JP2008236270A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2008236270A5 JP2008236270A5 JP2007071688A JP2007071688A JP2008236270A5 JP 2008236270 A5 JP2008236270 A5 JP 2008236270A5 JP 2007071688 A JP2007071688 A JP 2007071688A JP 2007071688 A JP2007071688 A JP 2007071688A JP 2008236270 A5 JP2008236270 A5 JP 2008236270A5
- Authority
- JP
- Japan
- Prior art keywords
- time
- matrix
- information
- estimated value
- correlation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 claims 54
- 230000001629 suppression Effects 0.000 claims 12
- 238000000605 extraction Methods 0.000 claims 4
Claims (9)
前記観測情報を取得する取得手段と、
カルマンフィルタのみを用いて、取得された前記観測情報から前記雑音を除去して前記所望情報を抽出する抽出手段と、を有し、
前記カルマンフィルタは、
状態空間モデルの状態方程式において自己回帰モデルの係数を使用しないように構成されている、
雑音抑制装置。 A noise suppression device that estimates the desired information only from observation information in which noise is mixed in the desired information,
Obtaining means for obtaining the observation information;
Using only a Kalman filter and extracting the desired information by removing the noise from the acquired observation information, and
The Kalman filter is
It is configured not to use autoregressive model coefficients in the state equation of the state space model,
Noise suppression device.
時刻nのみの観測情報に対して、時刻nまでの情報により前記所望情報を含む時刻n+1のシステムの状態量を推定した場合の推定誤差の第1相関値行列を算出する第1の相関演算部と、 A first correlation calculation unit that calculates a first correlation value matrix of an estimation error when the state quantity of the system at time n + 1 including the desired information is estimated from information up to time n with respect to observation information only at time n When,
時刻nのみの観測情報に対して、前記第1の相関演算部によって算出された前記推定誤差の第1相関値行列を用いて、時刻n+1までの情報による当該時刻での前記状態量の最適推定値ベクトルと、時刻nまでの情報による時刻n+1での前記状態量の最適推定値ベクトルと、前記観測情報を含む観測量の推定誤差ベクトルと、の関係を規定するための重み係数行列を算出する重み係数算出部と、 For observation information only at time n, using the first correlation value matrix of the estimation error calculated by the first correlation calculation unit, optimal estimation of the state quantity at that time by information up to time n + 1 A weighting coefficient matrix for defining the relationship between the value vector, the optimum estimated value vector of the state quantity at time n + 1 based on the information up to time n, and the estimated error vector of the observed quantity including the observation information is calculated. A weighting factor calculation unit;
時刻nのみの観測情報に対して、時刻nまでの情報による時刻n+1での前記状態量の第1最適推定値ベクトルを算出する第1の最適推定値算出部と、 A first optimum estimated value calculating unit for calculating a first optimum estimated value vector of the state quantity at time n + 1 based on information up to time n with respect to observation information only at time n;
時刻nのみの観測情報に対して、前記重み係数算出部によって算出された前記重み係数行列を用いて、時刻n+1までの情報による当該時刻での前記状態量の第2最適推定値ベクトルを算出する第2の最適推定値算出部と、 For the observation information only at time n, using the weighting coefficient matrix calculated by the weighting coefficient calculation unit, calculate a second optimal estimated value vector of the state quantity at the time based on information up to time n + 1. A second optimum estimated value calculation unit;
時刻nのみの観測情報に対して、時刻n+1までの情報により当該時刻の前記状態量を推定した場合の推定誤差の第2相関値行列を算出する第2の相関演算部と、 A second correlation calculation unit that calculates a second correlation value matrix of an estimation error when the state quantity at the time is estimated from information up to time n + 1 with respect to observation information only at time n;
、,
を有する請求項1記載の雑音抑圧装置。 The noise suppression device according to claim 1, comprising:
所定の状態遷移行列、与えられた駆動源ベクトルの共分散の要素値、および与えられたまたは前回前記第2の相関演算部によって算出された前記推定誤差の第2相関値行列を用いて、前記推定誤差の第1相関値行列の算出を行い、 Using a predetermined state transition matrix, an element value of covariance of a given drive source vector, and a second correlation value matrix of the estimation error given or previously calculated by the second correlation calculation unit, Calculate the first correlation value matrix of the estimation error,
前記重み係数算出部は、 The weight coefficient calculation unit includes:
前記第1の相関演算部によって算出された前記推定誤差の第1相関値行列、与えられた観測遷移行列、および与えられた雑音ベクトルの共分散のスカラー量を用いて、前記重み係数行列の算出を行い、 Calculation of the weighting coefficient matrix using a first correlation value matrix of the estimation error calculated by the first correlation calculation unit, a given observation transition matrix, and a covariance scalar quantity of a given noise vector And
前記第1の最適推定値算出部は、 The first optimal estimated value calculation unit includes:
前記状態遷移行列、および、与えられたまたは前回前記第2の最適推定値算出部によって算出された前記状態量の第2最適推定値ベクトルを用いて、前記状態量の第1最適推定値ベクトルの算出を行い、 Using the state transition matrix and the second optimum estimated value vector of the state quantity given or previously calculated by the second optimum estimated value calculating unit, the first optimum estimated value vector of the state quantity Perform the calculation
前記第2の最適推定値算出部は、 The second optimum estimated value calculation unit includes:
前記第1の最適推定値算出部によって算出された前記状態量の第1最適推定値ベクトル、前記重み係数算出部によって算出された前記重み係数行列、前記観測遷移行列、および時刻n+1のみにおける観測量を用いて、前記状態量の第2最適推定値ベクトルの算出を行い、 The first optimal estimated value vector of the state quantity calculated by the first optimal estimated value calculating unit, the weighting coefficient matrix calculated by the weighting coefficient calculating unit, the observation transition matrix, and the observed amount only at time n + 1 To calculate a second optimal estimated value vector of the state quantity,
前記第2の相関演算部は、 The second correlation calculation unit includes:
前記重み係数算出部によって算出された前記重み係数行列、前記観測遷移行列、および前記第1の相関演算部によって算出された前記推定誤差の第1相関値行列を用いて、前記推定誤差の第2相関値行列の算出を行う、 Using the weight coefficient matrix calculated by the weight coefficient calculation unit, the observation transition matrix, and the first correlation value matrix of the estimation error calculated by the first correlation calculation unit, the second estimation error is calculated. Calculate the correlation value matrix,
請求項2記載の雑音抑圧装置。 The noise suppression device according to claim 2.
前記観測情報を取得する取得ステップと、
カルマンフィルタのみを用いて、取得した前記観測情報から前記雑音を除去して前記所望情報を抽出する抽出ステップと、を有し、
前記カルマンフィルタは、
状態空間モデルの状態方程式において自己回帰モデルの係数を使用しないように構成されている、
雑音抑圧方法。 A noise suppression method for estimating the desired information only from observation information in which noise is mixed in the desired information,
An acquisition step of acquiring the observation information;
Using only a Kalman filter and extracting the desired information by removing the noise from the acquired observation information, and
The Kalman filter is
It is configured not to use autoregressive model coefficients in the state equation of the state space model,
Noise suppression method.
時刻nのみの観測情報に対して、時刻nまでの情報により前記所望情報を含む時刻n+1のシステムの状態量を推定した場合の推定誤差の第1相関値行列を算出する第1の相関演算工程と、 A first correlation calculation step of calculating a first correlation value matrix of an estimation error when the state quantity of the system at time n + 1 including the desired information is estimated from information up to time n with respect to observation information only at time n When,
時刻nのみの観測情報に対して、前記第1の相関演算工程で算出した前記推定誤差の第1相関値行列を用いて、時刻n+1までの情報による当該時刻での前記状態量の最適推定値ベクトルと、時刻nまでの情報による時刻n+1での前記状態量の最適推定値ベクトルと、前記観測情報を含む観測量の推定誤差ベクトルと、の関係を規定するための重み係数行列を算出する重み係数算出工程と、 For the observation information only at time n, using the first correlation value matrix of the estimation error calculated in the first correlation calculation step, the optimum estimated value of the state quantity at that time by the information up to time n + 1 A weight for calculating a weight coefficient matrix for defining a relationship between a vector, an optimal estimated value vector of the state quantity at time n + 1 based on information up to time n, and an estimated error vector of the observed quantity including the observation information Coefficient calculation step;
時刻nのみの観測情報に対して、時刻nまでの情報による時刻n+1での前記状態量の第1最適推定値ベクトルを算出する第1の最適推定値算出工程と、 A first optimal estimated value calculating step of calculating a first optimal estimated value vector of the state quantity at time n + 1 based on information up to time n with respect to observation information only at time n;
時刻nのみの観測情報に対して、前記重み係数算出工程で算出した前記重み係数行列を用いて、時刻n+1までの情報による当該時刻での前記状態量の第2最適推定値ベクトルを算出する第2の最適推定値算出工程と、 For the observation information only at time n, the second optimal estimated value vector of the state quantity at the time according to the information up to time n + 1 is calculated using the weight coefficient matrix calculated in the weight coefficient calculation step. 2 optimal estimated value calculation steps;
時刻nのみの観測情報に対して、時刻n+1までの情報により当該時刻の前記状態量を推定した場合の推定誤差の第2相関値行列を算出する第2の相関演算工程と、 A second correlation calculation step of calculating a second correlation value matrix of an estimation error when the state quantity at the time is estimated from information up to time n + 1 with respect to observation information only at time n;
、,
を有する請求項4記載の雑音抑圧方法。 The noise suppression method according to claim 4, comprising:
所定の状態遷移行列、与えられた駆動源ベクトルの共分散の要素値、および与えられたまたは前回前記第2の相関演算工程で算出した前記推定誤差の第2相関値行列を用いて、前記推定誤差の第1相関値行列の算出を行い、 The estimation is performed using a predetermined state transition matrix, a covariance element value of a given drive source vector, and a second correlation value matrix of the estimation error given or previously calculated in the second correlation calculation step. Calculate the first correlation value matrix of error,
前記重み係数算出工程は、 The weighting factor calculating step includes
前記第1の相関演算工程で算出した前記推定誤差の第1相関値行列、与えられた観測遷移行列、および与えられた雑音ベクトルの共分散のスカラー量を用いて、前記重み係数行列の算出を行い、 The weighting coefficient matrix is calculated using the first correlation value matrix of the estimation error calculated in the first correlation calculation step, the given observation transition matrix, and the scalar quantity of the covariance of the given noise vector. Done
前記第1の最適推定値算出工程は、 The first optimum estimated value calculating step includes:
前記状態遷移行列、および、与えられたまたは前回前記第2の最適推定値算出工程で算出した前記状態量の第2最適推定値ベクトルを用いて、前記状態量の第1最適推定値ベクトルの算出を行い、 Calculation of the first optimum estimated value vector of the state quantity using the state transition matrix and the second optimum estimated value vector of the state quantity given or previously calculated in the second optimum estimated value calculating step And
前記第2の最適推定値算出工程は、 The second optimum estimated value calculating step includes:
前記第1の最適推定値算出工程で算出した前記状態量の第1最適推定値ベクトル、前記重み係数算出工程で算出した前記重み係数行列、前記観測遷移行列、および時刻n+1のみにおける観測量を用いて、前記状態量の第2最適推定値ベクトルの算出を行い、 The first optimal estimated value vector of the state quantity calculated in the first optimal estimated value calculating step, the weighting coefficient matrix calculated in the weighting coefficient calculating step, the observation transition matrix, and the observed amount only at time n + 1 are used. Calculating a second optimal estimated value vector of the state quantity,
前記第2の相関演算工程は、 The second correlation calculation step includes:
前記重み係数算出工程で算出した前記重み係数行列、前記観測遷移行列、および前記第1の相関演算工程で算出した前記推定誤差の第1相関値行列を用いて、前記推定誤差の第2相関値行列の算出を行う、 A second correlation value of the estimation error using the weighting coefficient matrix calculated in the weighting coefficient calculation step, the observation transition matrix, and a first correlation value matrix of the estimation error calculated in the first correlation calculation step. Calculate the matrix,
請求項5記載の雑音抑圧方法。 The noise suppression method according to claim 5.
コンピュータに、
前記観測情報を取得する取得ステップと、
カルマンフィルタのみを用いて、取得した前記観測情報から前記雑音を除去して前記所望情報を抽出する抽出ステップと、前記カルマンフィルタは、状態空間モデルの状態方程式において自己回帰モデルの係数を使用しないように構成されている、
を実行させるための雑音抑制プログラム。 A noise suppression program for estimating the desired information only from observation information in which noise is mixed in the desired information,
On the computer,
An acquisition step of acquiring the observation information;
An extraction step for extracting the desired information by removing the noise from the obtained observation information using only the Kalman filter, and the Kalman filter is configured not to use the coefficient of the autoregressive model in the state equation of the state space model Being
The noise suppression program in order to run.
時刻nのみの観測情報に対して、時刻nまでの情報により前記所望情報を含む時刻n+1のシステムの状態量を推定した場合の推定誤差の第1相関値行列を算出する第1の相関演算工程と、 A first correlation calculation step of calculating a first correlation value matrix of an estimation error when the state quantity of the system at time n + 1 including the desired information is estimated from information up to time n with respect to observation information only at time n When,
時刻nのみの観測情報に対して、前記第1の相関演算工程で算出した前記推定誤差の第1相関値行列を用いて、時刻n+1までの情報による当該時刻での前記状態量の最適推定値ベクトルと、時刻nまでの情報による時刻n+1での前記状態量の最適推定値ベクトルと、前記観測情報を含む観測量の推定誤差ベクトルと、の関係を規定するための重み係数行列を算出する重み係数算出工程と、 For the observation information only at time n, using the first correlation value matrix of the estimation error calculated in the first correlation calculation step, the optimum estimated value of the state quantity at that time by the information up to time n + 1 A weight for calculating a weight coefficient matrix for defining a relationship between a vector, an optimal estimated value vector of the state quantity at time n + 1 based on information up to time n, and an estimated error vector of the observed quantity including the observation information Coefficient calculation step;
時刻nのみの観測情報に対して、時刻nまでの情報による時刻n+1での前記状態量の第1最適推定値ベクトルを算出する第1の最適推定値算出工程と、 A first optimal estimated value calculating step of calculating a first optimal estimated value vector of the state quantity at time n + 1 based on information up to time n with respect to observation information only at time n;
時刻nのみの観測情報に対して、前記重み係数算出工程で算出した前記重み係数行列を用いて、時刻n+1までの情報による当該時刻での前記状態量の第2最適推定値ベクトルを算出する第2の最適推定値算出工程と、 For the observation information only at time n, the second optimal estimated value vector of the state quantity at the time according to the information up to time n + 1 is calculated using the weight coefficient matrix calculated in the weight coefficient calculation step. 2 optimal estimated value calculation steps;
時刻nのみの観測情報に対して、時刻n+1までの情報により当該時刻の前記状態量を推定した場合の推定誤差の第2相関値行列を算出する第2の相関演算工程と、 A second correlation calculation step of calculating a second correlation value matrix of an estimation error when the state quantity at the time is estimated from information up to time n + 1 with respect to observation information only at time n;
、,
を有する請求項7記載の雑音抑圧プログラム。 The noise suppression program according to claim 7.
所定の状態遷移行列、与えられた駆動源ベクトルの共分散の要素値、および与えられたまたは前回前記第2の相関演算工程で算出した前記推定誤差の第2相関値行列を用いて、前記推定誤差の第1相関値行列の算出を行い、 The estimation is performed using a predetermined state transition matrix, a covariance element value of a given drive source vector, and a second correlation value matrix of the estimation error given or previously calculated in the second correlation calculation step. Calculate the first correlation value matrix of error,
前記重み係数算出工程は、 The weighting factor calculating step includes
前記第1の相関演算工程で算出した前記推定誤差の第1相関値行列、与えられた観測遷移行列、および与えられた雑音ベクトルの共分散のスカラー量を用いて、前記重み係数行列の算出を行い、 The weighting coefficient matrix is calculated using the first correlation value matrix of the estimation error calculated in the first correlation calculation step, the given observation transition matrix, and the scalar quantity of the covariance of the given noise vector. Done
前記第1の最適推定値算出工程は、 The first optimum estimated value calculating step includes:
前記状態遷移行列、および、与えられたまたは前回前記第2の最適推定値算出工程で算出した前記状態量の第2最適推定値ベクトルを用いて、前記状態量の第1最適推定値ベクトルの算出を行い、 Calculation of the first optimum estimated value vector of the state quantity using the state transition matrix and the second optimum estimated value vector of the state quantity given or previously calculated in the second optimum estimated value calculating step And
前記第2の最適推定値算出工程は、 The second optimum estimated value calculating step includes:
前記第1の最適推定値算出工程で算出した前記状態量の第1最適推定値ベクトル、前記重み係数算出工程で算出した前記重み係数行列、前記観測遷移行列、および時刻n+1のみにおける観測量を用いて、前記状態量の第2最適推定値ベクトルの算出を行い、 Using the first optimal estimated value vector of the state quantity calculated in the first optimal estimated value calculating step, the weighting coefficient matrix calculated in the weighting coefficient calculating step, the observation transition matrix, and the observed amount only at time n + 1. Calculating a second optimal estimated value vector of the state quantity,
前記第2の相関演算工程は、 The second correlation calculation step includes:
前記重み係数算出工程で算出した前記重み係数行列、前記観測遷移行列、および前記第1の相関演算工程で算出した前記推定誤差の第1相関値行列を用いて、前記推定誤差の第2相関値行列の算出を行う、 A second correlation value of the estimation error using the weighting coefficient matrix calculated in the weighting coefficient calculation step, the observation transition matrix, and a first correlation value matrix of the estimation error calculated in the first correlation calculation step. Calculate the matrix,
請求項8記載の雑音抑圧プログラム。 The noise suppression program according to claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007071688A JP5115952B2 (en) | 2007-03-19 | 2007-03-19 | Noise suppression device and noise suppression method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007071688A JP5115952B2 (en) | 2007-03-19 | 2007-03-19 | Noise suppression device and noise suppression method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008236270A JP2008236270A (en) | 2008-10-02 |
JP2008236270A5 true JP2008236270A5 (en) | 2010-05-06 |
JP5115952B2 JP5115952B2 (en) | 2013-01-09 |
Family
ID=39908527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007071688A Active JP5115952B2 (en) | 2007-03-19 | 2007-03-19 | Noise suppression device and noise suppression method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5115952B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8527266B2 (en) | 2008-03-21 | 2013-09-03 | Tokyo University Of Science Educational Foundation Administrative Organization | Noise suppression device and noise suppression method |
CN101873121B (en) * | 2010-06-09 | 2012-06-27 | 浙江大学 | Method for processing signals of non-linear dynamic system on basis of histogram estimation particle filtering algorithm |
JP2013120358A (en) * | 2011-12-08 | 2013-06-17 | Nippon Hoso Kyokai <Nhk> | Noise suppression device, noise suppression method and noise suppression program |
CN103196450B (en) * | 2013-04-02 | 2014-05-21 | 武汉大学 | Kalman filtering method based on analog circuit and analog circuit |
WO2016067559A1 (en) | 2014-10-29 | 2016-05-06 | 日本電気株式会社 | Pipe network analysis device, pipe network analysis method, and storage medium in which computer program is recorded |
CN109787584A (en) * | 2019-01-23 | 2019-05-21 | 桂林航天工业学院 | A kind of mixing uncertain system guaranteed cost Robust Kalman Filter design method |
WO2022049741A1 (en) * | 2020-09-04 | 2022-03-10 | 公立大学法人公立諏訪東京理科大学 | Impact sound diagnosis assistance device, impact sound diagnosis assistance method, impact sound diagnosis assistance system, and program |
CN115964361B (en) * | 2022-11-14 | 2023-07-14 | 苏州浪潮智能科技有限公司 | Data enhancement method, system, equipment and computer readable storage medium |
CN116007661B (en) * | 2023-02-21 | 2023-06-23 | 河海大学 | Gyro error suppression method based on improved AR model and smooth filtering |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7480595B2 (en) * | 2003-08-11 | 2009-01-20 | Japan Science And Technology Agency | System estimation method and program, recording medium, and system estimation device |
-
2007
- 2007-03-19 JP JP2007071688A patent/JP5115952B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008236270A5 (en) | ||
EP2375379A3 (en) | Medical image processing apparatus and method, and computer readable recording medium on which is recorded program for the same | |
CN104434064B (en) | Method for processing and tracking heart rate and respiration rate signals and a system thereof | |
RU2019101373A (en) | METHOD FOR ESTIMATING VOLTAGE INTENSITY COEFFICIENT AND CORRESPONDING METHOD FOR CALCULATING THE SERVICE LIFE | |
WO2005106534A3 (en) | Improving inter-subject coherence in dt-mri | |
van den Berg | Calibrating the ornstein-uhlenbeck (vasicek) model | |
JP2011169896A5 (en) | ||
GB201216897D0 (en) | Position and orientation estimation method and apparatus therefor | |
JP2008109640A5 (en) | ||
EP1973104A3 (en) | Method and apparatus for estimating noise by using harmonics of a voice signal | |
RU2011104085A (en) | METHOD AND DEVICE FOR FREQUENCY DATA ANALYSIS | |
JP2012133607A5 (en) | ||
JP2014511713A5 (en) | ||
WO2008057850A3 (en) | Object recognition system for medical imaging | |
JP2014230793A5 (en) | ||
WO2012166489A3 (en) | Methods and systems for estimating battery health | |
JP2014229212A5 (en) | Information processing system, information processing apparatus, program, and information processing method | |
JP2015097355A5 (en) | ||
JP2017140107A5 (en) | ||
JP2016187391A5 (en) | ||
WO2009062651A3 (en) | Modeling the electrical activity of the heart by a single dipole, concurrently estimating subject and measurement related conditions | |
WO2015065781A3 (en) | System and method for model-based reconstruction of quantitative images | |
ATE466352T1 (en) | MODEL-BASED DETERMINATION OF THE CONTRACTION STATUS OF A PERIODICALLY CONTRACTED OBJECT | |
JP2015082387A5 (en) | ||
JPWO2021214819A5 (en) |