JP2008233356A - Manufacturing method of optical filter - Google Patents

Manufacturing method of optical filter Download PDF

Info

Publication number
JP2008233356A
JP2008233356A JP2007070555A JP2007070555A JP2008233356A JP 2008233356 A JP2008233356 A JP 2008233356A JP 2007070555 A JP2007070555 A JP 2007070555A JP 2007070555 A JP2007070555 A JP 2007070555A JP 2008233356 A JP2008233356 A JP 2008233356A
Authority
JP
Japan
Prior art keywords
filter
film
reflective
substrate
concavo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007070555A
Other languages
Japanese (ja)
Other versions
JP4945275B2 (en
Inventor
Takayuki Wakabayashi
孝幸 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2007070555A priority Critical patent/JP4945275B2/en
Publication of JP2008233356A publication Critical patent/JP2008233356A/en
Application granted granted Critical
Publication of JP4945275B2 publication Critical patent/JP4945275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Diaphragms For Cameras (AREA)
  • Blocking Light For Cameras (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent ghosts, flares, and cracks from developing at the cutting section and the vapor deposition film from peeling off when cutting out optical filters in the filter shapes. <P>SOLUTION: In step S1, a nonreflective asperity structure 12 is formed surrounding the area to form a thin film on the substrate 11 of a 100 μm thick PET sheet. In the following step S2, an ND film 13 is formed inside the nonreflective asperity structure 12 formed in step S1. In step S3, an ND filter is punched out using this nonreflective asperity structure 12 as the contour in a press machine. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ビデオカメラ或いはデジタルスチールカメラ等の撮影系の光量調節に使用するのに適した光学フィルタの製造方法に関するものである。   The present invention relates to a method of manufacturing an optical filter suitable for use in adjusting the amount of light in a photographing system such as a video camera or a digital still camera.

従来、ビデオカメラやデジタルスチールカメラ等に使用される光量調整装置においては、光量を調整するために光量調整用絞り羽根と共に光量調整用の光学フィルタとして、例えばNDフィルタ(Neutral Density Filter)が用いられている。このNDフィルタは絞り羽根が小絞りの際のハンチングや光学上の回折現象による解像力の低下等の課題を解決するために、絞り羽根と共に絞り開口に挿入するようにされている。   2. Description of the Related Art Conventionally, in a light amount adjusting device used for a video camera, a digital still camera, or the like, for example, an ND filter (Neutral Density Filter) is used as an optical filter for adjusting a light amount together with a diaphragm blade for adjusting a light amount. ing. The ND filter is inserted into the aperture opening together with the aperture blade in order to solve problems such as hunting when the aperture blade is a small aperture and a decrease in resolution due to an optical diffraction phenomenon.

光量調節装置においては、近年の撮像素子の感度向上に伴い、NDフィルタの濃度を濃くすることにより、光の透過率を低下させ、被写界の明るさが同一でも絞りの開口をより大きくする工夫がなされている。通常では、NDフィルタは透明樹脂シート基材の表面に、光学的フィルタ特性及び反射防止特性を有する蒸着膜を成膜した後に、プレス加工等により必要なフィルタ形状に切断加工して製作している。   In the light amount adjusting device, with the recent improvement in sensitivity of the image sensor, the density of the ND filter is increased to reduce the light transmittance, and the aperture of the diaphragm is increased even if the brightness of the object field is the same. Ingenuity has been made. Usually, the ND filter is manufactured by forming a vapor-deposited film having optical filter characteristics and antireflection characteristics on the surface of the transparent resin sheet base material, and then cutting into a necessary filter shape by pressing or the like. .

しかし、この蒸着膜は硬くて脆い材料であるため、蒸着膜を形成させた透明樹脂シート基材をプレス装置等によりフィルタ形状に切断加工を行う際に、その切断面からクラックを生じてしまうことがある。このクラックは光の乱反射の原因となり、レンズ光学系内においてフレアを生じ、光学解像度の低下の原因となる。   However, since this vapor-deposited film is a hard and brittle material, when the transparent resin sheet substrate on which the vapor-deposited film is formed is cut into a filter shape by a press device or the like, cracks may be generated from the cut surface. There is. This crack causes irregular reflection of light, causes flare in the lens optical system, and causes a decrease in optical resolution.

また、透明樹脂シート基材は切断加工時のプレス金型の上型で押圧し切断される際に、厚さ方向の変形を生じ蒸着膜が剥離してしまうことがある。蒸着膜の剥離が生ずると、レンズ光学系内での塵埃となり、光学的な不具合が生ずるのみでなく、この塵埃が可動レンズのガイド軸等の可動部分に悪影響を与える虞れがある。   Further, when the transparent resin sheet base material is pressed and cut with an upper die of a press mold at the time of cutting, the deposition film may be peeled off due to deformation in the thickness direction. If the vapor deposition film is peeled off, it becomes dust in the lens optical system, which not only causes an optical defect, but this dust may adversely affect movable parts such as the guide shaft of the movable lens.

この問題を防止するため、例えば特許文献1においては、フィルタの外周端部である切断加工部には蒸着膜が成膜されないようにする方法が開示されている。また、特許文献2においては、予めフィルタ形状の一部を切断した後に、蒸着膜を成膜し、成膜後に残り部分を切断することにより、上述の問題を解消する方法が開示されている。   In order to prevent this problem, for example, Patent Document 1 discloses a method for preventing a vapor deposition film from being formed on a cutting portion that is an outer peripheral end portion of a filter. Patent Document 2 discloses a method for solving the above-described problem by cutting a part of the filter shape in advance, forming a vapor deposition film, and cutting the remaining part after the film formation.

特開2003−202612号公報JP 2003-202612 A 特開2003−202613号公報JP 2003-202613 A

しかしながら、上述のようにプレス装置等で切断加工を行う際には蒸着膜のクラックや蒸着膜の剥離の虞れがあるため、プレス加工後に、クラックや蒸着膜の剥離検査工程が不可欠であり、この検査工程や歩留まりの悪さによって高価なものとなってしまう。しかし、この検査工程を行っても、レンズ光学系内での蒸着膜の小片脱落を防ぐことは不十分である。   However, there is a risk of cracking of the vapor deposition film and peeling of the vapor deposition film when performing cutting with a press device or the like as described above, and therefore, after the press processing, a peeling inspection process of the crack or vapor deposition film is indispensable. This inspection process and poor yield result in an expensive one. However, even if this inspection process is performed, it is insufficient to prevent small pieces from falling off the deposited film in the lens optical system.

また、特許文献1に示す方法においては、光学フィルタの外周端部は透明樹脂シート基材自体が露出しているため反射率が高くなる。従って、このように製作した光学フィルタを光学系に組み込み、絞り開口部にこの光学フィルタの外周端部が挿入されると、ゴーストやフレア等が発生する可能性が高い。   Moreover, in the method shown in Patent Document 1, since the transparent resin sheet base material itself is exposed at the outer peripheral end portion of the optical filter, the reflectance becomes high. Therefore, if the optical filter manufactured in this way is incorporated in an optical system and the outer peripheral end of the optical filter is inserted into the aperture opening, there is a high possibility that ghosts, flares, and the like will occur.

更に、特許文献2に示す方法においては、切断加工の工程が2回となり、工程が複雑になる。また、予めフィルタ形状の一部を切断しているためフィルタを支持する部分が少なく、蒸着時の熱等により基材が変形を起し易くなり、更にクラックや剥離も少ないとは云え、皆無ではない。   Furthermore, in the method shown in Patent Document 2, the cutting process is performed twice, which complicates the process. In addition, since a part of the filter shape is cut in advance, there are few parts that support the filter, the base material is likely to be deformed due to heat during vapor deposition, etc. Absent.

本発明の目的は、上述の課題を解消し、ゴーストやフレア等の発生を防止すると共に、フィルタ形状に切断加工する際に、切断加工部からクラックが生じたり、蒸着膜が剥離したりすることを防止できる光学フィルタの製造方法を提供することにある。   The object of the present invention is to eliminate the above-mentioned problems, prevent the occurrence of ghosts and flares, etc., and at the time of cutting into a filter shape, cracks are generated from the cut portion or the deposited film is peeled off. An object of the present invention is to provide a method of manufacturing an optical filter that can prevent the above-described problem.

上記目的を達成するための本発明に係る光学フィルタの製造方法の技術的特徴は、透明樹脂基板の上にフィルタ機能を有する薄膜を形成する領域を囲むように無反射凹凸構造体を形成する工程と、前記無反射凹凸構造体に囲まれた領域内に前記薄膜を成膜する工程と、前記無反射凹凸構造体を形成した領域において前記基板を切り抜く工程とを備えることにある。   The technical feature of the method for producing an optical filter according to the present invention for achieving the above object is a process of forming a non-reflective uneven structure on a transparent resin substrate so as to surround a region where a thin film having a filter function is formed. And forming the thin film in a region surrounded by the non-reflective concavo-convex structure, and cutting the substrate in the region where the non-reflective concavo-convex structure is formed.

本発明に係る光学フィルタの製造方法によれば、光学フィルタの外周に無反射凹凸構造体を設けることにより、ゴーストやフレア等の発生を防止すると共に、切断加工時のクラックの発生及び蒸着膜の剥離を防止することができる。   According to the method for manufacturing an optical filter according to the present invention, by providing a non-reflective concavo-convex structure on the outer periphery of the optical filter, it is possible to prevent the occurrence of ghost, flare, etc. Peeling can be prevented.

更に、薄膜の周囲に無反射凹凸構造体を形成し、基板の素地の反射率を低減させることで、フィルタが光量調整装置の絞り開口部に設けた際のゴースト、フレアを防止する効果がある。また、AR膜(Anti-Reflection Coating)を成膜するよりも、蒸着回数を減少させることにより、ランニングコスト低減を実現することができる。   Furthermore, by forming a non-reflective concavo-convex structure around the thin film and reducing the reflectance of the substrate substrate, there is an effect of preventing ghost and flare when the filter is provided at the aperture opening of the light amount adjusting device. . In addition, the running cost can be reduced by reducing the number of times of deposition rather than forming an AR film (Anti-Reflection Coating).

本発明を図示の実施例に基づいて詳細に説明する。
図1はカメラの撮影光学系の構成図を示し、レンズ1、光量絞り装置2、レンズ3、4、5、ローパスフィルタ6、CCD等から成る固体撮像素子7が順次に配列されている。光量絞り装置2においては、絞り羽根支持板8に一対の絞り羽根9a、9bが可動に取り付けられている。絞り羽根9aには、絞り羽根9a、9bにより形成される略菱形形状の可変の開口部が形成され、この開口部を通過する光量を減衰させるためのNDフィルタ10が接着されている。
The present invention will be described in detail based on the embodiments shown in the drawings.
FIG. 1 is a configuration diagram of a photographing optical system of a camera, in which a solid-state imaging device 7 including a lens 1, a light amount diaphragm device 2, lenses 3, 4, and 5, a low-pass filter 6, a CCD, and the like are sequentially arranged. In the light quantity diaphragm device 2, a pair of diaphragm blades 9 a and 9 b are movably attached to the diaphragm blade support plate 8. The diaphragm blade 9a is formed with a substantially rhombic variable opening formed by the diaphragm blades 9a and 9b, and an ND filter 10 for attenuating the amount of light passing through the opening is bonded.

被写体像はレンズ1、NDフィルタ10を備えた光量絞り装置2、レンズ3、4、5、ローパスフィルタ6を経て、固体撮像素子7により受像される。   The subject image is received by the solid-state imaging device 7 through the lens 1, the light amount diaphragm device 2 including the ND filter 10, the lenses 3, 4, 5, and the low-pass filter 6.

図2は本実施例において製造するNDフィルタ10の平面図である。NDフィルタ10は透明樹脂基板から成るPET基板11上に略三角形の輪郭状に無反射凹凸構造体12が形成され、その内側にフィルタ機能を有するND膜13が成膜されている。図2に示す無反射凹凸構造体12上の一点鎖線に沿ってプレスを用いて打ち抜く。これにより、NDフィルタ10は基板11の材質が露出することがない。   FIG. 2 is a plan view of the ND filter 10 manufactured in this embodiment. In the ND filter 10, a non-reflective concavo-convex structure 12 is formed in a substantially triangular outline on a PET substrate 11 made of a transparent resin substrate, and an ND film 13 having a filter function is formed on the inside thereof. It punches out using a press along the dashed-dotted line on the non-reflective uneven structure 12 shown in FIG. As a result, the material of the substrate 11 is not exposed in the ND filter 10.

図3は本実施例において製造するNDフィルタ10の製造プロセスの工程図を示している。先ずステップS1において、板厚100μmのシート状のPET(ポリエチレンテフレタレート)から成る基板11上にフィルタ機能を有する薄膜を形成する領域を囲むように無反射凹凸構造体12を形成する。本実施例においては、所定幅を有する輪郭形状の無反射凹凸構造体12を形成する。次のステップS2において、ステップS1において形成した無反射凹凸構造体12の内側にND膜13を成膜する。そしてステップS3において、この無反射凹凸構造体12の領域内を輪郭としてNDフィルタ10をプレスを用いて打ち抜く。   FIG. 3 shows a process chart of the manufacturing process of the ND filter 10 manufactured in this embodiment. First, in step S1, a non-reflective concavo-convex structure 12 is formed on a substrate 11 made of sheet-like PET (polyethylene teflate) having a thickness of 100 μm so as to surround a region where a thin film having a filter function is formed. In the present embodiment, the contoured non-reflective concavo-convex structure 12 having a predetermined width is formed. In the next step S2, an ND film 13 is formed inside the non-reflective concavo-convex structure 12 formed in step S1. In step S3, the ND filter 10 is punched using a press with the region of the non-reflective uneven structure 12 as an outline.

このNDフィルタ10の基板11に用いる基材は、ガラス板よりも有機無機複合材料から成る合成樹脂フィルム材料の方が成形性、量産性等の点から好ましい。有機無機複合材料は有機成分と無機成分とが分子レベル又はナノスケールレベルで混合複合化されたものである。IPN構造の有機無機複合材料での有機成分としては、主に炭素−炭素結合を主鎖骨格に有する所謂有機骨格から成る高分子であり、鎖状又は架橋されたものであり、目的に応じて適宜選択することができる。   The base material used for the substrate 11 of the ND filter 10 is more preferably a synthetic resin film material made of an organic-inorganic composite material than a glass plate in terms of moldability, mass productivity and the like. The organic-inorganic composite material is obtained by mixing and compounding an organic component and an inorganic component at a molecular level or a nanoscale level. The organic component in the organic-inorganic composite material having an IPN structure is a polymer composed of a so-called organic skeleton mainly having a carbon-carbon bond in the main chain skeleton, and is a chain or a cross-linked one, depending on the purpose. It can be selected appropriately.

例えば、セルロースエステル、ポリアミド、ポリカーボネート、ポリエステル、ポリスチレン、ポリオレフィン、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミド、ポリメチルメタクリレート、ポリエーテルケトン等である。   For example, cellulose ester, polyamide, polycarbonate, polyester, polystyrene, polyolefin, polysulfone, polyethersulfone, polyarylate, polyetherimide, polymethyl methacrylate, polyether ketone and the like.

セルロースエステルとしては、例えばトリアセチルセルロース、ジアセチルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース等が挙げられる。   Examples of the cellulose ester include triacetyl cellulose, diacetyl cellulose, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, and nitrocellulose.

ポリエステルとしては、例えばPET、ポリエチレンナフタレート、ポリ−1,4−シクロヘキサンジメチレンテレフタレート、ポリエチレン−1,2−ジフェノキシエタン−4,4’−ジカルボキシレート、ポリブチレンテレフタレート等が挙げられる。   Examples of the polyester include PET, polyethylene naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, polybutylene terephthalate, and the like.

ポリスチレンとしては、例えばシンジオタクチックポリスチレン等が挙げられる。   Examples of polystyrene include syndiotactic polystyrene.

ポリオレフィンとしては、例えばポリプロピレン、ポリエチレン、ポリメチルペンテン等が挙げられる。これらの中でも、トリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレート及びポリエチレンナフタレートが特に好ましい。   Examples of the polyolefin include polypropylene, polyethylene, and polymethylpentene. Among these, triacetyl cellulose, polycarbonate, polyethylene terephthalate and polyethylene naphthalate are particularly preferable.

図4は無反射凹凸構造体12の拡大斜視図を示し、PET基板11上には多数個のNDフィルタ10が得られるようになっており、各NDフィルタ10の輪郭位置に無反射凹凸構造体12を形成する。この無反射凹凸構造体12は図5(a)に示すように円錐形状の多数の周期的に配置した微細凹凸12aから成っている。   FIG. 4 is an enlarged perspective view of the non-reflective concavo-convex structure 12, and a large number of ND filters 10 are obtained on the PET substrate 11, and the non-reflective concavo-convex structure is formed at the contour position of each ND filter 10. 12 is formed. As shown in FIG. 5A, the non-reflective concavo-convex structure 12 is composed of a large number of conical undulations 12a arranged periodically.

反射防止の原理としては、光の反射が異なる屈折率を持つ媒質の界面を光が透過する際に、屈折率差のために全反射が生ずるためである。全反射する臨界角θcは、θc=sin-1(n1/n2)で表される(n1、n2はそれぞれの媒質の屈折率)。反射防止面となる無反射凹凸構造体12は、屈折率が連続的に変化している層と同等の反射防止効果が得られ、無反射凹凸構造体12は微視的な範囲では、n1≒n2となり、非常に大きな臨界角となる。 The principle of antireflection is that total reflection occurs due to the difference in refractive index when light is transmitted through the interface of media having different refractive indexes. The critical angle θc for total reflection is represented by θc = sin −1 (n1 / n2) (n1 and n2 are the refractive indexes of the respective media). The non-reflective concavo-convex structure 12 serving as the anti-reflective surface can obtain an anti-reflective effect equivalent to that of the layer whose refractive index continuously changes. n2, which is a very large critical angle.

このため、光の入射角が大きくなっても、良好な反射防止効果を得ることができることが知られている。表面における無反射凹凸構造体12の凹凸周期(Λ)は10〜400nmが好ましく、また、無反射凹凸構造体12の屈折率をnとしたとき、Λ<400/n(nm)がより好ましく、このような条件においては可視光の散乱は生じ難くなる。また、微細凹凸12aの高さ(深さ)は50〜1000nmが好ましく、200〜1000nmがより好ましく、更には300〜1000nmが好ましい。   For this reason, it is known that a good antireflection effect can be obtained even when the incident angle of light increases. The uneven period (Λ) of the non-reflective uneven structure 12 on the surface is preferably 10 to 400 nm, and when the refractive index of the non-reflective uneven structure 12 is n, Λ <400 / n (nm) is more preferable, Under such conditions, visible light scattering hardly occurs. Moreover, 50-1000 nm is preferable, as for the height (depth) of the fine unevenness | corrugation 12a, 200-1000 nm is more preferable, Furthermore, 300-1000 nm is preferable.

また、微細凹凸12aの形状としては、特に制限はないが、目的に応じて適宜に選択することができる。例えば、本実施例においては、図5(a)に示す入射角依存性の少ない円錐形状微細凹凸12aを用いているが、図5(b)に示す三角錐形状の微細凹凸12b、図5(c)に示す四角錐形状の錐形体から成る微細凹凸12cを用いることができる。釣り鐘型や空気界面側がすぼまった一軸方向に波打った型等の形状によって、空気界面(屈折率約1)から支持体までの平均屈折率が連続的に変化する構造のものでよい。これらの中でも、円錐形状、三角錐形状、釣り鐘形状のように方向性のないものがより好ましく、図5(a)〜(c)に示す円錐形状、三角錐形状、四角錐形状のように、厚み方向の屈折率の連続変化が直線的で一次関数であるものが特に好ましい。   The shape of the fine irregularities 12a is not particularly limited, but can be appropriately selected according to the purpose. For example, in the present embodiment, the cone-shaped fine irregularities 12a having a small incident angle dependency shown in FIG. 5A are used, but the triangular pyramid-shaped fine irregularities 12b shown in FIG. It is possible to use the fine unevenness 12c made of a quadrangular pyramid shown in c). A structure in which the average refractive index from the air interface (refractive index of about 1) to the support continuously changes depending on the shape of a bell shape or a uniaxially undulating die that is sunk on the air interface side. Among these, those having no directivity such as a cone shape, a triangular pyramid shape, and a bell shape are more preferable. Like the cone shape, the triangular pyramid shape, and the quadrangular pyramid shape shown in FIGS. It is particularly preferable that the continuous change in the refractive index in the thickness direction is linear and a linear function.

無反射凹凸構造体12の配列には正方配列や六方細密配列等があるが、本実施例では図4に示すような基板11の露出面が少なく、良好な反射防止効果が得られる六方細密配列の構成とした。反射率の制御に関しては、無反射凹凸構造体12のアスペクト比の関係(微細凹凸12aの深さ/凹凸周期)により変化させることができる。   The array of the non-reflective uneven structure 12 includes a square array, a hexagonal close-packed array, and the like. In this embodiment, the exposed surface of the substrate 11 is small as shown in FIG. The configuration was as follows. Regarding the control of the reflectance, it can be changed by the relationship of the aspect ratio of the non-reflective concavo-convex structure 12 (depth of fine concavo-convex 12a / concave / convex cycle).

本実施例においては、波長400〜700nmの可視光域における反射率を0.5%以下とするために、無反射凹凸構造体12の凹凸周期を250nmとし、微細凹凸12aの深さを250nm以上のアスペクト比1以上とした。逆に、微細凹凸12aの深さを固定し、無反射凹凸構造体12の凹凸周期を短く、アスペクト比1以上とすることで同様の効果が得られる。   In the present embodiment, in order to set the reflectance in the visible light range of wavelength 400 to 700 nm to 0.5% or less, the uneven period of the non-reflective uneven structure 12 is 250 nm, and the depth of the fine unevenness 12a is 250 nm or more. The aspect ratio was 1 or more. On the contrary, the same effect is acquired by fixing the depth of the fine unevenness | corrugation 12a, shortening the uneven | corrugated period of the non-reflective uneven structure 12 and making the aspect ratio 1 or more.

この無反射凹凸構造体12の作製方法としては、安価で大面積加工の安定製造の観点から、相補的な微細凹凸構造を有するスタンパを圧接して基板11に微細凹凸12aを転写する方法を用いることができる。基板11へ微細凹凸12aを転写する際の転写率は、先端が丸みを帯びてしまうこともあり、通常80%程度である。また、微細凹凸12aの凹凸形状は、凸形状よりも凹形状の方が特性精度は高い。   As a method for producing the non-reflective concavo-convex structure 12, a method of transferring the fine concavo-convex 12a to the substrate 11 by pressing a stamper having a complementary fine concavo-convex structure is used from the viewpoint of inexpensive and stable manufacturing for large area processing. be able to. The transfer rate when transferring the fine irregularities 12a to the substrate 11 is usually about 80% because the tip may be rounded. Further, the concave / convex shape of the fine concave / convex portion 12a is higher in characteristic accuracy than the convex shape.

本実施例においては、無反射凹凸構造体12は基板11の片面のフィルタ10の輪郭形状にのみ形成したが、ND膜13を成膜する領域を除く基板11の表面全体に形成してもよい。   In this embodiment, the non-reflective concavo-convex structure 12 is formed only on the contour shape of the filter 10 on one side of the substrate 11, but it may be formed on the entire surface of the substrate 11 excluding the region where the ND film 13 is formed. .

図6はND膜を蒸着するための真空蒸着機のチャンバの構成図を示している。チャンバ21内には、蒸着源22、回転可能な蒸着傘23が設けられ、この蒸着傘23には基板治具24が配置されている。図7は基板治具24の拡大断面図を示し、この基板治具24にはNDフィルタ10の基板となるPET基板11が取り付けられ、蒸着傘23と共にZ軸を中心に回転し成膜が行われる。   FIG. 6 shows a configuration diagram of a chamber of a vacuum deposition machine for depositing an ND film. A vapor deposition source 22 and a rotatable vapor deposition umbrella 23 are provided in the chamber 21, and a substrate jig 24 is disposed on the vapor deposition umbrella 23. FIG. 7 is an enlarged cross-sectional view of the substrate jig 24. A PET substrate 11 which is a substrate of the ND filter 10 is attached to the substrate jig 24, and the film is formed with the vapor deposition umbrella 23 around the Z axis. Is called.

成膜条件は基板設定温度130℃、成膜圧力8.40×10-4Paとし、蒸着源22から基板11までの距離が950mmにおいて成膜を行った。 The film formation conditions were a substrate set temperature of 130 ° C., a film formation pressure of 8.40 × 10 −4 Pa, and the film formation was performed at a distance of 950 mm from the vapor deposition source 22 to the substrate 11.

本実施例では、真空蒸着法により基板11上に蒸着膜である薄膜を成膜しているが、スパッタリング法、インクジェットプリンティング法等を用いることもできる。   In this embodiment, a thin film, which is a vapor deposition film, is formed on the substrate 11 by a vacuum vapor deposition method, but a sputtering method, an ink jet printing method, or the like can also be used.

図8は本実施例におけるNDフィルタ10のND膜13の構成図を示している。ND膜13はPET基板11上に光量を減衰させる金属膜と誘電体膜の交互の複数層から成る薄膜から構成されている。光減衰膜としては、Ti、Tb、Nb、Ta、Y、Zn、Zr等を酸化させた酸化物材料が用いられ、誘電体膜としてはAl23、SiO2、MgF2等が用いられる。本実施例では、第1、3、5、7、9層の誘電体膜にAl23膜31、第2、4、6、8、10層にTixOy膜32を交互に積層し、空気と接する最上層をMgF2膜33とした11層の膜構成とした。このような膜構成にすることにより、透過率平坦性が6%以下と平坦性に優れ、反射率が低反射な光学特性を実現することができる。 FIG. 8 shows a configuration diagram of the ND film 13 of the ND filter 10 in this embodiment. The ND film 13 is formed on a PET substrate 11 by a thin film composed of a plurality of alternating layers of a metal film and a dielectric film that attenuate the amount of light. An oxide material obtained by oxidizing Ti, Tb, Nb, Ta, Y, Zn, Zr or the like is used as the light attenuating film, and Al 2 O 3 , SiO 2 , MgF 2 or the like is used as the dielectric film. . In this embodiment, Al 2 O 3 films 31 are alternately laminated on the first, third , fifth, seventh and ninth layers of dielectric films, and TixOy films 32 are alternately laminated on the second , fourth, sixth, eighth and tenth layers, and air The uppermost layer in contact with the MgF 2 film 33 is an 11-layer film configuration. By adopting such a film configuration, it is possible to realize optical characteristics with excellent flatness of transmittance flatness of 6% or less and low reflectivity.

なお、透過率平坦性は400〜700nmの波長の範囲において、最大透過率Tmaxから最小透過率Tminを引いた差を波長550nmにおける透過率T550で除した次の式(1)で表される。
(Tmax−Tmin)/T550 ・・・(1)
The transmittance flatness is expressed by the following formula (1) obtained by dividing the difference obtained by subtracting the minimum transmittance Tmin from the maximum transmittance Tmax in the wavelength range of 400 to 700 nm by the transmittance T550 at a wavelength of 550 nm.
(Tmax−Tmin) / T550 (1)

図9は無反射凹凸構造体12及びND膜13を設けた基板11をプレス装置等によりNDフィルタ10の略三角形の外形となる部分を切り抜き加工をする説明図である。基板11上のNDフィルタ10は、ND膜13を成膜した領域と、その外周端部にND膜13は成膜せずに、無反射凹凸構造体12を形成した領域を有している。   FIG. 9 is an explanatory diagram in which the substrate 11 provided with the non-reflective concavo-convex structure 12 and the ND film 13 is processed by cutting out a portion of the ND filter 10 that has a substantially triangular outer shape by a press device or the like. The ND filter 10 on the substrate 11 has a region where the ND film 13 is formed and a region where the non-reflective uneven structure 12 is formed without forming the ND film 13 on the outer peripheral edge thereof.

NDフィルタ10は無反射凹凸構造体12上のND膜13から離れた位置において切断することが望ましく、その切断面からND膜13へのクラックの発生を防止することができる。また、NDフィルタ10は輪郭状の無反射凹凸構造体12を形成することにより、基板11自体が露出する領域がなく、ゴーストやフレアの発生を低減することができる。更に、切断加工時にND膜13からの距離を大きくすることにより、成膜したND膜13にストレスを与えることが少なく、ND膜13が基板11から剥離することを防止できる。   The ND filter 10 is desirably cut at a position away from the ND film 13 on the non-reflective concavo-convex structure 12, and the generation of cracks from the cut surface to the ND film 13 can be prevented. Further, the ND filter 10 forms the contoured non-reflective concavo-convex structure 12 so that there is no region where the substrate 11 is exposed, and ghosts and flares can be reduced. Furthermore, by increasing the distance from the ND film 13 at the time of cutting, stress is not applied to the formed ND film 13, and the ND film 13 can be prevented from peeling off from the substrate 11.

上述の方法により製造したNDフィルタ10の環境安定性を調べるために、温度60℃、湿度90%において240時間の放置試験を行い、試験前後での透過率を測定すると、その差が0.2%以下と殆ど差は見られなかった。   In order to investigate the environmental stability of the ND filter 10 manufactured by the above-described method, a standing test for 240 hours was performed at a temperature of 60 ° C. and a humidity of 90%, and the transmittance before and after the test was measured. There was almost no difference from below%.

また、熱処理を行わないものを同様な環境試験を行い、試験前後での透過率を測定すると2%前後増加していた。このような現象が起きる要因としては、真空蒸着時の基板温度が低いことが挙げられる。蒸着膜の封止密度は成膜時の基板温度に大きく影響し、蒸着温度が低いと封止密度が低くなり、水分・酸素等を透過し易く、そのため光減衰膜であるTixOy膜32の酸化が促進される。また、それを保護するAl23膜31の誘電体膜の保護効果が少ないことの両方の影響から、透過率が上昇するものと考えられる。熱処理を行うと環境安定性が向上するのは、エージング効果であると考えられる。 Moreover, when the same environmental test was done for the thing which does not heat-process and the transmittance | permeability before and behind a test was measured, it was increasing about 2%. A cause of such a phenomenon is that the substrate temperature during vacuum deposition is low. The sealing density of the deposited film greatly affects the substrate temperature at the time of film formation. When the deposition temperature is low, the sealing density is lowered and water, oxygen, and the like are easily transmitted. Therefore, the oxidation of the TixOy film 32 that is a light attenuation film is performed. Is promoted. Further, it is considered that the transmittance increases due to both the effects of the protective effect of the dielectric film of the Al 2 O 3 film 31 protecting it being small. It is thought that the environmental stability is improved by the heat treatment due to the aging effect.

図10はND膜13の外周端部にPET基板11が剥き出しに露出した従来例と、無反射凹凸構造体12を形成した実施例の反射率を比較したグラフ図である。基板11を露出した場合には反射率は9%前後、無反射凹凸構造体12を形成した場合には反射率1%以下となる。   FIG. 10 is a graph comparing the reflectance of the conventional example in which the PET substrate 11 is exposed and the non-reflective concavo-convex structure 12 is formed on the outer peripheral edge of the ND film 13. When the substrate 11 is exposed, the reflectance is about 9%, and when the non-reflective concavo-convex structure 12 is formed, the reflectance is 1% or less.

このように、基板11を露出した場合には、無反射凹凸構造体12を形成した場合や、ND膜13の形成時の反射率3%以下よりも圧倒的に反射率が高いことが分かる。   Thus, when the substrate 11 is exposed, it can be seen that the reflectance is overwhelmingly higher than the reflectance of 3% or less when the non-reflective concavo-convex structure 12 is formed or when the ND film 13 is formed.

撮影光学系の構成図である。It is a block diagram of an imaging optical system. NDフィルタの平面図である。It is a top view of an ND filter. 製造プロセスの工程図である。It is process drawing of a manufacturing process. 無反射凹凸構造体の拡大斜視図である。It is an expansion perspective view of a non-reflective uneven structure. 微細凹凸の斜視図である。It is a perspective view of a fine unevenness | corrugation. チャンバの構成図である。It is a block diagram of a chamber. 基板治具の拡大断面図である。It is an expanded sectional view of a substrate jig. ND膜の構成図である。It is a block diagram of ND film | membrane. NDフィルタの切断加工の説明図である。It is explanatory drawing of the cutting process of ND filter. 無反射凹凸構造体の有無による反射率のグラフ図である。It is a graph of the reflectance by the presence or absence of a non-reflective uneven structure body.

符号の説明Explanation of symbols

1、3、4、5 レンズ
2 光量絞り装置
6 ローパスフィルタ
7 固体撮像素子
8 絞り羽根支持板
9 絞り羽根
10 NDフィルタ
11 PET基板
12 無反射凹凸構造体
12a、12b、12c 微細凹凸
13 ND膜
21 チャンバ
22 蒸着源
23 蒸着傘
24 基板治具
31 Al23
32 TixOy膜
33 MgF2
DESCRIPTION OF SYMBOLS 1, 3, 4, 5 Lens 2 Light quantity diaphragm 6 Low pass filter 7 Solid-state image sensor 8 Diaphragm blade support plate 9 Diaphragm blade 10 ND filter 11 PET substrate 12 Non-reflective uneven structure 12a, 12b, 12c Fine uneven 13 ND film 21 Chamber 22 Deposition source 23 Deposition umbrella 24 Substrate jig 31 Al 2 O 3 film 32 TixOy film 33 MgF 2 film

Claims (5)

透明樹脂基板の上にフィルタ機能を有する薄膜を形成する領域を囲むように無反射凹凸構造体を形成する工程と、前記無反射凹凸構造体に囲まれた領域内に前記薄膜を成膜する工程と、前記無反射凹凸構造体を形成した領域において前記基板を切り抜く工程とを備えることを特徴とする光学フィルタの製造方法。 Forming a non-reflective uneven structure on a transparent resin substrate so as to surround a region where a thin film having a filter function is formed, and forming the thin film in a region surrounded by the non-reflective uneven structure And a step of cutting out the substrate in the region where the non-reflective concavo-convex structure is formed. 前記無反射凹凸構造体の領域は略三角形の輪郭状としたことを特徴とする請求項1に記載の光学フィルタの製造方法。   The method of manufacturing an optical filter according to claim 1, wherein the region of the non-reflective uneven structure has a substantially triangular outline. 前記無反射凹凸構造体は10〜400nmの周期で、多数の高さ50〜1000nmの凹形状又は凸形状の錐形体を配列することを特徴とする請求項1又2に記載の光学フィルタの製造方法。   3. The optical filter according to claim 1, wherein the non-reflective concavo-convex structure has a plurality of concave or convex cones having a height of 50 to 1000 nm arranged at a period of 10 to 400 nm. Method. 絞り開口部の大きさを可変する複数の可動の絞り羽根と、該絞り羽根により形成される前記開口部の少なくとも一部に配置する光量調整のためのNDフィルタとを備えた光量絞り装置において、前記NDフィルタは請求項1〜3の何れか1つの請求項に記載の光学フィルタの製造方法によって製造したことを特徴とする光量絞り装置。   In a light quantity diaphragm device comprising a plurality of movable diaphragm blades that vary the size of the diaphragm opening, and an ND filter for light quantity adjustment disposed in at least a part of the opening formed by the diaphragm blades, The said ND filter was manufactured with the manufacturing method of the optical filter as described in any one of Claims 1-3, The light quantity aperture device characterized by the above-mentioned. 光学系と、該光学系を通過する光量を制限する請求項4に記載の光量絞り装置と、該光学系によって形成される像を受像する固体撮像素子とを有することを特徴とするカメラ。   A camera, comprising: an optical system; a light amount diaphragm device according to claim 4 that limits an amount of light that passes through the optical system; and a solid-state imaging device that receives an image formed by the optical system.
JP2007070555A 2007-03-19 2007-03-19 Manufacturing method of optical filter Active JP4945275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070555A JP4945275B2 (en) 2007-03-19 2007-03-19 Manufacturing method of optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070555A JP4945275B2 (en) 2007-03-19 2007-03-19 Manufacturing method of optical filter

Publications (2)

Publication Number Publication Date
JP2008233356A true JP2008233356A (en) 2008-10-02
JP4945275B2 JP4945275B2 (en) 2012-06-06

Family

ID=39906242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070555A Active JP4945275B2 (en) 2007-03-19 2007-03-19 Manufacturing method of optical filter

Country Status (1)

Country Link
JP (1) JP4945275B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112102B1 (en) * 2010-03-15 2012-02-22 웅진케미칼 주식회사 Contrast ratio improvement film for display device and OLED having the same
WO2013088675A1 (en) * 2011-12-12 2013-06-20 キヤノン電子株式会社 Optical filter, light volume adjusting device and image pickup device having same
CN112775567A (en) * 2020-12-28 2021-05-11 友芯(厦门)半导体设备有限公司 Pretreatment method, device and method for laser cutting of narrow-band-pass filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202612A (en) * 2002-01-08 2003-07-18 Nisca Corp Filter for quantity-of-light adjustment and quantity-of- light adjusting device and method of manufacturing the same
JP2004198654A (en) * 2002-12-17 2004-07-15 Canon Inc Amount of light control member
JP2004317922A (en) * 2003-04-18 2004-11-11 Minolta Co Ltd Surface processing method, optical element, and metal mold therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202612A (en) * 2002-01-08 2003-07-18 Nisca Corp Filter for quantity-of-light adjustment and quantity-of- light adjusting device and method of manufacturing the same
JP2004198654A (en) * 2002-12-17 2004-07-15 Canon Inc Amount of light control member
JP2004317922A (en) * 2003-04-18 2004-11-11 Minolta Co Ltd Surface processing method, optical element, and metal mold therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112102B1 (en) * 2010-03-15 2012-02-22 웅진케미칼 주식회사 Contrast ratio improvement film for display device and OLED having the same
WO2013088675A1 (en) * 2011-12-12 2013-06-20 キヤノン電子株式会社 Optical filter, light volume adjusting device and image pickup device having same
CN112775567A (en) * 2020-12-28 2021-05-11 友芯(厦门)半导体设备有限公司 Pretreatment method, device and method for laser cutting of narrow-band-pass filter

Also Published As

Publication number Publication date
JP4945275B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5016872B2 (en) Optical filter
JP4988282B2 (en) Optical filter
JP4803836B2 (en) Imaging optical system
JP5840448B2 (en) Antireflection film and method of manufacturing antireflection film
JP2005157119A (en) Reflection preventing optical element and optical system using the same
JP6258087B2 (en) Lens assembly
JP2015068853A (en) Laminated body, imaging element package, imaging apparatus, and electronic apparatus
WO2016035245A1 (en) Laminate, imaging device package, image acquisition apparatus, and electronic equipment
JP2008276112A (en) Nd filter
CN102692662B (en) Optical filter and image pickup apparatus
JP6783829B2 (en) Diffractive optical element and optical equipment using it
JP2007322572A (en) Anti-reflection optical element
JP4945275B2 (en) Manufacturing method of optical filter
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP2010066704A (en) Optical element, optical system, and optical apparatus
EP2137557A1 (en) Optical element and optical apparatus
JP2011081083A (en) Neutral density (nd) filter
CN110376664A (en) Shading spacer ring and its manufacturing method, imaging lens group, photographic device
TWI362562B (en) Aperture and method
JP2008112032A (en) Optical filter
JP5227506B2 (en) ND filter
JP5554012B2 (en) Optical filter and imaging apparatus using the optical filter
JP2002062419A (en) Diffractive optical device and optical appliance having the diffractive optical device
JP2004246018A (en) Light quantity adjusting device and optical equipment
JP5543515B2 (en) camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4945275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250