JP2008236892A - Controller for brushless motor - Google Patents

Controller for brushless motor Download PDF

Info

Publication number
JP2008236892A
JP2008236892A JP2007072241A JP2007072241A JP2008236892A JP 2008236892 A JP2008236892 A JP 2008236892A JP 2007072241 A JP2007072241 A JP 2007072241A JP 2007072241 A JP2007072241 A JP 2007072241A JP 2008236892 A JP2008236892 A JP 2008236892A
Authority
JP
Japan
Prior art keywords
control
advance
duty ratio
circuit
advance angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007072241A
Other languages
Japanese (ja)
Other versions
JP4938517B2 (en
Inventor
Takeya Yanagihara
健也 柳原
Kuniaki Kawagoe
邦亮 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp filed Critical Mitsuba Corp
Priority to JP2007072241A priority Critical patent/JP4938517B2/en
Publication of JP2008236892A publication Critical patent/JP2008236892A/en
Application granted granted Critical
Publication of JP4938517B2 publication Critical patent/JP4938517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively achieve the suppression and control of electricity generated through simple circuitry with a no-load number of revolutions or higher. <P>SOLUTION: When it is determined at a regenerative duty determination circuit 42 that the duty ratio is zero, advance angle is fixed at a predetermined value by an advance offset setting circuit 39 to increase/decrease the driving duty ratio. When it is determined by an output duty determining circuit 36 that the driving duty ratio is a maximum, the advance is increased/decreased by a predetermined advance or more to increase/decrease a regenerative current. The amount of advance is fixed within a range between a no-load number of revolutions and a predetermined number of revolutions. Since the duty ratio is increased/decreased, however, power generation control can be carried out at the same level as cases where the advance is controlled within a range from 0 to a predetermined advance value. Furthermore, when the predetermined number of revolutions is exceeded and the electricity generated is increased, the advance increase/decrease control can be carried out with the maximum duty ratio within that range of revolving speed to control the electricity generated. Since this circuit for this setting of a fixed advance value or increasing/decreasing of the driving duty ratio can be constructed, without making special enhancement in accuracy, the price of the circuity will not increase. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、進角制御を行うブラシレスモータの制御装置に関するものである。   The present invention relates to a control device for a brushless motor that performs advance angle control.

従来、DCブラシレスモータを電動自動車の駆動源として用いたものがあり、長い下り坂走行で内燃機関自動車におけるエンジンブレーキと同様の制動を行うようにするためにモータの回生制御を行うようにしたものがある(例えば特許文献1参照)。
特開2002−58277号公報
Conventionally, there has been one that uses a DC brushless motor as a drive source for an electric vehicle, and motor regenerative control is performed in order to perform braking similar to engine braking in an internal combustion engine vehicle during long downhill running (See, for example, Patent Document 1).
JP 2002-58277 A

しかしながら、駆動制御を停止した状態で長い下り坂を走行する場合には自然に増速されていってモータの無負荷回転数以上に回転数が上がってしまうことがあり、その場合には、制御装置(コントローラ)から電源(バッテリ)へ流れる回生電流を制御することができない。そのため、例えば電源がバッテリの場合には過充電となったり、回生エネルギの増加分に応じてモータのフリクションが増大したりするという問題が生じる。その場合には、例えば電流供給回路としてブリッジ回路を構成したものにおいて、そのブリッジの出力を昇圧動作から100%デューティの駆動(最大デューティ駆動制御)に切り替えると共に、無負荷回転数以上の回転速度の増減に応じて進角量を増減させることにより発電量を抑制することができる。   However, when driving on a long downhill with the drive control stopped, the speed is naturally increased and the rotational speed may increase beyond the no-load rotational speed of the motor. The regenerative current flowing from the device (controller) to the power source (battery) cannot be controlled. For this reason, for example, when the power source is a battery, overcharge occurs, or the motor friction increases according to the increase in regenerative energy. In that case, for example, in a case where a bridge circuit is configured as a current supply circuit, the output of the bridge is switched from boost operation to 100% duty drive (maximum duty drive control), and at a rotational speed higher than the no-load rotational speed. The amount of power generation can be suppressed by increasing or decreasing the advance amount in accordance with the increase or decrease.

しかしながら、上記制御にあっては、100%デューティの駆動状態で進角制御しており、進角制御に僅かな誤差が生じても100%デューティに応じた大きさで駆動量が決定されるため、誤差に過剰に反応することになり、駆動と回生とを繰り返すハンチングを起こし易かった。そのため、制御精度を高精度化する必要があり、制御装置が高コスト化するという問題があった。   However, in the above control, the advance angle control is performed in the driving state with 100% duty, and even if a slight error occurs in the advance angle control, the drive amount is determined with a magnitude corresponding to the 100% duty. It would react excessively to the error, and it was easy to cause hunting that repeats driving and regeneration. Therefore, it is necessary to increase the control accuracy, and there is a problem that the cost of the control device increases.

このような課題を解決して、無負荷回転数以上で発電量の抑制制御を簡単な回路構成で安価に実現するために本発明に於いては、ステータと、前記ステータに対して同軸かつ回転可能に設けられたロータと、前記ステータと前記ロータとの一方にコイル巻線が設けられ、前記ステータと前記ロータとの他方に前記コイル巻線に対向して永久磁石が配設されたブラシレスモータの制御装置であって、前記ステータに対する前記ロータの回転状態を検出する回転検出手段と、前記コイル巻線に駆動電流を供給する駆動電流供給手段と、前記駆動電流を検出する電流検出手段と、前記回転検出手段により検出された前記ロータの回転角度検出信号に同期した位相であってパルス幅変調された制御信号を前記駆動電流供給手段に供給するパルス幅変調信号発生手段と、前記パルス幅変調される制御信号のデューティ比を決定するデューティ信号を前記パルス幅変調信号発生手段に供給する出力デューティ決定手段と、前記パルス幅変調信号発生手段による前記パルス幅変調された制御信号の位相を進角させる進角制御手段とを備える制御手段とを有し、前記制御手段は、前記ロータが無負荷回転数に達し、回生デューティを0にしても回生電流が過剰な状態と判定したら前記進角制御手段による進角を所定量進角させた値に固定する固定進角値設定手段とを有し、前記進角制御手段は、前記ロータの回転速度が前記無負荷回転数以上の所定の回転数に至る範囲では前記所定量進角させかつ固定された進角値とすると共に前記所定の回転数以上では回転速度の増減に応じて進角を増減させ、前記出力デューティ決定手段は、前記無負荷回転数以上の所定の回転数に至る範囲では前記デューティ比を回転速度の増減に応じて増減させると共に前記所定の回転数以上では所定の最大デューティ比に固定するものとした。   In order to solve such a problem and realize low-cost control of power generation with a simple circuit configuration at a rotational speed higher than the no-load speed, in the present invention, the stator is coaxial with the stator and rotates. A brushless motor in which a coil winding is provided on one of the possible rotor, the stator and the rotor, and a permanent magnet is disposed opposite the coil winding on the other of the stator and the rotor. A rotation detection means for detecting a rotation state of the rotor relative to the stator, a drive current supply means for supplying a drive current to the coil winding, and a current detection means for detecting the drive current; Pulse width modulation for supplying to the drive current supply means a control signal that is in phase with the rotation angle detection signal of the rotor detected by the rotation detection means and is pulse width modulated. Signal generating means, output duty determining means for supplying a duty signal for determining a duty ratio of the control signal to be pulse width modulated to the pulse width modulated signal generating means, and the pulse width modulation by the pulse width modulated signal generating means Control means for advancing the phase of the control signal generated, and the control means has an excessive regenerative current even when the rotor reaches a no-load rotational speed and the regenerative duty is zero. A fixed advance value setting means for fixing the advance angle by the advance angle control means to a value obtained by advancing a predetermined amount when it is determined that the advance angle control means is in a state where the rotation speed of the rotor is not In a range that reaches a predetermined rotational speed that is equal to or higher than the load rotational speed, the predetermined amount is advanced and a fixed advance value is set, and at the predetermined rotational speed or higher, the advance angle is increased or decreased according to the increase or decrease of the rotational speed. The output duty determining means increases / decreases the duty ratio according to increase / decrease of the rotational speed in a range reaching the predetermined rotational speed equal to or higher than the no-load rotational speed, and fixes the duty ratio to a predetermined maximum duty ratio above the predetermined rotational speed. It was supposed to be.

このように本発明によれば、例えば電動自動車に用いたブラシレスモータにおいて、下り坂走行時にモータが無負荷回転数に達し、回生デューティを0にしても回生電流が過剰な状態になった場合には、無負荷回転数以上の所定の回転数に至る範囲では進角を所定量進角させた値であってかつその値に固定すると共にその範囲では回転速度の増減に応じてデューティ比の増減制御を行うことから、無負荷回転数を超えた途端に100%デューティ制御に切り替わることなく、回転速度の増減に応じてデューティ比を増減させるため無負荷回転数付近での制御が円滑に行われる。この場合に無負荷回転数と所定の回転数との範囲では進角量が固定されるが、上記したようにデューティ比を増減させることから、0〜所定の進角値の範囲で進角制御する場合と同等の発電制御を行うことができると共に、所定の回転数以上に回転速度が高まって発電量が増加した場合にはその回転速度範囲では最大デューティ比による進角増減制御を行って発電量を制御することができる。このような固定進角値の設定や駆動デューティ比の増減を行う回路を特に高精度化することなく構成できるため、回路が高騰化することがない。   As described above, according to the present invention, for example, in a brushless motor used in an electric vehicle, when the motor reaches a no-load rotational speed when traveling on a downhill and the regenerative current becomes excessive even when the regenerative duty is zero. Is a value obtained by advancing the advance angle by a predetermined amount in a range up to a predetermined rotation speed equal to or higher than the no-load rotation speed, and is fixed to that value, and in that range, the duty ratio increases or decreases according to the increase or decrease of the rotation speed. Since the control is performed, the duty ratio is increased / decreased according to the increase / decrease of the rotation speed without switching to the 100% duty control as soon as the no-load rotation speed is exceeded. Is called. In this case, the advance amount is fixed in the range between the no-load rotation speed and the predetermined rotation speed. However, since the duty ratio is increased or decreased as described above, the advance angle control is performed in the range of 0 to the predetermined advance angle value. The power generation control can be performed in the same way as in the case of power generation, and when the rotational speed increases beyond the predetermined rotational speed and the power generation amount increases, the advance angle increase / decrease control based on the maximum duty ratio is performed in the rotational speed range. The amount can be controlled. Since the circuit for setting such a fixed advance value and increasing / decreasing the drive duty ratio can be configured without particularly increasing the accuracy, the circuit does not rise.

以下、本発明の実施の形態を、図面を参照しながら説明する。図1は本発明に基づくモータのモータ制御装置のブロック回路図である。また、電動自動車の駆動源に用いられるモータMのモータ制御装置であり、図示例ではアウタロータ型のモータを用い、そのアウタロータに車輪を取り付けたものである。なお、図示例では3相のブラシレスモータMについて示しているが、一例であり、制御対象となるモータを限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block circuit diagram of a motor control device for a motor according to the present invention. Further, it is a motor control device for a motor M used as a drive source of an electric automobile. In the illustrated example, an outer rotor type motor is used, and wheels are attached to the outer rotor. In the illustrated example, the three-phase brushless motor M is shown, but this is an example, and the motor to be controlled is not limited.

図示例では、電源としての車載バッテリBTに、FETを用いたブリッジ回路が構成された駆動電流供給手段としてのインバータ21を介してモータMの各相コイル9が接続されている。なお、バッテリBTとインバータ21とを接続する電源線には電流検出手段としての電流検出センサ22と電圧検出センサ23とが設けられており、それぞれにより検出された電流検出信号と電圧検出信号とが、制御手段を構成する制御回路ECUの電流検出回路25と電圧検出回路26とに入力するようになっている。モータMにはロータ4の回転角度を検出する回転検出手段としての回転センサ24が設けられており、その回転角度信号が回転角度検出回路27と回転速度検出回路41とに入力し、回転角度検出回路27ではロータ4のステータ6に対する回転(角度)位置を算出し、回転速度検出回路41ではロータ4のステータ6に対する回転速度を算出する。   In the illustrated example, each phase coil 9 of the motor M is connected to an in-vehicle battery BT as a power source via an inverter 21 as a drive current supply means in which a bridge circuit using an FET is configured. The power supply line connecting the battery BT and the inverter 21 is provided with a current detection sensor 22 and a voltage detection sensor 23 as current detection means, and a current detection signal and a voltage detection signal detected by each of them are provided. These are inputted to the current detection circuit 25 and the voltage detection circuit 26 of the control circuit ECU constituting the control means. The motor M is provided with a rotation sensor 24 as a rotation detection means for detecting the rotation angle of the rotor 4. The rotation angle signal is input to the rotation angle detection circuit 27 and the rotation speed detection circuit 41 to detect the rotation angle. The circuit 27 calculates the rotational (angle) position of the rotor 4 with respect to the stator 6, and the rotational speed detection circuit 41 calculates the rotational speed of the rotor 4 with respect to the stator 6.

また、制御回路ECU内には、外部の例えばアクセル開度センサ(図示せず)からの信号であって良い運転操作信号が入力される運転操作入力回路28と、運転操作入力回路28からの出力信号がそれぞれ入力される出力指令信号発生手段としての出力電流指令回路29および回生電流指令手段としての回生電流指令回路30と、出力電流指令回路29及び電流検出回路25からの各出力信号が入力される出力電流比較回路31と、回生電流指令回路30及び電流検出回路25からの各出力信号が入力される回生電流比較回路32と、回生電流比較回路32・電圧検出回路26・回転速度検出回路41からの各出力信号が入力される回生デューティ決定手段としての回生Duty決定回路34と、回生Duty決定回路34によりアクセス可能なマップデータを記憶しているメモリ35と、回生Duty決定回路34からの回生デューティ決定信号が入力される回生デューティ判定回路42と、回生Duty判定回路42からの出力信号が入力される固定進角値設定手段としての進角オフセット設定回路39と、出力電流比較回路31・回生電流比較回路32・回生Duty判定回路42からの各出力信号が入力される出力デューティ決定手段としての出力Duty決定回路33と、出力Duty決定回路33からの出力信号が入力される出力Duty判定回路36と、出力Duty判定回路36・回生Duty判定回路42・回生電流比較回路32・出力電流比較回路31・進角オフセット設定回路39からの各出力信号が入力されると共にそれら入力値に応じて進角信号を出力する進角制御手段としての進角制御回路37と、出力Duty決定回路33・回生Duty決定回路34・回転角度検出回路27・進角制御回路37からの各出力信号が入力されると共にそれら入力値に応じて生成したPWM信号をインバータ21に出力するパルス幅変調信号発生手段としてのPWM信号生成回路38とが設けられている。なお、各回路はICを用いて構成されるものと、CPUのプログラム制御により構成されるものとを含むものであって良い。また、図示された回路名称及び信号線により理解される部分についてはその詳しい説明を省略する。   Further, in the control circuit ECU, a driving operation input circuit 28 to which a driving operation signal which may be a signal from an external accelerator opening sensor (not shown), for example, is input, and an output from the driving operation input circuit 28 is provided. The output current command circuit 29 serving as an output command signal generating means and the regenerative current command circuit 30 serving as a regenerative current command means, and the output signals from the output current command circuit 29 and the current detection circuit 25 are input. Output current comparison circuit 31, regenerative current comparison circuit 32 to which each output signal from regenerative current command circuit 30 and current detection circuit 25 is input, regenerative current comparison circuit 32, voltage detection circuit 26, and rotation speed detection circuit 41. Can be accessed by a regenerative duty determining circuit 34 as a regenerative duty determining means to which each output signal is input and a regenerative duty determining circuit 34 A memory 35 storing various map data, a regenerative duty determination circuit 42 to which a regenerative duty determination signal from the regenerative duty determination circuit 34 is input, and a fixed advance angle to which an output signal from the regenerative duty determination circuit 42 is input. An advance angle offset setting circuit 39 as value setting means, and an output duty determination circuit 33 as output duty determination means to which output signals from the output current comparison circuit 31, regenerative current comparison circuit 32, and regeneration duty determination circuit 42 are input. An output duty determination circuit 36 to which an output signal from the output duty determination circuit 33 is input, an output duty determination circuit 36, a regenerative duty determination circuit 42, a regenerative current comparison circuit 32, an output current comparison circuit 31, and an advance angle offset setting. Each output signal from the circuit 39 is input, and an advance angle signal is output according to the input value. Each of the output signals from the advance angle control circuit 37 as the advance angle control means, the output duty determination circuit 33, the regenerative duty determination circuit 34, the rotation angle detection circuit 27, and the advance angle control circuit 37 are input and their input values. There is provided a PWM signal generation circuit 38 as pulse width modulation signal generation means for outputting a PWM signal generated according to the above to the inverter 21. Each circuit may include a circuit configured using an IC and a circuit configured by CPU program control. Further, detailed description of the parts understood by the illustrated circuit names and signal lines will be omitted.

出力Duty決定回路33にあっては、出力電流比較回路31からの出力決定値に基づいて駆動(加減速)出力制御におけるデューティ比を決定し、そのデューティ比決定信号をPWM信号生成回路38に出力し、回生Duty決定回路34にあっては、回生電流比較回路32からの出力決定値に基づいて回生制御におけるデューティ比を決定し、そのデューティ比決定信号をPWM信号生成回路38に出力する。また、進角制御回路37にあっては、各入力値に基づいて進角制御における進角値を決定し、その進角決定信号をPWM信号生成回路38に出力する。PWM信号生成回路38にあっては、ブラシレスモータに対する公知のPWM制御におけるパルス幅変調されかつデューティ比に応じた制御信号としてのPWM信号を決定する。   In the output duty determination circuit 33, the duty ratio in the drive (acceleration / deceleration) output control is determined based on the output determination value from the output current comparison circuit 31, and the duty ratio determination signal is output to the PWM signal generation circuit 38. The regeneration duty determination circuit 34 determines the duty ratio in the regeneration control based on the output determination value from the regeneration current comparison circuit 32 and outputs the duty ratio determination signal to the PWM signal generation circuit 38. Further, the advance angle control circuit 37 determines an advance value in the advance angle control based on each input value, and outputs the advance angle determination signal to the PWM signal generation circuit 38. The PWM signal generation circuit 38 determines a PWM signal as a control signal that is pulse-width-modulated in a known PWM control for a brushless motor and that corresponds to the duty ratio.

なお、回生制御にあっては、図示例の3相ブラシレスモータであってインバータ21がFETを用いた3相フルブリッジ回路で構成されている場合にはFETをチョッピング制御する。チョッピング・デューティ0では、全てのFETがオフし、FETの寄生ダイオードを介して回生電流が全波整流される。   In the regenerative control, the chopping control of the FET is performed in the case of the three-phase brushless motor of the illustrated example and the inverter 21 is configured by a three-phase full bridge circuit using the FET. At the chopping duty 0, all FETs are turned off, and the regenerative current is full-wave rectified via the parasitic diodes of the FETs.

次に、本発明に基づく回生制御要領について、図2のフロー図および図3の制御線図を参照して示す。   Next, the regenerative control procedure according to the present invention will be described with reference to the flowchart of FIG. 2 and the control diagram of FIG.

なお図3では、横軸にモータ(ロータ4)の回転速度を示し、縦軸には回生または駆動デューティ制御におけるデューティ比Dyと進角値とを示し、回転速度が無負荷回転数No以下ではデューティ制御を行い、無負荷回転数Noを越えた場合には進角制御を行う状態を示している。   In FIG. 3, the horizontal axis indicates the rotational speed of the motor (rotor 4), the vertical axis indicates the duty ratio Dy and the advance value in regeneration or drive duty control, and when the rotational speed is below the no-load rotational speed No. The state in which the duty angle control is performed and the advance angle control is performed when the no-load rotational speed No is exceeded is shown.

図2のステップST1では目標回生電流Ioと現在回生電流Inとを読み込む。目標回生電流Ioは回生電流指令回路30により決定された回生電流値であり、現在回生電流Inは電流検出センサ22により検出された電流値である。次のステップST2では進角制御における進角が0度であるか否かを判別し、進角が0度(進角制御中ではない)と判定され場合にはステップST3に進む。   In step ST1 of FIG. 2, the target regenerative current Io and the current regenerative current In are read. The target regenerative current Io is a regenerative current value determined by the regenerative current command circuit 30, and the current regenerative current In is a current value detected by the current detection sensor 22. In the next step ST2, it is determined whether or not the advance angle in the advance angle control is 0 degree. If it is determined that the advance angle is 0 degree (not being advanced angle control), the process proceeds to step ST3.

ステップST3では上記目標回生電流Inが現在回生電流Ioよりも小さいか否かを判別する。目標回生電流Ioの方が小さい、すなわち回生電流が流れ過ぎと判定された場合にはステップST4に進み、目標回生電流Ioの方が大きい、すなわち回生電流が少ないと判定された場合にはステップST5に進む。ステップST4では回生デューティ比(Dy)が最小(=0)であるか否かを判別し、最小であると判定された場合にはステップST6に進む。このステップST3・4でロータが無負荷回転数に達し、回生デューティを0にしても回生電流が過剰な状態と判定することができ、その場合にはステップST6で、進角制御回路37による進角制御量を進角オフセット設定回路39により所定の固定進角値としての進角D1(例えば10度)に設定してステップST1に戻る。   In step ST3, it is determined whether or not the target regenerative current In is smaller than the current regenerative current Io. If it is determined that the target regenerative current Io is smaller, that is, it is determined that the regenerative current flows too much, the process proceeds to step ST4. If it is determined that the target regenerative current Io is larger, that is, the regenerative current is small, step ST5. Proceed to In step ST4, it is determined whether or not the regenerative duty ratio (Dy) is minimum (= 0). If it is determined to be minimum, the process proceeds to step ST6. In this step ST3 and 4, it can be determined that the regenerative current is excessive even if the rotor reaches the no-load rotational speed and the regenerative duty is set to 0. In this case, in step ST6, the advance by the advance angle control circuit 37 is determined. The angle control amount is set to an advance angle D1 (for example, 10 degrees) as a predetermined fixed advance value by the advance angle offset setting circuit 39, and the process returns to step ST1.

上記ステップST3からステップST5に進んだ場合には、無負荷回転数No以下の領域であり、回生デューティ比(Dy)の増減制御において目標回生電流Ioに対して現在回生電流Inが少ない場合となる。したがって、ステップST5で回生デューティ比(Dy)を増やす制御を行い、ステップST1に戻る。   When the process proceeds from step ST3 to step ST5, the area is equal to or less than the no-load rotational speed No, and the current regenerative current In is smaller than the target regenerative current Io in the increase / decrease control of the regenerative duty ratio (Dy). . Therefore, control for increasing the regenerative duty ratio (Dy) is performed in step ST5, and the process returns to step ST1.

また、ステップST4で回生デューティ比(Dy)が最小ではないと判定された場合にはステップST7に進む。この場合には回生デューティ比(Dy)の増減制御の領域(無負荷回転数No以下)であることから、ステップST7では回生デューティ比(Dy)を減らす制御を行い、ステップST1に戻る。   If it is determined in step ST4 that the regenerative duty ratio (Dy) is not the minimum, the process proceeds to step ST7. In this case, since it is an area of increase / decrease control of the regenerative duty ratio (Dy) (no load rotation speed No or less), in step ST7, control is performed to reduce the regenerative duty ratio (Dy), and the process returns to step ST1.

上記ステップST2で進角が0度ではないと判定された場合にはステップST8に進む。この場合には進角制御中の場合であり、図3における無負荷回転数Noを越えた領域での制御となる。ステップST8では目標回生電流Ioが現在回生電流Inよりも小さいか否かを判別し、目標回生電流Ioの方が小さい、すなわち回生電流が流れ過ぎと判定された場合にはステップST9に進み、目標回生電流Ioの方が大きい、すなわち回生電流が少ないと判定された場合にはステップST10に進む。   If it is determined in step ST2 that the advance angle is not 0 degrees, the process proceeds to step ST8. In this case, the advance angle control is being performed, and the control is performed in a region exceeding the no-load rotational speed No in FIG. In step ST8, it is determined whether or not the target regenerative current Io is smaller than the current regenerative current In. If the target regenerative current Io is smaller, that is, if it is determined that the regenerative current is excessive, the process proceeds to step ST9. When it is determined that the regenerative current Io is larger, that is, the regenerative current is small, the process proceeds to step ST10.

ステップST9では、出力Duty判定回路36で駆動デューティ比(Dy)が最大(例えば100%)であるか否かを判別し、最大であると判定された場合にはステップST11に進み、最大ではないと判定された場合にはステップST12に進む。ステップST11では、駆動デューティ比(Dy)が最大になっている場合であり、図3における回転数N1以上の領域となり、出力Duty判定回路36からの駆動デューティ比の最大判定信号に応じて進角制御回路37により、回生電流を減らすべく進角量を増やす制御を行う(図の二点鎖線)。なお、図3における回転数N1は目安として示したものであり、具体的な回転数を設定するものではなく、進角・回生電流・デューティ比Dyの各値に応じて適宜決まる値である。また、ステップST12に進んだ場合には、駆動デューティ比(Dy)が最大になっていない場合、すなわち図3における無負荷回転数No〜回転数N1の間の場合であり、その領域では駆動デューティ比(Dy)を増やすことができるため、回生電流を減らすために駆動デューティ比(Dy)を増やす制御を行って、ステップST1に戻る。   In step ST9, the output duty determination circuit 36 determines whether or not the drive duty ratio (Dy) is maximum (for example, 100%). If it is determined to be maximum, the process proceeds to step ST11 and is not maximum. When it is determined that, step ST12 follows. In step ST11, the drive duty ratio (Dy) is maximized, and the region is equal to or higher than the rotational speed N1 in FIG. 3, and the advance angle is set according to the drive duty ratio maximum determination signal from the output duty determination circuit 36. The control circuit 37 performs control to increase the advance amount so as to reduce the regenerative current (two-dot chain line in the figure). Note that the rotational speed N1 in FIG. 3 is shown as a guideline, and does not set a specific rotational speed, but is a value that is appropriately determined according to each value of the advance angle, the regenerative current, and the duty ratio Dy. Further, when the process proceeds to step ST12, the drive duty ratio (Dy) is not maximized, that is, between the no-load rotation speed No and the rotation speed N1 in FIG. Since the ratio (Dy) can be increased, control is performed to increase the drive duty ratio (Dy) in order to reduce the regenerative current, and the process returns to step ST1.

上記ステップST10では進角が所定の進角D1より大きいか否かを判別する。進角が所定の進角D1以下(=D1)であると判定された場合にはステップST13に進み、ステップST13では回生電流を増やすべく駆動デューティ比(Dy)を減らす制御を行い、ステップST14に進む。ステップST14では駆動デューティ比(Dy)が0%であるか否かを判別する。駆動デューティ比(Dy)が0%であると判定された場合にはステップST15に進み、そこで進角を0度に設定してステップST1に戻る。この場合は図3の無負荷回転数Noに一致している場合であり、進角を0度にすることにより、そこから回転速度が低下する場合に進角0度で回生デューティ比(Dy)の増減による制御に速やかに移行することができる。なお、ステップST14で駆動デューティ比(Dy)が0%ではないと判定された場合にはステップST1に戻る。   In step ST10, it is determined whether or not the advance angle is larger than a predetermined advance angle D1. If it is determined that the advance angle is equal to or less than the predetermined advance angle D1 (= D1), the process proceeds to step ST13. In step ST13, the drive duty ratio (Dy) is controlled to increase the regenerative current, and the process proceeds to step ST14. move on. In step ST14, it is determined whether or not the drive duty ratio (Dy) is 0%. When it is determined that the drive duty ratio (Dy) is 0%, the process proceeds to step ST15, where the advance angle is set to 0 degree and the process returns to step ST1. In this case, it corresponds to the no-load rotational speed No in FIG. 3, and when the advance angle is set to 0 degree, and the rotational speed decreases from there, the regenerative duty ratio (Dy) at the advance angle of 0 degree. The control can be promptly shifted to the control by the increase / decrease. When it is determined in step ST14 that the drive duty ratio (Dy) is not 0%, the process returns to step ST1.

また、上記ステップST10で進角が所定の進角D1より大きいと判定された場合(図3の回転数N1より高回転側)にはステップST16に進み、その場合には駆動デューティ比(Dy)が最大となっている領域であり、ステップST16で回生電流を増やすべく進角を減らす制御を行って、ステップST1に戻る。   If it is determined in step ST10 that the advance angle is larger than the predetermined advance angle D1 (on the higher rotation side than the rotation speed N1 in FIG. 3), the process proceeds to step ST16, in which case the drive duty ratio (Dy) In step ST16, control is performed to reduce the advance angle in order to increase the regenerative current, and the process returns to step ST1.

上述したように、0rpmから無負荷回転数Noに至るまでは回生デューティ比の増減により回生電流の増減を調整できる。無負荷回転数Noに対応する回生デューティ比が0になった場合には進角を所定の進角D1にすると共に無負荷回転数No以上の所定の回転数N1に至る領域にあってはその所定の進角D1による一定値とする。一定の進角D1となるNo〜N1領域にあっては進角による回生電流の増減制御を行うことができないが、駆動デューティ比を増減させることにより回生電流の増減制御を行うことができる。また、所定の回転数N1以上の領域では駆動デューティ比が最大となっていることからデューティ比の増減による回生電流の増減制御を行うことができないが、進角を増減させることにより回生電流の増減制御を行うことができる。   As described above, the increase / decrease in the regenerative current can be adjusted by increasing / decreasing the regeneration duty ratio from 0 rpm to no-load rotation speed No. When the regenerative duty ratio corresponding to the no-load rotation speed No becomes 0, the advance angle is set to the predetermined advance angle D1, and in the region reaching the predetermined rotation speed N1 greater than the no-load rotation speed No. It is set to a constant value by a predetermined advance angle D1. In the No to N1 region where the advance angle D1 is constant, the regeneration current increase / decrease control cannot be performed by the advance angle, but the regeneration current increase / decrease control can be performed by increasing / decreasing the drive duty ratio. In addition, since the drive duty ratio is maximum in a region where the rotational speed is N1 or more, the regenerative current increase / decrease control cannot be performed by increasing / decreasing the duty ratio, but the regenerative current increase / decrease can be increased / decreased. Control can be performed.

このように制御することにより、昇圧回生から進角駆動による回生制御に切り替わるときに、進角を一定のままデューティ比を増減させることから、従来技術のように無負荷回転数で駆動デューティ比を最大にするものにおける無負荷回転数の前後で駆動と回生とを繰り返すハンチングを起こしてしまうことを防止することができ、固定進角値D1の設定や駆動デューティ比の増減を行う回路を特に高精度化することなく上記制御回路を構成できるため回路が高騰化することがない。また、昇圧回生から進角制御に切り替わる場合に限らず、通電していない状態(惰走状態)や駆動状態から進角駆動に切り替わる場合にも有効である。   By controlling in this way, when switching from boost regeneration to regenerative control by advance drive, the duty ratio is increased or decreased with the advance angle kept constant, so the drive duty ratio is set at no-load rotation speed as in the prior art. It is possible to prevent the occurrence of hunting that repeats driving and regeneration before and after the no-load rotation speed in the maximum one, and the circuit for setting the fixed advance value D1 and increasing / decreasing the driving duty ratio is particularly high. Since the control circuit can be configured without increasing the accuracy, the circuit does not increase. Further, the present invention is not limited to the case where the boost regeneration is switched to the advance angle control, but is also effective in the case where the state is not energized (running state) or the drive state is switched to the advance angle drive.

本発明にかかるブラシレスモータの制御装置は、無負荷回転数を超えても回生制御を可能としかつ無負荷回転数付近での回生制御においてハンチングを起こすことなく円滑な回生制御を行うことができ、電動自動車の駆動制御等として有用である。   The control device of the brushless motor according to the present invention enables regenerative control even when exceeding the no-load rotational speed, and can perform smooth regenerative control without causing hunting in the regenerative control near the no-load rotational speed. This is useful as drive control for electric vehicles.

本発明に基づくモータのモータ制御装置のブロック回路図である。It is a block circuit diagram of a motor control device of a motor based on the present invention. 本発明に基づく制御フロー図である。It is a control flowchart based on this invention. 本発明に基づく制御要領を示す制御線図である。It is a control diagram which shows the control point based on this invention.

符号の説明Explanation of symbols

4 ロータ
6 ステータ
9 コイル
21 インバータ
22 電流検出センサ
25 電流検出回路
32 回生電流比較回路
34 回生Duty決定回路
36 出力Duty判定回路
37 進角制御回路
38 PWM信号生成回路
39 進角オフセット設定回路
42 回生デューティ判定回路
ECU 制御回路
M モータ
4 Rotor 6 Stator 9 Coil 21 Inverter 22 Current detection sensor 25 Current detection circuit 32 Regeneration current comparison circuit 34 Regeneration duty determination circuit 36 Output duty determination circuit 37 Advance angle control circuit 38 PWM signal generation circuit 39 Advance angle offset setting circuit 42 Regeneration duty Judgment circuit ECU Control circuit M Motor

Claims (1)

ステータと、前記ステータに対して同軸かつ回転可能に設けられたロータと、前記ステータと前記ロータとの一方にコイル巻線が設けられ、前記ステータと前記ロータとの他方に前記コイル巻線に対向して永久磁石が配設されたブラシレスモータの制御装置であって、
前記ステータに対する前記ロータの回転状態を検出する回転検出手段と、前記コイル巻線に駆動電流を供給する駆動電流供給手段と、前記駆動電流を検出する電流検出手段と、
前記回転検出手段により検出された前記ロータの回転角度検出信号に同期した位相であってパルス幅変調された制御信号を前記駆動電流供給手段に供給するパルス幅変調信号発生手段と、前記パルス幅変調される制御信号のデューティ比を決定するデューティ信号を前記パルス幅変調信号発生手段に供給する出力デューティ決定手段と、前記パルス幅変調信号発生手段による前記パルス幅変調された制御信号の位相を進角させる進角制御手段とを備える制御手段とを有し、
前記制御手段は、前記ロータが無負荷回転数に達し、回生デューティを0にしても回生電流が過剰な状態と判定したら前記進角制御手段による進角を所定量進角させた値に固定する固定進角値設定手段とを有し、
前記進角制御手段は、前記ロータの回転速度が前記無負荷回転数以上の所定の回転数に至る範囲では前記所定量進角させかつ固定された進角値とすると共に前記所定の回転数以上では回転速度の増減に応じて進角を増減させ、
前記出力デューティ決定手段は、前記無負荷回転数以上の所定の回転数に至る範囲では前記デューティ比を回転速度の増減に応じて増減させると共に前記所定の回転数以上では所定の最大デューティ比に固定することを特徴とするブラシレスモータの制御装置。
A stator, a rotor provided coaxially and rotatably with respect to the stator, a coil winding is provided on one of the stator and the rotor, and the other of the stator and the rotor is opposed to the coil winding. A control device for a brushless motor in which permanent magnets are arranged,
Rotation detection means for detecting a rotation state of the rotor with respect to the stator; drive current supply means for supplying a drive current to the coil winding; and current detection means for detecting the drive current;
A pulse width modulation signal generating means for supplying a control signal, which is in phase with the rotation angle detection signal of the rotor detected by the rotation detection means and is pulse width modulated, to the drive current supply means; and the pulse width modulation An output duty determining means for supplying a duty signal for determining a duty ratio of the control signal to be supplied to the pulse width modulation signal generating means, and a phase of the pulse width modulated control signal by the pulse width modulation signal generating means is advanced. Control means comprising an advance angle control means for causing
The control means fixes the advance angle by the advance angle control means to a value advanced by a predetermined amount when it is determined that the regenerative current is excessive even when the rotor reaches the no-load rotation speed and the regenerative duty is zero. Fixed advance value setting means,
The advance angle control means advances the predetermined amount within a range where the rotation speed of the rotor reaches a predetermined rotation speed that is equal to or higher than the no-load rotation speed and sets a fixed advance value, and is equal to or higher than the predetermined rotation speed. Now, increase or decrease the advance angle according to the increase or decrease of the rotation speed,
The output duty determining means increases or decreases the duty ratio according to an increase or decrease of the rotational speed in a range reaching a predetermined rotational speed equal to or higher than the no-load rotational speed and is fixed to a predetermined maximum duty ratio above the predetermined rotational speed. A control device for a brushless motor.
JP2007072241A 2007-03-20 2007-03-20 Brushless motor control device Expired - Fee Related JP4938517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072241A JP4938517B2 (en) 2007-03-20 2007-03-20 Brushless motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072241A JP4938517B2 (en) 2007-03-20 2007-03-20 Brushless motor control device

Publications (2)

Publication Number Publication Date
JP2008236892A true JP2008236892A (en) 2008-10-02
JP4938517B2 JP4938517B2 (en) 2012-05-23

Family

ID=39909007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072241A Expired - Fee Related JP4938517B2 (en) 2007-03-20 2007-03-20 Brushless motor control device

Country Status (1)

Country Link
JP (1) JP4938517B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039784A (en) * 2010-08-09 2012-02-23 Toshiba Corp Brushless motor drive circuit and brushless motor drive system
CN102431002A (en) * 2010-09-29 2012-05-02 日立工机株式会社 Power tool
WO2013099203A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Motor inverter device
KR20170089721A (en) * 2016-01-27 2017-08-04 주식회사 대유위니아 Bldc fan motor control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564304A (en) * 1991-09-03 1993-03-12 Honda Motor Co Ltd Regenerative brake system for motor vehicle
JP2002058277A (en) * 2000-08-04 2002-02-22 Tokyo R & D Co Ltd Control method of dc brushless motor and drive system of electric vehicle
JP2005198367A (en) * 2003-12-26 2005-07-21 Tokyo R & D Co Ltd Motor control circuit and motor control method
JP2005218282A (en) * 2004-02-02 2005-08-11 Sony Corp Device and method for electric motor drive regenerative control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564304A (en) * 1991-09-03 1993-03-12 Honda Motor Co Ltd Regenerative brake system for motor vehicle
JP2002058277A (en) * 2000-08-04 2002-02-22 Tokyo R & D Co Ltd Control method of dc brushless motor and drive system of electric vehicle
JP2005198367A (en) * 2003-12-26 2005-07-21 Tokyo R & D Co Ltd Motor control circuit and motor control method
JP2005218282A (en) * 2004-02-02 2005-08-11 Sony Corp Device and method for electric motor drive regenerative control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039784A (en) * 2010-08-09 2012-02-23 Toshiba Corp Brushless motor drive circuit and brushless motor drive system
US8610386B2 (en) 2010-08-09 2013-12-17 Kabushiki Kaisha Toshiba Brushless motor drive circuit and brushless motor drive system
CN102431002A (en) * 2010-09-29 2012-05-02 日立工机株式会社 Power tool
WO2013099203A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Motor inverter device
CN104025450A (en) * 2011-12-27 2014-09-03 松下电器产业株式会社 Motor inverter device
JPWO2013099203A1 (en) * 2011-12-27 2015-04-30 パナソニックIpマネジメント株式会社 Motor inverter device
KR20170089721A (en) * 2016-01-27 2017-08-04 주식회사 대유위니아 Bldc fan motor control method
KR102586339B1 (en) * 2016-01-27 2023-10-11 주식회사 위니아 Bldc fan motor control method

Also Published As

Publication number Publication date
JP4938517B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US10516363B2 (en) Apparatus for controlling motor
US7402968B2 (en) Field winding synchronous generator-motor
JP5971668B2 (en) Engine stop control device and engine stop control method
EP1839929A2 (en) Vehicle drive control
JP2008259361A (en) Drive device for electric motor vehicle
JP4974988B2 (en) Field winding type synchronous generator motor
JP4938517B2 (en) Brushless motor control device
JP5174617B2 (en) Rotating electrical machine device and control device thereof
JP2003061398A (en) Generator-motor equipment for vehicle
JP2008259362A (en) Drive device for electric vehicle
JP5164415B2 (en) Motor drive device
JP5418416B2 (en) Motor control device
JP2009124838A (en) Regeneration controller of electric vehicle
JP5225709B2 (en) Switched reluctance motor controller
CN109831140B (en) Control device for switch reluctance motor
CN110784138B (en) Generator control circuit
WO2021090731A1 (en) Control device for electric motor, electric vehicle, and control method for electric motor
WO2021020115A1 (en) Control device and electric vehicle
WO2023276696A1 (en) Vehicle control device, and program
JP2003079197A (en) Rotary electric machine for vehicle
JP6481587B2 (en) Switched reluctance motor controller
JP2008245495A (en) Controller for switched reluctance motor
JP2021093777A (en) Rotary electric machine system and control method for rotary electric machine system
WO2018105407A1 (en) Dynamo-electric machine control device
JP2009207268A (en) Wheel drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4938517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees