used for performing photodynamic treatment by irradiating light to a lesioned abnormal tissue in which a photosensitive substance having a maximum absorption in a wavelength range of 400 to 550 nm is accumulated in advance. A light-emitting means comprising a high-power light-emitting diode that emits light within a wavelength range of 400 to 550 nm and a high-power light-emitting diode that emits light within a wavelength range of 590 to 690 nm; There is provided a photodynamic therapeutic irradiation apparatus characterized by comprising a control means for time-dividing irradiation light as pulses so as to give a predetermined irradiation time.

本発明装置を適用するために、病変部異常細胞に蓄積させるための光感受性物質としては、従来の光力学的治療に際し、慣用されている光感受性物質の中から400〜700nmの波長域に吸収波長を有するものを任意に選んで用いることができる。このような光感受性物質としては、例えばヘマトポルフィリン誘導体、5‐アミノレブリン酸、プロトポルフィリンIX、フェオホルバイデ(Pheophorbidea)、アルミニウム・フタロシアニンテトラサルフェート(A1PcS4)、スズ・エチオプルプリン(SnET2)、亜鉛(II)・オクタデシルフタロシアニン(ZnOPPc)、プルプリンイミド、アザクロリン、亜鉛・エチオプルプリン(ZnET2)、フタロシアニン(Pc)、カドミウム・テクサフィリン(CdTX)、テクサフィリン、亜鉛・テトラフィプタロポルフィリン(ZnTNP)、ベルデイン、ベンゾポルフィリン誘導体モノ酸リングA(BPDMA)、プルプリン、亜鉛・テトラスルホネーテッドフタロシアニン(ZnTSPc)、ガリウム・フタロシアニン(Ga−Pc)、インジウムフタロシアニン(In−Pc)、ベンゾポルフィリン誘導体(BPD)、カルシウム・スルホネーテッドフタロシアニン(Ca−SPc)、亜鉛・フタロシアニン誘導体(ZnPc)、アルミニウム・スルホネーテッドフタロシアニン(AlSPc)、ベンゾポルフィリン派生体、N‐アスパルチルクロリンe6(Npe6)、メチレンブルー、ベルテポルフィン、ローダミン、テモポルフィリン、ポルフィセン、ハイペルシンなどがある。 In order to apply the device of the present invention, a photosensitive substance for accumulating in abnormal cells in the lesion is absorbed in a wavelength range of 400 to 700 nm from conventional photosensitive substances in the conventional photodynamic treatment. Those having a wavelength can be arbitrarily selected and used. Examples of such photosensitive substances include hematoporphyrin derivatives, 5-aminolevulinic acid, protoporphyrin IX, pheophorbide, aluminum phthalocyanine tetrasulfate (A1PcS 4 ), tin etiopurpurin (SnET 2 ), zinc ( II) Octadecyl phthalocyanine (ZnOPPc), purpurinimide, azachlorin, zinc etiopurpurin (ZnET 2 ), phthalocyanine (Pc), cadmium texaphyrin (CdTX), texaphyrin, zinc tetraphytaporphyrin (ZnTNP), Verdein, benzoporphyrin derivative monoacid ring A (BPDMA), purpurin, zinc tetrasulfonated phthalocyanine (ZnTSPc), gallium Talocyanine (Ga-Pc), indium phthalocyanine (In-Pc), benzoporphyrin derivative (BPD), calcium sulfonated phthalocyanine (Ca-SPc), zinc phthalocyanine derivative (ZnPc), aluminum sulfonated phthalocyanine (AlSPc) ), Benzoporphyrin derivatives, N-aspartyl chlorin e6 (Npe6), methylene blue, verteporfin, rhodamine, temoporphyrin, porphycene, hypersin and the like.

また、これらの光感受性物質の吸収波長を含む波長域400〜550nmの光を発生する発光ダイオードとともに用いられるもう一方の波長域の光を発生する発光ダイオードとしては、赤色すなわち波長590〜690nmの波長域の光を発生する高出力の発光ダイオードを挙げることができる。   In addition, as a light emitting diode that emits light in the other wavelength range that is used together with a light emitting diode that generates light in the wavelength range of 400 to 550 nm including the absorption wavelength of these photosensitive substances, red, that is, a wavelength of 590 to 690 nm is used. Examples include high-power light-emitting diodes that generate light in the region.

本発明装置においては、発光手段として波長域400〜550nmの光を発光する発光ダイオードと波長域590〜690nmの光を発光する発光ダイオードの2種の発光ダイオードを用いることが必要である。
この2種の発光ダイオードは高出力であることが必要であるが、この高出力とは、少なくとも3ワット(W)の出力を有することを意味する。この出力は大きければ大きいほど好ましく、特に上限はないが、実用的には10ワット程度が上限になる。
In the device of the present invention, it is necessary to use two types of light emitting diodes, that is, a light emitting diode that emits light in a wavelength range of 400 to 550 nm and a light emitting diode that emits light in a wavelength range of 590 to 690 nm.
The two types of light emitting diodes need to have a high output, which means that they have an output of at least 3 watts (W). The larger the output, the better. There is no particular upper limit, but practically about 10 watts is the upper limit.

次に、本発明装置においては、発光手段すなわち光源から病変部に照射する光を、パルスとして制御する手段を備えることが必要である。この制御手段は、病変部に供給する光の治療に必要な照射時間を時分割して適宜調節して与えられるような構成を有するものであればよく、特に制限はない。   Next, in the device of the present invention, it is necessary to provide means for controlling the light emitted from the light emitting means, that is, the light source, to the lesioned part as pulses. This control means is not particularly limited as long as it has a configuration in which irradiation time necessary for treatment of light supplied to a lesioned part is time-divided and appropriately adjusted.

このような手段は、例えば所定の時間間隔で光を遮断するタイマー機構に構成されていてもよいし、また慣用のパルス信号を発信するのに利用されている点滅発光の機構に構成されていてもよい。   For example, such means may be configured as a timer mechanism that blocks light at predetermined time intervals, or may be configured as a blinking light emission mechanism that is used to transmit a conventional pulse signal. Also good.

本発明装置においては、2種の異なった波長域の光を発光する発光ダイオードを組み合わせて用いることが必要である。その一方としては、病変部異常組織に蓄積された光感受性物質が極大吸収を含む波長域と合致する光の波長域を有する発光ダイオードが用いられる。   In the device of the present invention, it is necessary to use a combination of two types of light emitting diodes that emit light in different wavelength ranges. On the other hand, a light-emitting diode having a wavelength range of light that matches the wavelength range in which the photosensitive substance accumulated in the abnormal tissue at the lesion site includes maximum absorption is used.

他方は、その波長域とは異なる波長域の光を発光する発光ダイオードであり、このようなものとしては、青色ダイオード(波長域430〜530nm)、緑色ダイオード(波長域480〜600nm)、赤色ダイオード(波長域590〜690nm)などが知られているが、特に赤色ダイオード(波長域590〜690nm)と組み合わせた場合にシュヨウ細胞の生存率の低下、すなわち壊死率の向上が著しい。   The other is a light-emitting diode that emits light in a wavelength range different from the wavelength range, such as a blue diode (wavelength range 430 to 530 nm), a green diode (wavelength range 480 to 600 nm), and a red diode. (Wavelength range 590 to 690 nm) is known, but especially when combined with a red diode (wavelength range 590 to 690 nm), the decrease in the survival rate of Shuo cells, that is, the improvement in necrosis rate is remarkable.

また、発光ダイオードによる光照射は、点滅照射すなわちパルス照射する方が連続照射するよりも、約20%も高い殺細胞効果を示すことが分った。これは、光力学的治療においては、光照射によって異常細胞に溶存する酸素が消費されるが、この際点滅を行うことにより、細胞中に酸素が補給されるために治療効果が上昇したものと考えられる。   In addition, it has been found that light irradiation by a light emitting diode shows about 20% higher cell killing effect than blinking irradiation, that is, pulse irradiation, than continuous irradiation. This is because, in photodynamic therapy, oxygen dissolved in abnormal cells is consumed by light irradiation, but at this time, blinking causes oxygen to be replenished into the cells, so that the therapeutic effect has increased. Conceivable.

本発明によると光源として高出力発光ダイオードを用いるため、装置全体を小型化することができ、かつ2種の異なる発光ダイオードを用いて異なる波長域の光を点滅的に照射することにより、シュヨウ細胞のような異常細胞を高い壊死率で処理することができる。   According to the present invention, since a high-power light emitting diode is used as a light source, the entire apparatus can be reduced in size, and by using two different light emitting diodes to irradiate light in different wavelength ranges in a flashing manner, Abnormal cells such as can be treated with a high necrosis rate.

次に、実施例により、本発明を実施するための最良の形態を説明するが、本発明はこれによってなんら限定されるものではない。
なお、各例における試料及び光源は次のものを用いた。
Next, the best mode for carrying out the present invention will be described by way of examples. However, the present invention is not limited thereto.
The samples and light sources in each example were as follows.

(1)試料
ウシ胎児血清10質量%を加えたRPMI−1640培地で継体培養したヒト組織球性リンパシュU−937を5×105cells/mlに調製した。このようにして調製U−937細胞3mlを半径15mmのプラスチック製シャーレに分取し、10質量%の5‐アミノレブリン酸生理食塩水を所定量加え、37℃、CO2インキュベータで3時間培養した。
(1) Sample Human histiocytic lympho-U-937 subcultured in RPMI-1640 medium supplemented with 10% by mass of fetal bovine serum was prepared to 5 × 10 5 cells / ml. In this way, 3 ml of the prepared U-937 cells were collected in a plastic petri dish having a radius of 15 mm, a predetermined amount of 10% by mass of 5-aminolevulinic acid physiological saline was added, and the cells were cultured at 37 ° C. in a CO 2 incubator for 3 hours.

(2)光源
(イ)ロイヤルブルー色発光ダイオード;400〜500nmの波長域の光を発光する高出力(出力3W)の発光ダイオード(ルミレッズ社製)
(ロ)青色発光ダイオード;430〜530nmの波長域の光を発光する高出力(出力3W)の発光ダイオード(ルミレッズ社製)
(ハ)緑色発光ダイオード;480〜600nmの波長域の光を発光する高出力(出力3W)の発光ダイオード(ルミレッズ社製)
(ニ)赤色発光ダイオード;590〜690nmの波長域の光を発光する高出力(出力3W)の発光ダイオード(ルミレッズ社製)
(2) Light source (a) Royal blue light-emitting diode; high-power (output 3 W) light-emitting diode that emits light in the wavelength range of 400 to 500 nm (manufactured by Lumileds)
(B) Blue light emitting diode; high output (output 3 W) light emitting diode (manufactured by Lumileds) that emits light in the wavelength range of 430 to 530 nm
(C) Green light emitting diode; high output (output 3 W) light emitting diode (manufactured by Lumileds) that emits light in the wavelength range of 480 to 600 nm
(D) Red light emitting diode; high output (output 3 W) light emitting diode (manufactured by Lumileds) that emits light in the wavelength range of 590 to 690 nm

赤色発光ダイオードを光照射装置に組み込み熱線カットフィルタを、試料を収容したプラスチック製シャーレの上に載置し、光照射した。照射後、生死細胞判定装置を用いて細胞の生死を判別し、細胞生存率を求めた。まず、連続照射を行い、照射エネルギー増加による細胞の生存率の変化を調べた。その結果を図1に示す。横軸が照射エネルギー、縦軸が生存率である。この図から分るように、照射エネルギーが増加するほど生存率は滅少した。   A red light emitting diode was incorporated in the light irradiation device, and a heat ray cut filter was placed on a plastic petri dish containing the sample and irradiated with light. After irradiation, the viability of the cells was determined using a viable / dead cell determination device, and the cell viability was determined. First, continuous irradiation was performed, and changes in cell viability due to an increase in irradiation energy were examined. The result is shown in FIG. The horizontal axis is irradiation energy, and the vertical axis is the survival rate. As can be seen from this figure, the survival rate decreased as the irradiation energy increased.

次に、前記シュヨウ細胞に対し、高出力の赤色発光ダイオードからの放射光を連続して照射した場合と、1分間間隔で放射光を点滅照射した場合で比較実験を行った。その結果を図2に示す。連続照射においては、生存率は約70%であったが、点滅照射においては、生存率は約54%であった。このように、点滅照射の方が連続照射より殺細胞効果が高いことが分った。   Next, comparative experiments were performed when the shoot cells were continuously irradiated with radiated light from a high-power red light emitting diode and when radiated light was flashed at intervals of 1 minute. The result is shown in FIG. In continuous irradiation, the survival rate was about 70%, but in flashing irradiation, the survival rate was about 54%. Thus, it was found that blinking irradiation has a higher cell killing effect than continuous irradiation.

赤色発光ダイオードと、ロイヤルブルー色発光ダイオード、青色発光ダイオード又は緑色発光ダイオードとを組み合わせて照射した。その結果を図3に示す。この図から分るように単波長では前記のロイヤルブルー色発光ダイオードが最も殺細胞効果が大きかった。2波長同時照射した場合、どの波長でも2波長同時照射の方が殺細胞効果が大きいことが分った。この理由は、高出力発光ダイオードの照射によって発生した一重項酸素とPpIXで酸化反応が起こり、フォトプロトポルフィリンが生成される。このフォトプロトポルフィリンは670nm付近に吸収ピークを有するが、赤色発光ダイオードは670nmピークを持っているので、赤色発光ダイオードはフォトプロトポルフィリンに対しても光励起できるため、2波長同時照射による殺細胞効果は単波長照射よりも高くなったと考えられる。   Irradiation was performed in combination with a red light emitting diode and a royal blue light emitting diode, a blue light emitting diode, or a green light emitting diode. The result is shown in FIG. As can be seen from the figure, the royal blue light emitting diode has the greatest cell killing effect at a single wavelength. It was found that when two wavelengths were irradiated at the same time, the two-wavelength simultaneous irradiation had a greater cell killing effect at any wavelength. This is because an oxidation reaction occurs between singlet oxygen and PpIX generated by irradiation of the high-power light-emitting diode, and photoprotoporphyrin is generated. This photoprotoporphyrin has an absorption peak near 670 nm, but since the red light emitting diode has a 670 nm peak, the red light emitting diode can also be photoexcited to photoprotoporphyrin. It is thought that it became higher than single wavelength irradiation.

本発明装置は小型で携帯しやすいため、光力学的治療法において好適に利用することができる。   Since the device of the present invention is small and easy to carry, it can be suitably used in photodynamic therapy.

実施例1における照射量と細胞生存率の関係を示すグラフ。The graph which shows the relationship between the irradiation amount in Example 1, and a cell survival rate. 実施例1における連続照射と点滅照射の生存率の差を示す棒グラフ。The bar graph which shows the difference of the survival rate of the continuous irradiation in Example 1, and blinking irradiation. 実施例2における発光ダイオードの異なる組み合わせについての生存率の差を示す棒グラフ。The bar graph which shows the difference in the survival rate about the different combination of the light emitting diode in Example 2. FIG.

Claims (4)

400〜550nmの波長域に極大吸収を有する光感受性物質をあらかじめ蓄積させた病変部異常組織に光を照射させて光力学的治療を施こす際に用いる治療用光照射装置であって、波長400〜550nmの範囲内の光を発光する高出力発光ダイオードと波長590〜690nmの範囲内の光を発光する高出力発光ダイオードとからなる発光手段と、上記病変部に対し、所定の照射時間を与えるように照射光をパルスとして時分割するための制御手段とを具備したことを特徴とする光力学的治療用照射装置。   A therapeutic light irradiation apparatus for use in performing photodynamic therapy by irradiating light to a lesioned abnormal tissue in which a photosensitive substance having a maximum absorption in a wavelength range of 400 to 550 nm is accumulated in advance, and having a wavelength of 400 A light emitting means comprising a high power light emitting diode that emits light within a range of ˜550 nm and a high power light emitting diode that emits light within a wavelength range of 590 to 690 nm, and a predetermined irradiation time is given to the lesioned part And a control means for time-dividing the irradiation light as a pulse as described above. 高出力発光ダイオードが、少なくとも3ワット(W)の出力を有する請求項1記載の光力学的治療用照射装置。   The irradiation device for photodynamic therapy according to claim 1, wherein the high-power light-emitting diode has an output of at least 3 watts (W). 制御手段が所定の時間間隔で光を遮断するタイマー機構で構成されている請求項1又は2記載の光力学的治療用照射装置。   The irradiation device for photodynamic therapy according to claim 1 or 2, wherein the control means comprises a timer mechanism that blocks light at a predetermined time interval. 制御手段がパルス信号により点滅発光する機構で構成されている請求項1又は2記載の光力学的治療用照射装置。   The irradiation device for photodynamic therapy according to claim 1 or 2, wherein the control means comprises a mechanism for flashing and emitting light by a pulse signal.
JP2007083068A 2007-03-27 2007-03-27 Light irradiation device for photodynamical therapy Pending JP2008237618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083068A JP2008237618A (en) 2007-03-27 2007-03-27 Light irradiation device for photodynamical therapy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083068A JP2008237618A (en) 2007-03-27 2007-03-27 Light irradiation device for photodynamical therapy

Publications (1)

Publication Number Publication Date
JP2008237618A true JP2008237618A (en) 2008-10-09

Family

ID=39909659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083068A Pending JP2008237618A (en) 2007-03-27 2007-03-27 Light irradiation device for photodynamical therapy

Country Status (1)

Country Link
JP (1) JP2008237618A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138992A (en) * 2011-12-29 2013-07-18 Kazuo Rokkaku Method for denaturing substance
JP2014510393A (en) * 2011-01-27 2014-04-24 日東電工株式会社 Phototherapy device and method containing optionally substituted terphenyl and quaterphenyl compounds
JP2016529056A (en) * 2013-09-05 2016-09-23 ポリフォトニクス リミテッドPolyphotonix Limited Medical device and method
WO2016208244A1 (en) * 2015-06-24 2016-12-29 公立大学法人名古屋市立大学 Photodynamic therapy light irradiating device and light irradiating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510393A (en) * 2011-01-27 2014-04-24 日東電工株式会社 Phototherapy device and method containing optionally substituted terphenyl and quaterphenyl compounds
JP2013138992A (en) * 2011-12-29 2013-07-18 Kazuo Rokkaku Method for denaturing substance
JP2016529056A (en) * 2013-09-05 2016-09-23 ポリフォトニクス リミテッドPolyphotonix Limited Medical device and method
WO2016208244A1 (en) * 2015-06-24 2016-12-29 公立大学法人名古屋市立大学 Photodynamic therapy light irradiating device and light irradiating method
JP2017006454A (en) * 2015-06-24 2017-01-12 公立大学法人名古屋市立大学 Light irradiation device for photodynamic treatment

Similar Documents

Publication Publication Date Title
US6676655B2 (en) Low intensity light therapy for the manipulation of fibroblast, and fibroblast-derived mammalian cells and collagen
Spikes et al. Photodynamic therapy of tumours and other diseases using porphyrins
KR101239925B1 (en) Method and apparatus for the stimulation of hair growth
CA2644219C (en) Method and apparatus for acne treatment using low intensity light therapy
JP4662631B2 (en) Apparatus for treating pigmented tissue using light energy
JPS63111886A (en) Cancer remedy apparatus using optical diode
WO1993021842A1 (en) High-power light-emitting diodes for photodynamic therapy
WO2016208244A1 (en) Photodynamic therapy light irradiating device and light irradiating method
JP2008237618A (en) Light irradiation device for photodynamical therapy
JP2008188258A (en) Phototherapy apparatus
Rausch et al. Pulsed versus continuous wave excitation mechanisms in photodynamic therapy of differently graded squamous cell carcinomas in tumor-implanted nude mice
RU2697356C2 (en) Device and method of multi-frequency photodynamic therapy
US20100010482A1 (en) Enhanced Photodynamic Therapy Treatment and Instrument
JP2001299939A (en) Surface irradiation type photodynamic diagnostic or therapeutic light device
JP2013208331A (en) Photodynamic therapy system accompanying temperature adjustment
RU2008123558A (en) DEVICE AND METHOD FOR FLUORESCENT DIAGNOSTICS AND PHOTODYNAMIC THERAPY OF SKIN DISEASES
CN206715053U (en) One kind is based on OPK therapeutic system
RU96007U1 (en) DEVICE FOR RADIATING THE SURFACE OF A BODY WITH OPTICAL RADIATION AT BURNS
GB2454652A (en) Photodynamic therapy device including a plurality of light sources
RU2000119408A (en) A method for the treatment of malignant tumors
KR20130050096A (en) Device for inducing photodynamic reaction and method for inducing photodynamic reaction using the same
Ion et al. Laser effect in photodynamic therapy of tumors
Pokora Semiconductor lasers in selected medical applications
Lim et al. Effect of high fluence light emitting diode mediated photodynamic therapy with Photofrin II on high-grade solid tumor model
Kawauchi et al. Influence of light intensity and repetition rate of nanosecond laser pulses on photodynamic therapy with PAD-S31 in mouse renal carcinoma cell line in vitro: study for oxygen consumption and photo..