WO2023276696A1 - Vehicle control device, and program - Google Patents

Vehicle control device, and program Download PDF

Info

Publication number
WO2023276696A1
WO2023276696A1 PCT/JP2022/024108 JP2022024108W WO2023276696A1 WO 2023276696 A1 WO2023276696 A1 WO 2023276696A1 JP 2022024108 W JP2022024108 W JP 2022024108W WO 2023276696 A1 WO2023276696 A1 WO 2023276696A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
torque
regenerative
control
inverter
Prior art date
Application number
PCT/JP2022/024108
Other languages
French (fr)
Japanese (ja)
Inventor
晴美 堀畑
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202280046925.2A priority Critical patent/CN117597254A/en
Publication of WO2023276696A1 publication Critical patent/WO2023276696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a vehicle control device and a program.
  • a vehicle includes a rotating electrical machine, an inverter electrically connected to a stator winding of the rotating electrical machine, drive wheels that rotate when power is transmitted from the rotor of the rotating electrical machine, and a mechanical brake device.
  • the control device applied to this vehicle controls the braking device in order to control the frictional braking torque applied to the wheels from the braking device, and the switching control of the inverter in order to control the regenerative torque generated by the regenerative power generation of the rotary electric machine. I do.
  • Patent Document 1 describes a control device that switches from braking using regenerative power generation of a rotating electric machine to braking using a brake device. More specifically, the control device maintains the relationship that the sum of the command value of the friction braking torque and the command value of the regenerative braking torque becomes the required braking torque, while gradually decreasing the command value of the regenerative braking torque. Gradually increase the command value of
  • a main object of the present disclosure is to provide a vehicle control device and a program that can apply braking torque to wheels while suppressing overheating of the inverter and the rotating electric machine.
  • a first disclosure is a rotating electric machine having a rotor and stator windings; an inverter electrically connected to the stator winding; a driving wheel that rotates when power is transmitted from the rotor; a mechanical brake,
  • a vehicle control device applied to a vehicle comprising a brake control unit that controls the brake device so as to control the frictional braking torque applied from the brake device to the wheels of the vehicle; an inverter control unit that performs switching control of the inverter in order to control regenerative torque generated by regenerative power generation of the rotating electric machine; a determination unit that acquires the temperature of at least one of the rotating electric machine and the inverter and determines whether the acquired temperature exceeds a determination temperature; When it is determined that the acquired temperature exceeds the determination temperature when the regenerative power generation is being performed, friction braking torque is applied to the wheel before the regenerative torque decreases to 0.
  • the braking device is controlled by the braking control section.
  • the regenerative torque of the rotating electric machine is reduced to 0.
  • current can be prevented from flowing through the stator windings and the inverter, and overheating of the rotating electric machine and the inverter can be suppressed.
  • the braking device is controlled to apply friction braking torque to the wheels before the regenerative torque decreases to 0. Therefore, braking torque can be applied to the wheels by at least one of braking using regenerative power generation and braking using the braking device. This makes it possible to apply braking torque to the wheels while preventing the inverter and the rotating electric machine from overheating.
  • the brake control unit controls the brake device to control the friction braking torque to the friction braking command torque
  • the inverter control unit performs the switching control to control the regenerative torque to the regenerative braking command torque, when it is determined that the obtained temperature exceeds the limit start temperature as the determination temperature when the regenerative power generation is being performed, increasing the friction braking command torque used in the brake control unit, and a processing unit that reduces the regenerative braking command torque used in the inverter control unit toward 0;
  • the inverter control unit performing low-pass filter processing on the regenerative braking command torque used for controlling the regenerative torque; When it is determined that the acquired temperature exceeds the limit start temperature when the regenerative power generation is being performed, the low-pass filter process is performed more than when it is determined that the acquired temperature is equal to or lower than the limit start temperature. increase the time constant of
  • the responsiveness of the friction braking torque applied to the wheels by the braking device is generally lower than the responsiveness of the regenerative braking torque applied to the drive wheels by regenerative power generation. For this reason, for example, while maintaining the relationship that the sum of the friction braking command torque and the regenerative braking command torque becomes a predetermined torque, the regenerative braking command torque is gradually decreased toward 0, and the friction braking command torque is reduced to the required braking torque. Even if it is gradually increased, the degree of shortage of the actual braking torque with respect to the predetermined torque may become large during the transitional period in which the distribution of the required braking torque is changed from the regenerative torque to the friction braking torque.
  • the regenerative braking command torque used to control the regenerative torque is subjected to low-pass filter processing, for example, in order to prevent sudden changes in the torque of the rotating electric machine.
  • the second disclosure uses the above-described low-pass filter processing to prevent the degree of shortage of the actual braking torque from increasing. Specifically, in the second disclosure, when it is determined that the acquired temperature exceeds the limit start temperature when regenerative power generation is being performed, when it is determined that the acquired temperature is equal to or lower than the limit start temperature Also, the time constant of the low-pass filtering process is increased. In this case, the time from when the regenerative braking command torque used in the inverter control unit starts to decrease until it reaches 0 is longer than when it is determined that the acquired temperature is equal to or lower than the restriction start temperature. Therefore, it is possible to prevent the degree of shortage of the actual braking torque from increasing during the transitional period in which the distribution of the required braking torque is changed from the regenerative torque to the friction braking torque.
  • the first disclosure can be embodied, for example, as in the third disclosure.
  • the inverter control unit performs the switching control to control the regenerative torque of the rotating electric machine to the regenerative braking command torque
  • the determination unit determines whether the acquired temperature exceeds a notification temperature as the determination temperature or a limit start temperature higher than the notification temperature, When it is determined that the acquired temperature exceeds the notification temperature in the case where the regenerative power generation is being performed, the brake control unit determines that the acquired temperature has exceeded the limit start temperature.
  • the regenerative braking command torque used to control the regenerative torque is reduced toward 0 or One of the processes for stopping the switching control of the inverter is performed.
  • the responsiveness of the friction braking torque applied to the wheels using the braking device is generally lower than the responsiveness of the regenerative braking torque applied to the drive wheels using regenerative power generation. For this reason, when at least one of the rotating electric machine and the inverter is overheated, when switching from braking using regenerative power generation to braking using a braking device, in order to prevent the degree of insufficient braking torque from increasing, It is desirable to apply friction braking torque to the wheels as early as possible.
  • the braking device when it is determined that the acquired temperature exceeds the notification temperature when regenerative power generation is being performed, even before it is determined that the acquired temperature exceeds the limit start temperature , the braking device is controlled to apply friction braking torque to the wheels. Therefore, when switching from braking using regenerative power generation to braking using a brake device, it is possible to prevent the inverter and the rotating electric machine from becoming overheated and prevent the degree of insufficient braking torque from increasing.
  • FIG. 1 is an overall configuration diagram of the system according to the first embodiment
  • FIG. 2 is a flowchart showing the procedure of braking control processing performed by the brake CU
  • FIG. 3 is a functional block diagram of torque control performed by the MGCU
  • FIG. 4 is a flowchart showing the procedure of overheat protection processing performed by the MGCU
  • FIG. 5 is a diagram showing the operating region of the operating point of the rotating electric machine
  • FIG. 6 is a diagram showing the relationship between the motor temperature and the limiting coefficient
  • FIG. 7 is a flowchart showing the procedure of overheat protection processing performed by the EVCU
  • FIG. 8 is a flowchart showing the procedure of overheat protection processing performed by the MGCU according to the second embodiment
  • FIG. 9 is a flowchart showing the procedure of overheat protection processing performed by the EVCU.
  • the vehicle 10 includes a rotating electric machine 20.
  • the rotary electric machine 20 is a three-phase synchronous machine, and includes star-connected stator windings 21 for each phase.
  • the stator windings 21 of each phase are arranged with an electrical angle shift of 120°.
  • the rotary electric machine 20 of the present embodiment is a permanent magnet synchronous machine in which a rotor 22 is provided with permanent magnets (corresponding to “field poles”).
  • the rotating electric machine 20 is a vehicle-mounted main machine, and the rotor 22 can transmit power to the driving wheels 11 of the vehicle 10 . Torque generated by the rotating electric machine 20 functioning as an electric motor is transmitted from the rotor 22 to the driving wheels 11 . As a result, the driving wheels 11 are rotationally driven.
  • the rotating electric machine 20 may be, for example, an in-wheel motor provided integrally with the drive wheels of the vehicle 10, or an on-board motor provided in the vehicle body of the vehicle.
  • the vehicle 10 includes an inverter 30, a capacitor 31 (corresponding to a "storage unit"), and a storage battery 40.
  • the inverter 30 has three phases of series-connected bodies each including an upper arm switch SWH and a lower arm switch SWL.
  • each of the switches SWH and SWL is a voltage-controlled semiconductor switching element, specifically an IGBT. Therefore, the high potential side terminal of each switch SWH and SWL is the collector, and the low potential side terminal is the emitter. Freewheel diodes DH and DL are connected in anti-parallel to the switches SWH and SWL.
  • the first end of the stator winding 21 is connected to the emitter of the upper arm switch SWH and the collector of the lower arm switch SWL.
  • the second ends of the stator windings 21 of each phase are connected to each other at a neutral point.
  • the stator windings 21 of each phase are set to have the same number of turns.
  • the collector of the upper arm switch SWH of each phase and the positive electrode terminal of the storage battery 40 are connected by a positive electrode side bus line Lp.
  • the emitter of the lower arm switch SWL of each phase and the negative terminal of the storage battery 40 are connected by a negative bus line Ln.
  • a capacitor 31 connects the positive electrode side bus line Lp and the negative electrode side bus line Ln. Note that the capacitor 31 may be built in the inverter 30 or may be provided outside the inverter 30 .
  • the storage battery 40 is, for example, an assembled battery, and the terminal voltage of the storage battery 40 is, for example, several hundred volts.
  • the storage battery 40 is, for example, a secondary battery such as a lithium ion battery or a nickel hydrogen storage battery.
  • the vehicle 10 includes a current sensor 32, a voltage sensor 33, a rotation angle sensor 34, a motor temperature sensor 35, and an MGCU 36 (Motor Generator Control Unit, equivalent to "inverter control section").
  • the current sensor 32 detects the current flowing through the windings 21 for at least two phases.
  • Voltage sensor 33 detects the terminal voltage of capacitor 31 .
  • the rotation angle sensor 34 is, for example, a resolver and detects the rotation angle (electrical angle) of the rotor 22 .
  • a motor temperature sensor 35 detects the temperature of the rotating electric machine 20 as a motor temperature Tmgd. In this embodiment, the motor temperature sensor 35 detects the temperature of the stator winding 21 as the motor temperature Tmgd.
  • Motor temperature sensor 35 is, for example, a thermistor. Detected values from the sensors 32 to 35 are input to the MGCU 36 .
  • the MGCU 36 is mainly composed of a microcomputer 36a (corresponding to a "first computer"), and the microcomputer 36a has a CPU.
  • the functions provided by the microcomputer 36a can be provided by software recorded in a physical memory device, a computer executing the software, only software, only hardware, or a combination thereof.
  • the microcomputer 36a is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including many logic circuits, or an analog circuit.
  • the microcomputer 36a executes a program stored in a non-transitory tangible storage medium as its own storage unit.
  • the program includes, for example, a program for processing shown in FIG. 4 and the like.
  • a method corresponding to the program is executed by executing the program.
  • the storage unit is, for example, a non-volatile memory. Note that the program stored in the storage unit can be updated via a network such as the Internet, for example.
  • the MGCU 36 receives command torque Treq transmitted from an EVCU 50 (Electric Vehicle Control Unit), which will be described later. MGCU 36 performs switching control of switches SWH and SWL constituting inverter 30 in order to control the torque of rotating electric machine 20 based on received command torque Treq. In each phase, the upper arm switch SWH and the lower arm switch SWL are alternately turned on.
  • EVCU 50 Electric Vehicle Control Unit
  • the MGCU 36 performs power running drive control.
  • Powering drive control is switching control of the inverter 30 for converting the DC power output from the storage battery 40 into AC power and supplying the AC power to the stator windings 21 .
  • the rotating electric machine 20 functions as an electric motor and generates power running torque.
  • the MGCU 36 performs regenerative drive control.
  • Regenerative drive control is switching control of inverter 30 for converting AC power generated by rotary electric machine 20 into DC power and supplying it to storage battery 40 .
  • the rotating electric machine 20 functions as a generator and generates regenerative torque.
  • the vehicle 10 is equipped with an EVCU 50 (corresponding to a "upper control unit").
  • the EVCU 50 is mainly composed of a microcomputer 50a (corresponding to a "second computer"), and the microcomputer 50a has a CPU.
  • the functions provided by the microcomputer 50a can be provided by software recorded in a physical memory device, a computer that executes the software, only software, only hardware, or a combination thereof.
  • the microcomputer 50a is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including many logic circuits, or an analog circuit.
  • the microcomputer 50a executes a program stored in its own storage unit.
  • the program includes, for example, a program for processing shown in FIG. 7 and the like. A method corresponding to the program is executed by executing the program.
  • the program stored in the storage unit can be updated via a network such as the Internet, for example.
  • the vehicle 10 includes a brake device 60, a brake sensor 61, a brake lamp 62, and a brake CU 63 (corresponding to a "brake control unit").
  • the brake sensor 61 detects a brake stroke, which is the depression amount of a brake pedal as a brake operation member of the driver. A value detected by the brake sensor 61 is input to the brake CU 63 .
  • the brake device 60 includes disc rotors provided on wheels including the driving wheels 11, brake pads pressed against the disc rotors, and brake calipers for pressing the brake pads against the disc rotors. Frictional braking torque is applied to the wheel by pressing the brake pad against the disk rotor.
  • the braking device 60 is, for example, a hydraulic or electric braking device.
  • the electric brake device 60 is also called an EMB (Electro Mechanical Brake).
  • the brake caliper of the hydraulic brake device 60 has a hydraulically driven piston.
  • the hydraulic pressure of the hydraulic mechanism forming the brake device 60 is increased, and the piston is displaced in the first direction.
  • the brake pads are pressed against the disc rotor.
  • the hydraulic pressure of the hydraulic mechanism is lowered, and the piston is displaced in the second direction opposite to the first direction. This separates the brake pads from the disc rotor.
  • the brake caliper of the electric brake device 60 includes a motor, a piston, and a mechanism (for example, a ball screw) that displaces the piston by rotating the rotating shaft of the motor.
  • a mechanism for example, a ball screw
  • the windings of the motor are energized, the rotating shaft of the motor rotates, and the piston is displaced in the first direction.
  • the brake pads are pressed against the disc rotor.
  • the brake pedal is released, energization of the windings of the motor is stopped and the piston is displaced in the second direction. This separates the brake pads from the disc rotor.
  • the brake CU 63 is mainly composed of a microcomputer 63a (corresponding to a "third computer"), and the microcomputer 63a has a CPU.
  • the functions provided by the microcomputer 63a can be provided by software recorded in a physical memory device, a computer executing the software, only software, only hardware, or a combination thereof.
  • the microcomputer 63a is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including many logic circuits, or an analog circuit.
  • the microcomputer 63a executes a program stored in its own storage unit.
  • the programs include, for example, programs such as braking force control processing of the brake device 60 .
  • a method corresponding to the program is executed by executing the program.
  • the program stored in the storage unit can be updated via a network such as the Internet, for example.
  • the brake CU 63 also performs processing for turning on the brake lamp 62 when it determines that the brake pedal is depressed.
  • the MGCU 36, EVCU 50, and brake CU 63 can exchange information with each other through a predetermined communication format (eg, CAN).
  • a predetermined communication format eg, CAN
  • the vehicle 10 includes an accelerator sensor 70 and a steering angle sensor 71.
  • the accelerator sensor 70 detects an accelerator stroke, which is the depression amount of an accelerator pedal as an accelerator operation member of the driver.
  • the steering angle sensor 71 detects the steering angle of the steering wheel by the driver. Detected values of the accelerator sensor 70 and the steering angle sensor 71 are input to the EVCU 50 .
  • the EVCU 50 calculates a command rotational speed Nm* of the rotor 22 based on the accelerator stroke detected by the accelerator sensor 70 and the steering angle detected by the steering angle sensor 71 .
  • the EVCU 50 calculates a command torque Treq as a manipulated variable for feedback-controlling the rotation speed of the rotor 22 to the calculated command rotation speed Nm*.
  • the EVCU 50 transmits the calculated command torque Treq to MGCU 36 .
  • the EVCU 50 is set based on the target running speed of the vehicle 10 set by the automatic driving CU included in the vehicle 10, for example, when the automatic driving mode is executed.
  • the command rotation speed Nm* may be calculated.
  • the braking control executed by the brake CU 63 will be described using FIG. This process is, for example, repeatedly executed at a predetermined control cycle.
  • step S10 the required braking torque Fbrk to be applied to the wheels is calculated based on the brake stroke detected by the brake sensor 61.
  • step S11 the regenerative braking torque Fgmax is received from the EVCU 50.
  • the regenerative possible braking torque Fgmax is the current maximum value of the braking torque that can be applied to the wheels by regenerative drive control.
  • a regenerative braking command torque Fgb and a friction braking command torque Ffb are calculated based on the received regenerative braking torque Fgmax and the calculated required braking torque Fbrk.
  • the regenerative braking command torque Fgb is set to the same value as the regenerative possible braking torque Fgmax.
  • the friction braking command torque Ffb is calculated by subtracting the regenerative braking command torque Fgb from the required braking torque Fbrk.
  • step S13 the calculated regenerative braking command torque Fgb is transmitted to the EVCU 50.
  • EVCU 50 transmits received regenerative braking command torque Fgb to MGCU 36 as command torque Treq.
  • step S14 the calculated frictional braking command torque Ffb is transmitted to the brake device 60.
  • the friction braking torque applied to the wheels by the brake device 60 is controlled to the friction braking command torque Ffb.
  • the command torque Treq transmitted from the EVCU 50 is input to the first filter section 80 and the second filter section 81 .
  • the first filter section 80 and the second filter section 81 perform low-pass filter processing on the input command torque Treq.
  • Low-pass filtering is, for example, low-pass filtering of first-order lag elements.
  • the first filter unit 80 is provided, for example, to prevent a sudden change in the actual torque of the rotary electric machine 20 even when the command torque Treq changes suddenly.
  • the time constant ⁇ 1 of the low-pass filtering process in the first filter section 80 is smaller than the time constant ⁇ 2 of the low-pass filtering process in the second filter section 81 .
  • the switching unit 82 selects and outputs either the command torque Treq low-pass filtered by the first filter unit 80 or the command torque Treq low-pass filtered by the second filter unit 81 .
  • the command current setting unit 83 acquires the required torque Trq*, which is the command torque Treq output from the switching unit 82 .
  • a command current setting unit 83 sets d- and q-axis command currents Id* and Iq* based on the required torque Trq*.
  • the d- and q-axis command currents Id* and Iq* may be calculated by, for example, minimum current maximum torque control (MTPA).
  • a two-phase converter 84 converts the U-, V-, and W-phase currents in the three-phase fixed coordinate system to two-phase rotating coordinates based on the detected value of the current sensor 32 and the electrical angle ⁇ e detected by the rotation angle sensor 34.
  • d-axis current Idr and q-axis current Iqr in the system (dq coordinate system).
  • the d-axis deviation calculator 85 calculates the d-axis current deviation ⁇ Id by subtracting the d-axis current Idr from the d-axis command current Id*.
  • a q-axis deviation calculator 86 calculates a q-axis current deviation ⁇ Iq by subtracting the q-axis current Iqr from the q-axis command current Iq*.
  • the d-axis command voltage calculator 87 calculates a d-axis command voltage Vd* as a manipulated variable for feedback-controlling the d-axis current Idr to the d-axis command current Id* based on the d-axis current deviation ⁇ Id.
  • a q-axis command voltage calculator 88 calculates a q-axis command voltage Vq* as a manipulated variable for feedback-controlling the q-axis current Iqr to the q-axis command current Iq* based on the q-axis current deviation ⁇ Iq.
  • the feedback control used in the d-axis command voltage calculator 87 and the q-axis command voltage calculator 88 may be proportional integral control, for example.
  • a three-phase converter 89 converts the d- and q-axis command voltages Vd* and Vq* in the two-phase rotating coordinate system to the three-phase fixed coordinate system based on the d- and q-axis command voltages Vd* and Vq* and the electrical angle ⁇ e.
  • the signal generator 90 drives the U-phase upper and lower arm switches SWH and SWL based on the U-, V- and W-phase command voltages VU*, VV* and VW* and the power supply voltage Vdc detected by the voltage sensor 33.
  • Signals GUH and GUL, drive signals GVH and GVL for V-phase upper and lower arm switches SWH and SWL, and drive signals GWH and GWL for W-phase upper and lower arm switches SWH and SWL are generated.
  • the signal generator 90 calculates the U-phase normalized command voltage VUS by dividing the U-phase command voltage VU* by 1/2 of the power supply voltage Vdc.
  • the signal generation unit 90 generates drive signals GUH and GUL for the U-phase upper and lower arm switches SWH and SWL by PWM control based on a magnitude comparison between the U-phase normalized command voltage VUS and the carrier signal Sc.
  • the carrier signal Sc is, for example, a triangular wave signal with equal rising and falling speeds.
  • the signal generator 90 outputs the generated U-phase drive signals GUH and GUL to the gates of the U-phase switches SWH and SWL, and outputs the generated V-phase drive signals GVH and GVL to the V-phase drive signals GVH and GVL.
  • the generated W-phase drive signals GWH and GWL are output to the gates of the W-phase switches SWH and SWL. Note that the control period of the MGCU 36 is sufficiently shorter than the period of the carrier signal Sc.
  • the processing shown in FIG. 4 is, for example, repeatedly executed at a predetermined control cycle.
  • the control cycles of the MGCU 36, the brake CU 63 and the EVCU 50 may be the same cycle or may be different cycles.
  • step S20 the current torque Trq and rotation speed Nm of the rotary electric machine 20 are acquired, and it is determined whether or not the operating point determined from the current rotation speed Nm and torque Trq is within the protection target area.
  • Power running drive control is performed when the torque Trq is a positive value.
  • the torque Trq is a negative value, regenerative drive control is performed.
  • the current torque Trq may be, for example, torque calculated based on the values detected by the current sensor 32 and the rotation angle sensor 34, or may be the required torque Trq* output from the switching unit 82. good.
  • the current rotation speed Nm may be calculated based on the detection value of the rotation angle sensor 34, for example.
  • the areas to be protected are, as shown in FIG. 5, a high speed area Rhr, a powering side high torque area Rhtm, and a regeneration side high torque area Rhtg.
  • the high speed region Rhr is a region adjacent to the continuous operation region Rcc and on the high speed side with respect to the continuous operation region Rcc.
  • the high-speed region Rhr is a region in which field-weakening control is performed to apply a field-weakening current to the stator winding 21 .
  • the boundary on the high rotational speed side of the high speed region Rhr is the maximum value Nmax of the rotational speed Nm.
  • the continuous operation region Rcc is a region in which the rotary electric machine 20 and the inverter 30 can be driven continuously without overheating if the rotation speed and torque are within that region.
  • the boundary on the high torque side in the continuous operation region Rcc is the upper limit value TmC of the continuous torque when the power running drive control is performed and the upper limit value TgC of the continuous torque when the regenerative drive control is performed.
  • the powering side high torque region Rhtm and the regeneration side high torque region Rhtg are regions adjacent to the continuous operation region Rcc and on the high torque side with respect to the continuous operation region Rcc. Further, the high speed side of the powering side high torque region Rhtm and the regeneration side high torque region Rhtg are adjacent to the high speed region Rhr.
  • a rotational speed defining a boundary between the high torque regions Rhtm, Rhtg and the continuous operation region Rcc and the high speed region Rhr is the high speed side threshold value Nth.
  • At least one of the rotating electric machine 20 and the inverter 30 may be overheated. This is a region in which the time to continuously drive the rotating electric machine 20 is restricted.
  • TmL indicates the positive upper limit torque in the high speed region Rhr and the powering side high torque region Rhtm
  • TgL indicates the negative upper limit torque in the high speed region Rhr and the regeneration side high torque region Rhtg.
  • step S21 the motor temperature Tmgd detected by the motor temperature sensor 35 exceeds the limit start temperature TempH. Determine whether or not it exceeds Limitation start temperature TempH is set to a temperature at which it can be determined that at least one of rotating electric machine 20 and inverter 30 is in an overheated state.
  • the process of step S21 corresponds to the "determination unit”.
  • step S21 When it is determined in step S21 that the motor temperature Tmgd is equal to or lower than the restriction start temperature TempH, the process proceeds to step S22, where the command torque Treq subjected to low-pass filtering by the first filter unit 80 is converted from the switching unit 82 to the command current. It is made to be output to the setting section 83 .
  • step S21 if it is determined in step S21 that the motor temperature Tmgd exceeds the restriction start temperature TempH, the process proceeds to step S23, and the torque of the rotary electric machine 20 becomes smaller than the required torque Trq* output from the switching unit 82.
  • Switching control of the upper and lower arm switches SWH and SWL is performed so that In the torque limiting process of step S23, for example, as shown in FIG. 6, the required torque Trq* is multiplied by a limiting coefficient Klim, and the multiplied value is used to control the torque of the rotary electric machine 20 by the upper and lower arm switches SWH and SWL. switching control can be performed.
  • the limit coefficient Klim is 1 when the motor temperature Tmgd is equal to or lower than the limit start temperature TempH, and when the motor temperature Tmgd exceeds the limit start temperature TempH, the higher the motor temperature Tmgd, the smaller the value.
  • the limit coefficient Klim becomes zero.
  • step S23 the EVCU 50 is notified that the torque limiting process is being performed. Note that when it is determined that the motor temperature Tmgd has become equal to or lower than the restriction start temperature TempH, notification of torque restriction processing to the EVCU 50 is stopped.
  • step S24 it is determined whether both the first condition that the overheat prediction notification in step S26 described later has been transmitted to the EVCU 50 and the second condition that regenerative drive control is being performed are satisfied. If it is determined in step S24 that at least one of the first and second conditions is not satisfied, the process proceeds to step S22.
  • Step S20 If it is determined in step S20 that the current operating point is within the protection target area, the process proceeds to step S25 to determine whether the motor temperature Tmgd exceeds the notification temperature TempL ( ⁇ TempH).
  • Notification temperature TempL is a threshold for predicting whether or not at least one of rotating electrical machine 20 and inverter 30 will be overheated when torque control of rotating electrical machine 20 is continued.
  • the notification temperature TempL is, for example, the time required to decelerate and stop the vehicle 10 at a predetermined deceleration before the motor temperature Tmgd reaches the restriction start temperature TempH when the operating point is within the high speed region Rhr. should be set to a value that ensures
  • step S25 If it is determined in step S25 that the motor temperature Tmgd exceeds the notification temperature TempL, the process proceeds to step S26 to transmit an overheat prediction notification to the EVCU 50.
  • step S26 After the process of step S26 is completed, if the determination in step S21 is affirmative, the process proceeds to step S24 via step S23. When it is determined in step S24 that the first and second conditions are satisfied, the process proceeds to step S27, where the command torque Treq subjected to low-pass filtering by the second filter section 81 is converted from the switching section 82 to the command current It is made to be output to the setting section 83 .
  • step S25 If it is determined in step S25 that the motor temperature Tmgd is equal to or lower than the notification temperature TempL, the process advances to step S28 to determine whether or not the first condition that the overheat prediction notification has been transmitted to the EVCU 50 is satisfied. If it is determined in step S28 that the first condition is not satisfied, the process proceeds to step S22.
  • step S28 determines whether the motor temperature Tmgd has decreased to the release temperature Temp0 ( ⁇ TempL).
  • step S29 determines whether the motor temperature Tmgd has decreased to the release temperature Temp0 ( ⁇ TempL).
  • step S30 to transmit a release signal of the overheat prediction notification to the EVCU 50 .
  • the first condition that the overheat prediction notification in step S24 has been transmitted to the EVCU 50 is no longer satisfied, and the affirmative determination is no longer made in step S28.
  • the processing shown in FIG. 7 is, for example, repeatedly executed at a predetermined control cycle.
  • step S33 it is determined whether or not an overheat prediction notification has been received from the MGCU 36. If the MGCU 36 has not yet transmitted the overheating prediction notification, or if the MGCU 36 has transmitted the overheating prediction notification cancellation signal, a negative determination is made in step S33.
  • step S33 If an affirmative determination is made in step S33, the process proceeds to step S34 and notifies the driver that the traveling speed of the vehicle 10 will be reduced or that the torque of the rotary electric machine 20 will be reduced. This is to prevent the driver from feeling uncomfortable even if the process of step S35, which will be described later, is executed, by notifying the driver of this fact.
  • the driver may be notified by, for example, at least one of a display unit such as a navigation device, light, vibration, sound, and smell. Further, in step S34, the brake CU 63 may be instructed to turn on the brake lamp 62 . Accordingly, it is possible to inform other vehicles around the own vehicle 10 that the own vehicle 10 is about to decelerate, such as vehicles following the own vehicle 10 .
  • step S35 when it is determined that the current operating point is within the high speed region Rhr, the command torque Treq to be transmitted to the MGCU 36 is decreased in order to shift the operating point from the high speed region Rhr to the continuous operating region Rcc.
  • the rotation speed of the rotor 22 is reduced under the control of the MGCU 36, and the traveling speed of the vehicle 10 is reduced. This protects the rotating electric machine 20 and the inverter 30 from overheating.
  • the command torque Treq to be transmitted is gradually decreased toward 0 so that the deceleration of the vehicle 10 is equal to or less than a predetermined deceleration. This secures the time required to evacuate the vehicle 10 to a safe place and stop the vehicle.
  • the predetermined deceleration is set to a value (for example, 0.2 G) that can ensure the safety of the occupants of the vehicle 10 .
  • the process of step S35 corresponds to the "rotation reduction section".
  • the reason why the rotational speed of the rotor 22 is reduced here is as follows. Since field-weakening control is performed in the high-speed region Rhr, the magnitude of the current vector supplied to the stator windings 21 to generate a predetermined torque is larger than when the field-weakening control is not performed. As a result, even if the command torque Treq is reduced to, for example, 0 in the high-speed region Rhr, the effective value [Arms] of the phase current flowing through the stator winding 21 is always It may not be possible to reduce the current below the allowable current.
  • the motor temperature Tmgd further rises and reaches the shutdown temperature Tshut (>THH), and the MGCU 36 performs shutdown control to turn off the upper and lower arm switches SWH and SWL of each phase.
  • the back electromotive voltage generated in the stator winding 21 is high, so power regeneration occurs, and the stator winding 21, the diode DH of the upper arm switch SWH, the capacitor 31, and the diode DL of the lower arm switch SWL.
  • a current flows in a closed circuit containing
  • the temperatures of the rotating electrical machine 20 and the inverter 30 further increase, and the rotating electrical machine 20 and the inverter 30 may fail. Therefore, by lowering the command torque Treq, the back electromotive voltage is lowered to prevent power regeneration. This prevents the rotating electric machine 20 and the inverter 30 from failing due to abnormal overheating.
  • step S35 If it is determined in step S35 that the current operating point is within the high speed region Rhr, in addition to the command torque Treq decreasing process, the brake CU 63 may be instructed to apply friction braking torque to the wheels by the braking device 60. good.
  • the mechanical braking device 60 it is not necessary to apply current to the stator windings 21 for generating regenerative torque. Therefore, the rotation speed of the rotor 22 can be reduced while appropriately suppressing the temperature rise of the rotating electric machine 20 and the inverter 30 . Further, the process of applying the friction braking torque to the wheels by the braking device 60 is also effective in the following cases, for example.
  • the rotation speed of the rotor 22 does not decrease even if the command torque Treq is decreased.
  • the regenerative torque may be limited to prevent overcharging of the storage battery 40, or the regenerative torque may not be generated. In these cases, it is effective to apply friction braking torque to the wheels by the braking device 60 .
  • step S35 If it is determined in step S35 that the current operating point is within the high torque regions Rhtm, Rhtg, a command to be sent to the MGCU 36 to shift the operating point from the high torque regions Rhtm, Rhtg to the continuous operating region Rcc Torque Treq may be gradually reduced. In this case, the torque of rotating electric machine 20 is reduced under the control of MGCU 36 . This protects the rotating electric machine 20 and the inverter 30 from overheating.
  • step S36 it is determined whether or not both the third condition that a notification of torque limiting processing has been received from the MGCU 36 and the second condition that regenerative drive control is being performed are satisfied. If it is determined in step S36 that the second and third conditions are met, the process proceeds to step S37.
  • the process of step S37 corresponds to a "processing unit" and is a process for suppressing overheating of the rotating electric machine 20 and the inverter 30 due to the execution of the regenerative drive control.
  • step S37 an instruction is sent to the brake CU63 to stepwise increase the frictional braking command torque Ffb used by the brake CU63 from the current value toward the total braking torque Fsum. For example, if no friction braking torque is applied to the wheels at this time, the friction braking command torque Ffb is increased stepwise from 0 toward the total braking torque Fsum.
  • step S37 along with the instruction to the brake CU 63, the regenerative braking command torque Fgb to be transmitted to the MGCU 36 is decreased stepwise from the current value toward zero.
  • step S37 The situation in which the processing of step S37 is performed is that the demanded torque Trq* used in the command current setting unit 83 shown in FIG. This is the situation where torque Treq is used.
  • the time from when the required torque Trq* used in the MGCU 36 starts to decrease by the process of step S37 until it becomes 0 is when the required torque Trq* used in the command current setting unit 83 has a relatively small time constant. It is longer than the command torque Treq subjected to the low-pass filter processing of the first filter unit 80 . Therefore, even if the responsiveness of the friction braking torque applied to the wheels using the brake device 60 is lower than the responsiveness of the regenerative braking torque applied to the drive wheels 11, the regenerative torque is reduced to the friction braking torque. It is possible to prevent the degree of shortage of the actual braking torque with respect to the total braking torque Fsum from increasing during the transitional period in which the distribution of the total braking torque Fsum is changed to .
  • time constant ⁇ 2 of the low-pass filter processing of the second filter section 81 and the time constant of the friction braking torque of the brake device 60 when the friction braking command torque Ffb is changed stepwise are set to the same value. Just do it.
  • a time constant ⁇ 2 of the low-pass filter processing of the second filter section 81 may be set.
  • the first time T1 is the time from when the brake pedal is started to be depressed and the hydraulic pressure of the brake device 60 starts to rise until the brake pad comes into contact with the disc rotor.
  • the first time T1 is the time from when the brake pedal is started to be depressed and the windings of the motor start to be energized until the brake pads come into contact with the disc rotor.
  • the second time T2 is from when the regenerative braking command torque Fgb to be transmitted to the MGCU 36 is reduced stepwise from the current value toward 0 until the current flowing through the stator winding 21 becomes 0, or when the command current is set. This is the time until the required torque Trq* input to the unit 83 becomes zero.
  • the time ratio RT is, for example, "0.5 ⁇ RT ⁇ 1.5", preferably “0.7 ⁇ RT ⁇ 1.3", more preferably “0.8 ⁇ RT ⁇ 1.2”. ], the time constant ⁇ 2 may be set.
  • the sum of the actual regenerative torque and the friction braking torque is, for example, "0.9 ⁇ Fsum to 1.1 ⁇ Fsum”. or the range of "0.95 ⁇ Fsum to 1.05 ⁇ Fsum”.
  • the switching unit 82 selects the subject to perform low-pass filtering on the command torque Treq from the second filter unit 81. Switch to the first filter unit 80 . This reduces the time constant of the low-pass filter processing applied to the command torque Treq.
  • the MGCU 36 when the MGCU 36 makes an affirmative determination in steps S28 and S29, it transmits an overheat prediction notification cancellation signal to the EVCU 50 in step S30. In this case, the EVCU 50 stops executing the process of step S35 in FIG. As a result, the travel restriction of the vehicle 10 can be released.
  • the MGCU 36 sets the degree of limitation of the required torque Trq* in step S23 of FIG. You can make it higher.
  • the allowable upper limit temperature is a temperature higher than the shutdown temperature Tshut, and is the upper limit of the temperature at which the reliability of the rotating electric machine 20 and the inverter 30 can be maintained.
  • the command torque Treq may be decreased to a predetermined value higher than 0 instead of 0.
  • the process shown in FIG. 8 is, for example, repeatedly executed at a predetermined control cycle.
  • step S40 as in step S20 of FIG. 4, the current torque Trq and rotation speed Nm of the rotary electric machine 20 are obtained, and whether or not the operating point determined from the current rotation speed Nm and torque Trq is within the protection target region. determine whether
  • step S40 If it is determined in step S40 that the current operating point is outside the protection target area, the process proceeds to step S41 to determine whether the motor temperature Tmgd exceeds the limit start temperature TempH.
  • step S41 When it is determined in step S41 that the motor temperature Tmgd exceeds the limit start temperature TempH, the process proceeds to step S42, and the same processing as in step S23 is performed.
  • step S40 If it is determined in step S40 that the current operating point is within the protection target area, the process proceeds to step S43 to determine whether the motor temperature Tmgd exceeds the notification temperature TempL ( ⁇ TempH). In this embodiment, the process of step S43 corresponds to the "determination unit".
  • step S43 When it is determined in step S43 that the motor temperature Tmgd exceeds the notification temperature TempL, the process proceeds to step S44 and an overheat prediction notification is transmitted to the EVCU 50. After that, the process proceeds to step S41.
  • step S43 If it is determined in step S43 that the motor temperature Tmgd is equal to or lower than the notification temperature TempL, the process advances to step S45 to determine whether or not the first condition that the overheat prediction notification has been transmitted to the EVCU 50 is satisfied. If it is determined in step S45 that the first condition is satisfied, the process proceeds to step S46 to determine whether or not the motor temperature Tmgd has decreased to the release temperature Temp0 ( ⁇ TempL). If it is determined that the motor temperature Tmgd has decreased to the release temperature Temp0, the process advances to step S47 to transmit a release signal of the overheating prediction notification to the EVCU 50 .
  • the processing shown in FIG. 9 is, for example, repeatedly executed at a predetermined control cycle.
  • step S50 similarly to step S33, it is determined whether or not an overheat prediction notification has been received from the MGCU 36. If the MGCU 36 has not yet transmitted the overheating prediction notification, or if the MGCU 36 has transmitted the overheating prediction notification release signal, a negative determination is made in step S50.
  • step S50 If the determination in step S50 is affirmative, the process proceeds to step S51, and the same processing as in step S34 is performed. In subsequent step S52, the same process as in step S35 is performed. The process of step S52 corresponds to the "rotation reduction section".
  • step S53 after the operating point is within the protection target area, the elapsed time after the affirmative determination is first made in step S50 is counted. Then, it is determined whether or not the counted elapsed time has reached the determination time Cjde.
  • step S53 If it is determined in step S53 that the wheel has been reached, the process proceeds to step S54, and an instruction to apply friction braking torque to the wheels by the brake device 60 is transmitted to the brake CU63. If the braking device 60 does not apply the friction braking torque to the wheels in step S52, the braking device 60 applies the friction braking torque to the wheels when the determination time Cjde has elapsed since the overheat prediction notification was received. be.
  • the determination time Cjde may be set to a value that allows the process of step S54 to be executed before the motor temperature Tmgd rises and reaches the restriction start temperature TempH.
  • step S55 it is determined whether or not a notification of torque limiting processing has been received from the MGCU 36. If the determination in step S55 is affirmative, the process proceeds to step S56, and the regenerative braking command torque Fgb to be transmitted to the MGCU 36 is gradually decreased from the current value toward zero.
  • the sum of the friction braking command torque Ffb used by the brake CU 63 and the regenerative braking command torque Fgb used by the MGCU 36 at the start timing of the process of step S56 will be referred to as total braking torque Fsum.
  • the sum of the actual regenerative torque and the friction braking torque is, for example, in the range of "0.9 x Fsum to 1.1 x Fsum", or in the range of "0.95 x Fsum to 1.05 x Fsum"
  • Friction braking command torque Ffb may be gradually increased as regenerative braking command torque Fgb is gradually decreased.
  • the brake device 60 is controlled to apply friction braking torque to the wheels. Therefore, when switching from braking using regenerative power generation to braking using the brake device 60, the overheating of the inverter 30 and the rotating electric machine 20 is suppressed, and an increase in the degree of insufficient braking torque is prevented. can.
  • step S56 in FIG. 9 may be changed to a process of turning off the upper and lower arm switches SWH and SWL of all phases that constitute the inverter 30 .
  • the temperature of the inverter 30 may be used, or the higher temperature of the motor temperature Tmgd and the temperature of the inverter 30 may be used.
  • the temperature of the inverter 30 may be detected, for example, by a sensor (for example, a temperature sensitive diode or a thermistor) that detects the temperatures of the upper and lower arm switches SWH and SWL that constitute the inverter 30 .
  • the EVCU 50 may transmit the command rotational speed Nm* to the MGCU 36.
  • the MGCU 36 may calculate the command torque Treq as the manipulated variable for feedback-controlling the rotation speed of the rotor 22 to the received command rotation speed Nm*.
  • the EVCU 50 may reduce the command rotational speed Nm* to be transmitted to the MGCU 36 to a predetermined rotational speed in step S32 of FIG. 7 or step S52 of FIG.
  • the predetermined rotation speed may be 0, or may be a value higher than 0.
  • the computing functions of the EVCU 50, the MGCU 36, and the brake CU 63 may be integrated into one CU.
  • the semiconductor switch that constitutes the inverter is not limited to an IGBT, and may be, for example, an N-channel MOSFET with a built-in body diode.
  • the high side terminal of the switch is the drain and the low side terminal is the source.
  • the rotating electric machine is not limited to a star-connected one, and may be, for example, a delta-connected one.
  • the controller and techniques described in this disclosure can be performed by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program; may be implemented.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Abstract

This vehicle control device comprises: a brake control unit (63) for controlling a brake device (60) so as to control frictional braking torque imparted from the brake device to a wheel of a vehicle (10); an inverter control unit (36) for performing switching control of an inverter (30) so as to control regenerative torque generated by means of regenerative electricity generation by a rotating electrical machine (20); and a determining unit for acquiring a temperature of at least one of the rotating electrical machine and the inverter and determining whether the acquired temperature exceeds a determination temperature. If it is determined that the acquired temperature has exceeded the determination temperature when regenerative electricity generation is being performed, the vehicle control device controls the brake device by means of the brake control unit to impart frictional braking torque to the wheel before the regenerative torque drops to zero.

Description

車両用制御装置、及びプログラムVEHICLE CONTROL DEVICE AND PROGRAM 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年7月2日に出願された日本出願番号2021-110699号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-110699 filed on July 2, 2021, and the contents thereof are incorporated herein.
 本開示は、車両用制御装置、及びプログラムに関する。 The present disclosure relates to a vehicle control device and a program.
 従来、回転電機と、回転電機のステータ巻線に電気的に接続されるインバータと、回転電機のロータから動力が伝達されることにより回転する駆動輪と、機械式のブレーキ装置とを備える車両が知られている。この車両に適用される制御装置は、ブレーキ装置から車輪に付与する摩擦制動トルクを制御すべく、ブレーキ装置を制御し、回転電機の回生発電によって発生する回生トルクを制御すべく、インバータのスイッチング制御を行う。 BACKGROUND ART Conventionally, a vehicle includes a rotating electrical machine, an inverter electrically connected to a stator winding of the rotating electrical machine, drive wheels that rotate when power is transmitted from the rotor of the rotating electrical machine, and a mechanical brake device. Are known. The control device applied to this vehicle controls the braking device in order to control the frictional braking torque applied to the wheels from the braking device, and the switching control of the inverter in order to control the regenerative torque generated by the regenerative power generation of the rotary electric machine. I do.
 特許文献1には、回転電機の回生発電を用いた制動からブレーキ装置を用いた制動に切り替える制御装置が記載されている。詳しくは、この制御装置は、摩擦制動トルクの指令値と回生制動トルクの指令値との和が要求制動トルクになる関係を維持しながら、回生制動トルクの指令値を漸減しつつ、摩擦制動トルクの指令値を漸増させる。 Patent Document 1 describes a control device that switches from braking using regenerative power generation of a rotating electric machine to braking using a brake device. More specifically, the control device maintains the relationship that the sum of the command value of the friction braking torque and the command value of the regenerative braking torque becomes the required braking torque, while gradually decreasing the command value of the regenerative braking torque. Gradually increase the command value of
特許第3613046号公報Japanese Patent No. 3613046
 車輪に制動トルクを付与するために回生発電が行われている場合、ステータ巻線及びインバータに電流が流れ、回転電機及びインバータの少なくとも一方が過熱状態になり得る。このため、回転電機及びインバータを過熱から保護しつつ、車輪に制動トルクを付与する技術が要求される。 When regenerative power generation is being performed to apply braking torque to the wheels, current flows through the stator windings and the inverter, and at least one of the rotating electric machine and the inverter may overheat. Therefore, there is a demand for a technique for applying braking torque to the wheels while protecting the rotating electric machine and the inverter from overheating.
 本開示は、インバータ及び回転電機が過熱状態になることを抑制しつつ、車輪に制動トルクを付与できる車両用制御装置及びプログラムを提供することを主たる目的とする。 A main object of the present disclosure is to provide a vehicle control device and a program that can apply braking torque to wheels while suppressing overheating of the inverter and the rotating electric machine.
 第1の開示は、ロータ及びステータ巻線を有する回転電機と、
 前記ステータ巻線に電気的に接続されるインバータと、
 前記ロータから動力が伝達されることにより回転する駆動輪と、
 機械式のブレーキ装置と、
を備える車両に適用される車両用制御装置において、
 前記ブレーキ装置から前記車両の車輪に付与する摩擦制動トルクを制御すべく、前記ブレーキ装置の制御を行うブレーキ制御部と、
 前記回転電機の回生発電によって発生する回生トルクを制御すべく、前記インバータのスイッチング制御を行うインバータ制御部と、
 前記回転電機及び前記インバータの少なくとも一方の温度を取得し、取得した温度が判定温度を超えたか否かを判定する判定部と、を備え、
 前記回生発電が行われている場合において、取得した温度が前記判定温度を超えたと判定されたとき、前記回生トルクが低下して0になる前に、前記車輪に摩擦制動トルクを付与するように前記ブレーキ制御部により前記ブレーキ装置を制御する。
A first disclosure is a rotating electric machine having a rotor and stator windings;
an inverter electrically connected to the stator winding;
a driving wheel that rotates when power is transmitted from the rotor;
a mechanical brake,
In a vehicle control device applied to a vehicle comprising
a brake control unit that controls the brake device so as to control the frictional braking torque applied from the brake device to the wheels of the vehicle;
an inverter control unit that performs switching control of the inverter in order to control regenerative torque generated by regenerative power generation of the rotating electric machine;
a determination unit that acquires the temperature of at least one of the rotating electric machine and the inverter and determines whether the acquired temperature exceeds a determination temperature;
When it is determined that the acquired temperature exceeds the determination temperature when the regenerative power generation is being performed, friction braking torque is applied to the wheel before the regenerative torque decreases to 0. The braking device is controlled by the braking control section.
 回転電機及びインバータの少なくとも一方が過熱状態になる場合、この過熱状態を解消するために、回生発電を用いた制動からブレーキ装置を用いた制動に切り替えることが望ましい。 When at least one of the rotating electric machine and the inverter is in an overheated state, it is desirable to switch from braking using regenerative power generation to braking using a braking device in order to eliminate this overheated state.
 そこで、第1の開示では、回生発電が行われている場合において、取得した温度が判定温度を超えたと判定部により判定されたとき、回転電機の回生トルクを低下させて0にする。これにより、ステータ巻線及びインバータに電流が流れないようにでき、回転電機及びインバータが過熱状態になることを抑制できる。 Therefore, in the first disclosure, when regenerative power generation is being performed and the determination unit determines that the acquired temperature exceeds the determination temperature, the regenerative torque of the rotating electric machine is reduced to 0. As a result, current can be prevented from flowing through the stator windings and the inverter, and overheating of the rotating electric machine and the inverter can be suppressed.
 ここで、第1の開示では、回生トルクが低下して0になる前に、車輪に摩擦制動トルクを付与するようにブレーキ装置が制御される。このため、回生発電を用いた制動、及びブレーキ装置を用いた制動のうち、少なくとも一方により車輪に制動トルクを付与できる。これにより、インバータ及び回転電機が過熱状態になることを抑制しつつ、車輪に制動トルクを付与できる。 Here, in the first disclosure, the braking device is controlled to apply friction braking torque to the wheels before the regenerative torque decreases to 0. Therefore, braking torque can be applied to the wheels by at least one of braking using regenerative power generation and braking using the braking device. This makes it possible to apply braking torque to the wheels while preventing the inverter and the rotating electric machine from overheating.
 第1の開示は、例えば第2の開示のように具体化できる。第2の開示では、前記ブレーキ制御部は、前記摩擦制動トルクを摩擦制動指令トルクに制御すべく、前記ブレーキ装置の制御を行い、
 前記インバータ制御部は、前記回生トルクを回生制動指令トルクに制御すべく、前記スイッチング制御を行い、
 前記回生発電が行われている場合において、取得した温度が、前記判定温度としての制限開始温度を超えたと判定されたとき、前記ブレーキ制御部で用いられる前記摩擦制動指令トルクを増加し、かつ、前記インバータ制御部で用いられる前記回生制動指令トルクを0に向かって減少させる処理部を備え、
 前記インバータ制御部は、
 前記回生トルクの制御に用いる前記回生制動指令トルクにローパスフィルタ処理を施し、
 前記回生発電が行われている場合において、取得した温度が前記制限開始温度を超えたと判定されたとき、取得した温度が前記制限開始温度以下であると判定されるときよりも、前記ローパスフィルタ処理の時定数を大きくする。
The first disclosure can be embodied, for example, like the second disclosure. In a second disclosure, the brake control unit controls the brake device to control the friction braking torque to the friction braking command torque,
The inverter control unit performs the switching control to control the regenerative torque to the regenerative braking command torque,
when it is determined that the obtained temperature exceeds the limit start temperature as the determination temperature when the regenerative power generation is being performed, increasing the friction braking command torque used in the brake control unit, and a processing unit that reduces the regenerative braking command torque used in the inverter control unit toward 0;
The inverter control unit
performing low-pass filter processing on the regenerative braking command torque used for controlling the regenerative torque;
When it is determined that the acquired temperature exceeds the limit start temperature when the regenerative power generation is being performed, the low-pass filter process is performed more than when it is determined that the acquired temperature is equal to or lower than the limit start temperature. increase the time constant of
 ブレーキ装置により車輪に付与される摩擦制動トルクの応答性は、回生発電により駆動輪に付与される回生制動トルクの応答性よりも一般的に低い。このため、例えば、摩擦制動指令トルクと回生制動指令トルクとの和が所定トルクになる関係を維持しながら、回生制動指令トルクを0に向かって漸減しつつ、摩擦制動指令トルクを要求制動トルクに向かって漸増させたとしても、回生トルクから摩擦制動トルクへと要求制動トルクの配分を変える過渡期間において、上記所定トルクに対する実際の制動トルクの不足度合いが大きくなり得る。 The responsiveness of the friction braking torque applied to the wheels by the braking device is generally lower than the responsiveness of the regenerative braking torque applied to the drive wheels by regenerative power generation. For this reason, for example, while maintaining the relationship that the sum of the friction braking command torque and the regenerative braking command torque becomes a predetermined torque, the regenerative braking command torque is gradually decreased toward 0, and the friction braking command torque is reduced to the required braking torque. Even if it is gradually increased, the degree of shortage of the actual braking torque with respect to the predetermined torque may become large during the transitional period in which the distribution of the required braking torque is changed from the regenerative torque to the friction braking torque.
 一方、回生トルクの制御に用いる回生制動指令トルクには、例えば回転電機のトルクが急変することを防止するために、ローパスフィルタ処理が施される。 On the other hand, the regenerative braking command torque used to control the regenerative torque is subjected to low-pass filter processing, for example, in order to prevent sudden changes in the torque of the rotating electric machine.
 ここで、第2の開示は、上記ローパスフィルタ処理を利用して、実際の制動トルクの不足度合いが大きくなることを防止する。詳しくは、第2の開示では、回生発電が行われている場合において、取得した温度が制限開始温度を超えたと判定されたとき、取得した温度が制限開始温度以下であると判定されるときよりも、ローパスフィルタ処理の時定数が大きくされる。この場合、インバータ制御部で用いられる回生制動指令トルクが減少し始めてから0になるまでの時間が、取得した温度が制限開始温度以下であると判定されるときよりも長くなる。このため、回生トルクから摩擦制動トルクへと要求制動トルクの配分を変える過渡期間において、実際の制動トルクの不足度合いが大きくなることを防止できる。 Here, the second disclosure uses the above-described low-pass filter processing to prevent the degree of shortage of the actual braking torque from increasing. Specifically, in the second disclosure, when it is determined that the acquired temperature exceeds the limit start temperature when regenerative power generation is being performed, when it is determined that the acquired temperature is equal to or lower than the limit start temperature Also, the time constant of the low-pass filtering process is increased. In this case, the time from when the regenerative braking command torque used in the inverter control unit starts to decrease until it reaches 0 is longer than when it is determined that the acquired temperature is equal to or lower than the restriction start temperature. Therefore, it is possible to prevent the degree of shortage of the actual braking torque from increasing during the transitional period in which the distribution of the required braking torque is changed from the regenerative torque to the friction braking torque.
 以上説明した第2の開示によれば、インバータ及び回転電機が過熱状態になることを抑制しつつ、実際の制動トルクの不足度合いが大きくなることを防止できる。 According to the second disclosure described above, it is possible to prevent the degree of actual braking torque shortage from increasing while suppressing the overheating of the inverter and the rotating electric machine.
 また、第1の開示は、例えば第3の開示のように具体化できる。第3の開示では、前記インバータ制御部は、前記回転電機の回生トルクを回生制動指令トルクに制御すべく、前記スイッチング制御を行い、
 前記判定部は、取得した温度が、前記判定温度としての通知温度、又は前記通知温度よりも高い制限開始温度を超えたか否かを判定し、
 前記ブレーキ制御部は、前記回生発電が行われている場合において、取得した温度が前記通知温度を超えたと判定されたとき、取得した温度が前記制限開始温度を超えたと判定される前であっても、前記車輪に前記摩擦制動トルクを付与するように前記ブレーキ装置を制御し、
 前記回生発電が行われている場合において、取得した温度が前記制限開始温度を超えたと判定されたとき、前記回生トルクの制御に用いる前記回生制動指令トルクを0に向かって減少させる処理又は前記スイッチング制御を停止する処理のいずれかを行う処理部を備える。
Also, the first disclosure can be embodied, for example, as in the third disclosure. In a third disclosure, the inverter control unit performs the switching control to control the regenerative torque of the rotating electric machine to the regenerative braking command torque,
The determination unit determines whether the acquired temperature exceeds a notification temperature as the determination temperature or a limit start temperature higher than the notification temperature,
When it is determined that the acquired temperature exceeds the notification temperature in the case where the regenerative power generation is being performed, the brake control unit determines that the acquired temperature has exceeded the limit start temperature. also controls the brake device to apply the friction braking torque to the wheel,
When it is determined that the acquired temperature exceeds the limit start temperature when the regenerative power generation is being performed, the processing or the switching of reducing the regenerative braking command torque used for controlling the regenerative torque toward 0 A processing unit that performs any one of processing for stopping control is provided.
 第3の開示では、回生発電が行われている場合において、取得した温度が制限開始温度を超えたと判定されたとき、回生トルクの制御に用いる回生制動指令トルクを0に向かって減少させる処理又はインバータのスイッチング制御を停止する処理のいずれかが行われる。 In the third disclosure, when regenerative power generation is being performed, when it is determined that the acquired temperature exceeds the limit start temperature, the regenerative braking command torque used to control the regenerative torque is reduced toward 0 or One of the processes for stopping the switching control of the inverter is performed.
 ここで、ブレーキ装置を用いて車輪に付与される摩擦制動トルクの応答性は、回生発電を用いて駆動輪に付与される回生制動トルクの応答性よりも一般的に低い。このため、回転電機及びインバータの少なくとも一方が過熱状態になる場合において、回生発電を用いた制動からブレーキ装置を用いた制動に切り替えるとき、制動トルクの不足度合いが大きくなることを防止するには、極力早期に車輪に摩擦制動トルクを付与することが望ましい。 Here, the responsiveness of the friction braking torque applied to the wheels using the braking device is generally lower than the responsiveness of the regenerative braking torque applied to the drive wheels using regenerative power generation. For this reason, when at least one of the rotating electric machine and the inverter is overheated, when switching from braking using regenerative power generation to braking using a braking device, in order to prevent the degree of insufficient braking torque from increasing, It is desirable to apply friction braking torque to the wheels as early as possible.
 そこで、第3の開示では、回生発電が行われている場合において、取得した温度が通知温度を超えたと判定されたとき、取得した温度が制限開始温度を超えたと判定される前であっても、車輪に摩擦制動トルクを付与するようにブレーキ装置が制御される。このため、回生発電を用いた制動からブレーキ装置を用いた制動に切り替える場合において、インバータ及び回転電機が過熱状態になることを抑制しつつ、制動トルクの不足度合いが大きくなることを防止できる。 Therefore, in the third disclosure, when it is determined that the acquired temperature exceeds the notification temperature when regenerative power generation is being performed, even before it is determined that the acquired temperature exceeds the limit start temperature , the braking device is controlled to apply friction braking torque to the wheels. Therefore, when switching from braking using regenerative power generation to braking using a brake device, it is possible to prevent the inverter and the rotating electric machine from becoming overheated and prevent the degree of insufficient braking torque from increasing.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係るシステムの全体構成図であり、 図2は、ブレーキCUが行う制動制御処理の手順を示すフローチャートであり、 図3は、MGCUが行うトルク制御の機能ブロック図であり、 図4は、MGCUが行う過熱保護処理の手順を示すフローチャートであり、 図5は、回転電機の動作点の動作領域を示す図であり、 図6は、モータ温度と制限係数との関係を示す図であり、 図7は、EVCUが行う過熱保護処理の手順を示すフローチャートであり、 図8は、第2実施形態に係るMGCUが行う過熱保護処理の手順を示すフローチャートであり、 図9は、EVCUが行う過熱保護処理の手順を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an overall configuration diagram of the system according to the first embodiment, FIG. 2 is a flowchart showing the procedure of braking control processing performed by the brake CU; FIG. 3 is a functional block diagram of torque control performed by the MGCU; FIG. 4 is a flowchart showing the procedure of overheat protection processing performed by the MGCU; FIG. 5 is a diagram showing the operating region of the operating point of the rotating electric machine, FIG. 6 is a diagram showing the relationship between the motor temperature and the limiting coefficient; FIG. 7 is a flowchart showing the procedure of overheat protection processing performed by the EVCU; FIG. 8 is a flowchart showing the procedure of overheat protection processing performed by the MGCU according to the second embodiment; FIG. 9 is a flowchart showing the procedure of overheat protection processing performed by the EVCU.
 <第1実施形態>
 以下、本開示に係る制御装置を電動車両に搭載した第1実施形態について、図面を参照しつつ説明する。
<First embodiment>
A first embodiment in which a control device according to the present disclosure is mounted on an electric vehicle will be described below with reference to the drawings.
 図1に示すように、車両10は、回転電機20を備えている。回転電機20は、3相の同期機であり、星形結線された各相のステータ巻線21を備えている。各相のステータ巻線21は、電気角で120°ずつずれて配置されている。本実施形態の回転電機20は、ロータ22に永久磁石(「界磁極」に相当)を備える永久磁石同期機である。 As shown in FIG. 1, the vehicle 10 includes a rotating electric machine 20. The rotary electric machine 20 is a three-phase synchronous machine, and includes star-connected stator windings 21 for each phase. The stator windings 21 of each phase are arranged with an electrical angle shift of 120°. The rotary electric machine 20 of the present embodiment is a permanent magnet synchronous machine in which a rotor 22 is provided with permanent magnets (corresponding to “field poles”).
 回転電機20は、車載主機であり、ロータ22が車両10の駆動輪11と動力伝達可能とされている。回転電機20が電動機として機能することにより発生するトルクが、ロータ22から駆動輪11に伝達される。これにより、駆動輪11が回転駆動させられる。なお、回転電機20は、例えば、車両10の駆動輪に一体に設けられるインホイールモータであってもよいし、車両の車体に備えられるオンボードモータであってもよい。 The rotating electric machine 20 is a vehicle-mounted main machine, and the rotor 22 can transmit power to the driving wheels 11 of the vehicle 10 . Torque generated by the rotating electric machine 20 functioning as an electric motor is transmitted from the rotor 22 to the driving wheels 11 . As a result, the driving wheels 11 are rotationally driven. The rotating electric machine 20 may be, for example, an in-wheel motor provided integrally with the drive wheels of the vehicle 10, or an on-board motor provided in the vehicle body of the vehicle.
 車両10は、インバータ30と、コンデンサ31(「蓄電部」に相当)と、蓄電池40とを備えている。インバータ30は、上アームスイッチSWHと下アームスイッチSWLとの直列接続体を3相分備えている。本実施形態において、各スイッチSWH,SWLは、電圧制御形の半導体スイッチング素子であり、具体的にはIGBTである。このため、各スイッチSWH,SWLの高電位側端子はコレクタであり、低電位側端子はエミッタである。各スイッチSWH,SWLには、フリーホイールダイオードDH,DLが逆並列に接続されている。 The vehicle 10 includes an inverter 30, a capacitor 31 (corresponding to a "storage unit"), and a storage battery 40. The inverter 30 has three phases of series-connected bodies each including an upper arm switch SWH and a lower arm switch SWL. In this embodiment, each of the switches SWH and SWL is a voltage-controlled semiconductor switching element, specifically an IGBT. Therefore, the high potential side terminal of each switch SWH and SWL is the collector, and the low potential side terminal is the emitter. Freewheel diodes DH and DL are connected in anti-parallel to the switches SWH and SWL.
 U,V,W相において、上アームスイッチSWHのエミッタと、下アームスイッチSWLのコレクタとには、ステータ巻線21の第1端が接続されている。各相のステータ巻線21の第2端同士は、中性点で接続されている。なお、本実施形態において、各相のステータ巻線21は、ターン数が同じに設定されている。 In the U, V, and W phases, the first end of the stator winding 21 is connected to the emitter of the upper arm switch SWH and the collector of the lower arm switch SWL. The second ends of the stator windings 21 of each phase are connected to each other at a neutral point. In this embodiment, the stator windings 21 of each phase are set to have the same number of turns.
 各相の上アームスイッチSWHのコレクタと、蓄電池40の正極端子とは、正極側母線Lpにより接続されている。各相の下アームスイッチSWLのエミッタと、蓄電池40の負極端子とは、負極側母線Lnにより接続されている。正極側母線Lpと負極側母線Lnとは、コンデンサ31により接続されている。なお、コンデンサ31は、インバータ30に内蔵されていてもよいし、インバータ30の外部に設けられていてもよい。 The collector of the upper arm switch SWH of each phase and the positive electrode terminal of the storage battery 40 are connected by a positive electrode side bus line Lp. The emitter of the lower arm switch SWL of each phase and the negative terminal of the storage battery 40 are connected by a negative bus line Ln. A capacitor 31 connects the positive electrode side bus line Lp and the negative electrode side bus line Ln. Note that the capacitor 31 may be built in the inverter 30 or may be provided outside the inverter 30 .
 蓄電池40は例えば組電池であり、蓄電池40の端子電圧は例えば数百Vである。蓄電池40は、例えば、リチウムイオン電池又はニッケル水素蓄電池等の2次電池である。 The storage battery 40 is, for example, an assembled battery, and the terminal voltage of the storage battery 40 is, for example, several hundred volts. The storage battery 40 is, for example, a secondary battery such as a lithium ion battery or a nickel hydrogen storage battery.
 車両10は、電流センサ32、電圧センサ33、回転角センサ34、モータ温度センサ35、及びMGCU36(Motor Generator Control Unit、「インバータ制御部」に相当)を備えている。電流センサ32は、各相のうち少なくとも2相分の巻線21に流れる電流を検出する。電圧センサ33は、コンデンサ31の端子電圧を検出する。回転角センサ34は、例えばレゾルバであり、ロータ22の回転角(電気角)を検出する。モータ温度センサ35は、回転電機20の温度をモータ温度Tmgdとして検出する。本実施形態において、モータ温度センサ35は、ステータ巻線21の温度をモータ温度Tmgdとして検出する。モータ温度センサ35は、例えばサーミスタである。各センサ32~35の検出値は、MGCU36に入力される。 The vehicle 10 includes a current sensor 32, a voltage sensor 33, a rotation angle sensor 34, a motor temperature sensor 35, and an MGCU 36 (Motor Generator Control Unit, equivalent to "inverter control section"). The current sensor 32 detects the current flowing through the windings 21 for at least two phases. Voltage sensor 33 detects the terminal voltage of capacitor 31 . The rotation angle sensor 34 is, for example, a resolver and detects the rotation angle (electrical angle) of the rotor 22 . A motor temperature sensor 35 detects the temperature of the rotating electric machine 20 as a motor temperature Tmgd. In this embodiment, the motor temperature sensor 35 detects the temperature of the stator winding 21 as the motor temperature Tmgd. Motor temperature sensor 35 is, for example, a thermistor. Detected values from the sensors 32 to 35 are input to the MGCU 36 .
 MGCU36は、マイコン36a(「第1コンピュータ」に相当)を主体として構成され、マイコン36aは、CPUを備えている。マイコン36aが提供する機能は、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、マイコン36aがハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路によって提供することができる。例えば、マイコン36aは、自身が備える記憶部としての非遷移的実体的記録媒体(non-transitory tangible storage medium)に格納されたプログラムを実行する。プログラムには、例えば、図4等に示す処理のプログラムが含まれる。プログラムが実行されることにより、プログラムに対応する方法が実行される。記憶部は、例えば不揮発性メモリである。なお、記憶部に記憶されたプログラムは、例えば、インターネット等のネットワークを介して更新可能である。 The MGCU 36 is mainly composed of a microcomputer 36a (corresponding to a "first computer"), and the microcomputer 36a has a CPU. The functions provided by the microcomputer 36a can be provided by software recorded in a physical memory device, a computer executing the software, only software, only hardware, or a combination thereof. For example, if the microcomputer 36a is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including many logic circuits, or an analog circuit. For example, the microcomputer 36a executes a program stored in a non-transitory tangible storage medium as its own storage unit. The program includes, for example, a program for processing shown in FIG. 4 and the like. A method corresponding to the program is executed by executing the program. The storage unit is, for example, a non-volatile memory. Note that the program stored in the storage unit can be updated via a network such as the Internet, for example.
 MGCU36は、後述するEVCU50(Electric Vehicle Control Unit)から送信された指令トルクTreqを受信する。MGCU36は、受信した指令トルクTreqに基づいて、回転電機20のトルクを制御すべく、インバータ30を構成する各スイッチSWH,SWLのスイッチング制御を行う。各相において、上アームスイッチSWHと下アームスイッチSWLとは交互にオンされる。 The MGCU 36 receives command torque Treq transmitted from an EVCU 50 (Electric Vehicle Control Unit), which will be described later. MGCU 36 performs switching control of switches SWH and SWL constituting inverter 30 in order to control the torque of rotating electric machine 20 based on received command torque Treq. In each phase, the upper arm switch SWH and the lower arm switch SWL are alternately turned on.
 MGCU36は、力行駆動制御を行う。力行駆動制御は、蓄電池40から出力された直流電力を交流電力に変換してステータ巻線21に供給するためのインバータ30のスイッチング制御である。この制御が行われる場合、回転電機20は、電動機として機能し、力行トルクを発生する。また、MGCU36は、回生駆動制御を行う。回生駆動制御は、回転電機20で発電される交流電力を直流電力に変換して蓄電池40に供給するためのインバータ30のスイッチング制御である。この制御が行われる場合、回転電機20は、発電機として機能し、回生トルクを発生する。 The MGCU 36 performs power running drive control. Powering drive control is switching control of the inverter 30 for converting the DC power output from the storage battery 40 into AC power and supplying the AC power to the stator windings 21 . When this control is performed, the rotating electric machine 20 functions as an electric motor and generates power running torque. Also, the MGCU 36 performs regenerative drive control. Regenerative drive control is switching control of inverter 30 for converting AC power generated by rotary electric machine 20 into DC power and supplying it to storage battery 40 . When this control is performed, the rotating electric machine 20 functions as a generator and generates regenerative torque.
 車両10は、EVCU50(「上位制御部」に相当)を備えている。EVCU50は、マイコン50a(「第2コンピュータ」に相当)を主体として構成され、マイコン50aは、CPUを備えている。マイコン50aが提供する機能は、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、マイコン50aがハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路によって提供することができる。例えば、マイコン50aは、自身が備える記憶部に格納されたプログラムを実行する。プログラムには、例えば、図7等に示す処理とのプログラムが含まれる。プログラムが実行されることにより、プログラムに対応する方法が実行される。なお、記憶部に記憶されたプログラムは、例えば、インターネット等のネットワークを介して更新可能である。 The vehicle 10 is equipped with an EVCU 50 (corresponding to a "upper control unit"). The EVCU 50 is mainly composed of a microcomputer 50a (corresponding to a "second computer"), and the microcomputer 50a has a CPU. The functions provided by the microcomputer 50a can be provided by software recorded in a physical memory device, a computer that executes the software, only software, only hardware, or a combination thereof. For example, if the microcomputer 50a is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including many logic circuits, or an analog circuit. For example, the microcomputer 50a executes a program stored in its own storage unit. The program includes, for example, a program for processing shown in FIG. 7 and the like. A method corresponding to the program is executed by executing the program. Note that the program stored in the storage unit can be updated via a network such as the Internet, for example.
 車両10は、ブレーキ装置60と、ブレーキセンサ61と、ブレーキランプ62と、ブレーキCU63(「ブレーキ制御部」に相当)とを備えている。ブレーキセンサ61は、ドライバのブレーキ操作部材としてのブレーキペダルの踏込量であるブレーキストロークを検出する。ブレーキセンサ61の検出値は、ブレーキCU63に入力される。 The vehicle 10 includes a brake device 60, a brake sensor 61, a brake lamp 62, and a brake CU 63 (corresponding to a "brake control unit"). The brake sensor 61 detects a brake stroke, which is the depression amount of a brake pedal as a brake operation member of the driver. A value detected by the brake sensor 61 is input to the brake CU 63 .
 ブレーキ装置60は、駆動輪11を含む車輪に設けられたディスクロータと、ディスクロータに押し当てられるブレーキパッドと、ブレーキパッドをディスクロータに押し当てるためのブレーキキャリパとを備えている。ディスクロータにブレーキパッドが押し当てられることにより、車輪に摩擦制動トルクが付与される。 The brake device 60 includes disc rotors provided on wheels including the driving wheels 11, brake pads pressed against the disc rotors, and brake calipers for pressing the brake pads against the disc rotors. Frictional braking torque is applied to the wheel by pressing the brake pad against the disk rotor.
 ブレーキ装置60は、例えば、油圧式又は電動式のブレーキ装置である。電動式のブレーキ装置60は、EMB(Electro Mechanical Brake)とも呼ばれる。 The braking device 60 is, for example, a hydraulic or electric braking device. The electric brake device 60 is also called an EMB (Electro Mechanical Brake).
 油圧式のブレーキ装置60のブレーキキャリパは、油圧駆動式のピストンを備えている。ブレーキペダルが踏み込まれることにより、ブレーキ装置60を構成する油圧機構の油圧が上昇し、ピストンが第1方向に変位する。これにより、ブレーキパッドがディスクロータに押し当てられる。一方、ブレーキペダルの踏み込みを解除することにより、油圧機構の油圧が低下し、ピストンが第1方向とは逆方向の第2方向に変位する。これにより、ブレーキパッドがディスクロータから離れる。 The brake caliper of the hydraulic brake device 60 has a hydraulically driven piston. By depressing the brake pedal, the hydraulic pressure of the hydraulic mechanism forming the brake device 60 is increased, and the piston is displaced in the first direction. As a result, the brake pads are pressed against the disc rotor. On the other hand, when the brake pedal is released, the hydraulic pressure of the hydraulic mechanism is lowered, and the piston is displaced in the second direction opposite to the first direction. This separates the brake pads from the disc rotor.
 電動式のブレーキ装置60のブレーキキャリパは、モータと、ピストンと、モータの回転軸の回転によりピストンを変位させる機構(例えば、ボールねじ)とを備えている。ブレーキペダルが踏み込まれることにより、モータの巻線に通電され、モータの回転軸が回転し、ピストンが第1方向に変位する。これにより、ブレーキパッドがディスクロータに押し当てられる。一方、ブレーキペダルの踏み込みを解除することにより、モータの巻線への通電が停止され、ピストンが第2方向に変位する。これにより、ブレーキパッドがディスクロータから離れる。 The brake caliper of the electric brake device 60 includes a motor, a piston, and a mechanism (for example, a ball screw) that displaces the piston by rotating the rotating shaft of the motor. When the brake pedal is depressed, the windings of the motor are energized, the rotating shaft of the motor rotates, and the piston is displaced in the first direction. As a result, the brake pads are pressed against the disc rotor. On the other hand, when the brake pedal is released, energization of the windings of the motor is stopped and the piston is displaced in the second direction. This separates the brake pads from the disc rotor.
 ブレーキCU63は、マイコン63a(「第3コンピュータ」に相当)を主体として構成され、マイコン63aは、CPUを備えている。マイコン63aが提供する機能は、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、マイコン63aがハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路によって提供することができる。例えば、マイコン63aは、自身が備える記憶部に格納されたプログラムを実行する。プログラムには、例えば、ブレーキ装置60の制動力制御処理等のプログラムが含まれる。プログラムが実行されることにより、プログラムに対応する方法が実行される。なお、記憶部に記憶されたプログラムは、例えば、インターネット等のネットワークを介して更新可能である。 The brake CU 63 is mainly composed of a microcomputer 63a (corresponding to a "third computer"), and the microcomputer 63a has a CPU. The functions provided by the microcomputer 63a can be provided by software recorded in a physical memory device, a computer executing the software, only software, only hardware, or a combination thereof. For example, if the microcomputer 63a is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including many logic circuits, or an analog circuit. For example, the microcomputer 63a executes a program stored in its own storage unit. The programs include, for example, programs such as braking force control processing of the brake device 60 . A method corresponding to the program is executed by executing the program. Note that the program stored in the storage unit can be updated via a network such as the Internet, for example.
 ブレーキCU63は、ブレーキペダルが踏み込まれていると判定した場合、ブレーキランプ62を点灯させる処理も行う。 The brake CU 63 also performs processing for turning on the brake lamp 62 when it determines that the brake pedal is depressed.
 MGCU36、EVCU50及びブレーキCU63は、所定の通信形式(例えばCAN)により互いに情報のやりとりが可能になっている。 The MGCU 36, EVCU 50, and brake CU 63 can exchange information with each other through a predetermined communication format (eg, CAN).
 車両10は、アクセルセンサ70と、操舵角センサ71とを備えている。アクセルセンサ70は、ドライバのアクセル操作部材としてのアクセルペダルの踏込量であるアクセルストロークを検出する。操舵角センサ71は、ドライバによるステアリングホイールの操舵角を検出する。アクセルセンサ70及び操舵角センサ71の検出値は、EVCU50に入力される。EVCU50は、アクセルセンサ70により検出されたアクセルストロークと、操舵角センサ71により検出された操舵角とに基づいて、ロータ22の指令回転速度Nm*を算出する。EVCU50は、ロータ22の回転速度を、算出した指令回転速度Nm*にフィードバック制御するための操作量として、指令トルクTreqを算出する。EVCU50は、算出した指令トルクTreqをMGCU36に送信する。ちなみに、自動運転機能が車両10に備えられている場合、EVCU50は、自動運転モードが実行されるときにおいて、例えば、車両10が備える自動運転CUにより設定される車両10の目標走行速度に基づいて、指令回転速度Nm*を算出してもよい。 The vehicle 10 includes an accelerator sensor 70 and a steering angle sensor 71. The accelerator sensor 70 detects an accelerator stroke, which is the depression amount of an accelerator pedal as an accelerator operation member of the driver. The steering angle sensor 71 detects the steering angle of the steering wheel by the driver. Detected values of the accelerator sensor 70 and the steering angle sensor 71 are input to the EVCU 50 . The EVCU 50 calculates a command rotational speed Nm* of the rotor 22 based on the accelerator stroke detected by the accelerator sensor 70 and the steering angle detected by the steering angle sensor 71 . The EVCU 50 calculates a command torque Treq as a manipulated variable for feedback-controlling the rotation speed of the rotor 22 to the calculated command rotation speed Nm*. EVCU 50 transmits the calculated command torque Treq to MGCU 36 . Incidentally, when the vehicle 10 is provided with an automatic driving function, the EVCU 50 is set based on the target running speed of the vehicle 10 set by the automatic driving CU included in the vehicle 10, for example, when the automatic driving mode is executed. , the command rotation speed Nm* may be calculated.
 図2を用いて、ブレーキCU63により実行される制動制御について説明する。この処理は、例えば、所定の制御周期で繰り返し実行される。 The braking control executed by the brake CU 63 will be described using FIG. This process is, for example, repeatedly executed at a predetermined control cycle.
 ステップS10では、ブレーキセンサ61により検出されたブレーキストロークに基づいて、車輪に対して付与すべき要求制動トルクFbrkを算出する。 In step S10, the required braking torque Fbrk to be applied to the wheels is calculated based on the brake stroke detected by the brake sensor 61.
 ステップS11では、回生可能制動トルクFgmaxをEVCU50から受信する。回生可能制動トルクFgmaxは、回生駆動制御によって車輪に付与可能な制動トルクの現状の最大値である。 In step S11, the regenerative braking torque Fgmax is received from the EVCU 50. The regenerative possible braking torque Fgmax is the current maximum value of the braking torque that can be applied to the wheels by regenerative drive control.
 ステップS12では、受信した回生可能制動トルクFgmaxと、算出した要求制動トルクFbrkとに基づいて、回生制動指令トルクFgbと、摩擦制動指令トルクFfbとを算出する。本実施形態では、回生制動指令トルクFgbを、回生可能制動トルクFgmaxと同じ値にする。また、要求制動トルクFbrkから回生制動指令トルクFgbを差し引くことにより、摩擦制動指令トルクFfbを算出する。 In step S12, a regenerative braking command torque Fgb and a friction braking command torque Ffb are calculated based on the received regenerative braking torque Fgmax and the calculated required braking torque Fbrk. In this embodiment, the regenerative braking command torque Fgb is set to the same value as the regenerative possible braking torque Fgmax. Also, the friction braking command torque Ffb is calculated by subtracting the regenerative braking command torque Fgb from the required braking torque Fbrk.
 ステップS13では、算出した回生制動指令トルクFgbをEVCU50に送信する。EVCU50は、受信した回生制動指令トルクFgbを指令トルクTreqとしてMGCU36に送信する。回生制動指令トルクFgbが大きいほど、回転電機20からインバータ30を介して蓄電池40へと供給される発電電力が大きくなる。 In step S13, the calculated regenerative braking command torque Fgb is transmitted to the EVCU 50. EVCU 50 transmits received regenerative braking command torque Fgb to MGCU 36 as command torque Treq. The greater the regenerative braking command torque Fgb, the greater the generated electric power supplied from the rotating electric machine 20 to the storage battery 40 via the inverter 30 .
 ステップS14では、算出した摩擦制動指令トルクFfbをブレーキ装置60に送信する。これにより、ブレーキ装置60により車輪へと付与される摩擦制動トルクが摩擦制動指令トルクFfbに制御される。 In step S14, the calculated frictional braking command torque Ffb is transmitted to the brake device 60. As a result, the friction braking torque applied to the wheels by the brake device 60 is controlled to the friction braking command torque Ffb.
 続いて、図3を用いて、MGCU36により実行される回転電機20のトルク制御について説明する。図3に示す例では、トルク制御として、電流フィードバック制御が行われる。なお、電流フィードバック制御に代えて、トルクフィードバック制御が行われてもよい。 Next, the torque control of the rotating electric machine 20 executed by the MGCU 36 will be described using FIG. In the example shown in FIG. 3, current feedback control is performed as torque control. Torque feedback control may be performed instead of current feedback control.
 第1フィルタ部80及び第2フィルタ部81には、EVCU50から送信された指令トルクTreqが入力される。第1フィルタ部80及び第2フィルタ部81は、入力された指令トルクTreqにローパスフィルタ処理を施す。ローパスフィルタ処理は、例えば、1次遅れ要素のローパスフィルタ処理である。第1フィルタ部80は、例えば、指令トルクTreqが急変した場合であっても、回転電機20の実際のトルクの急変を防止するために設けられている。第1フィルタ部80におけるローパスフィルタ処理の時定数τ1は、第2フィルタ部81におけるローパスフィルタ処理の時定数τ2よりも小さい。 The command torque Treq transmitted from the EVCU 50 is input to the first filter section 80 and the second filter section 81 . The first filter section 80 and the second filter section 81 perform low-pass filter processing on the input command torque Treq. Low-pass filtering is, for example, low-pass filtering of first-order lag elements. The first filter unit 80 is provided, for example, to prevent a sudden change in the actual torque of the rotary electric machine 20 even when the command torque Treq changes suddenly. The time constant τ 1 of the low-pass filtering process in the first filter section 80 is smaller than the time constant τ 2 of the low-pass filtering process in the second filter section 81 .
 切替部82は、第1フィルタ部80においてローパスフィルタ処理が施された指令トルクTreq、又は第2フィルタ部81においてローパスフィルタ処理が施された指令トルクTreqのいずれかを選択して出力する。 The switching unit 82 selects and outputs either the command torque Treq low-pass filtered by the first filter unit 80 or the command torque Treq low-pass filtered by the second filter unit 81 .
 指令電流設定部83は、切替部82から出力された指令トルクTreqである要求トルクTrq*を取得する。指令電流設定部83は、要求トルクTrq*に基づいて、d,q軸指令電流Id*,Iq*を設定する。d,q軸指令電流Id*,Iq*は、例えば、最小電流最大トルク制御(MTPA)により算出されればよい。 The command current setting unit 83 acquires the required torque Trq*, which is the command torque Treq output from the switching unit 82 . A command current setting unit 83 sets d- and q-axis command currents Id* and Iq* based on the required torque Trq*. The d- and q-axis command currents Id* and Iq* may be calculated by, for example, minimum current maximum torque control (MTPA).
 2相変換部84は、電流センサ32の検出値と、回転角センサ34により検出された電気角θeとに基づいて、3相固定座標系におけるU,V,W相電流を、2相回転座標系(dq座標系)におけるd軸電流Idr及びq軸電流Iqrに変換する。 A two-phase converter 84 converts the U-, V-, and W-phase currents in the three-phase fixed coordinate system to two-phase rotating coordinates based on the detected value of the current sensor 32 and the electrical angle θe detected by the rotation angle sensor 34. d-axis current Idr and q-axis current Iqr in the system (dq coordinate system).
 d軸偏差算出部85は、d軸指令電流Id*からd軸電流Idrを減算することにより、d軸電流偏差ΔIdを算出する。q軸偏差算出部86は、q軸指令電流Iq*からq軸電流Iqrを減算することにより、q軸電流偏差ΔIqを算出する。 The d-axis deviation calculator 85 calculates the d-axis current deviation ΔId by subtracting the d-axis current Idr from the d-axis command current Id*. A q-axis deviation calculator 86 calculates a q-axis current deviation ΔIq by subtracting the q-axis current Iqr from the q-axis command current Iq*.
 d軸指令電圧算出部87は、d軸電流偏差ΔIdに基づいて、d軸電流Idrをd軸指令電流Id*にフィードバック制御するための操作量として、d軸指令電圧Vd*を算出する。q軸指令電圧算出部88は、q軸電流偏差ΔIqに基づいて、q軸電流Iqrをq軸指令電流Iq*にフィードバック制御するための操作量として、q軸指令電圧Vq*を算出する。なお、d軸指令電圧算出部87及びq軸指令電圧算出部88で用いられるフィードバック制御は、例えば比例積分制御とすればよい。 The d-axis command voltage calculator 87 calculates a d-axis command voltage Vd* as a manipulated variable for feedback-controlling the d-axis current Idr to the d-axis command current Id* based on the d-axis current deviation ΔId. A q-axis command voltage calculator 88 calculates a q-axis command voltage Vq* as a manipulated variable for feedback-controlling the q-axis current Iqr to the q-axis command current Iq* based on the q-axis current deviation ΔIq. The feedback control used in the d-axis command voltage calculator 87 and the q-axis command voltage calculator 88 may be proportional integral control, for example.
 3相変換部89は、d,q軸指令電圧Vd*,Vq*及び電気角θeに基づいて、2相回転座標系におけるd,q軸指令電圧Vd*,Vq*を、3相固定座標系におけるU,V,W相指令電圧VU*,VV*,VW*に変換する。本実施形態において、U,V,W相指令電圧VU*,VV*,VW*は、電気角で位相が120°ずつずれた正弦波状の波形となる。 A three-phase converter 89 converts the d- and q-axis command voltages Vd* and Vq* in the two-phase rotating coordinate system to the three-phase fixed coordinate system based on the d- and q-axis command voltages Vd* and Vq* and the electrical angle θe. U, V, W phase command voltages VU*, VV*, VW* at In this embodiment, the U-, V-, and W-phase command voltages VU*, VV*, and VW* are sinusoidal waveforms whose phases are shifted by an electrical angle of 120°.
 信号生成部90は、U,V,W相指令電圧VU*,VV*,VW*及び電圧センサ33により検出された電源電圧Vdcに基づいて、U相の上,下アームスイッチSWH,SWLの駆動信号GUH,GULと、V相の上,下アームスイッチSWH,SWLの駆動信号GVH,GVLと、W相の上,下アームスイッチSWH,SWLの駆動信号GWH,GWLとを生成する。詳しくは、U相を例にして説明すると、信号生成部90は、U相指令電圧VU*を電源電圧Vdcの1/2で除算することにより、U相規格化指令電圧VUSを算出する。信号生成部90は、U相規格化指令電圧VUSと、キャリア信号Scとの大小比較に基づくPWM制御により、U相の上,下アームスイッチSWH,SWLの駆動信号GUH,GULを生成する。キャリア信号Scは、例えば、上昇速度及び下降速度が等しい三角波信号である。 The signal generator 90 drives the U-phase upper and lower arm switches SWH and SWL based on the U-, V- and W-phase command voltages VU*, VV* and VW* and the power supply voltage Vdc detected by the voltage sensor 33. Signals GUH and GUL, drive signals GVH and GVL for V-phase upper and lower arm switches SWH and SWL, and drive signals GWH and GWL for W-phase upper and lower arm switches SWH and SWL are generated. Specifically, taking the U-phase as an example, the signal generator 90 calculates the U-phase normalized command voltage VUS by dividing the U-phase command voltage VU* by 1/2 of the power supply voltage Vdc. The signal generation unit 90 generates drive signals GUH and GUL for the U-phase upper and lower arm switches SWH and SWL by PWM control based on a magnitude comparison between the U-phase normalized command voltage VUS and the carrier signal Sc. The carrier signal Sc is, for example, a triangular wave signal with equal rising and falling speeds.
 信号生成部90は、生成したU相の各駆動信号GUH,GULをU相の各スイッチSWH,SWLのゲートに対して出力し、生成したV相の各駆動信号GVH,GVLをV相の各スイッチSWH,SWLのゲートに対して出力し、生成したW相の各駆動信号GWH,GWLをW相の各スイッチSWH,SWLのゲートに対して出力する。なお、MGCU36の制御周期は、キャリア信号Scの周期よりも十分に短い。 The signal generator 90 outputs the generated U-phase drive signals GUH and GUL to the gates of the U-phase switches SWH and SWL, and outputs the generated V-phase drive signals GVH and GVL to the V-phase drive signals GVH and GVL. The generated W-phase drive signals GWH and GWL are output to the gates of the W-phase switches SWH and SWL. Note that the control period of the MGCU 36 is sufficiently shorter than the period of the carrier signal Sc.
 続いて、MGCU36及びEVCU50が行う過熱保護制御について説明する。 Next, the overheat protection control performed by the MGCU 36 and the EVCU 50 will be explained.
 まず、図4を用いて、MGCU36が行う過熱保護制御について説明する。図4に示す処理は、例えば、所定の制御周期で繰り返し実行される。なお、MGCU36、ブレーキCU63及びEVCU50の制御周期は、同じ周期であってもよいし、異なる周期であってもよい。 First, the overheat protection control performed by the MGCU 36 will be described using FIG. The processing shown in FIG. 4 is, for example, repeatedly executed at a predetermined control cycle. The control cycles of the MGCU 36, the brake CU 63 and the EVCU 50 may be the same cycle or may be different cycles.
 ステップS20では、回転電機20の現在のトルクTrq及び回転速度Nmを取得し、現在の回転速度Nm及びトルクTrqから定まる動作点が保護対象領域内であるか否かを判定する。トルクTrqが正の値の場合、力行駆動制御が行われる。一方、トルクTrqが負の値の場合、回生駆動制御が行われる。ちなみに、現在のトルクTrqは、例えば、電流センサ32及び回転角センサ34の検出値に基づいて算出されたトルクであってもよいし、切替部82から出力された要求トルクTrq*であってもよい。また、現在の回転速度Nmは、例えば回転角センサ34の検出値に基づいて算出されればよい。 In step S20, the current torque Trq and rotation speed Nm of the rotary electric machine 20 are acquired, and it is determined whether or not the operating point determined from the current rotation speed Nm and torque Trq is within the protection target area. Power running drive control is performed when the torque Trq is a positive value. On the other hand, when the torque Trq is a negative value, regenerative drive control is performed. Incidentally, the current torque Trq may be, for example, torque calculated based on the values detected by the current sensor 32 and the rotation angle sensor 34, or may be the required torque Trq* output from the switching unit 82. good. Further, the current rotation speed Nm may be calculated based on the detection value of the rotation angle sensor 34, for example.
 保護対象領域は、図5に示すように、高速領域Rhr、力行側高トルク領域Rhtm及び回生側高トルク領域Rhtgである。高速領域Rhrは、連続動作領域Rccに隣接して、かつ、連続動作領域Rccに対して高速側の領域である。本実施形態において、高速領域Rhrは、ステータ巻線21に弱め界磁電流を流す弱め界磁制御が行われる領域である。高速領域Rhrにおいて回転速度が高い側の境界が、回転速度Nmの最大値Nmaxである。 The areas to be protected are, as shown in FIG. 5, a high speed area Rhr, a powering side high torque area Rhtm, and a regeneration side high torque area Rhtg. The high speed region Rhr is a region adjacent to the continuous operation region Rcc and on the high speed side with respect to the continuous operation region Rcc. In the present embodiment, the high-speed region Rhr is a region in which field-weakening control is performed to apply a field-weakening current to the stator winding 21 . The boundary on the high rotational speed side of the high speed region Rhr is the maximum value Nmax of the rotational speed Nm.
 連続動作領域Rccは、その領域内の回転速度及びトルクであれば、回転電機20及びインバータ30が過熱状態になることなく連続して駆動できる領域である。連続動作領域Rccにおいて高トルク側の境界が、力行駆動制御が行われる場合の連続トルクの上限値TmC、及び回生駆動制御が行われる場合の連続トルクの上限値TgCである。 The continuous operation region Rcc is a region in which the rotary electric machine 20 and the inverter 30 can be driven continuously without overheating if the rotation speed and torque are within that region. The boundary on the high torque side in the continuous operation region Rcc is the upper limit value TmC of the continuous torque when the power running drive control is performed and the upper limit value TgC of the continuous torque when the regenerative drive control is performed.
 力行側高トルク領域Rhtm及び回生側高トルク領域Rhtgは、連続動作領域Rccに隣接して、かつ、連続動作領域Rccに対して高トルク側の領域である。また、力行側高トルク領域Rhtm及び回生側高トルク領域Rhtgの高速側は、高速領域Rhrに隣接している。各高トルク領域Rhtm,Rhtg及び連続動作領域Rccと、高速領域Rhrとの境界を規定する回転速度が高速側閾値Nthである。MGCU36は、回転速度Nmが高速側閾値Nth以上であると判定した場合、現在の動作点が高速領域Rhrであると判定する。 The powering side high torque region Rhtm and the regeneration side high torque region Rhtg are regions adjacent to the continuous operation region Rcc and on the high torque side with respect to the continuous operation region Rcc. Further, the high speed side of the powering side high torque region Rhtm and the regeneration side high torque region Rhtg are adjacent to the high speed region Rhr. A rotational speed defining a boundary between the high torque regions Rhtm, Rhtg and the continuous operation region Rcc and the high speed region Rhr is the high speed side threshold value Nth. When the MGCU 36 determines that the rotation speed Nm is equal to or higher than the high speed side threshold value Nth, the MGCU 36 determines that the current operating point is the high speed region Rhr.
 高速領域Rhr、力行側高トルク領域Rhtm及び回生側高トルク領域Rhtgは、その領域内の回転速度及びトルクであると、回転電機20及びインバータ30の少なくとも一方が過熱状態になるおそれがあるため、回転電機20を継続して駆動する時間が制約される領域である。 If the rotational speed and torque are within the high speed region Rhr, the powering side high torque region Rhtm, and the regeneration side high torque region Rhtg, at least one of the rotating electric machine 20 and the inverter 30 may be overheated. This is a region in which the time to continuously drive the rotating electric machine 20 is restricted.
 なお、図5において、TmLは、高速領域Rhr及び力行側高トルク領域Rhtmにおける正の上限トルクを示し、TgLは、高速領域Rhr及び回生側高トルク領域Rhtgにおける負の上限トルクを示す。 In FIG. 5, TmL indicates the positive upper limit torque in the high speed region Rhr and the powering side high torque region Rhtm, and TgL indicates the negative upper limit torque in the high speed region Rhr and the regeneration side high torque region Rhtg.
 図4の説明に戻り、ステップS20において現在の動作点が保護対象領域外であると判定した場合には、ステップS21に進み、モータ温度センサ35により検出されたモータ温度Tmgdが制限開始温度TempHを超えているか否かを判定する。制限開始温度TempHは、回転電機20及びインバータ30の少なくとも一方が過熱状態であることを判定できる温度に設定されている。本実施形態において、ステップS21の処理が「判定部」に相当する。 Returning to the description of FIG. 4, if it is determined in step S20 that the current operating point is outside the protection target area, the process proceeds to step S21, where the motor temperature Tmgd detected by the motor temperature sensor 35 exceeds the limit start temperature TempH. Determine whether or not it exceeds Limitation start temperature TempH is set to a temperature at which it can be determined that at least one of rotating electric machine 20 and inverter 30 is in an overheated state. In this embodiment, the process of step S21 corresponds to the "determination unit".
 ステップS21においてモータ温度Tmgdが制限開始温度TempH以下であると判定した場合には、ステップS22に進み、第1フィルタ部80によりローパスフィルタ処理が施された指令トルクTreqが、切替部82から指令電流設定部83に出力されるようにする。 When it is determined in step S21 that the motor temperature Tmgd is equal to or lower than the restriction start temperature TempH, the process proceeds to step S22, where the command torque Treq subjected to low-pass filtering by the first filter unit 80 is converted from the switching unit 82 to the command current. It is made to be output to the setting section 83 .
 一方、ステップS21においてモータ温度Tmgdが制限開始温度TempHを超えていると判定した場合には、ステップS23に進み、回転電機20のトルクが、切替部82から出力された要求トルクTrq*よりも小さくなるように上,下アームスイッチSWH,SWLのスイッチング制御を行う。ステップS23のトルク制限処理では、例えば、図6に示すように、要求トルクTrq*に制限係数Klimを乗算し、この乗算値に回転電機20のトルクを制御すべく上,下アームスイッチSWH,SWLのスイッチング制御を行えばよい。制限係数Klimは、モータ温度Tmgdが制限開始温度TempH以下の場合に1となり、モータ温度Tmgdが制限開始温度TempHを超える場合、モータ温度Tmgdが高いほど小さい値になる。モータ温度Tmgdが最終制限温度THH(>TempH)になる場合、制限係数Klimが0になる。 On the other hand, if it is determined in step S21 that the motor temperature Tmgd exceeds the restriction start temperature TempH, the process proceeds to step S23, and the torque of the rotary electric machine 20 becomes smaller than the required torque Trq* output from the switching unit 82. Switching control of the upper and lower arm switches SWH and SWL is performed so that In the torque limiting process of step S23, for example, as shown in FIG. 6, the required torque Trq* is multiplied by a limiting coefficient Klim, and the multiplied value is used to control the torque of the rotary electric machine 20 by the upper and lower arm switches SWH and SWL. switching control can be performed. The limit coefficient Klim is 1 when the motor temperature Tmgd is equal to or lower than the limit start temperature TempH, and when the motor temperature Tmgd exceeds the limit start temperature TempH, the higher the motor temperature Tmgd, the smaller the value. When the motor temperature Tmgd reaches the final limit temperature THH (>TempH), the limit coefficient Klim becomes zero.
 また、ステップS23では、トルク制限処理を行っている旨をEVCU50に対して送信する。なお、モータ温度Tmgdが制限開始温度TempH以下になったと判定した場合、EVCU50に対するトルク制限処理の通知を停止する。 Also, in step S23, the EVCU 50 is notified that the torque limiting process is being performed. Note that when it is determined that the motor temperature Tmgd has become equal to or lower than the restriction start temperature TempH, notification of torque restriction processing to the EVCU 50 is stopped.
 ステップS24では、後述するステップS26の過熱予測通知がEVCU50に送信されたとの第1条件、及び回生駆動制御が行われているとの第2条件の双方が成立しているか否かを判定する。ステップS24において第1,第2条件の少なくとも一方が成立していないと判定した場合には、ステップS22に進む。 In step S24, it is determined whether both the first condition that the overheat prediction notification in step S26 described later has been transmitted to the EVCU 50 and the second condition that regenerative drive control is being performed are satisfied. If it is determined in step S24 that at least one of the first and second conditions is not satisfied, the process proceeds to step S22.
 ステップS20において現在の動作点が保護対象領域内であると判定した場合には、ステップS25に進み、モータ温度Tmgdが通知温度TempL(<TempH)を超えているか否かを判定する。通知温度TempLは、回転電機20のトルク制御を継続した場合に回転電機20及びインバータ30の少なくとも一方が過熱状態になるか否かを予測するための閾値である。通知温度TempLは、例えば、動作点が高速領域Rhr内である場合においてモータ温度Tmgdが制限開始温度TempHに到達する前に、車両10を所定の減速度で減速させて停止させるのに必要な時間を確保できるような値に設定されていればよい。 If it is determined in step S20 that the current operating point is within the protection target area, the process proceeds to step S25 to determine whether the motor temperature Tmgd exceeds the notification temperature TempL (<TempH). Notification temperature TempL is a threshold for predicting whether or not at least one of rotating electrical machine 20 and inverter 30 will be overheated when torque control of rotating electrical machine 20 is continued. The notification temperature TempL is, for example, the time required to decelerate and stop the vehicle 10 at a predetermined deceleration before the motor temperature Tmgd reaches the restriction start temperature TempH when the operating point is within the high speed region Rhr. should be set to a value that ensures
 ステップS25においてモータ温度Tmgdが通知温度TempLを超えていると判定した場合には、ステップS26に進み、EVCU50に対して過熱予測通知を送信する。 If it is determined in step S25 that the motor temperature Tmgd exceeds the notification temperature TempL, the process proceeds to step S26 to transmit an overheat prediction notification to the EVCU 50.
 ステップS26の処理の完了後、ステップS21において肯定判定した場合には、ステップS23を経由してステップS24に進む。ステップS24において第1,第2条件が成立していると判定した場合には、ステップS27に進み、第2フィルタ部81によりローパスフィルタ処理が施された指令トルクTreqが、切替部82から指令電流設定部83に出力されるようにする。 After the process of step S26 is completed, if the determination in step S21 is affirmative, the process proceeds to step S24 via step S23. When it is determined in step S24 that the first and second conditions are satisfied, the process proceeds to step S27, where the command torque Treq subjected to low-pass filtering by the second filter section 81 is converted from the switching section 82 to the command current It is made to be output to the setting section 83 .
 ステップS25においてモータ温度Tmgdが通知温度TempL以下であると判定した場合には、ステップS28に進み、過熱予測通知がEVCU50に送信されたとの上記第1条件が成立しているか否かを判定する。ステップS28において第1条件が成立していないと判定した場合には、ステップS22に進む。 If it is determined in step S25 that the motor temperature Tmgd is equal to or lower than the notification temperature TempL, the process advances to step S28 to determine whether or not the first condition that the overheat prediction notification has been transmitted to the EVCU 50 is satisfied. If it is determined in step S28 that the first condition is not satisfied, the process proceeds to step S22.
 一方、ステップS28において第1条件が成立していると判定した場合には、ステップS29に進み、モータ温度Tmgdが解除温度Temp0(<TempL)まで低下したか否かを判定する。モータ温度Tmgdが解除温度Temp0よりも高いと判定した場合には、ステップS27に進む。 On the other hand, if it is determined in step S28 that the first condition is established, the process advances to step S29 to determine whether the motor temperature Tmgd has decreased to the release temperature Temp0 (<TempL). When it is determined that the motor temperature Tmgd is higher than the release temperature Temp0, the process proceeds to step S27.
 一方、モータ温度Tmgdが解除温度Temp0まで低下したと判定した場合には、ステップS30に進み、EVCU50に過熱予測通知の解除信号を送信する。この場合、ステップS24の過熱予測通知がEVCU50に送信されたとの第1条件が成立しなくなり、また、ステップS28で肯定判定されなくなる。 On the other hand, when it is determined that the motor temperature Tmgd has decreased to the release temperature Temp0, the process advances to step S30 to transmit a release signal of the overheat prediction notification to the EVCU 50 . In this case, the first condition that the overheat prediction notification in step S24 has been transmitted to the EVCU 50 is no longer satisfied, and the affirmative determination is no longer made in step S28.
 続いて、図7を用いて、EVCU50が行う過熱保護制御について説明する。図7に示す処理は、例えば、所定の制御周期で繰り返し実行される。 Next, the overheat protection control performed by the EVCU 50 will be described with reference to FIG. The processing shown in FIG. 7 is, for example, repeatedly executed at a predetermined control cycle.
 ステップS33では、MGCU36から過熱予測通知を受信したか否かを判定する。MGCU36から過熱予測通知がまだ送信されていない場合、又はMGCU36から過熱予測通知の解除信号が送信された場合には、ステップS33において否定判定する。 In step S33, it is determined whether or not an overheat prediction notification has been received from the MGCU 36. If the MGCU 36 has not yet transmitted the overheating prediction notification, or if the MGCU 36 has transmitted the overheating prediction notification cancellation signal, a negative determination is made in step S33.
 ステップS33において肯定判定した場合には、ステップS34に進み、ドライバに対して、その後車両10の走行速度が低下させられる旨、又は回転電機20のトルクが低下させられる旨を通知する。これは、その旨をドライバに通知しておくことにより、後述するステップS35の処理が実行されたとしても、ドライバに違和感を与えることを極力防止するためである。 If an affirmative determination is made in step S33, the process proceeds to step S34 and notifies the driver that the traveling speed of the vehicle 10 will be reduced or that the torque of the rotary electric machine 20 will be reduced. This is to prevent the driver from feeling uncomfortable even if the process of step S35, which will be described later, is executed, by notifying the driver of this fact.
 ちなみに、ドライバに対しては、例えば、ナビゲーション装置等の表示部、光、振動、音及び匂いのうち、少なくとも1つにより通知すればよい。また、ステップS34において、ブレーキランプ62を点灯させる指示をブレーキCU63に対して行ってもよい。これにより、自車両10の後続車両等、自車両10がこれから減速することを自車両10の周囲の車両に対して知らせることができる。 Incidentally, the driver may be notified by, for example, at least one of a display unit such as a navigation device, light, vibration, sound, and smell. Further, in step S34, the brake CU 63 may be instructed to turn on the brake lamp 62 . Accordingly, it is possible to inform other vehicles around the own vehicle 10 that the own vehicle 10 is about to decelerate, such as vehicles following the own vehicle 10 .
 ステップS35では、現在の動作点が高速領域Rhr内であると判定した場合、動作点を高速領域Rhrから連続動作領域Rccに移行させるために、MGCU36に送信する指令トルクTreqを低下させる。この場合、MGCU36の制御により、ロータ22の回転速度が低下させられ、車両10の走行速度が低下する。これにより、回転電機20及びインバータ30を過熱から保護する。本実施形態では、ステップS35において、車両10の減速度が所定の減速度以下となるように、送信する指令トルクTreqを0に向かって漸減させる。これにより、車両10を安全な場所まで退避走行させて停車させるのに必要な時間を確保する。なお、所定の減速度は、車両10の乗員の安全を確保できる値(例えば、0.2G)に設定されている。また、ステップS35の処理が「回転低下部」に相当する。 In step S35, when it is determined that the current operating point is within the high speed region Rhr, the command torque Treq to be transmitted to the MGCU 36 is decreased in order to shift the operating point from the high speed region Rhr to the continuous operating region Rcc. In this case, the rotation speed of the rotor 22 is reduced under the control of the MGCU 36, and the traveling speed of the vehicle 10 is reduced. This protects the rotating electric machine 20 and the inverter 30 from overheating. In this embodiment, in step S35, the command torque Treq to be transmitted is gradually decreased toward 0 so that the deceleration of the vehicle 10 is equal to or less than a predetermined deceleration. This secures the time required to evacuate the vehicle 10 to a safe place and stop the vehicle. Note that the predetermined deceleration is set to a value (for example, 0.2 G) that can ensure the safety of the occupants of the vehicle 10 . Further, the process of step S35 corresponds to the "rotation reduction section".
 ここで、ロータ22の回転速度を低下させるのは、以下に説明する理由のためである。高速領域Rhrでは弱め界磁制御が行われているため、所定トルクを発生させるためにステータ巻線21に流す電流ベクトルの大きさが、弱め界磁制御が行われていない場合よりも大きくなる。その結果、高速領域Rhrにおいて指令トルクTreqを例えば0まで低下させたとしても、ステータ巻線21に流れる相電流の実効値[Arms]を回転電機20(具体的にはステータ巻線21)の常時許容電流以下にできないことがある。 The reason why the rotational speed of the rotor 22 is reduced here is as follows. Since field-weakening control is performed in the high-speed region Rhr, the magnitude of the current vector supplied to the stator windings 21 to generate a predetermined torque is larger than when the field-weakening control is not performed. As a result, even if the command torque Treq is reduced to, for example, 0 in the high-speed region Rhr, the effective value [Arms] of the phase current flowing through the stator winding 21 is always It may not be possible to reduce the current below the allowable current.
 この場合、モータ温度Tmgdがさらに上昇してシャットダウン温度Tshut(>THH)に到達し、各相の上,下アームスイッチSWH,SWLを全てオフするシャットダウン制御がMGCU36により行われる。しかしながら、高速領域Rhrではステータ巻線21に発生する逆起電圧が高いため、電力回生が発生し、ステータ巻線21、上アームスイッチSWHのダイオードDH、コンデンサ31、及び下アームスイッチSWLのダイオードDLを含む閉回路に電流が流れる。その結果、回転電機20及びインバータ30の温度がさらに上昇し、回転電機20及びインバータ30が故障し得る。そこで、指令トルクTreqを低下させることにより、逆起電圧を低下させ、電力回生が発生しないようにする。これにより、回転電機20及びインバータ30が過熱異常で故障することを防止する。 In this case, the motor temperature Tmgd further rises and reaches the shutdown temperature Tshut (>THH), and the MGCU 36 performs shutdown control to turn off the upper and lower arm switches SWH and SWL of each phase. However, in the high-speed region Rhr, the back electromotive voltage generated in the stator winding 21 is high, so power regeneration occurs, and the stator winding 21, the diode DH of the upper arm switch SWH, the capacitor 31, and the diode DL of the lower arm switch SWL. A current flows in a closed circuit containing As a result, the temperatures of the rotating electrical machine 20 and the inverter 30 further increase, and the rotating electrical machine 20 and the inverter 30 may fail. Therefore, by lowering the command torque Treq, the back electromotive voltage is lowered to prevent power regeneration. This prevents the rotating electric machine 20 and the inverter 30 from failing due to abnormal overheating.
 ステップS35において、現在の動作点が高速領域Rhr内であると判定した場合、指令トルクTreqの低下処理に加えて、ブレーキ装置60により車輪に摩擦制動トルクを付与する指示をブレーキCU63に行ってもよい。機械式のブレーキ装置60によれば、回生トルクを発生させるための電流をステータ巻線21に流す必要がない。このため、回転電機20及びインバータ30の温度上昇を好適に抑制しつつ、ロータ22の回転速度を低下させることができる。また、ブレーキ装置60により車輪に摩擦制動トルクを付与する処理は、例えば以下の場合にも有効である。車両10の走行路面が下り勾配の場合、指令トルクTreqを低下させたとしても、ロータ22の回転速度が低下しない場合があり得る。また、蓄電池40のSOCが規定量よりも高い高SOC状態の場合、蓄電池40の過充電を防止するために回生トルクが制限されたり、回生トルクを発生できなかったりする場合があり得る。これらの場合において、ブレーキ装置60により車輪に摩擦制動トルクを付与する処理が有効である。 If it is determined in step S35 that the current operating point is within the high speed region Rhr, in addition to the command torque Treq decreasing process, the brake CU 63 may be instructed to apply friction braking torque to the wheels by the braking device 60. good. According to the mechanical braking device 60, it is not necessary to apply current to the stator windings 21 for generating regenerative torque. Therefore, the rotation speed of the rotor 22 can be reduced while appropriately suppressing the temperature rise of the rotating electric machine 20 and the inverter 30 . Further, the process of applying the friction braking torque to the wheels by the braking device 60 is also effective in the following cases, for example. When the road surface on which the vehicle 10 travels is downhill, there may be cases where the rotation speed of the rotor 22 does not decrease even if the command torque Treq is decreased. In addition, when the SOC of the storage battery 40 is in a high SOC state higher than a specified amount, the regenerative torque may be limited to prevent overcharging of the storage battery 40, or the regenerative torque may not be generated. In these cases, it is effective to apply friction braking torque to the wheels by the braking device 60 .
 なお、ステップS35において、現在の動作点が高トルク領域Rhtm,Rhtg内であると判定した場合、動作点を高トルク領域Rhtm,Rhtgから連続動作領域Rccに移行させるために、MGCU36に送信する指令トルクTreqを徐々に低下させてもよい。この場合、MGCU36の制御により、回転電機20のトルクが低下させられる。これにより、回転電機20及びインバータ30を過熱から保護する。 If it is determined in step S35 that the current operating point is within the high torque regions Rhtm, Rhtg, a command to be sent to the MGCU 36 to shift the operating point from the high torque regions Rhtm, Rhtg to the continuous operating region Rcc Torque Treq may be gradually reduced. In this case, the torque of rotating electric machine 20 is reduced under the control of MGCU 36 . This protects the rotating electric machine 20 and the inverter 30 from overheating.
 ステップS36では、MGCU36からトルク制限処理の通知を受信したとの第3条件、及び回生駆動制御が行われているとの上記第2条件の双方が成立しているか否かを判定する。ステップS36において第2,第3条件が成立していると判定した場合には、ステップS37に進む。ステップS37の処理は、「処理部」に相当し、回生駆動制御の実行に起因して回転電機20及びインバータ30が過熱状態になることを抑制するための処理である。ステップS37の処理の開始タイミングにおいてブレーキCU63で用いられる摩擦制動指令トルクFfbとMGCU36で用いられる回生制動指令トルクFgbとの和を合計制動トルクFsum(=Ffb+Fgb)と称すこととする。 In step S36, it is determined whether or not both the third condition that a notification of torque limiting processing has been received from the MGCU 36 and the second condition that regenerative drive control is being performed are satisfied. If it is determined in step S36 that the second and third conditions are met, the process proceeds to step S37. The process of step S37 corresponds to a "processing unit" and is a process for suppressing overheating of the rotating electric machine 20 and the inverter 30 due to the execution of the regenerative drive control. The sum of the frictional braking command torque Ffb used by the brake CU 63 and the regenerative braking command torque Fgb used by the MGCU 36 at the start timing of the process of step S37 will be referred to as total braking torque Fsum (=Ffb+Fgb).
 ステップS37では、ブレーキCU63で用いられる摩擦制動指令トルクFfbを現在の値から合計制動トルクFsumに向かってステップ状に増加させる指示をブレーキCU63に送信する。例えば、現時点で摩擦制動トルクが車輪に付与されていない場合、摩擦制動指令トルクFfbが0から合計制動トルクFsumに向かってステップ状に増加させられる。 In step S37, an instruction is sent to the brake CU63 to stepwise increase the frictional braking command torque Ffb used by the brake CU63 from the current value toward the total braking torque Fsum. For example, if no friction braking torque is applied to the wheels at this time, the friction braking command torque Ffb is increased stepwise from 0 toward the total braking torque Fsum.
 また、ステップS37では、ブレーキCU63に対する上記指示とともに、MGCU36に送信する回生制動指令トルクFgbを現在の値から0に向かってステップ状に減少させる。 Also, in step S37, along with the instruction to the brake CU 63, the regenerative braking command torque Fgb to be transmitted to the MGCU 36 is decreased stepwise from the current value toward zero.
 ステップS37の処理が行われる状況は、図3に示した指令電流設定部83で用いられる要求トルクTrq*として、時定数が相対的に大きい第2フィルタ部81のローパスフィルタ処理が施された指令トルクTreqが用いられる状況である。この場合、MGCU36で用いられる要求トルクTrq*がステップS37の処理によって減少し始めてから0になるまでの時間は、指令電流設定部83で用いられる要求トルクTrq*が、時定数が相対的に小さい第1フィルタ部80のローパスフィルタ処理が施された指令トルクTreqである場合よりも長くなる。このため、ブレーキ装置60を用いて車輪に付与される摩擦制動トルクの応答性が、駆動輪11に付与される回生制動トルクの応答性よりも低い場合であっても、回生トルクから摩擦制動トルクへと合計制動トルクFsumの配分を変える過渡期間において、合計制動トルクFsumに対する実際の制動トルクの不足度合いが大きくなることを防止できる。 The situation in which the processing of step S37 is performed is that the demanded torque Trq* used in the command current setting unit 83 shown in FIG. This is the situation where torque Treq is used. In this case, the time from when the required torque Trq* used in the MGCU 36 starts to decrease by the process of step S37 until it becomes 0 is when the required torque Trq* used in the command current setting unit 83 has a relatively small time constant. It is longer than the command torque Treq subjected to the low-pass filter processing of the first filter unit 80 . Therefore, even if the responsiveness of the friction braking torque applied to the wheels using the brake device 60 is lower than the responsiveness of the regenerative braking torque applied to the drive wheels 11, the regenerative torque is reduced to the friction braking torque. It is possible to prevent the degree of shortage of the actual braking torque with respect to the total braking torque Fsum from increasing during the transitional period in which the distribution of the total braking torque Fsum is changed to .
 ちなみに、第2フィルタ部81のローパスフィルタ処理の時定数τ2と、摩擦制動指令トルクFfbがステップ状に変化させられた場合におけるブレーキ装置60の摩擦制動トルクの時定数とが同じ値にされていればよい。 Incidentally, if the time constant τ2 of the low-pass filter processing of the second filter section 81 and the time constant of the friction braking torque of the brake device 60 when the friction braking command torque Ffb is changed stepwise are set to the same value. Just do it.
 また、合計制動トルクFsumに対する実際の制動トルクの乖離を小さくするために、以下に説明する第2時間T2に対する第1時間T1の時間比率RT(=T1/T2)が所定範囲になるように、第2フィルタ部81のローパスフィルタ処理の時定数τ2が設定されていてもよい。 Also, in order to reduce the deviation of the actual braking torque from the total braking torque Fsum, A time constant τ2 of the low-pass filter processing of the second filter section 81 may be set.
 ブレーキ装置60が油圧式の場合、第1時間T1は、ブレーキペダルの踏み込みが開始されてブレーキ装置60の油圧が上昇し始めてから、ブレーキパッドがディスクロータに当接するまでの時間である。ブレーキ装置60が電動式の場合、第1時間T1は、ブレーキペダルの踏み込みが開始されてモータの巻線に通電され始めてから、ブレーキパッドがディスクロータに当接するまでの時間である。 When the brake device 60 is hydraulic, the first time T1 is the time from when the brake pedal is started to be depressed and the hydraulic pressure of the brake device 60 starts to rise until the brake pad comes into contact with the disc rotor. When the brake device 60 is of an electric type, the first time T1 is the time from when the brake pedal is started to be depressed and the windings of the motor start to be energized until the brake pads come into contact with the disc rotor.
 第2時間T2は、MGCU36に送信する回生制動指令トルクFgbが現在の値から0に向かってステップ状に減少させられてから、ステータ巻線21に流れる電流が0になるまで、又は指令電流設定部83に入力される要求トルクTrq*が0になるまでの時間である。 The second time T2 is from when the regenerative braking command torque Fgb to be transmitted to the MGCU 36 is reduced stepwise from the current value toward 0 until the current flowing through the stator winding 21 becomes 0, or when the command current is set. This is the time until the required torque Trq* input to the unit 83 becomes zero.
 時間比率RTが、例えば、「0.5≦RT≦1.5」になり、望ましくは「0.7≦RT≦1.3」になり、より望ましくは「0.8≦RT≦1.2」になるように、上記時定数τ2が設定されればよい。これにより、回生トルクから摩擦制動トルクへと合計制動トルクFsumの配分を変える過渡期間において、実際の回生トルク及び摩擦制動トルクの和が、例えば、「0.9×Fsum~1.1×Fsum」の範囲、又は「0.95×Fsum~1.05×Fsum」の範囲になるようにすればよい。 The time ratio RT is, for example, "0.5≦RT≦1.5", preferably "0.7≦RT≦1.3", more preferably "0.8≦RT≦1.2". ], the time constant τ2 may be set. As a result, in the transition period in which the distribution of the total braking torque Fsum is changed from the regenerative torque to the friction braking torque, the sum of the actual regenerative torque and the friction braking torque is, for example, "0.9×Fsum to 1.1×Fsum". or the range of "0.95×Fsum to 1.05×Fsum".
 以上説明した本実施形態によれば、インバータ30及び回転電機20が過熱状態になることを抑制しつつ、合計制動トルクFsumに対する実際の制動トルクの不足度合いが大きくなることを防止できる。 According to the present embodiment described above, it is possible to prevent the inverter 30 and the rotating electric machine 20 from becoming overheated, and prevent the actual braking torque from becoming insufficient with respect to the total braking torque Fsum.
 図4の説明に戻り、MGCU36は、ステップS27の処理の実行後、ステップS21又はS24において否定判定した場合、切替部82により、指令トルクTreqにローパスフィルタ処理を施す主体を第2フィルタ部81から第1フィルタ部80に切り替える。これにより、指令トルクTreqに施されるローパスフィルタ処理の時定数が小さくなる。 Returning to the description of FIG. 4 , when the MGCU 36 makes a negative determination in step S21 or S24 after executing the process of step S27, the switching unit 82 selects the subject to perform low-pass filtering on the command torque Treq from the second filter unit 81. Switch to the first filter unit 80 . This reduces the time constant of the low-pass filter processing applied to the command torque Treq.
 その後、MGCU36は、ステップS28,S29において肯定判定した場合、ステップS30においてEVCU50に過熱予測通知の解除信号を送信する。この場合、EVCU50は、図7におけるステップS35の処理の実行を中止する。これにより、車両10の走行制限を解除することができる。 After that, when the MGCU 36 makes an affirmative determination in steps S28 and S29, it transmits an overheat prediction notification cancellation signal to the EVCU 50 in step S30. In this case, the EVCU 50 stops executing the process of step S35 in FIG. As a result, the travel restriction of the vehicle 10 can be released.
 <第1実施形態の変形例>
 ・MGCU36は、モータ温度Tmgdが通知温度TempLを超えたと判定した場合、モータ温度Tmgdが通知温度TempL以下であると判定する場合よりも、ステータ巻線21に流れる電流の制限度合い(例えば、電流の低下速度)を高くしてもよい。
<Modified Example of First Embodiment>
When the MGCU 36 determines that the motor temperature Tmgd has exceeded the notification temperature TempL, the degree of limitation of the current flowing through the stator winding 21 (for example, the current limit) is higher than when it is determined that the motor temperature Tmgd is equal to or lower than the notification temperature TempL. decrease rate) may be increased.
 また、MGCU36は、モータ温度Tmgdが許容上限温度を超えたと判定した場合、モータ温度Tmgdが許容上限温度以下であると判定する場合よりも、図4のステップS23における要求トルクTrq*の制限度合いを高くしてもよい。ここで、許容上限温度は、シャットダウン温度Tshutよりも高い温度であり、回転電機20及びインバータ30の信頼性を維持可能な温度の上限値である。 Further, when determining that the motor temperature Tmgd exceeds the allowable upper limit temperature, the MGCU 36 sets the degree of limitation of the required torque Trq* in step S23 of FIG. You can make it higher. Here, the allowable upper limit temperature is a temperature higher than the shutdown temperature Tshut, and is the upper limit of the temperature at which the reliability of the rotating electric machine 20 and the inverter 30 can be maintained.
 ・図7のステップS35において指令トルクTreqを0ではなく、0よりも高い所定値まで低下させてもよい。 · In step S35 of FIG. 7, the command torque Treq may be decreased to a predetermined value higher than 0 instead of 0.
 <第2実施形態>
 以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、MGCU36及びEVCU50が実行する過熱保護制御が変更されている。また、本実施形態において、MGCU36は、先の図3に示す第1フィルタ部80、第2フィルタ部81及び切替部82を備えていない。このため、EVCU50から送信された指令トルクTreqは、指令電流設定部83に入力される。指令電流設定部83は、要求トルクTrq*に代えて、指令トルクTreqに基づいてd,q軸指令電流Id*,Iq*を設定する。
<Second embodiment>
The second embodiment will be described below with reference to the drawings, focusing on differences from the first embodiment. In this embodiment, the overheat protection control performed by the MGCU 36 and the EVCU 50 is changed. Further, in this embodiment, the MGCU 36 does not include the first filter section 80, the second filter section 81, and the switching section 82 shown in FIG. Therefore, command torque Treq transmitted from EVCU 50 is input to command current setting unit 83 . Command current setting unit 83 sets d- and q-axis command currents Id* and Iq* based on command torque Treq instead of request torque Trq*.
 まず、図8を用いて、MGCU36が行う過熱保護制御について説明する。図8に示す処理は、例えば、所定の制御周期で繰り返し実行される。 First, the overheat protection control performed by the MGCU 36 will be described using FIG. The process shown in FIG. 8 is, for example, repeatedly executed at a predetermined control cycle.
 ステップS40では、図4のステップS20と同様に、回転電機20の現在のトルクTrq及び回転速度Nmを取得し、現在の回転速度Nm及びトルクTrqから定まる動作点が保護対象領域内であるか否かを判定する。 In step S40, as in step S20 of FIG. 4, the current torque Trq and rotation speed Nm of the rotary electric machine 20 are obtained, and whether or not the operating point determined from the current rotation speed Nm and torque Trq is within the protection target region. determine whether
 ステップS40において現在の動作点が保護対象領域外であると判定した場合には、ステップS41に進み、モータ温度Tmgdが制限開始温度TempHを超えているか否かを判定する。 If it is determined in step S40 that the current operating point is outside the protection target area, the process proceeds to step S41 to determine whether the motor temperature Tmgd exceeds the limit start temperature TempH.
 ステップS41においてモータ温度Tmgdが制限開始温度TempHを超えていると判定した場合には、ステップS42に進み、ステップS23と同様の処理を行う。 When it is determined in step S41 that the motor temperature Tmgd exceeds the limit start temperature TempH, the process proceeds to step S42, and the same processing as in step S23 is performed.
 ステップS40において現在の動作点が保護対象領域内であると判定した場合には、ステップS43に進み、モータ温度Tmgdが通知温度TempL(<TempH)を超えているか否かを判定する。本実施形態において、ステップS43の処理が「判定部」に相当する。 If it is determined in step S40 that the current operating point is within the protection target area, the process proceeds to step S43 to determine whether the motor temperature Tmgd exceeds the notification temperature TempL (<TempH). In this embodiment, the process of step S43 corresponds to the "determination unit".
 ステップS43においてモータ温度Tmgdが通知温度TempLを超えていると判定した場合には、ステップS44に進み、EVCU50に対して過熱予測通知を送信する。その後、ステップS41に進む。 When it is determined in step S43 that the motor temperature Tmgd exceeds the notification temperature TempL, the process proceeds to step S44 and an overheat prediction notification is transmitted to the EVCU 50. After that, the process proceeds to step S41.
 ステップS43においてモータ温度Tmgdが通知温度TempL以下であると判定した場合には、ステップS45に進み、過熱予測通知がEVCU50に送信されたとの上記第1条件が成立しているか否かを判定する。ステップS45において第1条件が成立していると判定した場合には、ステップS46に進み、モータ温度Tmgdが解除温度Temp0(<TempL)まで低下したか否かを判定する。モータ温度Tmgdが解除温度Temp0まで低下したと判定した場合には、ステップS47に進み、EVCU50に対して過熱予測通知の解除信号を送信する。 If it is determined in step S43 that the motor temperature Tmgd is equal to or lower than the notification temperature TempL, the process advances to step S45 to determine whether or not the first condition that the overheat prediction notification has been transmitted to the EVCU 50 is satisfied. If it is determined in step S45 that the first condition is satisfied, the process proceeds to step S46 to determine whether or not the motor temperature Tmgd has decreased to the release temperature Temp0 (<TempL). If it is determined that the motor temperature Tmgd has decreased to the release temperature Temp0, the process advances to step S47 to transmit a release signal of the overheating prediction notification to the EVCU 50 .
 続いて、図9を用いて、EVCU50が行う過熱保護制御について説明する。図9に示す処理は、例えば、所定の制御周期で繰り返し実行される。 Next, the overheat protection control performed by the EVCU 50 will be described with reference to FIG. The processing shown in FIG. 9 is, for example, repeatedly executed at a predetermined control cycle.
 ステップS50では、ステップS33と同様に、MGCU36から過熱予測通知を受信したか否かを判定する。MGCU36から過熱予測通知がまだ送信されていない場合、又はMGCU36から過熱予測通知の解除信号が送信された場合には、ステップS50において否定判定する。 In step S50, similarly to step S33, it is determined whether or not an overheat prediction notification has been received from the MGCU 36. If the MGCU 36 has not yet transmitted the overheating prediction notification, or if the MGCU 36 has transmitted the overheating prediction notification release signal, a negative determination is made in step S50.
 ステップS50において肯定判定した場合には、ステップS51に進み、ステップS34と同様の処理を行う。続くステップS52では、ステップS35と同様の処理を行う。ステップS52の処理が「回転低下部」に相当する。 If the determination in step S50 is affirmative, the process proceeds to step S51, and the same processing as in step S34 is performed. In subsequent step S52, the same process as in step S35 is performed. The process of step S52 corresponds to the "rotation reduction section".
 ステップS53では、動作点が保護対象領域内になった後、最初にステップS50において肯定判定してからの経過時間をカウントする。そして、カウントした経過時間が判定時間Cjdeに到達したか否かを判定する。 In step S53, after the operating point is within the protection target area, the elapsed time after the affirmative determination is first made in step S50 is counted. Then, it is determined whether or not the counted elapsed time has reached the determination time Cjde.
 ステップS53において到達したと判定した場合には、ステップS54に進み、ブレーキ装置60により車輪に摩擦制動トルクを付与する指示をブレーキCU63に対して送信する。ステップS52においてブレーキ装置60から車輪に摩擦制動トルクが付与されていない場合には、過熱予測通知が受信されてから判定時間Cjdeが経過した場合に、ブレーキ装置60から車輪に摩擦制動トルクが付与される。ちなみに、判定時間Cjdeは、モータ温度Tmgdが上昇して制限開始温度TempHに到達する前にステップS54の処理を実行できる値に設定されていればよい。 If it is determined in step S53 that the wheel has been reached, the process proceeds to step S54, and an instruction to apply friction braking torque to the wheels by the brake device 60 is transmitted to the brake CU63. If the braking device 60 does not apply the friction braking torque to the wheels in step S52, the braking device 60 applies the friction braking torque to the wheels when the determination time Cjde has elapsed since the overheat prediction notification was received. be. Incidentally, the determination time Cjde may be set to a value that allows the process of step S54 to be executed before the motor temperature Tmgd rises and reaches the restriction start temperature TempH.
 ステップS55では、MGCU36からトルク制限処理の通知を受信したか否かを判定する。ステップS55において肯定判定した場合には、ステップS56に進み、MGCU36に送信する回生制動指令トルクFgbを現在の値から0に向かって漸減させる。 In step S55, it is determined whether or not a notification of torque limiting processing has been received from the MGCU 36. If the determination in step S55 is affirmative, the process proceeds to step S56, and the regenerative braking command torque Fgb to be transmitted to the MGCU 36 is gradually decreased from the current value toward zero.
 ちなみに、ステップS56の処理の開始タイミングにおいてブレーキCU63で用いられる摩擦制動指令トルクFfbとMGCU36で用いられる回生制動指令トルクFgbとの和を合計制動トルクFsumと称すこととする。この場合、実際の回生トルク及び摩擦制動トルクの和が、例えば、「0.9×Fsum~1.1×Fsum」の範囲、又は「0.95×Fsum~1.05×Fsum」の範囲になるように、回生制動指令トルクFgbの漸減に伴い摩擦制動指令トルクFfbを漸増させてもよい。 Incidentally, the sum of the friction braking command torque Ffb used by the brake CU 63 and the regenerative braking command torque Fgb used by the MGCU 36 at the start timing of the process of step S56 will be referred to as total braking torque Fsum. In this case, the sum of the actual regenerative torque and the friction braking torque is, for example, in the range of "0.9 x Fsum to 1.1 x Fsum", or in the range of "0.95 x Fsum to 1.05 x Fsum" Friction braking command torque Ffb may be gradually increased as regenerative braking command torque Fgb is gradually decreased.
 以上説明した本実施形態では、回生駆動制御が行われている場合において、モータ温度Tmgdが通知温度TempLを超えたと判定された場合、モータ温度Tmgdが制限開始温度TempHを超えたと判定される前であっても、車輪に摩擦制動トルクを付与するようにブレーキ装置60が制御される。このため、回生発電を用いた制動からブレーキ装置60を用いた制動に切り替える場合において、インバータ30及び回転電機20が過熱状態になることを抑制しつつ、制動トルクの不足度合いが大きくなることを防止できる。 In the present embodiment described above, when it is determined that the motor temperature Tmgd has exceeded the notification temperature TempL while the regenerative drive control is being performed, before it is determined that the motor temperature Tmgd has exceeded the restriction start temperature TempH, Even if there is, the brake device 60 is controlled to apply friction braking torque to the wheels. Therefore, when switching from braking using regenerative power generation to braking using the brake device 60, the overheating of the inverter 30 and the rotating electric machine 20 is suppressed, and an increase in the degree of insufficient braking torque is prevented. can.
 <その他の実施形態>
 なお、上記各実施形態は、以下のように変更して実施してもよい。
<Other embodiments>
It should be noted that each of the above-described embodiments may be modified as follows.
 ・第2実施形態において、図9のステップS56の処理を、インバータ30を構成する全相の上,下アームスイッチSWH,SWLをオフする処理に変更してもよい。 · In the second embodiment, the process of step S56 in FIG. 9 may be changed to a process of turning off the upper and lower arm switches SWH and SWL of all phases that constitute the inverter 30 .
 ・上記各実施形態の各処理において、モータ温度Tmgdに代えて、インバータ30の温度が用いられたり、モータ温度Tmgd及びインバータ30の温度のうち高い方の温度が用いられたりしてもよい。ここで、インバータ30の温度は、例えば、インバータ30を構成する上,下アームスイッチSWH,SWLの温度を検出するセンサ(例えば、感温ダイオード又はサーミスタ)により検出されればよい。 · In each process of each of the above embodiments, instead of the motor temperature Tmgd, the temperature of the inverter 30 may be used, or the higher temperature of the motor temperature Tmgd and the temperature of the inverter 30 may be used. Here, the temperature of the inverter 30 may be detected, for example, by a sensor (for example, a temperature sensitive diode or a thermistor) that detects the temperatures of the upper and lower arm switches SWH and SWL that constitute the inverter 30 .
 EVCU50は、指令回転速度Nm*をMGCU36に送信してもよい。この場合、MGCU36は、ロータ22の回転速度を、受信した指令回転速度Nm*にフィードバック制御するための操作量として、指令トルクTreqを算出すればよい。また、EVCU50は、図7のステップS32又は図9のステップS52において、MGCU36に送信する指令回転速度Nm*を所定回転速度まで低下させればよい。ここで、所定回転速度は、0であってもよいし、0よりも高い値であってもよい。 The EVCU 50 may transmit the command rotational speed Nm* to the MGCU 36. In this case, the MGCU 36 may calculate the command torque Treq as the manipulated variable for feedback-controlling the rotation speed of the rotor 22 to the received command rotation speed Nm*. Also, the EVCU 50 may reduce the command rotational speed Nm* to be transmitted to the MGCU 36 to a predetermined rotational speed in step S32 of FIG. 7 or step S52 of FIG. Here, the predetermined rotation speed may be 0, or may be a value higher than 0.
 ・EVCU50、MGCU36及びブレーキCU63の演算機能が1つのCUに集約されていてもよい。 · The computing functions of the EVCU 50, the MGCU 36, and the brake CU 63 may be integrated into one CU.
 ・インバータを構成する半導体スイッチとしては、IGBTに限らず、例えば、ボディダイオードを内蔵するNチャネルMOSFETであってもよい。この場合、スイッチの高電位側端子がドレインであり、低電位側端子がソースである。 · The semiconductor switch that constitutes the inverter is not limited to an IGBT, and may be, for example, an N-channel MOSFET with a built-in body diode. In this case, the high side terminal of the switch is the drain and the low side terminal is the source.
 ・回転電機としては、星形結線されたものに限らず、例えばΔ結線されたものであってもよい。 · The rotating electric machine is not limited to a star-connected one, and may be, for example, a delta-connected one.
 ・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 - The controller and techniques described in this disclosure can be performed by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program; may be implemented. Alternatively, the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured. The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (7)

  1.  ロータ(22)及びステータ巻線(21)を有する回転電機(20)と、
     前記ステータ巻線に電気的に接続されるインバータ(30)と、
     前記ロータから動力が伝達されることにより回転する駆動輪(11)と、
     機械式のブレーキ装置(60)と、
    を備える車両(10)に適用される車両用制御装置において、
     前記ブレーキ装置から前記車両の車輪に付与する摩擦制動トルクを制御すべく、前記ブレーキ装置の制御を行うブレーキ制御部(63)と、
     前記回転電機の回生発電によって発生する回生トルクを制御すべく、前記インバータのスイッチング制御を行うインバータ制御部(36)と、
     前記回転電機及び前記インバータの少なくとも一方の温度を取得し、取得した温度が判定温度(TempH,TempL)を超えたか否かを判定する判定部と、を備え、
     前記回生発電が行われている場合において、取得した温度が前記判定温度を超えたと判定されたとき、前記回生トルクが低下して0になる前に、前記車輪に摩擦制動トルクを付与するように前記ブレーキ制御部により前記ブレーキ装置を制御する、車両用制御装置。
    a rotating electrical machine (20) having a rotor (22) and stator windings (21);
    an inverter (30) electrically connected to the stator windings;
    a driving wheel (11) rotated by power transmission from the rotor;
    a mechanical braking device (60);
    In a vehicle control device applied to a vehicle (10) comprising
    a brake control unit (63) for controlling the brake device in order to control the frictional braking torque applied from the brake device to the wheels of the vehicle;
    an inverter control unit (36) that performs switching control of the inverter in order to control regenerative torque generated by regenerative power generation of the rotating electric machine;
    a determination unit that acquires the temperature of at least one of the rotating electric machine and the inverter and determines whether the acquired temperature exceeds a determination temperature (TempH, TempL);
    When it is determined that the acquired temperature exceeds the determination temperature when the regenerative power generation is being performed, friction braking torque is applied to the wheel before the regenerative torque decreases to 0. A control device for a vehicle, wherein the brake control unit controls the brake device.
  2.  前記ブレーキ制御部は、前記摩擦制動トルクを摩擦制動指令トルクに制御すべく、前記ブレーキ装置の制御を行い、
     前記インバータ制御部は、前記回生トルクを回生制動指令トルクに制御すべく、前記スイッチング制御を行い、
     前記回生発電が行われている場合において、取得した温度が、前記判定温度としての制限開始温度(TempH)を超えたと判定されたとき、前記ブレーキ制御部で用いられる前記摩擦制動指令トルクを増加し、かつ、前記インバータ制御部で用いられる前記回生制動指令トルクを0に向かって減少させる処理部を備え、
     前記インバータ制御部は、
     前記回生トルクの制御に用いる前記回生制動指令トルクにローパスフィルタ処理を施し、
     前記回生発電が行われている場合において、取得した温度が前記制限開始温度を超えたと判定されたとき、取得した温度が前記制限開始温度以下であると判定されるときよりも、前記ローパスフィルタ処理の時定数を大きくする、請求項1に記載の車両用制御装置。
    The brake control unit controls the brake device so as to control the friction braking torque to the friction braking command torque,
    The inverter control unit performs the switching control to control the regenerative torque to the regenerative braking command torque,
    When it is determined that the obtained temperature exceeds the limit start temperature (TempH) as the determination temperature when the regenerative power generation is being performed, the friction braking command torque used in the brake control unit is increased. and a processing unit that reduces the regenerative braking command torque used in the inverter control unit toward 0,
    The inverter control unit
    performing low-pass filter processing on the regenerative braking command torque used for controlling the regenerative torque;
    When it is determined that the acquired temperature exceeds the limit start temperature when the regenerative power generation is being performed, the low-pass filter process is performed more than when it is determined that the acquired temperature is equal to or lower than the limit start temperature. 2. The vehicle control device according to claim 1, wherein the time constant of is increased.
  3.  取得した温度が前記制限開始温度よりも低い通知温度(TempL)を超えたと判定された場合、前記ブレーキ制御部による前記ブレーキ装置の制御、及び前記インバータ制御部による前記回生発電のための前記スイッチング制御の少なくとも一方により、前記ロータの回転速度を低下させる処理を行う回転低下部を備える、請求項2に記載の車両用制御装置。 When it is determined that the obtained temperature exceeds a notification temperature (TempL) that is lower than the limit start temperature, the brake control unit controls the braking device, and the inverter control unit controls the switching for regenerative power generation. 3. The vehicle control device according to claim 2, further comprising a rotation reduction unit that performs processing for reducing the rotation speed of the rotor by at least one of:
  4.  前記インバータ制御部は、前記回転電機の回生トルクを回生制動指令トルクに制御すべく、前記スイッチング制御を行い、
     前記判定部は、取得した温度が、前記判定温度としての通知温度(TempL)、又は前記通知温度よりも高い制限開始温度(TempH)を超えたか否かを判定し、
     前記ブレーキ制御部は、前記回生発電が行われている場合において、取得した温度が前記通知温度を超えたと判定されたとき、取得した温度が前記制限開始温度を超えたと判定される前であっても、前記車輪に前記摩擦制動トルクを付与するように前記ブレーキ装置を制御し、
     前記回生発電が行われている場合において、取得した温度が前記制限開始温度を超えたと判定されたとき、前記回生トルクの制御に用いる前記回生制動指令トルクを0に向かって減少させる処理又は前記スイッチング制御を停止する処理のいずれかを行う処理部を備える、請求項1に記載の車両用制御装置。
    The inverter control unit performs the switching control to control the regenerative torque of the rotating electric machine to the regenerative braking command torque,
    The determination unit determines whether the acquired temperature exceeds a notification temperature (TempL) as the determination temperature or a restriction start temperature (TempH) higher than the notification temperature,
    When it is determined that the acquired temperature exceeds the notification temperature in the case where the regenerative power generation is being performed, the brake control unit determines that the acquired temperature has exceeded the limit start temperature. also controls the brake device to apply the friction braking torque to the wheel,
    When it is determined that the acquired temperature exceeds the limit start temperature when the regenerative power generation is being performed, the processing or the switching of reducing the regenerative braking command torque used for controlling the regenerative torque toward 0 2. The vehicle control device according to claim 1, further comprising a processing unit that performs any one of processing for stopping control.
  5.  取得した温度が前記通知温度を超えたと判定された場合、前記ブレーキ制御部による前記ブレーキ装置の制御、及び前記インバータ制御部による前記回生発電のための前記スイッチング制御の少なくとも一方により、前記ロータの回転速度を低下させる処理を行う回転低下部を備える、請求項4に記載の車両用制御装置。 When it is determined that the obtained temperature exceeds the notification temperature, at least one of the control of the brake device by the brake control unit and the switching control for the regenerative power generation by the inverter control unit causes the rotor to rotate. 5. The vehicle control device according to claim 4, further comprising a rotation reduction unit that performs processing for reducing speed.
  6.  前記判定部は、取得した温度が前記通知温度を超えたと判定された後、取得した温度が前記通知温度よりも低い解除温度(Temp0)以下になったか否かを判定し、
     前記回転低下部は、取得した温度が前記解除温度以下になったと判定された場合、前記ロータの回転速度を低下させる処理の実行を中止する、請求項3又は5に記載の車両用制御装置。
    After determining that the acquired temperature exceeds the notification temperature, the determination unit determines whether or not the acquired temperature has become equal to or lower than a release temperature (Temp0) lower than the notification temperature,
    6. The vehicle control device according to claim 3, wherein said rotation reduction unit stops executing the process of reducing the rotation speed of said rotor when it is determined that the acquired temperature has become equal to or lower than said cancellation temperature.
  7.  ロータ(22)及びステータ巻線(21)を有する回転電機(20)と、
     前記ステータ巻線に電気的に接続されるインバータ(30)と、
     前記ロータから動力が伝達されることにより回転する駆動輪(11)と、
     機械式のブレーキ装置(60)と、
     コンピュータ(36a,50a,63a)と、
    を備える車両(10)に適用されるプログラムにおいて、
     前記コンピュータに、
     前記ブレーキ装置から前記車両の車輪に付与する摩擦制動トルクを制御すべく、前記ブレーキ装置の制御を行う処理と、
     前記回転電機の回生発電によって発生する回生トルクを制御すべく、前記インバータのスイッチング制御を行う処理と、
     前記回転電機及び前記インバータの少なくとも一方の温度を取得し、取得した温度が判定温度(TempH,TempL)を超えたか否かを判定する処理と、
     前記回生発電が行われている場合において、取得した温度が前記判定温度を超えたと判定したとき、前記回生トルクが低下して0になる前に、前記車輪に摩擦制動トルクを付与するように前記ブレーキ装置を制御する処理と、を実行させる、プログラム。
    a rotating electrical machine (20) having a rotor (22) and stator windings (21);
    an inverter (30) electrically connected to the stator windings;
    a driving wheel (11) rotated by power transmission from the rotor;
    a mechanical braking device (60);
    a computer (36a, 50a, 63a);
    In a program applied to a vehicle (10) comprising
    to said computer;
    a process of controlling the braking device to control the frictional braking torque applied from the braking device to the wheels of the vehicle;
    a process of performing switching control of the inverter in order to control regenerative torque generated by regenerative power generation of the rotating electric machine;
    a process of acquiring the temperature of at least one of the rotating electric machine and the inverter and determining whether or not the acquired temperature exceeds a judgment temperature (TempH, TempL);
    In the case where the regenerative power generation is performed, when it is determined that the acquired temperature exceeds the determination temperature, before the regenerative torque decreases to 0, the friction braking torque is applied to the wheel. A program for executing a process for controlling a brake device.
PCT/JP2022/024108 2021-07-02 2022-06-16 Vehicle control device, and program WO2023276696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280046925.2A CN117597254A (en) 2021-07-02 2022-06-16 Control device and program for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-110699 2021-07-02
JP2021110699A JP2023007694A (en) 2021-07-02 2021-07-02 Vehicle control device, and program

Publications (1)

Publication Number Publication Date
WO2023276696A1 true WO2023276696A1 (en) 2023-01-05

Family

ID=84692278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024108 WO2023276696A1 (en) 2021-07-02 2022-06-16 Vehicle control device, and program

Country Status (3)

Country Link
JP (1) JP2023007694A (en)
CN (1) CN117597254A (en)
WO (1) WO2023276696A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018709A (en) * 2007-07-12 2009-01-29 Toyota Motor Corp Vehicle and control method therefor
JP2012060871A (en) * 2010-09-03 2012-03-22 Hyundai Motor Co Ltd Braking control method of electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018709A (en) * 2007-07-12 2009-01-29 Toyota Motor Corp Vehicle and control method therefor
JP2012060871A (en) * 2010-09-03 2012-03-22 Hyundai Motor Co Ltd Braking control method of electric vehicle

Also Published As

Publication number Publication date
JP2023007694A (en) 2023-01-19
CN117597254A (en) 2024-02-23

Similar Documents

Publication Publication Date Title
JP5669833B2 (en) Control device and control method for electric vehicle
JP4380700B2 (en) Electric vehicle
JP4751854B2 (en) Vehicle control device, control method, program for realizing the method, and recording medium recording the program
JP4946100B2 (en) Motor drive control device, electric vehicle equipped with the same, and motor drive control method
EP2533417B1 (en) Apparatus for controlling rotating electrical machine and method for controlling rotating electrical machine
JP2007143303A (en) Control device of electric vehicle
JP2012100435A (en) Rotating electric machine control device
JP5358622B2 (en) Rotating electrical machine control device
JP4765939B2 (en) Electric vehicle
JP4848976B2 (en) Electric motor control device
JP7459752B2 (en) Regenerative control method and regenerative control device
JP2010178444A (en) Rotating electrical machine control system
JP2009240087A (en) Control unit of rotating electric machine
WO2023276696A1 (en) Vehicle control device, and program
JP6137045B2 (en) Vehicle drive motor control device
WO2023276615A1 (en) Vehicle control device, and program
WO2022270268A1 (en) Control device for system, and program
JP6084600B2 (en) Braking device for vehicle
JP6973641B2 (en) Inverter control method and inverter control system
WO2022270269A1 (en) Moving body control device and program
WO2023002809A1 (en) Control device, and program
WO2023002810A1 (en) Device for vehicle
JP2010161929A (en) System and device for controlling rotary electric machine
JP2002271908A (en) Series hybrid electric vehicle
JP2022182013A (en) Vehicular control device and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE