JP2008232988A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2008232988A
JP2008232988A JP2007076323A JP2007076323A JP2008232988A JP 2008232988 A JP2008232988 A JP 2008232988A JP 2007076323 A JP2007076323 A JP 2007076323A JP 2007076323 A JP2007076323 A JP 2007076323A JP 2008232988 A JP2008232988 A JP 2008232988A
Authority
JP
Japan
Prior art keywords
storage element
value
power storage
abnormal
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007076323A
Other languages
Japanese (ja)
Other versions
JP5003229B2 (en
Inventor
Shuji Oshida
修司 押田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007076323A priority Critical patent/JP5003229B2/en
Publication of JP2008232988A publication Critical patent/JP2008232988A/en
Application granted granted Critical
Publication of JP5003229B2 publication Critical patent/JP5003229B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly-reliable power storage device capable of estimating at high speed a both terminal voltage of a power storage element having an abnormal value. <P>SOLUTION: This device has a constitution wherein a power storage element voltage detection circuit 33 is connected to a power storage element module 29 comprising a plurality of power storage elements 31. During a starting time, if each both terminal voltage value of the power storage elements 31 determined through the power storage element voltage detection circuit 33 has an initial abnormal value, a control part 41 uses a mean value (H) of initial normal values of each both terminal voltage value as the both terminal voltage value in place of the initial abnormal value. During an ordinary using time, if each both terminal voltage value determined through the power storage element voltage detection circuit 33 has an abnormal value, the control part 41 determines an average changing rate (D) between a both terminal voltage value measured in the preceding time and a both terminal voltage value measured in this time of the power storage element 31 having a normal value, and uses a value determined by multiplying the both terminal voltage value measured in the preceding time of the power storage element 31 having the abnormal value by the average changing rate (D), as the both terminal voltage value in place of the abnormal value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主電源の電圧低下時に補助的に電力を供給する蓄電装置に関するものである。   The present invention relates to a power storage device that supplementarily supplies power when a voltage of a main power supply is lowered.

近年、環境への配慮や燃費向上のためにハイブリッド車が市販されている。これは、自動車(以下、車両という)をエンジンだけでなくモータによっても駆動するので、効率を向上することができる。また、このハイブリッド車は大電力を扱う蓄電装置によりモータを駆動するだけでなく、制動時の回生エネルギーを蓄える動作を行っているので、制動エネルギーを有効利用でき、低燃費化が可能となる。   In recent years, hybrid vehicles have been put on the market for environmental considerations and fuel efficiency improvements. This can improve efficiency because an automobile (hereinafter referred to as a vehicle) is driven not only by an engine but also by a motor. In addition, since this hybrid vehicle not only drives the motor by a power storage device that handles large electric power, but also performs an operation of storing regenerative energy during braking, the braking energy can be used effectively and fuel consumption can be reduced.

このような蓄電装置はモータを駆動するために数100Vの出力電圧が必要となるが、蓄電装置に用いられる蓄電素子(例えば二次電池や電気二重層キャパシタ等)の定格電圧は数V程度であるので、使用する蓄電素子の数は100個オーダーとなる。そのため、多数の蓄電素子の両端電圧値を測定することにより、その状態を監視し、過充電や過放電を抑制する必要がある。このような多数の蓄電素子の両端電圧値を測定する蓄電装置が例えば下記特許文献1に示されている。図7にその蓄電装置のブロック回路図を示す。なお、図7では蓄電素子に二次電池を用いた例を説明する。   Such a power storage device requires an output voltage of several hundred volts in order to drive the motor, but the rated voltage of a power storage element (for example, a secondary battery or an electric double layer capacitor) used in the power storage device is about several volts. Therefore, the number of power storage elements to be used is on the order of 100. Therefore, it is necessary to monitor the state by measuring the voltage values at both ends of a large number of power storage elements to suppress overcharge and overdischarge. A power storage device that measures the voltage values at both ends of such a large number of power storage elements is disclosed in Patent Document 1, for example. FIG. 7 shows a block circuit diagram of the power storage device. Note that FIG. 7 illustrates an example in which a secondary battery is used as a power storage element.

二次電池101は蓄電装置全体として例えば100個を直列に接続することで必要な電圧を得ている。この二次電池101は直接接続するのではなく、10個を内部で直列接続したモジュール電池103を形成し、これを10個分、外部で直列接続する構成としている。   For example, 100 secondary batteries 101 are connected in series as a whole power storage device to obtain a necessary voltage. The secondary battery 101 is not directly connected, but a module battery 103 in which 10 batteries are connected in series is formed, and 10 batteries are connected in series outside.

各二次電池101には、モジュール電池103毎に電圧検出回路105が接続されている。電圧検出回路105は各二次電池101の接続点電圧を切り替えて測定する機能を有する。電圧検出回路105はスレーブ側制御回路107によって制御され、電圧値が読み込まれる。これにより、スレーブ側制御回路107は各両端電圧値を求めることができる。   Each secondary battery 101 is connected to a voltage detection circuit 105 for each module battery 103. The voltage detection circuit 105 has a function of switching and measuring the connection point voltage of each secondary battery 101. The voltage detection circuit 105 is controlled by the slave side control circuit 107, and the voltage value is read. As a result, the slave-side control circuit 107 can obtain the voltage values at both ends.

両端電圧値の測定要求信号や両端電圧値データはスレーブ側送受信回路109により後述する制御装置との間で送受信される。なお、スレーブ側制御回路107には信号有無検出回路111が接続され、これにより、スレーブ側送受信回路109に接続された信号系配線113の信号が無い時に送信するように制御している。   Both-end voltage value measurement request signals and both-end voltage value data are transmitted / received to / from a control device, which will be described later, by the slave-side transmitting / receiving circuit 109. Note that a signal presence / absence detection circuit 111 is connected to the slave side control circuit 107, and thereby, control is performed so as to transmit when there is no signal of the signal system wiring 113 connected to the slave side transmission / reception circuit 109.

このような構成の組電池115を10個接続することで、必要な電力を賄うことが可能となるが、さらに各組電池115に内蔵されたスレーブ側送受信回路109同士は信号系配線113で接続されている。この信号系配線113は制御装置117に内蔵されたマスタ側送受信回路119にも接続されているので、制御装置117により各二次電池101の両端電圧値を測定し、読み込むことが可能となる。なお、制御装置117にはマスタ側送受信回路119に接続されたマスタ側制御回路121も内蔵されており、これにより二次電池101の状態監視が可能となる。なお、信号系配線113への電力系配線のノイズ等の影響を低減するために、制御装置117には絶縁回路電源123が内蔵されている。   By connecting ten assembled batteries 115 having such a configuration, it becomes possible to cover the necessary power, but the slave side transmission / reception circuits 109 built in each assembled battery 115 are also connected to each other by signal wiring 113. Has been. Since this signal system wiring 113 is also connected to the master-side transmission / reception circuit 119 built in the control device 117, the control device 117 can measure and read the voltage values at both ends of each secondary battery 101. Note that the control device 117 also includes a master-side control circuit 121 connected to the master-side transmission / reception circuit 119, thereby enabling monitoring of the state of the secondary battery 101. In order to reduce the influence of noise and the like of the power system wiring on the signal system wiring 113, the control circuit 117 incorporates an insulating circuit power source 123.

このような構成とすることにより、制御装置117が各組電池115に両端電圧値測定要求信号を送信すると、各電圧検出回路105が同時に両端電圧値を測定し、制御装置117に両端電圧値データが送られる。従って、100個もの二次電池101の両端電圧値を迅速に読み込むことが可能となる。   With such a configuration, when the control device 117 transmits a both-end voltage value measurement request signal to each assembled battery 115, each voltage detection circuit 105 simultaneously measures the both-end voltage value, and the control device 117 receives both-end voltage value data. Will be sent. Therefore, it is possible to quickly read the voltage values at both ends of as many as 100 secondary batteries 101.

しかし、絶縁回路電源123等によりノイズ対策がなされていても、多数の両端電圧値データを何度も読み込む間には、除去しきれないノイズや突発的なノイズ等により、両端電圧値の一部が異常値となることが起こり得る。また、両端電圧値データが送られてこないために、両端電圧値が無いということで異常値になる場合もある。これらの場合、異常値の判断は想定される正常な両端電圧値との比較から可能であるが、異常値をそのままにしておくと二次電池101の過充電や過放電を抑制できなくなる可能性がある。   However, even if countermeasures against noise are taken by the insulating circuit power supply 123 or the like, a part of the voltage value at both ends may be caused by noise that cannot be completely removed or sudden noise while reading a large number of voltage data at both ends. Can be an abnormal value. In addition, since the voltage value data at both ends is not sent, there may be an abnormal value because there is no voltage value at both ends. In these cases, the abnormal value can be determined by comparison with the assumed normal voltage value at both ends. However, if the abnormal value is left as it is, the overcharge and overdischarge of the secondary battery 101 may not be suppressed. There is.

そこで、異常値を有する二次電池101の両端電圧値を推定して、その値により過充電や過放電の監視、および抑制制御を行う必要がある。このような二次電池101の両端電圧値推定方法として、例えば下記特許文献2に示された方法が提案されている。特許文献2では、制御装置117が組電池115毎に順次故障診断を行う際に、故障診断中の組電池115の両端電圧値を求めることができない構成であるので、以下のようにして推定している。   Therefore, it is necessary to estimate the voltage value at both ends of the secondary battery 101 having an abnormal value, and to perform overcharge and overdischarge monitoring and suppression control based on the estimated value. As such a method of estimating the voltage value across the secondary battery 101, for example, a method disclosed in Patent Document 2 below has been proposed. In Patent Document 2, when the control device 117 sequentially performs failure diagnosis for each assembled battery 115, the voltage value at both ends of the assembled battery 115 during failure diagnosis cannot be obtained. Therefore, the estimation is performed as follows. ing.

まず、いずれの組電池115に対しても故障診断を行っていない時の全二次電池101の両端電圧値の分布を演算する。次に、故障診断中の組電池115以外の二次電池101の両端電圧値データを記憶する。最後に、記憶した前記両端電圧値データと全二次電池101の両端電圧値分布演算結果とを用いて、故障診断中の組電池115に内蔵された二次電池101の各両端電圧値を推定する。   First, the distribution of the voltage values at both ends of all the secondary batteries 101 when no failure diagnosis is performed on any of the assembled batteries 115 is calculated. Next, the voltage value data of both ends of the secondary batteries 101 other than the assembled battery 115 under failure diagnosis are stored. Finally, the both-ends voltage value of the secondary battery 101 built in the assembled battery 115 under failure diagnosis is estimated using the stored end-to-end voltage value data and the end-to-end voltage value distribution calculation result of all the secondary batteries 101. To do.

この方法を用いて、ノイズ等の影響により異常値を有する二次電池101の両端電圧値を推定すると、次のようになる。すなわち、二次電池101の全両端電圧値の分布を演算しておき、両端電圧値に異常値が発生すれば、その他の正常値と両端電圧値分布演算結果とを用いて、異常値を有する二次電池101の両端電圧値を推定することになる。
特許第3581825号公報 特許第3702861号公報
Using this method, the voltage value across the secondary battery 101 having an abnormal value due to the influence of noise or the like is estimated as follows. That is, if the distribution of the voltage values at all ends of the secondary battery 101 is calculated and an abnormal value occurs at the voltage values at both ends, the abnormal value is obtained using the other normal value and the voltage value distribution calculation result at both ends. The voltage value at both ends of the secondary battery 101 is estimated.
Japanese Patent No. 3581825 Japanese Patent No. 3702861

上記の蓄電装置によると、確かに二次電池101の両端電圧値が異常値になっても、想定される正常値を演算により推定することができるのであるが、全二次電池101の両端電圧値の分布を演算する必要があるため時間がかかり、タイムリーに両端電圧値の監視や制御が行えず信頼性が低下するという課題があった。すなわち、図7の構成のように100個オーダーの二次電池101を用いる蓄電装置においては、母数が大きいため両端電圧値の分布演算に要する時間がかかってしまう。この両端電圧値の分布演算は、制御装置117が二次電池101の両端電圧値を測定する毎に行われるため、二次電池101の両端電圧値の測定間隔が長くなる。従って、タイムリーに両端電圧値の監視や制御が行えない可能性がある。   According to the power storage device described above, even if the voltage value at both ends of the secondary battery 101 is an abnormal value, the expected normal value can be estimated by calculation. Since it is necessary to calculate the distribution of values, it takes time, and the voltage values at both ends cannot be monitored and controlled in a timely manner, resulting in a problem that reliability is lowered. That is, in the power storage device using the secondary battery 101 of the order of 100 as in the configuration of FIG. 7, since the parameter is large, it takes time to calculate the distribution of the voltage values at both ends. Since the calculation of the distribution of the both-end voltage value is performed every time the control device 117 measures the both-end voltage value of the secondary battery 101, the measurement interval of the both-end voltage value of the secondary battery 101 becomes longer. Therefore, there is a possibility that the voltage value at both ends cannot be monitored and controlled in a timely manner.

本発明は、前記従来の課題を解決するもので、異常値を有する蓄電素子の両端電圧値を高速に推定できる高信頼な蓄電装置を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a highly reliable power storage device that can estimate the voltage value across the storage element having an abnormal value at high speed.

前記従来の課題を解決するために、本発明の蓄電装置は、複数の蓄電素子の直列、または直並列接続構成を有する蓄電素子モジュールと、前記各蓄電素子の両端、または並列接続された前記蓄電素子を一まとめにした各蓄電素子群の両端に接続された蓄電素子電圧検出回路と、前記蓄電素子電圧検出回路が接続された制御部とを備え、前記蓄電素子、または前記蓄電素子群の各両端電圧値を求める際に、前記制御部は、起動時においては、前記蓄電素子電圧検出回路を介して求めた前記各両端電圧値に初期異常値があれば、前記各両端電圧値の初期正常値の平均値(H)を、前記初期異常値に替わって前記両端電圧値とし、通常使用時においては、前記蓄電素子電圧検出回路を介して求めた前記各両端電圧値に異常値があれば、正常値を有する前記蓄電素子、または前記蓄電素子群における前回測定両端電圧値と今回測定両端電圧値の平均変化率(D)を求め、前記異常値を有する前記蓄電素子、または前記蓄電素子群の前回測定両端電圧値に前記平均変化率(D)を乗じた値を、前記異常値に替わって前記両端電圧値とするようにしたものである。   In order to solve the conventional problem, a power storage device according to the present invention includes a power storage element module having a configuration in which a plurality of power storage elements are connected in series or series-parallel, and the power storage connected to both ends of each power storage element or in parallel. A storage element voltage detection circuit connected to both ends of each storage element group in which the elements are combined, and a control unit connected to the storage element voltage detection circuit, and each of the storage element or each storage element group When determining the voltage values at both ends, the control unit at the time of start-up, if there is an initial abnormal value at each of the voltage values at the both ends determined through the storage element voltage detection circuit, The average value (H) of the values is used as the voltage value at both ends instead of the initial abnormal value, and during normal use, if there is an abnormal value at each terminal voltage value obtained through the storage element voltage detection circuit Has a normal value The average change rate (D) of the previously measured both-end voltage value and the current measured both-end voltage value in the electricity storage element or the electricity storage element group is obtained, and the last measured both-end voltage of the electricity storage element or the electricity storage element group having the abnormal value is obtained. A value obtained by multiplying the value by the average rate of change (D) is used as the voltage value at both ends instead of the abnormal value.

また、本発明の蓄電装置は、複数の蓄電素子の直列、または直並列接続構成を有する複数の蓄電素子モジュールと、前記蓄電素子モジュールの両端に接続された蓄電素子電圧検出回路と、前記蓄電素子電圧検出回路が接続された制御部とを備え、前記蓄電素子モジュールの各両端電圧値を求める際に、前記制御部は、起動時においては、前記蓄電素子電圧検出回路を介して求めた前記各両端電圧値に初期異常値があれば、前記各両端電圧値の初期正常値の平均値(H)を、前記初期異常値に替わって前記両端電圧値とし、通常使用時においては、前記蓄電素子電圧検出回路を介して求めた前記各両端電圧値に異常値があれば、正常値を有する前記蓄電素子モジュールにおける前回測定両端電圧値と今回測定両端電圧値の平均変化率(D)を求め、前記異常値を有する前記蓄電素子モジュールの前回測定両端電圧値に前記平均変化率(D)を乗じた値を、前記異常値に替わって前記両端電圧値とするようにしたものである。   The power storage device of the present invention includes a plurality of power storage element modules having a configuration in which a plurality of power storage elements are connected in series or series-parallel, a power storage element voltage detection circuit connected to both ends of the power storage element module, and the power storage elements A control unit to which a voltage detection circuit is connected, and when determining the voltage values at both ends of the power storage element module, the control unit, when starting up, determines each of the power storage element voltage detection circuits obtained via the power storage element voltage detection circuit. If there is an initial abnormal value in the both-end voltage value, the average value (H) of the initial normal value of each of the both-end voltage values is used as the both-end voltage value instead of the initial abnormal value. If there is an abnormal value at each of the voltage values obtained through the voltage detection circuit, an average rate of change (D) between the voltage value at the previous measurement and the voltage value at the current measurement in the storage element module having a normal value is obtained. , A value obtained by multiplying the average rate of change in the last measured voltage across value (D) of said power storage device module having the abnormal value, in which in place of the abnormal value was set as the said end voltage value.

本発明の蓄電装置によれば、起動時に蓄電素子、または蓄電素子群の両端電圧値に初期異常値があれば、他の初期正常値の平均値(H)を前記両端電圧値とし、通常使用時に前記両端電圧値に異常値があれば、正常値を有する蓄電素子、または蓄電素子群の前回測定両端電圧値と今回測定両端電圧値の平均変化率(D)に前記異常値を有する蓄電素子、または蓄電素子群の前回測定両端電圧値を乗じた値を今回測定両端電圧値とするので、異常値を有する蓄電素子、または蓄電素子群の両端電圧値を簡単な四則演算によってのみ推定することができる。従って、演算時間がほとんどかからずタイムリーに両端電圧値の監視や制御を行うことができ、信頼性が高まるという効果が得られる。   According to the power storage device of the present invention, if there is an initial abnormal value in the voltage value of the power storage element or the power storage element group at the time of start-up, the average value (H) of other initial normal values is used as the voltage value at the both ends. Sometimes, if there is an abnormal value at the both-end voltage value, the storage element having a normal value, or the storage element having the abnormal value in the average rate of change (D) between the previous-measurement both-end voltage value and the current-measurement both-end voltage value Or, the value obtained by multiplying the voltage value measured at both ends of the power storage element group by this time is the voltage value measured at both ends, so that the voltage value of the power storage element having an abnormal value or the power storage element group is estimated only by simple four arithmetic operations. Can do. Accordingly, it is possible to monitor and control the voltage values at both ends in a timely manner with little calculation time, and the effect of increasing the reliability can be obtained.

また、本発明によれば、起動時に蓄電素子モジュールの両端電圧値に初期異常値があれば、他の初期正常値の平均値(H)を前記両端電圧値とし、通常使用時に前記両端電圧値に異常値があれば、正常値を有する蓄電素子モジュールの前回測定両端電圧値と今回測定両端電圧値の平均変化率(D)に前記異常値を有する蓄電素子モジュールの前回測定両端電圧値を乗じた値を今回測定両端電圧値とするので、異常値を有する蓄電素子モジュールの両端電圧値を簡単な四則演算によってのみ推定することができる。従って、演算時間がほとんどかからずタイムリーに両端電圧値の監視や制御を行うことができ、信頼性が高まるという効果が得られる。   Further, according to the present invention, if there is an initial abnormal value in the voltage value at both ends of the energy storage device module at the time of starting, the average value (H) of other initial normal values is set as the voltage value at both ends, and the voltage value at both ends in normal use. If there is an abnormal value, multiply the previous measured both-end voltage value of the storage element module having a normal value and the average change rate (D) of the both-end measured voltage value by the previous measured both-end voltage value of the storage element module having the abnormal value. Since the measured value is used as the both-end measured voltage value this time, the both-end voltage value of the storage element module having an abnormal value can be estimated only by simple four arithmetic operations. Accordingly, it is possible to monitor and control the voltage values at both ends in a timely manner with little calculation time, and the effect of increasing the reliability can be obtained.

以下、本発明を実施するための最良の形態について図面を参照しながら説明する。なお、以下の説明においては、キャパシタからなる蓄電装置を二次電池からなる主電源と併用した、急加速が可能なハイブリッド車に適用した場合について述べる。   The best mode for carrying out the present invention will be described below with reference to the drawings. In the following description, a case will be described in which a power storage device made of a capacitor is used in combination with a main power source made of a secondary battery and applied to a hybrid vehicle capable of rapid acceleration.

(実施の形態1)
図1は、本発明の実施の形態1における蓄電装置の蓄電素子を直列接続した際のブロック回路図である。図2は、本発明の実施の形態1における蓄電装置の蓄電素子両端電圧値の測定フローチャートである。図3は、本発明の実施の形態1における蓄電装置の異常両端電圧値の推定フローチャートである。図4は、本発明の実施の形態1における蓄電装置の蓄電素子を直並列接続した際のブロック回路図である。なお、図1と図4の太線は電力系配線を、細線は信号系配線をそれぞれ示す。
(Embodiment 1)
FIG. 1 is a block circuit diagram when power storage elements of a power storage device according to Embodiment 1 of the present invention are connected in series. FIG. 2 is a measurement flowchart of the voltage value across the storage element of the storage device according to Embodiment 1 of the present invention. FIG. 3 is an estimation flowchart of the abnormal both-ends voltage value of the power storage device according to Embodiment 1 of the present invention. FIG. 4 is a block circuit diagram when the power storage elements of the power storage device according to Embodiment 1 of the present invention are connected in series and parallel. In FIG. 1 and FIG. 4, thick lines indicate power system wiring, and thin lines indicate signal system wiring.

図1において、蓄電装置11は主電源15と負荷17との間に接続されている。主電源15は二次電池であり、負荷17は車両駆動用のモータである。従って、通常のモータ駆動時は主電源15の電力を負荷17に供給するが、急加速時等で負荷17が短時間に大電力を消費する時には蓄電装置11から負荷17に電力が供給される構成となる。   In FIG. 1, the power storage device 11 is connected between a main power supply 15 and a load 17. The main power source 15 is a secondary battery, and the load 17 is a vehicle driving motor. Accordingly, the power of the main power supply 15 is supplied to the load 17 during normal motor driving, but the power is supplied from the power storage device 11 to the load 17 when the load 17 consumes a large amount of power in a short time, such as during rapid acceleration. It becomes composition.

蓄電装置11は次の構成を有する。まず、主電源15の出力には、その電圧Vbを検出する主電源電圧検出回路21が接続されている。主電源電圧検出回路21の電力系配線(太線)の入力側と出力側は同電圧になるよう接続されている。   The power storage device 11 has the following configuration. First, a main power supply voltage detection circuit 21 that detects the voltage Vb is connected to the output of the main power supply 15. The input side and the output side of the power system wiring (thick line) of the main power supply voltage detection circuit 21 are connected to have the same voltage.

主電源電圧検出回路21と負荷17の間には切替スイッチ23が接続されている。切替スイッチ23はオン、オフの2つの状態を有するものであり、本実施の形態1ではアノードを主電源電圧検出回路21に、カソードを負荷17に接続したダイオードを用いた。   A changeover switch 23 is connected between the main power supply voltage detection circuit 21 and the load 17. The changeover switch 23 has two states, on and off. In the first embodiment, a diode having an anode connected to the main power supply voltage detection circuit 21 and a cathode connected to the load 17 is used.

切替スイッチ23と負荷17の接続点には充放電回路25が接続されている。充放電回路25には電力を蓄える複数の蓄電素子モジュール29が接続されている。従って、充放電回路25によって蓄電素子モジュール29の充放電制御が行われる。   A charging / discharging circuit 25 is connected to a connection point between the changeover switch 23 and the load 17. A plurality of power storage element modules 29 that store electric power are connected to the charge / discharge circuit 25. Therefore, charge / discharge control of the power storage element module 29 is performed by the charge / discharge circuit 25.

各蓄電素子モジュール29は複数の蓄電素子31を直列に接続した構成を有する。なお、蓄電素子31には電気二重層キャパシタを用いた。また、複数の蓄電素子モジュール29も直列に接続している。これらにより、負荷17を駆動する電圧を得ている。   Each power storage element module 29 has a configuration in which a plurality of power storage elements 31 are connected in series. An electric double layer capacitor was used for the electricity storage element 31. A plurality of power storage element modules 29 are also connected in series. As a result, a voltage for driving the load 17 is obtained.

各蓄電素子31の両端には、蓄電素子モジュール29毎に蓄電素子電圧検出回路33がそれぞれ接続されている。蓄電素子電圧検出回路33はマルチプレクサと出力電圧比例変換回路(いずれも図示せず)から構成される。従って、蓄電素子電圧検出回路33は蓄電素子31同士の接続点の電圧を順次切り替えて測定する機能を有する。なお、前記出力電圧比例変換回路は、測定した電圧をマイクロコンピュータからなるスレーブ側制御回路35に内蔵されたADコンバータが読み込める電圧に比例変換する機能を有する。   A storage element voltage detection circuit 33 is connected to each end of each storage element 31 for each storage element module 29. The storage element voltage detection circuit 33 includes a multiplexer and an output voltage proportional conversion circuit (both not shown). Therefore, the storage element voltage detection circuit 33 has a function of sequentially switching and measuring the voltage at the connection point between the storage elements 31. The output voltage proportional conversion circuit has a function of proportionally converting the measured voltage into a voltage that can be read by an AD converter built in the slave control circuit 35 formed of a microcomputer.

従って、各蓄電素子電圧検出回路33はそれぞれスレーブ側制御回路35に接続されていることになるので、スレーブ側制御回路35から蓄電素子電圧検出回路33に蓄電素子選択信号Cselを送信することで、蓄電素子電圧検出回路33が電圧の測定対象となる蓄電素子31を選択し、得られた電圧を比例変換してスレーブ側制御回路35に蓄電素子電圧信号Vi(i=1〜n+1、nは各蓄電素子モジュール29に内蔵した蓄電素子31の数)を送信することで電圧Viを求めることができる。   Accordingly, each storage element voltage detection circuit 33 is connected to the slave-side control circuit 35. Therefore, by transmitting the storage element selection signal Csel from the slave-side control circuit 35 to the storage element voltage detection circuit 33, The storage element voltage detection circuit 33 selects the storage element 31 that is the voltage measurement target, and proportionally converts the obtained voltage to the slave side control circuit 35 to store the storage element voltage signal Vi (i = 1 to n + 1, where n The voltage Vi can be obtained by transmitting (the number of power storage elements 31 incorporated in the power storage element module 29).

各スレーブ側制御回路35はスレーブ側送受信回路37にそれぞれ接続されている。スレーブ側送受信回路37は、スレーブ側制御回路35と後述する制御部との間でデータ送受信を行う機能を有し、スレーブ側送受信回路37で受信したデータはスレーブ側データ入力信号Sinとしてスレーブ側制御回路35に送信され、スレーブ側制御回路35が送信したデータはスレーブ側データ出力信号Soutとしてスレーブ側送受信回路37が受信する。   Each slave side control circuit 35 is connected to a slave side transmission / reception circuit 37. The slave side transmission / reception circuit 37 has a function of performing data transmission / reception between the slave side control circuit 35 and a control unit to be described later. Data received by the slave side transmission / reception circuit 37 is controlled by the slave side as a slave side data input signal Sin. The data transmitted to the circuit 35 and transmitted by the slave side control circuit 35 is received by the slave side transmission / reception circuit 37 as the slave side data output signal Sout.

ここまでで説明した蓄電素子モジュール29、蓄電素子電圧検出回路33、スレーブ側制御回路35、およびスレーブ側送受信回路37で構成される蓄電部39は図1に示すように複数個が設けられている。なお、蓄電部39には従来のように信号有無検出回路を設けてもよいが、図1では省略している。   A plurality of power storage units 39 including the power storage element module 29, the power storage element voltage detection circuit 33, the slave side control circuit 35, and the slave side transmission / reception circuit 37 described above are provided as shown in FIG. . The power storage unit 39 may be provided with a signal presence / absence detection circuit as is conventional, but is omitted in FIG.

各蓄電部39は、前記したように蓄電素子モジュール29が直列になるように接続されるとともに、スレーブ側送受信回路37同士も信号系配線で接続されている。さらに、この信号系配線は、制御部41に接続されたマスタ側送受信回路43にも接続されている。なお、制御部41は蓄電装置11の全体を制御するためにマイクロコンピュータで構成されている。   Each power storage unit 39 is connected so that the power storage element modules 29 are in series as described above, and the slave side transmission / reception circuits 37 are also connected to each other by signal system wiring. Further, the signal system wiring is also connected to the master side transmission / reception circuit 43 connected to the control unit 41. The control unit 41 is configured by a microcomputer in order to control the entire power storage device 11.

これらのことから、各スレーブ側送受信回路37とマスタ側送受信回路43は前記信号系配線で接続されており、これにより各種のスレーブ側データ信号Sdataの送受信が行われる。なお、制御部41とマスタ側送受信回路43の間はマスタ側データ入力信号Minやマスタ側データ出力信号Moutによりデータのやり取りが行われる。また、制御部41とマスタ側送受信回路43からなる制御装置45には、従来のように絶縁回路電源を設けてもよいが、図1では省略している。   For these reasons, each of the slave side transmission / reception circuits 37 and the master side transmission / reception circuit 43 are connected by the signal system wiring, whereby various slave side data signals Sdata are transmitted and received. Note that data is exchanged between the control unit 41 and the master side transmission / reception circuit 43 by the master side data input signal Min and the master side data output signal Mout. Further, the control device 45 including the control unit 41 and the master-side transmission / reception circuit 43 may be provided with an insulating circuit power supply as in the related art, but is omitted in FIG.

以上のことから、蓄電素子電圧検出回路33と制御部41は、スレーブ側制御回路35、スレーブ側送受信回路37、およびマスタ側送受信回路43を介して信号系配線により接続されていることになる。さらに、制御部41には主電源電圧検出回路21と充放電回路25が接続されている。従って、制御部41は主電源電圧検出回路21から主電源15の電圧信号Vbを読み込むとともに、蓄電素子31の充放電を制御するために、充放電回路25に制御信号contを送信する。また、制御部41は車両用制御回路(図示せず)とデータ信号Adataの送受信を行うことで互いに交信する機能を有している。   From the above, the storage element voltage detection circuit 33 and the control unit 41 are connected by the signal system wiring via the slave side control circuit 35, the slave side transmission / reception circuit 37, and the master side transmission / reception circuit 43. Further, the main power supply voltage detection circuit 21 and the charge / discharge circuit 25 are connected to the control unit 41. Therefore, the control unit 41 reads the voltage signal Vb of the main power supply 15 from the main power supply voltage detection circuit 21 and transmits a control signal cont to the charge / discharge circuit 25 in order to control the charge / discharge of the storage element 31. Further, the control unit 41 has a function of communicating with each other by performing transmission / reception of a data signal Data with a vehicle control circuit (not shown).

次に、このような蓄電装置11の動作について説明する。   Next, the operation of the power storage device 11 will be described.

まず、通常の蓄電装置11の動作を述べる。運転者がイグニションキー(図示せず)をオンにすると、蓄電装置11が起動する。この際、各蓄電素子モジュール29を満充電にするために、制御部41は充放電回路25を充電制御するよう制御信号contを送信する。これにより、充放電回路25は充電動作を開始する。この際、充放電回路25の入力側電圧は主電源15の電圧Vbより低くなるので、切替スイッチ23が自動的にオンになり充放電回路25に電力が供給される。なお、充電が完了すれば充放電回路25は各蓄電素子31の充電電圧を保持するように動作し続ける。   First, the operation of the normal power storage device 11 will be described. When the driver turns on an ignition key (not shown), the power storage device 11 is activated. At this time, in order to fully charge each storage element module 29, the control unit 41 transmits a control signal cont so as to charge-control the charge / discharge circuit 25. Thereby, the charging / discharging circuit 25 starts a charging operation. At this time, since the input side voltage of the charging / discharging circuit 25 is lower than the voltage Vb of the main power supply 15, the changeover switch 23 is automatically turned on and power is supplied to the charging / discharging circuit 25. When charging is completed, the charging / discharging circuit 25 continues to operate so as to maintain the charging voltage of each storage element 31.

その後、車両使用時の加速等により負荷17が大電流を消費したとする。この場合、主電源15からの電力だけではこのような瞬発的な大電流を供給できない。そこで、制御部41は大電流消費により主電源電圧検出回路21で測定した主電源15の電圧Vbの低下を検出すると、充放電回路25を放電制御するように制御信号contを送信する。これにより、充放電回路25は放電動作を開始する。この際、主電源15の電圧Vbより全蓄電素子モジュール29の満充電電圧の方が高くなるので、切替スイッチ23がオフになる。その結果、蓄電素子モジュール29の電力が主電源15に供給されることなく、負荷17にのみ有効に供給される。これにより、蓄電素子31は急速充放電特性に優れるため、負荷17に瞬発的な大電流を供給することができる。   Thereafter, it is assumed that the load 17 consumes a large current due to acceleration during use of the vehicle. In this case, such an instantaneous large current cannot be supplied only by the electric power from the main power supply 15. Therefore, when the control unit 41 detects a decrease in the voltage Vb of the main power supply 15 measured by the main power supply voltage detection circuit 21 due to large current consumption, the control unit 41 transmits a control signal cont to control the discharge of the charge / discharge circuit 25. Thereby, the charging / discharging circuit 25 starts a discharging operation. At this time, since the full charge voltage of all the storage element modules 29 is higher than the voltage Vb of the main power supply 15, the changeover switch 23 is turned off. As a result, the electric power of the storage element module 29 is effectively supplied only to the load 17 without being supplied to the main power supply 15. Thereby, since the electrical storage element 31 is excellent in rapid charge / discharge characteristics, an instantaneous large current can be supplied to the load 17.

その後、全蓄電素子モジュール29の電圧は経時的に低下していくので、切替スイッチ23がオフになっている間に回復した主電源15の電圧Vbの方がいずれ高くなる。その時には切替スイッチ23がオンになるので、負荷17へは主電源15から電力が供給される。この際、制御部41は主電源電圧検出回路21によって電圧Vbの回復を検出すると、充放電回路25を再度充電制御するように制御信号contを送信する。これにより、充放電回路25は充電動作を開始し、全蓄電素子モジュール29から放電された電力を補う。その結果、主電源15の電力により全蓄電素子モジュール29が満充電され、次の加速等に備える。   Thereafter, the voltages of all the power storage element modules 29 decrease with time, so that the voltage Vb of the main power supply 15 recovered while the changeover switch 23 is turned off eventually becomes higher. At that time, since the changeover switch 23 is turned on, power is supplied from the main power supply 15 to the load 17. At this time, when the main power supply voltage detection circuit 21 detects the recovery of the voltage Vb, the control unit 41 transmits a control signal cont so that the charge / discharge circuit 25 is charged again. Thereby, the charging / discharging circuit 25 starts a charging operation, and supplements the electric power discharged from all the power storage element modules 29. As a result, all the storage element modules 29 are fully charged by the power of the main power supply 15 to prepare for the next acceleration or the like.

このような動作を繰り返すことにより、全蓄電素子モジュール29の電力は補助的に負荷17に供給されることになる。   By repeating such an operation, the electric power of all the energy storage element modules 29 is supplied to the load 17 as an auxiliary.

次に、蓄電装置11における各蓄電素子31の過充電や過放電の監視を行うための蓄電素子両端電圧値の測定動作、および異常両端電圧値の推定動作についてそれぞれ図2、図3のフローチャートを用いて説明する。なお、制御部41はメインルーチン(図示せず)から必要に応じて様々なサブルーチンを実行することにより全体の動作を行うソフトウエア構成としているので、図2に示すフローチャートをサブルーチンの形態で示した。また、図2では制御部41のフローチャートと、それに対応して動作する部分に限定したスレーブ側制御回路35のフローチャートを同時に示す。また、図3のフローチャートは図2のフローチャートから実行されるサブルーチンであるので、図3もサブルーチンの形態で示した。   Next, the measurement operation of the voltage value across the storage element for monitoring overcharge and overdischarge of each storage element 31 in the power storage device 11 and the estimation operation of the abnormal voltage value across the storage element 31 are respectively shown in the flowcharts of FIGS. It explains using. Since the control unit 41 has a software configuration that performs the entire operation by executing various subroutines as necessary from a main routine (not shown), the flowchart shown in FIG. 2 is shown in the form of a subroutine. . FIG. 2 also shows a flowchart of the control unit 41 and a flowchart of the slave side control circuit 35 limited to a portion that operates correspondingly. Since the flowchart of FIG. 3 is a subroutine executed from the flowchart of FIG. 2, FIG. 3 is also shown in the form of a subroutine.

まず、車両の起動時には制御部41のメインルーチンにて、起動フラグKFと各蓄電素子31の異常カウンタF(j,i)を全てクリアする初期設定を行う。ここで、起動フラグKFは、起動直後が0で、起動後に一度でも異常両端電圧値の推定動作を行った場合は1になる。これにより、起動フラグKFの値を判断することにより、起動直後か否かを区別することができる。また、異常カウンタF(j,i)は、番号j,iで決定される蓄電素子31の連続異常回数を示すものである。これは、蓄電素子電圧検出回路33を介して同一の蓄電素子31における両端電圧値の異常値を、既定回数(本実施の形態1では3回とした)まで連続して求めた時に、その蓄電素子31が異常であると判断するために用いる。従って、両端電圧値において正常値が得られると0に、異常値が得られると異常カウンタF(j,i)を1づつ加算するようにしている。なお、異常カウンタF(j,i)は配列であり、番号jは1〜m(mは蓄電部39の個数で本実施の形態1では10個とした)、番号iは1〜n(nは蓄電素子モジュール29内の蓄電素子31の個数で本実施の形態1では10個とした)の範囲を取る。   First, when the vehicle is started, an initial setting is performed in the main routine of the control unit 41 to clear all of the start flag KF and the abnormality counter F (j, i) of each power storage element 31. Here, the activation flag KF is 0 immediately after the activation, and becomes 1 when the abnormal both-end voltage value estimation operation is performed even once after the activation. Thereby, it can be distinguished whether it is immediately after starting by determining the value of the starting flag KF. The abnormality counter F (j, i) indicates the number of continuous abnormalities of the power storage element 31 determined by the numbers j and i. This is because when the abnormal value of the both-end voltage value in the same power storage element 31 is continuously obtained up to a predetermined number of times (three times in the first embodiment) via the power storage element voltage detection circuit 33, Used to determine that the element 31 is abnormal. Therefore, when a normal value is obtained in the both-end voltage value, 0 is added, and when an abnormal value is obtained, an abnormal counter F (j, i) is incremented by one. The abnormality counter F (j, i) is an array, the number j is 1 to m (m is the number of power storage units 39 and 10 in the first embodiment), and the number i is 1 to n (n Is the number of power storage elements 31 in the power storage element module 29 and is 10 in the first embodiment).

この初期設定を行った状態で、制御部41は定期的に図2のサブルーチンを実行して、各蓄電素子31の過充電や過放電の監視を行う。図2のサブルーチンが実行されると、まず各蓄電部39に対して蓄電素子両端電圧値DVi(i=1〜n)の測定要求を送信する(ステップ番号S13)。これはマスタ側送受信回路43から信号系配線を介し、スレーブ側データ信号Sdataとして各蓄電部39のスレーブ側送受信回路37に送信され、さらにスレーブ側制御回路35に伝達される。なお、スレーブ側データ信号Sdataはほとんど同時に各スレーブ側送受信回路37に送信されるので、以下に述べる各蓄電素子31の両端電圧値DViの測定を同時に行っている。これにより、蓄電素子モジュール29毎に両端電圧値DViの測定が並行して行われるので、高速な測定が可能となる。   With this initial setting, the control unit 41 periodically executes the subroutine of FIG. 2 to monitor overcharge and overdischarge of each storage element 31. When the subroutine of FIG. 2 is executed, first, a measurement request for the voltage value DVi across the storage element DVi (i = 1 to n) is transmitted to each storage unit 39 (step number S13). This is transmitted as a slave-side data signal Sdata from the master-side transmission / reception circuit 43 to the slave-side transmission / reception circuit 37 of each power storage unit 39 via the signal system wiring, and further transmitted to the slave-side control circuit 35. Since the slave side data signal Sdata is transmitted almost simultaneously to each slave side transmission / reception circuit 37, the measurement of the voltage value DVi across each storage element 31 described below is performed simultaneously. Thereby, the measurement of the both-end voltage value DVi is performed in parallel for each power storage element module 29, so that high-speed measurement is possible.

S13により発せられた両端電圧値DViの測定要求を受信すると、各スレーブ側制御回路35の動作に割り込みが発生し、図2のS13から点線矢印で示したスレーブ側制御回路35の割り込みルーチンが実行される。なお、この割り込みルーチンにおいて、実行直後の割り込み禁止処理や実行終了後の割り込み許可処理は省略している。以後説明する割り込みルーチンにおいても、これらの処理は省略する。   When the measurement request for the both-end voltage value DVi issued in S13 is received, an interrupt is generated in the operation of each slave-side control circuit 35, and the interrupt routine of the slave-side control circuit 35 indicated by the dotted arrow is executed from S13 in FIG. Is done. In this interrupt routine, the interrupt prohibition process immediately after execution and the interrupt permission process after completion of execution are omitted. These processes are also omitted in the interrupt routine described below.

割り込みルーチンが実行されると、まず番号iに1を代入した後(S101)、蓄電素子電圧検出回路33を介して蓄電素子31の電圧Viを読み込み、スレーブ側制御回路35に内蔵されたメモリ(図示せず)に記憶する(S103)。なお、電圧Viは図1における蓄電素子31の両端に示したV1、V2、・・・、Vn+1における電圧である。次に、番号iが1であるか否かを判断する(S105)。番号iが1であれば(S105のYes)、蓄電素子31の両端電圧値DViを計算するだけの電圧Viが測定できていないので、後述するS111にジャンプする。一方、番号iが1でなければ(S105のNo)、両端電圧値DVi−1をDVi−1=Vi−Vi−1により計算し、メモリに記憶する(S107)。この式により両端電圧値DVi−1を計算するので、iが1の時(S105のYes)はi−1=0になり計算できない。ゆえに、i=1ならばS111にジャンプしている。   When the interrupt routine is executed, first, 1 is assigned to the number i (S101), then the voltage Vi of the storage element 31 is read via the storage element voltage detection circuit 33, and the memory ( (S103). Note that the voltage Vi is the voltage at V1, V2,..., Vn + 1 shown at both ends of the power storage element 31 in FIG. Next, it is determined whether or not the number i is 1 (S105). If the number i is 1 (Yes in S105), the voltage Vi for calculating the both-ends voltage value DVi of the power storage element 31 cannot be measured, and the process jumps to S111 described later. On the other hand, if the number i is not 1 (No in S105), the voltage value DVi-1 at both ends is calculated by DVi-1 = Vi-Vi-1 and stored in the memory (S107). Since the both-end voltage value DVi-1 is calculated by this equation, when i is 1 (Yes in S105), i-1 = 0 and cannot be calculated. Therefore, if i = 1, the process jumps to S111.

ここでS107に戻り、S107の計算が終了すれば、番号iがn+1と等しいか否かを判断する(S109)。等しければ(S109のYes)、全ての蓄電素子31の両端電圧値DViを求め終わったので、割り込みルーチンを終了する。一方、等しくなければ(S109のNo)、番号iを1だけ加算して次の番号とし(S111)、S103に戻って両端電圧値DViを求める動作を繰り返す。   Here, the process returns to S107, and if the calculation of S107 is completed, it is determined whether or not the number i is equal to n + 1 (S109). If they are equal (Yes in S109), since the voltage values DVi across both power storage elements 31 have been obtained, the interrupt routine is terminated. On the other hand, if they are not equal (No in S109), the number i is incremented by 1 to obtain the next number (S111), and the process returns to S103 to obtain the both-end voltage value DVi.

この割り込みルーチンは単に電圧Viを読み込んで両端電圧値DViを計算する動作を繰り返すだけなので、実行に要する時間はほぼ一定である。しかも、各蓄電部39において同時に並行して実行されているので、全ての両端電圧値DViを求め終わるまでの時間(測定終了時間)は既知である。そこで、制御部41のフローチャートに戻って、制御部41は測定終了時間が経過したか否かを判断する(S15)。もし、経過していなければ(S15のNo)、S15に戻り経過するまで待つ。一方、経過していれば(S15のYes)、各蓄電部39はそれぞれの両端電圧値DViを求め終わっているので、以下のようにして全両端電圧値DViを各蓄電部39から読み込む動作を行う。   Since this interrupt routine simply repeats the operation of reading the voltage Vi and calculating the voltage value DVi at both ends, the time required for execution is substantially constant. Moreover, since the power storage units 39 are concurrently executing in parallel, the time until the end of all the voltage values DVi (measurement end time) is known. Therefore, returning to the flowchart of the control unit 41, the control unit 41 determines whether or not the measurement end time has elapsed (S15). If it has not elapsed (No in S15), the process returns to S15 and waits until it elapses. On the other hand, if it has elapsed (Yes in S15), each power storage unit 39 has obtained the respective voltage values DVi at both ends, and therefore the operation of reading all the voltage values DVi from each power storage unit 39 as follows. Do.

まず、蓄電部39を識別する番号jに1を代入する(S17)。次に、番号jの蓄電部39に対して蓄電素子両端電圧値DVi(i=1〜n)の出力要求を送信する(S19)。これにより、番号jの蓄電部39に内蔵されたスレーブ側制御回路35の動作に割り込みが発生し、図2のS19から点線矢印で示したスレーブ側制御回路35の割り込みルーチンが実行される。   First, 1 is assigned to the number j for identifying the power storage unit 39 (S17). Next, an output request for the storage element voltage value DVi (i = 1 to n) is transmitted to the power storage unit 39 of number j (S19). As a result, an interrupt occurs in the operation of the slave-side control circuit 35 built in the power storage unit 39 of number j, and the interrupt routine of the slave-side control circuit 35 indicated by the dotted arrow from S19 in FIG. 2 is executed.

これにより、スレーブ側制御回路35は既にS107で計算し記憶した蓄電素子両端電圧値DViを送信する(S121)。その結果、図2のS121から点線矢印で示した制御部41のS21において蓄電素子両端電圧値DViを受信する。次に、DV1〜DVnの全ての蓄電素子両端電圧値の受信が完了したか否かを判断する(S23)。もし、受信が完了していれば(S23のYes)、後述するS37にジャンプする。一方、受信が未完了であれば(S23のNo)、既定時間が経過したか否かを判断する(S25)。ここで、全ての蓄電素子両端電圧値を受信し終わる時間は既知であるので、その時間にバラツキ誤差等の余裕を加えた時間を既定時間とした。従って、正常に受信されていれば、必ず既定時間以内に番号jの蓄電部39に内蔵された全ての蓄電素子両端電圧値を受信し終わっていることになる。ゆえに、もし既定時間が経過していなければ(S25のNo)、まだ全ての蓄電素子両端電圧値を受信し終わっていないので、S21に戻り受信動作を継続する。   Thereby, the slave side control circuit 35 transmits the storage element both-end voltage value DVi that has already been calculated and stored in S107 (S121). As a result, the storage element both-end voltage value DVi is received in S21 of the control unit 41 indicated by a dotted arrow from S121 of FIG. Next, it is determined whether or not reception of all the storage element voltage values of DV1 to DVn is completed (S23). If the reception has been completed (Yes in S23), the process jumps to S37 to be described later. On the other hand, if reception has not been completed (No in S23), it is determined whether or not a predetermined time has elapsed (S25). Here, since the time at which all voltage values across the storage element are received is known, the time obtained by adding a margin such as a variation error to the time is defined as the predetermined time. Therefore, if it is normally received, all the voltage values of the both ends of the storage element built in the storage unit 39 with the number j are completely received within the predetermined time. Therefore, if the predetermined time has not elapsed (No in S25), since all the voltage values across the storage elements have not been received yet, the process returns to S21 and the reception operation is continued.

一方、既定時間が経過すれば(S25のYes)、全ての蓄電素子両端電圧値を受信できなかったので、例えば外的ノイズ等の影響で一時的に受信が途絶えたり、信号系配線の断線等により受信ができない状態にあることが考えられる。そこで、一時的に受信できなかったのか、断線等の故障により受信できないのかを区別するために、制御部41はもう一度、番号jの蓄電部39に対して蓄電素子両端電圧値DViの出力要求を送信する(S27)。これにより、S27から点線矢印で示したスレーブ側制御回路35の割り込みルーチン(S121)が実行される。その結果、蓄電素子両端電圧値DViが送信され、図2のS121から点線矢印で示した制御部41のS29で蓄電素子両端電圧値を受信する。次に、DV1〜DVnの全ての蓄電素子両端電圧値の受信が完了したか否かを判断する(S31)。もし、受信が完了していれば(S31のYes)、S21では一時的に受信できなかったと考えられる。ゆえに、S29で受信した蓄電素子両端電圧値を正常受信値として、後述するS37にジャンプする。一方、受信が未完了であれば(S31のNo)、既定時間が経過したか否かを判断し(S33)、もし既定時間が経過していなければ(S33のNo)、S29に戻り受信動作を継続する。一方、既定時間が経過すれば(S33のYes)、再び全ての蓄電素子両端電圧値を受信できなかったので、信号系配線の断線や送受信回路系の故障等が想定される。従って、これ以上蓄電装置11を使用し続けることができないので、制御部41は異常信号をデータ信号Adataとして車両側制御回路に出力し(S35)、図2のフローチャートを終了する。この動作により、車両側制御回路は蓄電装置11の使用を禁止するとともに、故障を運転者に警告し修理を促す。なお、本実施の形態1では蓄電素子両端電圧値の受信を2回まで行っているが、これはさらに多くの回数であってもよい。また、前記異常信号には、異常のある蓄電素子31の識別情報(例えば番号jとi)が含まれていてもよいし、蓄電素子31の単品を交換できない構成の場合は異常のある蓄電素子モジュール29の識別情報(例えば番号j)が含まれていてもよい。これらの場合、車両用制御回路はどの蓄電素子31、または蓄電素子モジュール29が異常であるかを知ることができるので、これを修理者に示すことで修理のサービス性や信頼性が高まる。   On the other hand, if the predetermined time has passed (Yes in S25), all the voltage values across the storage element could not be received. For example, the reception was temporarily interrupted due to external noise or the like, the signal system wiring was disconnected, etc. It is conceivable that reception is not possible. Therefore, in order to distinguish whether the signal could not be received temporarily or whether the signal could not be received due to a failure such as a disconnection, the control unit 41 once again sends an output request for the voltage value DVi across the storage element to the power storage unit 39 of number j. Transmit (S27). Thereby, the interrupt routine (S121) of the slave side control circuit 35 indicated by the dotted arrow from S27 is executed. As a result, the voltage value DVi across the storage element is transmitted, and the voltage value across the storage element is received in S29 of the control unit 41 indicated by the dotted arrow from S121 in FIG. Next, it is determined whether or not reception of all the storage element voltage values of DV1 to DVn has been completed (S31). If the reception is completed (Yes in S31), it is considered that the reception could not be temporarily performed in S21. Therefore, the process proceeds to S37, which will be described later, with the voltage value across the storage element received in S29 as the normal reception value. On the other hand, if the reception has not been completed (No in S31), it is determined whether or not the predetermined time has passed (S33). If the predetermined time has not passed (No in S33), the process returns to S29 to receive operation. Continue. On the other hand, if the predetermined time has elapsed (Yes in S33), all the voltage values across the storage elements could not be received again, so that disconnection of the signal system wiring, failure of the transmission / reception circuit system, and the like are assumed. Accordingly, since the power storage device 11 cannot be used any more, the control unit 41 outputs an abnormal signal as the data signal Data to the vehicle side control circuit (S35), and the flowchart of FIG. By this operation, the vehicle-side control circuit prohibits the use of the power storage device 11, warns the driver of the failure, and prompts repair. In the first embodiment, the voltage value across the storage element is received up to twice, but this may be performed more frequently. In addition, the abnormal signal may include identification information (for example, numbers j and i) of the abnormal power storage element 31. In the case where the single power storage element 31 cannot be replaced, the abnormal power storage element Identification information (for example, number j) of the module 29 may be included. In these cases, since the vehicle control circuit can know which storage element 31 or storage element module 29 is abnormal, the serviceability and reliability of repair are improved by showing this to the repairer.

ここで、S23やS31に戻って、正常に蓄電素子両端電圧値DVi(i=1〜n)の受信が完了すれば(S23やS31のYes)、受信した蓄電素子両端電圧値DViを配列変数である今回測定両端電圧値V(j,i)に順次代入する(S37)。この際、もし蓄電装置11に蓄電されている全体電圧値が制御上必要な場合は、図1の電圧V1を別途読み込めばよい。次に、番号jと蓄電部39の個数mを比較する(S39)。もし、jとmが等しくなければ、番号jを次の蓄電部39の番号にするために、jを1だけ加算(S41)してS19に戻り、次の蓄電部39の蓄電素子両端電圧値DViを受信する動作を順次行う。一方、j=mであれば(S39のYes)、次にいずれかの蓄電部39の蓄電素子両端電圧値DViが全て異常値であるか否かを調べる。これにより、もし任意の蓄電部39における蓄電素子両端電圧値DViが全て異常値であれば、その蓄電部39に内蔵した各蓄電素子31が全て異常である以外に、蓄電素子電圧検出回路33、スレーブ側制御回路35、またはスレーブ側送受信回路37の少なくともいずれかが異常である場合が想定される。このような蓄電部39をそのまま使用し続けると蓄電装置11の信頼性が損なわれる可能性があるので、この段階で蓄電部39の異常を判断している。この動作は、具体的には以下の通りである。   Here, returning to S23 or S31, if reception of the storage element voltage value DVi (i = 1 to n) is normally completed (Yes in S23 or S31), the received storage element voltage value DVi is set as an array variable. Are sequentially substituted into the current measured voltage values V (j, i) (S37). At this time, if the entire voltage value stored in the power storage device 11 is necessary for control, the voltage V1 in FIG. 1 may be read separately. Next, the number j and the number m of the power storage units 39 are compared (S39). If j is not equal to m, j is incremented by 1 (S41) to make number j the number of the next power storage unit 39, and the process returns to S19. The operation of receiving DVi is sequentially performed. On the other hand, if j = m (Yes in S39), next, it is checked whether or not all the storage element voltage values DVi of any one of the storage units 39 are abnormal values. Thereby, if all the storage element voltage values DVi in any storage unit 39 are abnormal values, the storage element voltage detection circuit 33, except that each storage element 31 built in the storage unit 39 is all abnormal. It is assumed that at least one of the slave side control circuit 35 and the slave side transmission / reception circuit 37 is abnormal. If such a power storage unit 39 continues to be used as it is, the reliability of the power storage device 11 may be impaired. Therefore, the abnormality of the power storage unit 39 is determined at this stage. Specifically, this operation is as follows.

まず、番号jに最初の蓄電部39を示す1を代入する(S43)。次に、番号iに蓄電素子モジュール29内の最初の蓄電素子31を示す1を代入し、異常両端電圧値個数TFをクリアする(以上、S45)。ここで、異常両端電圧値個数TFは番号jの蓄電部39において、何個の蓄電素子31が異常であったかを示すもので、TFが蓄電素子モジュール29内の蓄電素子31の個数nと等しければ、その蓄電部39は全ての蓄電素子両端電圧値が異常であるということになる。   First, 1 indicating the first power storage unit 39 is assigned to the number j (S43). Next, 1 indicating the first power storage element 31 in the power storage element module 29 is substituted for the number i to clear the abnormal both-end voltage value number TF (S45). Here, the abnormal both-end voltage value number TF indicates how many power storage elements 31 are abnormal in the power storage unit 39 of number j, and if the TF is equal to the number n of power storage elements 31 in the power storage element module 29. Therefore, the power storage unit 39 has abnormal voltage values across all the power storage elements.

次に、今回測定両端電圧値V(j,i)が異常値であるか否かを判断する(S47)。ここで、異常値は蓄電素子31が取り得る両端電圧値範囲(例えば0Vから蓄電素子31の上限耐電圧値3Vまで)を超える値であると定義する。もし、異常値でなければ(S47のNo)、後述するS51にジャンプする。一方、異常値であれば(S47のYes)、異常両端電圧値個数TFを1だけ加算する(S49)。   Next, it is determined whether or not the current measured both-ends voltage value V (j, i) is an abnormal value (S47). Here, the abnormal value is defined as a value exceeding a voltage value range (for example, from 0 V to the upper withstand voltage value 3 V of the storage element 31) that the storage element 31 can take. If it is not an abnormal value (No in S47), the process jumps to S51 described later. On the other hand, if it is an abnormal value (Yes in S47), the abnormal both-ends voltage value number TF is incremented by 1 (S49).

その後、番号iと蓄電素子モジュール29内の蓄電素子31の個数nを比較する(S51)。もし、両者が等しくなければ(S51のNo)、番号jの蓄電部39において、まだ各蓄電素子31の両端電圧値の異常判断が終わっていないので、番号iを1だけ加算(S53)してS47に戻り、次の蓄電素子両端電圧値の異常値判断を繰り返す。一方、番号iと蓄電素子モジュール29内の蓄電素子31の個数nが等しければ(S51のYes)、異常両端電圧値個数TFと蓄電素子モジュール29内の蓄電素子31の個数nを比較する(S55)。もし、両者が等しければ(S55のYes)、番号jの蓄電部39に内蔵した全蓄電素子31の両端電圧値が異常であることになるので、蓄電装置11をこれ以上使用できない。そこで、前記したS35にジャンプする。一方、異常両端電圧値個数TFと蓄電素子モジュール29内の蓄電素子31の個数nが等しくなければ(S55のNo)、蓄電素子31の両端電圧値が全て異常値であるわけではないので、次に番号jと蓄電部39の個数mを比較する(S57)。もし、両者が等しくなければ(S57のNo)、次の蓄電部39の異常を判断するために、番号jを1だけ加算(S59)してS45に戻り、以降の動作を繰り返す。一方、番号jと蓄電部39の個数mが等しければ(S57のYes)、全ての蓄電部39の異常判断が終了したので、次に蓄電素子31の両端電圧値に異常値があれば、それに対する推定値を計算するために、後述する異常両端電圧値推定サブルーチンを実行し(S61)、その後、全蓄電素子31に対する実測両端電圧値、または推定両端電圧値が求められたので、図2のフローチャートを終了する。なお、得られた前記両端電圧値により各蓄電素子31の過充電や過放電があれば、制御部41はメインルーチンを介してそれらを抑制するように充放電回路25を制御する等の動作を行うことで高信頼性を得ている。   Thereafter, the number i is compared with the number n of the power storage elements 31 in the power storage element module 29 (S51). If the two are not equal (No in S51), the abnormality determination of the voltage values at both ends of each power storage element 31 has not yet been completed in the power storage unit 39 of number j, so that the number i is incremented by 1 (S53). Returning to S47, the next abnormal value determination of the voltage value across the storage element is repeated. On the other hand, if the number i is equal to the number n of power storage elements 31 in the power storage element module 29 (Yes in S51), the abnormal voltage value TF is compared with the number n of power storage elements 31 in the power storage element module 29 (S55). ). If they are equal (Yes in S55), the voltage values at both ends of all the power storage elements 31 incorporated in the power storage unit 39 of number j are abnormal, and the power storage device 11 cannot be used any more. Therefore, the process jumps to S35 described above. On the other hand, if the number TF of abnormal both-end voltage values and the number n of power storage elements 31 in the power storage element module 29 are not equal (No in S55), the voltage values across the power storage elements 31 are not all abnormal values. The number j is compared with the number m of the power storage units 39 (S57). If the two are not equal (No in S57), the number j is incremented by 1 (S59) to return to S45 to determine the next abnormality of the power storage unit 39, and the subsequent operations are repeated. On the other hand, if the number j and the number m of the power storage units 39 are equal (Yes in S57), the abnormality determination of all the power storage units 39 is completed. 2 is executed (S61). After that, the measured both-end voltage value or the estimated both-end voltage value for all the power storage elements 31 is obtained. The flowchart ends. If there is an overcharge or overdischarge of each storage element 31 due to the obtained voltage value at both ends, the control unit 41 performs an operation such as controlling the charge / discharge circuit 25 to suppress them via the main routine. High reliability is obtained by doing.

次に、図3に示す異常両端電圧値推定サブルーチンの詳細について説明する。   Next, details of the abnormal both-end voltage value estimation subroutine shown in FIG. 3 will be described.

図3のサブルーチンが実行されると、まず番号jに最初の蓄電部39を示す1を代入し、正常蓄電素子数kと合計値Sをクリアする(以上、S201)。ここで、正常蓄電素子数kは現在の全蓄電素子31の内、正常な両端電圧値を有するものの数をカウントする変数であり、合計値Sは正常な両端電圧値の合計値や、正常な両端電圧値の変化率(詳細は後述する)の合計値を一時的に計算するための変数である。   When the subroutine shown in FIG. 3 is executed, first, 1 indicating the first power storage unit 39 is substituted for the number j, and the number k of normal power storage elements and the total value S are cleared (S201). Here, the number k of normal power storage elements is a variable for counting the number of current power storage elements 31 having normal voltage values at both ends, and the total value S is the sum of normal voltage values at both ends, This is a variable for temporarily calculating the total value of the rate of change of the voltage value at both ends (details will be described later).

次に、起動フラグKFが0であるか否かを判断する(S203)。もし、KFが0でなければ(S203のNo)、起動後に既に異常両端電圧値の推定動作を行っていることになるので、全蓄電素子31における正常な両端電圧値の平均変化率を求めるために、後述するS251にジャンプする。   Next, it is determined whether or not the activation flag KF is 0 (S203). If KF is not 0 (No in S203), the abnormal end-to-end voltage value estimation operation has already been performed after startup, so that the average rate of change of normal end-to-end voltage values in all power storage elements 31 is obtained. Then, the process jumps to S251 to be described later.

一方、起動フラグKFが0であれば(S203のYes)、起動後に初めて異常両端電圧値の推定動作を行うことになるので、全蓄電素子31における正常な両端電圧値の平均値を求める。なお、初めての異常両端電圧値の推定動作において前記平均値を求めるのは、前回測定、または推定した各蓄電素子31の両端電圧値がまだ無く、前記平均変化率を計算できないためである。   On the other hand, if the activation flag KF is 0 (Yes in S203), the operation of estimating the abnormal both-end voltage value is performed for the first time after the activation, so the average value of the normal voltage values across all the storage elements 31 is obtained. Note that the reason why the average value is obtained in the first estimation operation of the abnormal both-end voltage value is that the average voltage change rate cannot be calculated because there is no voltage value at both ends of each storage element 31 previously measured or estimated.

S203でYesならば、図3の異常両端電圧値の推定動作をこれから行うことになるので、起動フラグKFに1を代入する(S205)。これにより、次回から図3の動作を行う時はS203でNoになるので前記平均変化率の計算を行うようになる。   If Yes in S203, the operation of estimating the abnormal both-end voltage value of FIG. 3 will be performed from now on, so 1 is substituted into the activation flag KF (S205). Thus, the next time the operation of FIG. 3 is performed, the result of No is obtained in S203, so that the average change rate is calculated.

次に、番号iに蓄電素子モジュール29内の最初の蓄電素子31を示す1を代入する(S207)。その後、番号j,iで示される蓄電素子31の今回測定両端電圧値V(j,i)が初期異常値であるか否かを判断する(S209)。なお、初期異常値の定義はS47で述べた異常値の定義と同じである。もし、初期異常値であれば(S209のYes)、後述するS213にジャンプする。一方、初期異常値でなければ(S209のNo)、初期正常値の平均値を求めるために、合計値Sに今回測定両端電圧値V(j,i)の値を加算するとともに、正常蓄電素子数kを1だけ加算する(以上、S211)。   Next, 1 indicating the first power storage element 31 in the power storage element module 29 is assigned to the number i (S207). Thereafter, it is determined whether or not the current measured both-end voltage value V (j, i) of the storage element 31 indicated by the numbers j and i is an initial abnormal value (S209). The definition of the initial abnormal value is the same as the definition of the abnormal value described in S47. If it is an initial abnormal value (Yes in S209), the process jumps to S213 to be described later. On the other hand, if it is not the initial abnormal value (No in S209), in order to obtain the average value of the initial normal value, the current measured both-end voltage value V (j, i) is added to the total value S, and the normal storage element The number k is incremented by 1 (S211 above).

その後、番号iと蓄電素子モジュール29内の蓄電素子31の個数nを比較する(S213)。もし、両者が等しくなければ(S213のNo)、番号jの蓄電部39において、まだ各蓄電素子31の両端電圧値の異常判断が終わっていないので、番号iを1だけ加算(S215)してS209に戻り、次の蓄電素子両端電圧値の初期異常値判断を繰り返す。一方、番号iと蓄電素子モジュール29内の蓄電素子31の個数nが等しければ(S213のYes)、番号jと蓄電部39の個数mを比較する(S217)。もし、両者が等しくなければ(S217のNo)、次の蓄電部39の異常を判断するために、番号jを1だけ加算(S219)してS207に戻り、以降の動作を繰り返す。一方、番号jと蓄電部39の個数mが等しければ(S217のYes)、全ての蓄電部39の異常判断が終了したことになる。   Thereafter, the number i is compared with the number n of the storage elements 31 in the storage element module 29 (S213). If they are not equal (No in S213), the abnormality determination of the voltage values at both ends of each power storage element 31 has not been completed in the power storage unit 39 of number j, so that the number i is incremented by 1 (S215). Returning to S209, the initial abnormal value determination of the voltage value across the next storage element is repeated. On the other hand, if the number i is equal to the number n of the power storage elements 31 in the power storage element module 29 (Yes in S213), the number j is compared with the number m of the power storage units 39 (S217). If they are not equal (No in S217), the number j is incremented by 1 (S219) in order to determine the next abnormality in the power storage unit 39, the process returns to S207, and the subsequent operations are repeated. On the other hand, if the number j is equal to the number m of the power storage units 39 (Yes in S217), the abnormality determination of all the power storage units 39 is completed.

次に、初期正常値を有する蓄電素子31の両端電圧値の平均値Hを求める。平均値HはH=S/kにより求められる。同時に、初期異常値を有する蓄電素子31の両端電圧値を平均値Hとする推定動作を行うために、番号jに最初の蓄電部39を示す1を代入する(以上、S221)。   Next, an average value H of the voltage values at both ends of the power storage element 31 having the initial normal value is obtained. The average value H is obtained by H = S / k. At the same time, 1 indicating the first power storage unit 39 is assigned to the number j in order to perform an estimation operation in which the voltage value across the power storage element 31 having the initial abnormal value is an average value H (S221).

次に、番号iに蓄電素子モジュール29内の最初の蓄電素子31を示す1を代入する(S223)。その後、番号j,iで示される蓄電素子31の今回測定両端電圧値V(j,i)が初期異常値であるか否かを判断する(S225)。もし、初期異常値でなければ(S225のNo)、後述するS229にジャンプする。一方、初期異常値であれば(S225のYes)、その蓄電素子31の両端電圧値の推定値を平均値Hとするために、今回測定両端電圧値V(j,i)にHを代入する。同時に異常のある蓄電素子31の両端電圧値を推定値とした回数をカウントするための異常カウンタF(j,i)に1を代入する(以上、S227)。   Next, 1 indicating the first storage element 31 in the storage element module 29 is assigned to the number i (S223). Thereafter, it is determined whether or not the current measured both-end voltage value V (j, i) of the storage element 31 indicated by the numbers j and i is an initial abnormal value (S225). If it is not an initial abnormal value (No in S225), the process jumps to S229 described later. On the other hand, if it is an initial abnormal value (Yes in S225), H is substituted into the current measured both-end voltage value V (j, i) in order to set the estimated value of the both-end voltage value of the storage element 31 to the average value H. . At the same time, 1 is substituted into an abnormality counter F (j, i) for counting the number of times that the both-ends voltage value of the abnormal storage element 31 is an estimated value (S227 above).

その後、前回測定両端電圧値VO(j,i)を更新するために、VO(j,i)に今回測定両端電圧値V(j,i)を代入する(S229)。なお、VO(j,i)もV(j,i)と同様に配列変数である。次に、番号iと蓄電素子モジュール29内の蓄電素子31の個数nを比較する(S231)。もし、両者が等しくなければ(S231のNo)、番号jの蓄電部39において、まだ各蓄電素子31の両端電圧値の異常判断が終わっていないので、番号iを1だけ加算(S233)してS225に戻り、次の蓄電素子両端電圧値の初期異常値判断を繰り返す。一方、番号iと蓄電素子モジュール29内の蓄電素子31の個数nが等しければ(S231のYes)、番号jと蓄電部39の個数mを比較する(S235)。もし、両者が等しくなければ(S235のNo)、次の蓄電部39の異常を判断するために、番号jを1だけ加算(S237)してS223に戻り、以降の動作を繰り返す。一方、番号jと蓄電部39の個数mが等しければ(S235のYes)、蓄電素子31の両端電圧値における全ての初期異常値を推定値に置換し終わったことになるので、図3のフローチャートを終了し、図2のフローチャートに戻る。   Thereafter, in order to update the previous measurement both-ends voltage value VO (j, i), the current measurement both-ends voltage value V (j, i) is substituted into VO (j, i) (S229). Note that VO (j, i) is an array variable as well as V (j, i). Next, the number i is compared with the number n of power storage elements 31 in the power storage element module 29 (S231). If the two are not equal (No in S231), the power storage unit 39 of number j has not yet finished determining the abnormality of the voltage values at both ends of each power storage element 31, so the number i is incremented by 1 (S233). Returning to S225, the initial abnormal value determination of the voltage value across the next storage element is repeated. On the other hand, if the number i is equal to the number n of the power storage elements 31 in the power storage element module 29 (Yes in S231), the number j is compared with the number m of the power storage units 39 (S235). If they are not equal (No in S235), the number j is incremented by 1 (S237) in order to determine the next abnormality of the power storage unit 39, the process returns to S223, and the subsequent operations are repeated. On the other hand, if the number j and the number m of the power storage units 39 are equal (Yes in S235), all the initial abnormal values in the voltage values at both ends of the power storage element 31 have been replaced with the estimated values, so the flowchart of FIG. To return to the flowchart of FIG.

ここで、S203に戻り、起動フラグKFが0でなければ(S203のNo)、全蓄電素子31における正常な両端電圧値の平均変化率による異常値の推定動作を行う。具体的には、まず番号iに蓄電素子モジュール29内の最初の蓄電素子31を示す1を代入する(S251)。その後、番号j,iで示される蓄電素子31の今回測定両端電圧値V(j,i)が異常値であるか否かを判断する(S253)。もし、異常値であれば(S253のYes)、後述するS257にジャンプする。一方、異常値でなければ(S253のNo)、正常値の平均変化率を求めるために、番号j,iで示される蓄電素子31の両端電圧値の変化率、すなわち今回測定両端電圧値V(j,i)を前回測定両端電圧値VO(j,i)で除した値を合計値Sに加算するとともに、正常蓄電素子数kを1だけ加算する(以上、S255)。   Here, returning to S203, if the activation flag KF is not 0 (No in S203), an abnormal value estimation operation is performed based on the average rate of change of the normal voltage values across all the power storage elements 31. Specifically, first, 1 indicating the first power storage element 31 in the power storage element module 29 is assigned to the number i (S251). Thereafter, it is determined whether or not the current measured both-end voltage value V (j, i) of the power storage element 31 indicated by the numbers j and i is an abnormal value (S253). If it is an abnormal value (Yes in S253), the process jumps to S257 described later. On the other hand, if it is not an abnormal value (No in S253), in order to obtain the average change rate of the normal value, the change rate of the voltage value of both ends of the storage element 31 indicated by numbers j and i, that is, the current measured voltage value V ( A value obtained by dividing j, i) by the previous measured both-ends voltage value VO (j, i) is added to the total value S, and the number of normal power storage elements k is added by 1 (S255).

その後、番号iと蓄電素子モジュール29内の蓄電素子31の個数nを比較する(S257)。もし、両者が等しくなければ(S257のNo)、番号jの蓄電部39において、まだ各蓄電素子31の両端電圧値の異常判断が終わっていないので、番号iを1だけ加算(S259)してS253に戻り、次の蓄電素子両端電圧値の異常値判断を繰り返す。一方、番号iと蓄電素子モジュール29内の蓄電素子31の個数nが等しければ(S257のYes)、番号jと蓄電部39の個数mを比較する(S261)。もし、両者が等しくなければ(S261のNo)、次の蓄電部39の異常を判断するために、番号jを1だけ加算(S263)してS251に戻り、以降の動作を繰り返す。一方、番号jと蓄電部39の個数mが等しければ(S261のYes)、全ての蓄電部39の異常判断が終了したことになる。   Thereafter, the number i is compared with the number n of power storage elements 31 in the power storage element module 29 (S257). If the two are not equal (No in S257), the abnormality determination of the voltage values at both ends of each power storage element 31 has not yet been completed in the power storage unit 39 of number j, so that the number i is incremented by 1 (S259). Returning to S253, the next abnormal value determination of the voltage value across the storage element is repeated. On the other hand, if the number i is equal to the number n of the power storage elements 31 in the power storage element module 29 (Yes in S257), the number j is compared with the number m of the power storage units 39 (S261). If they are not equal (No in S261), the number j is incremented by 1 (S263) in order to determine the next abnormality in the power storage unit 39, the process returns to S251, and the subsequent operations are repeated. On the other hand, if the number j is equal to the number m of the power storage units 39 (Yes in S261), the abnormality determination for all the power storage units 39 is completed.

次に、正常値を有する蓄電素子31の両端電圧値の平均変化率Dを求める。平均変化率DはD=S/kにより求められる。同時に、異常値を有する蓄電素子31の両端電圧値を平均変化率Dから推定する動作を行うために、番号jに最初の蓄電部39を示す1を代入する(以上、S265)。   Next, the average rate of change D of the voltage value across the storage element 31 having a normal value is obtained. The average change rate D is obtained by D = S / k. At the same time, in order to perform an operation of estimating the voltage value across the storage element 31 having an abnormal value from the average rate of change D, 1 indicating the first storage unit 39 is substituted for the number j (S265).

次に、番号iに蓄電素子モジュール29内の最初の蓄電素子31を示す1を代入する(S267)。その後、番号j,iで示される蓄電素子31の今回測定両端電圧値V(j,i)が異常値であるか否かを判断する(S269)。もし、異常値でなければ(S269のNo)、今回測定両端電圧値V(j,i)を正常に得ることができたので、異常カウンタF(j,i)を0にクリアし(S271)、後述するS279にジャンプする。一方、異常値であれば(S269のYes)、異常カウンタF(j,i)が2であるか否かを判断する(S273)。もし、異常カウンタF(j,i)が2であれば(S273のYes)、番号j,iの蓄電素子31は3回続けて異常値を有したことになるので、一時的なノイズ要因による異常値ではなく、その蓄電素子31の短絡、断線、あるいは劣化等による異常値である可能性が高い。このような蓄電素子31をそのまま使い続けると、蓄電装置11全体としての信頼性が低下するので、S273のYesの場合は制御部41から車両用制御回路へ異常信号を出力して(S275)、図3のフローチャートを終了する。異常信号の出力動作や、その後の車両用制御回路の動作はS35で説明した動作と同じである。   Next, 1 indicating the first power storage element 31 in the power storage element module 29 is assigned to the number i (S267). Thereafter, it is determined whether or not the current measured both-end voltage value V (j, i) of the power storage element 31 indicated by the numbers j and i is an abnormal value (S269). If it is not an abnormal value (No in S269), the voltage value V (j, i) measured at this time can be normally obtained, so the abnormal counter F (j, i) is cleared to 0 (S271). Then, the process jumps to S279 described later. On the other hand, if it is an abnormal value (Yes in S269), it is determined whether or not the abnormal counter F (j, i) is 2 (S273). If the abnormal counter F (j, i) is 2 (Yes in S273), the power storage element 31 with the number j, i has had an abnormal value three times in succession. There is a high possibility that it is not an abnormal value but an abnormal value due to short-circuiting, disconnection, or deterioration of the storage element 31. If such an electricity storage element 31 is continuously used as it is, the reliability of the electricity storage device 11 as a whole decreases, so in the case of Yes in S273, an abnormal signal is output from the control unit 41 to the vehicle control circuit (S275). The flowchart of FIG. 3 ends. The abnormal signal output operation and the subsequent operation of the vehicle control circuit are the same as those described in S35.

一方、異常カウンタF(j,i)が2でなければ(S273のNo)、番号j,iで示される蓄電素子31の両端電圧値が異常値であるので、その推定値を計算する。具体的には、番号j,iで示される蓄電素子31の前回測定両端電圧値VO(j,i)に、S265で求めた正常値を有する全蓄電素子31の両端電圧値の前回と今回における平均変化率Dを乗じた値を推定値として今回測定両端電圧値V(j,i)に代入する。これにより、異常値が推定値に置換される。これと同時に、推定値との置換がなされたので、異常カウンタF(j,i)を1だけ加算する(以上、S277)。   On the other hand, if the abnormality counter F (j, i) is not 2 (No in S273), the voltage value at both ends of the power storage element 31 indicated by the numbers j and i is an abnormal value, so that an estimated value is calculated. Specifically, the previous and current voltage values of all the power storage elements 31 having normal values obtained in S265 are added to the previous measured both-end voltage value VO (j, i) of the power storage element 31 indicated by the numbers j and i. A value obtained by multiplying the average change rate D is substituted as an estimated value into the voltage value V (j, i) measured this time. Thereby, the abnormal value is replaced with the estimated value. At the same time, since the replacement with the estimated value is made, the abnormal counter F (j, i) is incremented by 1 (S277).

その後、前回測定両端電圧値VO(j,i)を更新するために、VO(j,i)に今回測定両端電圧値V(j,i)を代入する(S279)。次に、番号iと蓄電素子モジュール29内の蓄電素子31の個数nを比較する(S281)。もし、両者が等しくなければ(S281のNo)、番号jの蓄電部39において、まだ各蓄電素子31の両端電圧値の異常判断が終わっていないので、番号iを1だけ加算(S283)してS269に戻り、次の蓄電素子両端電圧値の異常値判断を繰り返す。一方、番号iと蓄電素子モジュール29内の蓄電素子31の個数nが等しければ(S281のYes)、番号jと蓄電部39の個数mを比較する(S285)。もし、両者が等しくなければ(S285のNo)、次の蓄電部39の異常を判断するために、番号jを1だけ加算(S287)してS267に戻り、以降の動作を繰り返す。一方、番号jと蓄電部39の個数mが等しければ(S285のYes)、蓄電素子31の両端電圧値における全ての異常値を推定値に置換し終わったことになるので、図3のフローチャートを終了し、図2のフローチャートに戻る。   Thereafter, in order to update the previous measurement both-ends voltage value VO (j, i), the current measurement both-ends voltage value V (j, i) is substituted into VO (j, i) (S279). Next, the number i is compared with the number n of power storage elements 31 in the power storage element module 29 (S281). If they are not equal (No in S281), the abnormality determination of the voltage values at both ends of each power storage element 31 has not yet been completed in the power storage unit 39 of number j, so that the number i is incremented by 1 (S283). Returning to S269, the next abnormal value determination of the voltage value across the storage element is repeated. On the other hand, if the number i is equal to the number n of the power storage elements 31 in the power storage element module 29 (Yes in S281), the number j is compared with the number m of the power storage units 39 (S285). If they are not equal (No in S285), the number j is incremented by 1 (S287) to determine the next abnormality in the power storage unit 39, and the process returns to S267 to repeat the subsequent operations. On the other hand, if the number j and the number m of the power storage units 39 are equal (Yes in S285), all the abnormal values in the voltage values at both ends of the power storage element 31 have been replaced with the estimated values, so the flowchart of FIG. The process ends, and the process returns to the flowchart of FIG.

図2、図3で述べた動作は、簡単な四則演算を繰り返しているだけなので、母数の大きい両端電圧値に対する分布を演算する必要がなく、極めて高速に実行することができる。その結果、多数の蓄電素子31における両端電圧値の測定や推定を短いサイクルで行うことができるので、素早い両端電圧値の制御や蓄電装置11の異常判断を行うことができる。   The operations described in FIG. 2 and FIG. 3 simply repeat simple four arithmetic operations, so that it is not necessary to calculate a distribution with respect to both-end voltage values having a large parameter and can be executed at a very high speed. As a result, since the measurement and estimation of the voltage values at both ends of the large number of power storage elements 31 can be performed in a short cycle, it is possible to quickly control the voltage values at both ends and determine the abnormality of the power storage device 11.

以上により、蓄電素子両端電圧値の測定動作、および異常両端電圧値の推定動作を行っているが、この内、特徴となる推定動作についてまとめると、次のようになる。   As described above, the measurement operation of the voltage value across the storage element and the estimation operation of the abnormal voltage value are performed. Among these, the characteristic estimation operation is summarized as follows.

まず、起動時においては、蓄電素子電圧検出回路33を介して求めた各蓄電素子31の両端電圧値(これは今回測定両端電圧値V(j,i)に相当)に初期異常値があれば、前記各両端電圧値の初期正常値の平均値Hを、前記初期異常値に替わって前記両端電圧値とする。   First, at the time of start-up, if there is an initial abnormal value in the voltage value of each storage element 31 obtained via the storage element voltage detection circuit 33 (this corresponds to the measured voltage value V (j, i) at this time). The average value H of the initial normal values of the voltage values at both ends is used as the voltage value at both ends instead of the initial abnormal value.

次に、起動後の通常使用時においては、蓄電素子電圧検出回路33を介して求めた各蓄電素子31の両端電圧値(今回測定両端電圧値V(j,i)に相当)に異常値があれば、正常値を有する蓄電素子31における前回測定両端電圧値VO(j,i)と今回測定両端電圧値V(j,i)の平均変化率Dを求め、前記異常値を有する蓄電素子31の前回測定両端電圧値VO(j,i)に平均変化率Dを乗じた値を、前記異常値に替わって前記両端電圧値とする。   Next, during normal use after start-up, there is an abnormal value in the voltage value of each storage element 31 obtained through the storage element voltage detection circuit 33 (corresponding to the current measured voltage value V (j, i)). If there is, the average change rate D of the previously measured both-end voltage value VO (j, i) and the current measured both-end voltage value V (j, i) in the storage element 31 having a normal value is obtained, and the storage element 31 having the abnormal value is obtained. A value obtained by multiplying the previous measured both-end voltage value VO (j, i) by the average change rate D is used as the both-end voltage value instead of the abnormal value.

以上の構成、動作により、異常値を有する蓄電素子31の両端電圧値を簡単な四則演算によってのみ推定することができるので、演算時間がほとんどかからずタイムリーに両端電圧値の監視や制御を行うことができ、高信頼性の蓄電装置を実現できる。   With the above configuration and operation, it is possible to estimate the voltage value at both ends of the storage element 31 having an abnormal value only by simple four arithmetic operations, so that monitoring and control of the voltage values at both ends can be performed in a timely manner with almost no calculation time. Therefore, a highly reliable power storage device can be realized.

なお、本実施の形態1において蓄電素子31に電気二重層キャパシタを用いたが、これは電気化学キャパシタ等の他の蓄電素子でもよい。さらに、蓄電素子モジュール29は複数の蓄電素子31を直列に接続した構成としたが、これに限定されるものではなく、負荷17が要求する電力仕様に応じて図4に示すように直並列接続としてもよい。図4では並列接続数が2の場合、すなわち2個の蓄電素子31を並列に接続した場合を示すが、これは2個以上であってもよい。この場合、回路的には並列接続された蓄電素子31を一まとめにした蓄電素子群47を1つの蓄電素子とみなすことができるので、図1の蓄電素子31を蓄電素子群47に置き換えることにより、図1で説明した構成や、図2、図3で説明した動作と全く同じになる。従って、図4の詳細については説明を省略する。但し、図4の構成では蓄電素子群47毎に両端電圧値の測定や推定が行われることになる。   In addition, although the electric double layer capacitor was used for the electrical storage element 31 in this Embodiment 1, this may be other electrical storage elements, such as an electrochemical capacitor. Further, the power storage element module 29 has a configuration in which a plurality of power storage elements 31 are connected in series. However, the storage element module 29 is not limited to this, and is connected in series-parallel as shown in FIG. 4 according to the power specifications required by the load 17. It is good. Although FIG. 4 shows the case where the number of parallel connections is 2, that is, the case where two power storage elements 31 are connected in parallel, this may be two or more. In this case, since the storage element group 47 in which the storage elements 31 connected in parallel are grouped together can be regarded as one storage element, by replacing the storage element 31 in FIG. The configuration described with reference to FIG. 1 and the operation described with reference to FIGS. Therefore, description of the details of FIG. 4 is omitted. However, in the configuration of FIG. 4, the voltage values at both ends are measured and estimated for each power storage element group 47.

また、本実施の形態1では蓄電素子モジュール29を複数個(m個)設ける構成を示したが、これは単数でもよい。   In the first embodiment, a configuration in which a plurality of (m) power storage element modules 29 are provided has been described.

(実施の形態2)
図5は、本発明の実施の形態2における蓄電装置のブロック回路図である。図6は、本発明の実施の形態2における蓄電装置の蓄電素子モジュール両端電圧値の測定、および推定フローチャートである。なお、図5の太線は電力系配線を、細線は信号系配線をそれぞれ示す。
(Embodiment 2)
FIG. 5 is a block circuit diagram of the power storage device according to Embodiment 2 of the present invention. FIG. 6 is a measurement and estimation flowchart of the voltage value across the storage element module of the storage device according to Embodiment 2 of the present invention. In FIG. 5, thick lines indicate power system wiring, and thin lines indicate signal system wiring.

本実施の形態2の構成において、実施の形態1の構成と同じ部分には同じ番号を付すとともに、異なる構成部分を中心に説明する。すなわち、図5において特徴となる構成は以下の通りである。   In the configuration of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and different components will be mainly described. That is, the configuration characteristic in FIG. 5 is as follows.

1)蓄電素子モジュール29を必ず複数設ける構成とし、蓄電素子モジュール29毎の両端電圧値を求めるようにした。   1) A configuration in which a plurality of power storage element modules 29 are always provided, and a voltage value between both ends of each power storage element module 29 is obtained.

2)上記構成により、蓄電素子電圧検出回路33は蓄電素子モジュール29の両端に相当する電圧を測定するように接続した。   2) With the above configuration, the storage element voltage detection circuit 33 is connected to measure a voltage corresponding to both ends of the storage element module 29.

3)それに伴って、測定対象となる電圧が少なくなるので、蓄電素子電圧検出回路33を1個とし、制御部41と直接接続した。   3) Along with this, the voltage to be measured is reduced, so that one storage element voltage detection circuit 33 is provided and directly connected to the control unit 41.

4)従って、スレーブ側制御回路35、スレーブ側送受信回路37、およびマスタ側送受信回路43を廃し、蓄電部39と制御装置45の区別をなくした。   4) Therefore, the slave side control circuit 35, the slave side transmission / reception circuit 37, and the master side transmission / reception circuit 43 are eliminated, and the power storage unit 39 and the control device 45 are not distinguished.

上記以外の構成は実施の形態1と同じである。なお、各蓄電素子モジュール29は蓄電素子31を10個直列接続して構成している。また、本実施の形態2では蓄電素子モジュール29毎にしか両端電圧値が求められないので、実施の形態1のように各蓄電素子31、または蓄電素子群47毎の両端電圧値の監視ができなくなるが、例えば蓄電装置11の構造上、異常のあった蓄電素子モジュール29毎にしか交換できない場合であれば、個々の蓄電素子31、または蓄電素子群47の両端電圧値を求める必要性が低い。このような場合には本実施の形態2のように蓄電素子モジュール29毎に両端電圧値を求めるだけでよくなる。さらに、この構成によれば、図1と図5の比較から極めて簡単な構成とすることができるという効果も得られる。   The configuration other than the above is the same as that of the first embodiment. Each power storage element module 29 is configured by connecting ten power storage elements 31 in series. In addition, since the voltage value at both ends is obtained only for each power storage element module 29 in the second embodiment, the voltage values at both ends for each power storage element 31 or each power storage element group 47 can be monitored as in the first embodiment. However, if it is possible to replace only for each storage element module 29 having an abnormality due to the structure of the storage device 11, for example, it is less necessary to obtain the voltage values at both ends of each storage element 31 or storage element group 47. . In such a case, it is only necessary to obtain the voltage values at both ends for each power storage element module 29 as in the second embodiment. Furthermore, according to this configuration, an effect that the configuration can be made extremely simple from the comparison between FIG. 1 and FIG. 5 is also obtained.

次に、本実施の形態2における蓄電装置11の動作を説明する。まず、通常の蓄電装置11の動作については実施の形態1と全く同じであるので、説明を省略する。   Next, the operation of power storage device 11 in the second embodiment will be described. First, since the operation of the normal power storage device 11 is exactly the same as that of the first embodiment, the description thereof is omitted.

次に、蓄電装置11における各蓄電素子モジュール29の過充電や過放電の監視を行うための蓄電素子モジュール両端電圧値の測定動作、および異常両端電圧値の推定動作について図6のフローチャートを用いて説明する。なお、実施の形態1と同様に、制御部41はメインルーチン(図示せず)から必要に応じて様々なサブルーチンを実行することにより全体の動作を行うソフトウエア構成としているので、図6に示すフローチャートをサブルーチンの形態で示した。   Next, with reference to the flowchart of FIG. 6, the operation of measuring the voltage value at both ends of the storage element module and the operation of estimating the abnormal voltage value at both ends for monitoring overcharge and overdischarge of each storage element module 29 in the storage device 11 will be described. explain. As in the first embodiment, the control unit 41 has a software configuration that performs the entire operation by executing various subroutines as necessary from a main routine (not shown). The flowchart is shown in the form of a subroutine.

まず、車両の起動時には制御部41のメインルーチンにて、起動フラグKFと各蓄電素子モジュール29の異常カウンタF(j)を全てクリアする初期設定を行う。ここで、起動フラグKFは実施の形態1と同じものである。また、異常カウンタF(j)は、番号jで決定される蓄電素子モジュール29の連続異常回数を示すものである。これは、蓄電素子電圧検出回路33を介して同一の蓄電素子モジュール29における両端電圧値の異常値を、既定回数(本実施の形態2では3回とした)まで連続して求めた時に、その蓄電素子モジュール29が異常であると判断するために用いる。従って、両端電圧値において正常値が得られると0に、異常値が得られると異常カウンタF(j)を1づつ加算するようにしている。なお、異常カウンタF(j)は実施の形態1のF(j,i)で表される2次元配列に対して1次元配列としたものであり、番号jは1〜m(mは蓄電素子モジュール29の個数で本実施の形態2では10個とした)の範囲を取る。   First, when the vehicle is started, an initial setting is performed in the main routine of the control unit 41 to clear all of the start flag KF and the abnormality counter F (j) of each storage element module 29. Here, the activation flag KF is the same as that in the first embodiment. The abnormality counter F (j) indicates the number of continuous abnormalities of the power storage element module 29 determined by the number j. This is because when the abnormal value of the both-ends voltage value in the same storage element module 29 is continuously obtained up to a predetermined number of times (three times in the second embodiment) via the storage element voltage detection circuit 33, Used to determine that the storage element module 29 is abnormal. Therefore, when a normal value is obtained in the voltage values at both ends, an abnormal counter F (j) is incremented by 1 when an abnormal value is obtained. The abnormality counter F (j) is a one-dimensional array with respect to the two-dimensional array represented by F (j, i) in the first embodiment, and the number j is 1 to m (m is a storage element. The range of the number of modules 29 is 10 in the second embodiment.

この初期設定を行った状態で、制御部41は定期的に図6のサブルーチンを実行して、各蓄電素子31の過充電や過放電の監視を行う。図6のサブルーチンが実行されると、まず異常両端電圧値個数TFをクリアする(S501)。ここで、異常両端電圧値個数TFは何個の蓄電素子モジュール29が異常であったかを示すもので、TFが蓄電素子モジュール29の個数mと等しければ、蓄電装置11は全ての蓄電素子モジュール両端電圧値が異常であるということになる。   With this initial setting, the control unit 41 periodically executes the subroutine of FIG. 6 to monitor overcharge and overdischarge of each storage element 31. When the subroutine of FIG. 6 is executed, first, the abnormal both-end voltage value number TF is cleared (S501). Here, the number TF of abnormal both-end voltage values indicates how many storage element modules 29 are abnormal, and if the TF is equal to the number m of storage element modules 29, the storage device 11 has the voltage across all storage element modules 29. It means that the value is abnormal.

次に、番号jに1を代入した後(S503)、蓄電素子電圧検出回路33を介して蓄電素子モジュール29の電圧Vjを読み込み、制御部41に内蔵されたメモリ(図示せず)に記憶する(S505)。なお、電圧Vjは図5における蓄電素子モジュール29の両端に示したV1、V2、・・・、Vn+1における電圧である。ここで、もし蓄電装置11に蓄電されている全体電圧値が制御上必要な場合は、電圧V1を参照すればよい。次に、番号jが1であるか否かを判断する(S507)。番号jが1であれば(S507のYes)、蓄電素子モジュール29の今回測定両端電圧値V(j)を計算するだけの電圧Vjが測定できていないので、次の蓄電素子モジュール29の両端電圧値を求めるために番号jを1だけ加算して次の番号とし(S509)、S505に戻って電圧Vjを測定する動作以降を繰り返す。一方、番号jが1でなければ(S507のNo)、今回測定両端電圧値V(j−1)をV(j−1)=Vj−Vj−1により計算し、メモリに記憶する(S511)。この式により今回測定両端電圧値V(j−1)を計算するので、jが1の時(S507のYes)はj−1=0になり計算できない。ゆえに、j=1ならばS509にジャンプしている。   Next, after substituting 1 for the number j (S503), the voltage Vj of the storage element module 29 is read through the storage element voltage detection circuit 33 and stored in a memory (not shown) built in the control unit 41. (S505). The voltage Vj is a voltage at V1, V2,..., Vn + 1 shown at both ends of the power storage element module 29 in FIG. Here, if the entire voltage value stored in the power storage device 11 is necessary for control, the voltage V1 may be referred to. Next, it is determined whether or not the number j is 1 (S507). If the number j is 1 (Yes in S507), the voltage Vj sufficient to calculate the current measured both-end voltage value V (j) of the storage element module 29 cannot be measured. In order to obtain the value, the number j is incremented by 1 to obtain the next number (S509), and the process returns to S505 to repeat the operation of measuring the voltage Vj. On the other hand, if the number j is not 1 (No in S507), the voltage value V (j-1) measured at this time is calculated by V (j-1) = Vj-Vj-1 and stored in the memory (S511). . Since the voltage value V (j−1) measured at this time is calculated by this formula, when j is 1 (Yes in S507), j−1 = 0 and cannot be calculated. Therefore, if j = 1, the process jumps to S509.

ここでS511に戻り、S511の計算が終了すれば、今回測定両端電圧値V(j−1)が異常値であるか否かを判断する(S512)。ここで、異常値は蓄電素子モジュール29が取り得る両端電圧値範囲(例えば下限を0Vとし、上限として蓄電素子31の上限耐電圧値3Vに各蓄電素子モジュール29の蓄電素子31の個数10を乗じた30Vまでとする)を超える値であると定義する。もし、異常値でなければ(S512のNo)、後述するS514にジャンプする。一方、異常値であれば(S512のYes)、異常両端電圧値個数TFを1だけ加算する(S513)。   Here, returning to S511, if the calculation of S511 is completed, it is determined whether or not the current measured both-ends voltage value V (j-1) is an abnormal value (S512). Here, the abnormal value is a voltage value range that can be taken by the storage element module 29 (for example, the lower limit is 0 V, and the upper limit withstand voltage value 3 V of the storage element 31 is multiplied by the number 10 of the storage elements 31 of each storage element module 29 as the upper limit. It is defined as a value exceeding 30V). If it is not an abnormal value (No in S512), the process jumps to S514 described later. On the other hand, if it is an abnormal value (Yes in S512), the abnormal voltage value TF is added by 1 (S513).

その後、番号jがm+1と等しいか否かを判断する(S514)。等しくなければ(S514のNo)、次の蓄電素子モジュール29の電圧Vj+1を求めるためにS509へジャンプする。一方、番号jとm+1が等しければ(S514のYes)、全ての蓄電素子モジュール29の今回測定両端電圧値V1〜Vmを求め終わったので、次に異常両端電圧値個数TFと蓄電素子モジュール29の個数mを比較する(S515)。もし、両者が等しければ(S515のYes)、全蓄電素子モジュール29の両端電圧値が異常であることになるので、蓄電装置11をこれ以上使用できない。そこで、後述するS567にジャンプする。一方、異常両端電圧値個数TFと蓄電素子モジュール29の個数mが等しくなければ(S515のNo)、蓄電素子モジュール29の両端電圧値が全て異常値であるわけではないことになる。この場合は、蓄電素子モジュール29の両端電圧値に異常値があれば、それに対する推定値を計算する動作を以下に示すようにして行う。   Thereafter, it is determined whether or not the number j is equal to m + 1 (S514). If they are not equal (No in S514), the process jumps to S509 to obtain the voltage Vj + 1 of the next storage element module 29. On the other hand, if the numbers j and m + 1 are equal (Yes in S514), the current measured both-end voltage values V1 to Vm of all the storage element modules 29 have been obtained. The number m is compared (S515). If the two are equal (Yes in S515), the voltage values at both ends of all the power storage element modules 29 are abnormal, and the power storage device 11 cannot be used any more. Therefore, the process jumps to S567 described later. On the other hand, if the number TF of abnormal both-ends voltage value is not equal to the number m of the storage element modules 29 (No in S515), the end-to-end voltage values of the storage element module 29 are not all abnormal values. In this case, if there is an abnormal value in the voltage value across the storage element module 29, the operation for calculating the estimated value is performed as follows.

まず、番号jに最初の蓄電素子モジュール29を示す1を代入し、正常蓄電素子数kと合計値Sをクリアする(以上、S516)。ここで、正常蓄電素子数kと合計値Sは実施の形態1と同じ変数である。   First, 1 indicating the first power storage element module 29 is assigned to the number j, and the number k of normal power storage elements and the total value S are cleared (S516). Here, the number k of normal power storage elements and the total value S are the same variables as in the first embodiment.

次に、起動フラグKFが0であるか否かを判断する(S517)。もし、KFが0でなければ(S517のNo)、起動後に既に異常両端電圧値の推定動作を行っていることになるので、全蓄電素子モジュール29における正常な両端電圧値の平均変化率を求めるために、後述するS551にジャンプする。   Next, it is determined whether or not the activation flag KF is 0 (S517). If KF is not 0 (No in S517), the abnormal end-to-end voltage value estimation operation has already been performed after startup, and thus the average rate of change of normal end-to-end voltage values in all power storage element modules 29 is obtained. Therefore, the process jumps to S551 described later.

一方、起動フラグKFが0であれば(S517のYes)、起動後に初めて異常両端電圧値の推定動作を行うことになるので、全蓄電素子モジュール29における正常な両端電圧値の平均値を求める。なお、初めての異常両端電圧値の推定動作において前記平均値を求める理由は実施の形態1と同様に、前記平均変化率を計算できないためである。   On the other hand, if the activation flag KF is 0 (Yes in S517), the operation of estimating the abnormal both-end voltage value is performed for the first time after the activation, so the average value of the normal both-end voltage values in all the storage element modules 29 is obtained. Note that the reason why the average value is obtained in the first estimation operation of the abnormal both-end voltage value is that the average rate of change cannot be calculated as in the first embodiment.

S517でYesならば、図6の異常両端電圧値の推定動作をこれから行うことになるので、起動フラグKFに1を代入する(S519)。これにより、次回から図6の動作を行う時はS517でNoになるので前記平均変化率の計算を行うようになる。   If Yes in S517, the operation of estimating the abnormal both-end voltage value in FIG. 6 will be performed from now on, so 1 is substituted into the activation flag KF (S519). As a result, the next time the operation of FIG. 6 is performed, the result is No in S517, so that the average change rate is calculated.

次に、番号jの蓄電素子モジュール29の今回測定両端電圧値V(j)が初期異常値であるか否かを判断する(S521)。なお、初期異常値の定義はS512で述べた異常値の定義と同じである。もし、初期異常値であれば(S521のYes)、後述するS525にジャンプする。一方、初期異常値でなければ(S521のNo)、初期正常値の平均値を求めるために、合計値Sに今回測定両端電圧値V(j)の値を加算するとともに、正常蓄電素子数kを1だけ加算する(以上、S523)。   Next, it is determined whether or not the current measured both-end voltage value V (j) of the power storage element module 29 of number j is an initial abnormal value (S521). Note that the definition of the initial abnormal value is the same as the definition of the abnormal value described in S512. If it is an initial abnormal value (Yes in S521), the process jumps to S525 described later. On the other hand, if it is not the initial abnormal value (No in S521), in order to obtain the average value of the initial normal values, the current measured both-ends voltage value V (j) is added to the total value S, and the number of normal storage elements k Is incremented by 1 (S523).

その後、番号jと蓄電素子モジュール29の個数mを比較する(S525)。もし、両者が等しくなければ(S525のNo)、次の蓄電素子モジュール29の異常を判断するために、番号jを1だけ加算(S527)してS521に戻り、以降の動作を繰り返す。一方、番号jと蓄電素子モジュール29の個数mが等しければ(S525のYes)、全ての蓄電素子モジュール29の異常判断が終了したことになる。   Thereafter, the number j and the number m of the storage element modules 29 are compared (S525). If the two are not equal (No in S525), the number j is incremented by 1 (S527) to determine whether the next storage element module 29 is abnormal, the process returns to S521, and the subsequent operations are repeated. On the other hand, if the number j is equal to the number m of the power storage element modules 29 (Yes in S525), the abnormality determination of all the power storage element modules 29 is completed.

次に、初期正常値を有する蓄電素子モジュール29の両端電圧値の平均値Hを求める。平均値HはH=S/kにより求められる。同時に、初期異常値を有する蓄電素子モジュール29の両端電圧値を平均値Hとする推定動作を行うために、番号jに最初の蓄電素子モジュール29を示す1を代入する(以上、S529)。   Next, an average value H of the voltage values at both ends of the power storage element module 29 having the initial normal value is obtained. The average value H is obtained by H = S / k. At the same time, in order to perform an estimation operation in which the voltage value across the storage element module 29 having the initial abnormal value is an average value H, 1 indicating the first storage element module 29 is substituted for the number j (S529 above).

次に、番号jで示される蓄電素子モジュール29の今回測定両端電圧値V(j)が初期異常値であるか否かを判断する(S531)。もし、初期異常値でなければ(S531のNo)、後述するS535にジャンプする。一方、初期異常値であれば(S531のYes)、その蓄電素子モジュール29の両端電圧値の推定値を平均値Hとするために、今回測定両端電圧値V(j)にHを代入する。同時に異常のある蓄電素子モジュール29の両端電圧値を推定値とした回数をカウントするための異常カウンタF(j)に1を代入する(以上、S533)。   Next, it is determined whether or not the current measured both-end voltage value V (j) of the power storage element module 29 indicated by the number j is an initial abnormal value (S531). If it is not an initial abnormal value (No in S531), the process jumps to S535 described later. On the other hand, if it is an initial abnormal value (Yes in S531), H is substituted for the current measured both-end voltage value V (j) in order to set the estimated value of the both-end voltage value of the storage element module 29 to the average value H. At the same time, 1 is substituted into the abnormality counter F (j) for counting the number of times that the both-ends voltage value of the abnormal storage element module 29 is an estimated value (S533).

その後、前回測定両端電圧値VO(j)を更新するために、VO(j)に今回測定両端電圧値V(j)を代入する(S535)。なお、VO(j)もV(j)と同様に1次元配列変数である。次に、番号jと蓄電素子モジュール29の個数mを比較する(S537)。もし、両者が等しくなければ(S537のNo)、全ての蓄電素子モジュール29における両端電圧値の異常判断が終わっていないので、番号jを1だけ加算(S539)してS531に戻り、次の蓄電素子モジュール両端電圧値の初期異常値判断を繰り返す。一方、番号jと蓄電素子モジュール29の個数mが等しければ(S537のYes)、蓄電素子モジュール29の両端電圧値における全ての初期異常値を推定値に置換し終わったことになるので、図6のフローチャートを終了する。   Thereafter, in order to update the previous measurement both-ends voltage value VO (j), the current measurement both-ends voltage value V (j) is substituted into VO (j) (S535). Note that VO (j) is also a one-dimensional array variable like V (j). Next, the number j is compared with the number m of power storage element modules 29 (S537). If they are not equal (No in S537), the determination of the abnormality of the voltage value at both ends in all the power storage element modules 29 has not been completed, so the number j is incremented by 1 (S539) and the process returns to S531, and the next power storage The initial abnormal value determination of the voltage value across the element module is repeated. On the other hand, if the number j is equal to the number m of the storage element modules 29 (Yes in S537), all the initial abnormal values in the voltage values at both ends of the storage element module 29 have been replaced with the estimated values. This flowchart is finished.

ここで、S517に戻り、起動フラグKFが0でなければ(S517のNo)、全蓄電素子モジュール29における正常な両端電圧値の平均変化率による異常値の推定動作を行う。具体的には、まず番号jで示される蓄電素子モジュール29の今回測定両端電圧値V(j)が異常値であるか否かを判断する(S551)。もし、異常値であれば(S551のYes)、後述するS555にジャンプする。一方、異常値でなければ(S551のNo)、正常値の平均変化率を求めるために、番号jで示される蓄電素子モジュール29の両端電圧値の変化率、すなわち今回測定両端電圧値V(j)を前回測定両端電圧値VO(j)で除した値を合計値Sに加算するとともに、正常蓄電素子数kを1だけ加算する(以上、S553)。   Here, the process returns to S517, and if the activation flag KF is not 0 (No in S517), an abnormal value estimation operation is performed based on the average rate of change of the normal voltage values in both power storage element modules 29. Specifically, first, it is determined whether or not the current measured both-end voltage value V (j) of the power storage element module 29 indicated by the number j is an abnormal value (S551). If it is an abnormal value (Yes in S551), the process jumps to S555 described later. On the other hand, if it is not an abnormal value (No in S551), in order to obtain the average change rate of the normal value, the change rate of the voltage value of both ends of the storage element module 29 indicated by the number j, that is, the current measured voltage value V (j ) Divided by the previous measured both-ends voltage value VO (j) is added to the total value S, and the number of normal power storage elements k is added by 1 (S553).

その後、番号jと蓄電素子モジュール29の個数mを比較する(S555)。もし、両者が等しくなければ(S555のNo)、次の蓄電素子モジュール29の異常を判断するために、番号jを1だけ加算(S557)してS551に戻り、以降の動作を繰り返す。一方、番号jと蓄電素子モジュール29の個数mが等しければ(S555のYes)、全ての蓄電素子モジュール29の異常判断が終了したことになる。   Thereafter, the number j is compared with the number m of the storage element modules 29 (S555). If they are not equal (No in S555), the number j is incremented by 1 (S557) to determine whether the next storage element module 29 is abnormal, the process returns to S551, and the subsequent operations are repeated. On the other hand, if the number j is equal to the number m of the power storage element modules 29 (Yes in S555), the abnormality determination of all the power storage element modules 29 is completed.

次に、正常値を有する蓄電素子モジュール29の両端電圧値の平均変化率Dを求める。平均変化率DはD=S/kにより求められる。同時に、異常値を有する蓄電素子モジュール29の両端電圧値を平均変化率Dから推定する動作を行うために、番号jに最初の蓄電素子モジュール29を示す1を代入する(以上、S559)。   Next, the average rate of change D of the voltage value across the storage element module 29 having a normal value is obtained. The average change rate D is obtained by D = S / k. At the same time, in order to perform an operation of estimating the voltage value across the storage element module 29 having an abnormal value from the average rate of change D, 1 indicating the first storage element module 29 is substituted for the number j (S559).

次に、番号jで示される蓄電素子モジュール29の今回測定両端電圧値V(j)が異常値であるか否かを判断する(S561)。もし、異常値でなければ(S561のNo)、今回測定両端電圧値V(j)を正常に得ることができたので、異常カウンタF(j)を0にクリアし(S563)、後述するS571にジャンプする。一方、異常値であれば(S561のYes)、異常カウンタF(j)が2であるか否かを判断する(S565)。もし、異常カウンタF(j)が2であれば(S565のYes)、番号jの蓄電素子モジュール29は3回続けて異常値を有したことになるので、一時的なノイズ要因による異常値ではなく、その蓄電素子モジュール29の短絡、断線、あるいは劣化等による異常値である可能性が高い。このような蓄電素子モジュール29をそのまま使い続けると、蓄電装置11全体としての信頼性が低下するので、S565のYesの場合は制御部41から車両用制御回路へ異常信号を出力して(S567)、図6のフローチャートを終了する。異常信号の出力動作や、その後の車両用制御回路の動作は図2のS35で説明した動作と同じである。なお、この時に異常のあった蓄電素子モジュール29の識別情報(例えば番号j)を異常信号に含ませてもよい。   Next, it is determined whether or not the current measured both-end voltage value V (j) of the power storage element module 29 indicated by the number j is an abnormal value (S561). If it is not an abnormal value (No in S561), the voltage value V (j) measured at this time can be normally obtained, so the abnormal counter F (j) is cleared to 0 (S563), and S571 described later. Jump to. On the other hand, if it is an abnormal value (Yes in S561), it is determined whether or not the abnormal counter F (j) is 2 (S565). If the abnormal counter F (j) is 2 (Yes in S565), the power storage element module 29 with the number j has an abnormal value three times in succession. There is a high possibility that the storage element module 29 has an abnormal value due to short circuit, disconnection, deterioration, or the like. If such a power storage element module 29 is used as it is, the reliability of the power storage device 11 as a whole is lowered. Therefore, in the case of Yes in S565, an abnormal signal is output from the control unit 41 to the vehicle control circuit (S567). Then, the flowchart of FIG. The abnormal signal output operation and the subsequent operation of the vehicle control circuit are the same as those described in S35 of FIG. In addition, you may include the identification information (for example, number j) of the electrical storage element module 29 which was abnormal at this time in an abnormal signal.

一方、異常カウンタF(j)が2でなければ(S565のNo)、番号jで示される蓄電素子モジュール29の両端電圧値が異常値であるので、その推定値を計算する。具体的には、実施の形態1と同様に、番号jで示される蓄電素子モジュール29の前回測定両端電圧値VO(j)に、S559で求めた正常値を有する全蓄電素子モジュール29の両端電圧値の前回と今回における平均変化率Dを乗じた値を推定値として今回測定両端電圧値V(j)に代入する。これにより、異常値が推定値に置換される。これと同時に、推定値との置換がなされたので、異常カウンタF(j)を1だけ加算する(以上、S569)。   On the other hand, if the abnormality counter F (j) is not 2 (No in S565), since the voltage value at both ends of the power storage element module 29 indicated by the number j is an abnormal value, an estimated value is calculated. Specifically, as in the first embodiment, the both-ends voltage of all the storage element modules 29 having the normal value obtained in S559 as the previous measured both-end voltage value VO (j) of the storage element module 29 indicated by the number j. A value obtained by multiplying the previous average value change rate D and the current average change rate D is substituted into the current measured both-end voltage value V (j) as an estimated value. Thereby, the abnormal value is replaced with the estimated value. At the same time, since the replacement with the estimated value has been made, the abnormality counter F (j) is incremented by 1 (S569).

その後、前回測定両端電圧値VO(j)を更新するために、VO(j)に今回測定両端電圧値V(j)を代入する(S571)。次に、番号jと蓄電素子モジュール29の個数mを比較する(S573)。もし、両者が等しくなければ(S573のNo)、まだ各蓄電素子モジュール29の両端電圧値の異常判断が終わっていないので、番号jを1だけ加算(S575)してS561に戻り、次の蓄電素子両端電圧値の異常値判断を繰り返す。一方、番号jと蓄電素子モジュール29の個数mが等しければ(S573のYes)、蓄電素子モジュール29の両端電圧値における全ての異常値を推定値に置換し終わったことになるので、図6のフローチャートを終了する。   Thereafter, in order to update the previous measurement both-ends voltage value VO (j), the current measurement both-ends voltage value V (j) is substituted into VO (j) (S571). Next, the number j is compared with the number m of the storage element modules 29 (S573). If the two are not equal (No in S573), the determination of the abnormality of the voltage value at both ends of each power storage element module 29 has not been completed yet, so the number j is incremented by 1 (S575) and the process returns to S561. Repeat the determination of the abnormal value of the voltage across the element. On the other hand, if the number j is equal to the number m of the storage element modules 29 (Yes in S573), all the abnormal values in the voltage values at both ends of the storage element module 29 have been replaced with the estimated values. The flowchart ends.

このように、図6で述べた動作も実施の形態1と同様に簡単な四則演算を繰り返しているだけなので、母数の大きい両端電圧値に対する分布を演算する必要がなく、極めて高速に実行することができる。また、蓄電素子モジュール29毎にのみ両端電圧値の測定や推定を行っているので、実施の形態1よりもさらに素早い両端電圧値の制御や蓄電装置11の異常判断を行うことができる。   As described above, since the operation described in FIG. 6 is merely a simple four arithmetic operation as in the first embodiment, it is not necessary to calculate the distribution for the voltage values at both ends having a large parameter, and the operation is performed at a very high speed. be able to. Further, since the measurement and estimation of the both-end voltage value is performed only for each power storage element module 29, the control of the both-end voltage value and the abnormality determination of the power storage device 11 can be performed more quickly than in the first embodiment.

以上により、蓄電素子モジュール両端電圧値の測定動作、および異常両端電圧値の推定動作を行っているが、この内、特徴となる推定動作についてまとめると、次のようになる。   As described above, the measurement operation of the both-end voltage value of the storage element module and the estimation operation of the abnormal both-end voltage value are performed. Among these, the characteristic estimation operation is summarized as follows.

まず、起動時においては、蓄電素子電圧検出回路33を介して求めた各蓄電素子モジュール29の両端電圧値(これは今回測定両端電圧値V(j)に相当)に初期異常値があれば、前記各両端電圧値の初期正常値の平均値Hを、前記初期異常値に替わって前記両端電圧値とする。   First, at the time of start-up, if there is an initial abnormal value in the both-end voltage value of each storage element module 29 obtained via the storage element voltage detection circuit 33 (this corresponds to the measured both-end voltage value V (j)), An average value H of initial normal values of the voltage values at both ends is used as the voltage value at both ends instead of the initial abnormal value.

次に、起動後の通常使用時においては、蓄電素子電圧検出回路33を介して求めた各蓄電素子モジュール29の両端電圧値(今回測定両端電圧値V(j)に相当)に異常値があれば、正常値を有する蓄電素子モジュール29における前回測定両端電圧値VO(j)と今回測定両端電圧値V(j)の平均変化率Dを求め、前記異常値を有する蓄電素子モジュール29の前回測定両端電圧値VO(j)に平均変化率Dを乗じた値を、前記異常値に替わって前記両端電圧値とする。   Next, during normal use after start-up, there is an abnormal value in the voltage value of each storage element module 29 obtained through the storage element voltage detection circuit 33 (corresponding to the current measured voltage value V (j)). For example, the average change rate D between the previous measured both-ends voltage value VO (j) and the current measured both-ends voltage value V (j) in the storage element module 29 having a normal value is obtained, and the previous measurement of the storage element module 29 having the abnormal value is performed. A value obtained by multiplying the voltage value VO (j) at both ends by the average change rate D is used as the voltage value at both ends instead of the abnormal value.

以上の構成、動作により、異常値を有する蓄電素子モジュール29の両端電圧値を簡単な四則演算によってのみ推定することができるので、演算時間がほとんどかからずタイムリーに両端電圧値の監視や制御を行うことができ、高信頼性の蓄電装置を実現できる。   With the above configuration and operation, it is possible to estimate the voltage value at both ends of the storage element module 29 having an abnormal value only by simple four arithmetic operations. Therefore, monitoring and control of the voltage values at both ends in a timely manner with almost no calculation time. And a highly reliable power storage device can be realized.

なお、本実施の形態2において、蓄電素子モジュール29を直列に接続した構成を示したが、これは蓄電素子モジュール29を直並列接続してもよい。   In the second embodiment, the configuration in which the storage element modules 29 are connected in series is shown. However, the storage element modules 29 may be connected in series and parallel.

また、実施の形態1、2では蓄電装置11をハイブリッド車に適用した場合について述べたが、それに限らず、電気自動車や燃料電池車の補助電源等にも適用可能である。   In the first and second embodiments, the case where the power storage device 11 is applied to a hybrid vehicle has been described. However, the present invention is not limited to this and can be applied to an auxiliary power source of an electric vehicle or a fuel cell vehicle.

本発明にかかる蓄電装置は、異常値を有する蓄電素子の両端電圧値を高速に推定でき、高信頼性が得られるので、特に主電源の電圧低下時に補助的に電力を供給する蓄電装置等として有用である。   The power storage device according to the present invention can estimate the voltage value between both ends of a power storage element having an abnormal value at high speed and can obtain high reliability. Useful.

本発明の実施の形態1における蓄電装置の蓄電素子を直列接続した際のブロック回路図The block circuit diagram at the time of connecting the electrical storage element of the electrical storage apparatus in Embodiment 1 of this invention in series 本発明の実施の形態1における蓄電装置の蓄電素子両端電圧値の測定フローチャートFlowchart of measurement of voltage value across power storage element of power storage device in Embodiment 1 of the present invention 本発明の実施の形態1における蓄電装置の異常両端電圧値の推定フローチャートFlowchart for estimating abnormal both-ends voltage value of power storage device in Embodiment 1 of the present invention 本発明の実施の形態1における蓄電装置の蓄電素子を直並列接続した際のブロック回路図The block circuit diagram at the time of connecting the electrical storage element of the electrical storage apparatus in Embodiment 1 of this invention in series-parallel 本発明の実施の形態2における蓄電装置のブロック回路図Block circuit diagram of a power storage device in Embodiment 2 of the present invention 本発明の実施の形態2における蓄電装置の蓄電素子モジュール両端電圧値の測定、および推定フローチャートFlowchart measurement and estimation flowchart of power storage element module both-end voltage value of power storage device in Embodiment 2 of the present invention 従来の蓄電装置のブロック回路図Block diagram of a conventional power storage device

符号の説明Explanation of symbols

11 蓄電装置
15 主電源
17 負荷
21 主電源電圧検出回路
23 切替スイッチ
25 充放電回路
29 蓄電素子モジュール
31 蓄電素子
33 蓄電素子電圧検出回路
41 制御部
47 蓄電素子群
DESCRIPTION OF SYMBOLS 11 Power storage device 15 Main power supply 17 Load 21 Main power supply voltage detection circuit 23 Changeover switch 25 Charging / discharging circuit 29 Storage element module 31 Storage element 33 Storage element voltage detection circuit 41 Control part 47 Storage element group

Claims (7)

複数の蓄電素子の直列、または直並列接続構成を有する蓄電素子モジュールと、
前記各蓄電素子の両端、または並列接続された前記蓄電素子を一まとめにした各蓄電素子群の両端に接続された蓄電素子電圧検出回路と、
前記蓄電素子電圧検出回路が接続された制御部とを備え、
前記蓄電素子、または前記蓄電素子群の各両端電圧値を求める際に、前記制御部は、
起動時においては、前記蓄電素子電圧検出回路を介して求めた前記各両端電圧値に初期異常値があれば、前記各両端電圧値の初期正常値の平均値(H)を、前記初期異常値に替わって前記両端電圧値とし、
通常使用時においては、前記蓄電素子電圧検出回路を介して求めた前記各両端電圧値に異常値があれば、正常値を有する前記蓄電素子、または前記蓄電素子群における前回測定両端電圧値と今回測定両端電圧値の平均変化率(D)を求め、前記異常値を有する前記蓄電素子、または前記蓄電素子群の前回測定両端電圧値に前記平均変化率(D)を乗じた値を、前記異常値に替わって前記両端電圧値とするようにした蓄電装置。
A storage element module having a series or series-parallel connection configuration of a plurality of storage elements;
A storage element voltage detection circuit connected to both ends of each storage element or both ends of each storage element group in which the storage elements connected in parallel are combined,
A controller to which the storage element voltage detection circuit is connected;
When determining the voltage values at both ends of the power storage element or the power storage element group, the control unit,
At the time of start-up, if there is an initial abnormal value in each of the both-end voltage values obtained through the storage element voltage detection circuit, the initial normal value average value (H) of each of the both-end voltage values is calculated as the initial abnormal value. Instead of the voltage value at both ends,
In normal use, if there is an abnormal value in each of the both-end voltage values obtained through the storage element voltage detection circuit, the storage element having a normal value or the previously measured both-end voltage value in the storage element group and this time The average change rate (D) of the measured both-end voltage value is obtained, and the value obtained by multiplying the previous measured both-end voltage value of the storage element or the storage element group having the abnormal value by the average change rate (D) A power storage device in which the voltage value at both ends is used instead of the value.
前記制御部は、前記蓄電素子電圧検出回路を介して同一の前記蓄電素子、または同一の前記蓄電素子群における前記両端電圧値の前記異常値を、既定回数まで連続して求めた時に、前記蓄電素子、または前記蓄電素子群が異常であると判断するようにした請求項1に記載の蓄電装置。 When the control unit obtains the abnormal value of the both-end voltage value in the same storage element or the same storage element group continuously through the storage element voltage detection circuit up to a predetermined number of times, The power storage device according to claim 1, wherein an element or the power storage element group is determined to be abnormal. 前記蓄電素子モジュールを複数有し、
前記制御部は、前記蓄電素子、または前記蓄電素子群の前記両端電圧値を求める際に、前記蓄電素子モジュール毎に同時に前記両端電圧値の測定を行うようにした請求項1に記載の蓄電装置。
A plurality of the storage element modules;
2. The power storage device according to claim 1, wherein the control unit simultaneously measures the both-end voltage value for each of the storage element modules when obtaining the both-end voltage value of the storage element or the storage element group. .
複数の蓄電素子の直列、または直並列接続構成を有する複数の蓄電素子モジュールと、
前記蓄電素子モジュールの両端に接続された蓄電素子電圧検出回路と、
前記蓄電素子電圧検出回路が接続された制御部とを備え、
前記蓄電素子モジュールの各両端電圧値を求める際に、前記制御部は、
起動時においては、前記蓄電素子電圧検出回路を介して求めた前記各両端電圧値に初期異常値があれば、前記各両端電圧値の初期正常値の平均値(H)を、前記初期異常値に替わって前記両端電圧値とし、
通常使用時においては、前記蓄電素子電圧検出回路を介して求めた前記各両端電圧値に異常値があれば、正常値を有する前記蓄電素子モジュールにおける前回測定両端電圧値と今回測定両端電圧値の平均変化率(D)を求め、前記異常値を有する前記蓄電素子モジュールの前回測定両端電圧値に前記平均変化率(D)を乗じた値を、前記異常値に替わって前記両端電圧値とするようにした蓄電装置。
A plurality of storage element modules having a series or series-parallel connection configuration of a plurality of storage elements;
A storage element voltage detection circuit connected to both ends of the storage element module;
A controller to which the storage element voltage detection circuit is connected;
When determining the voltage values at both ends of the storage element module, the control unit,
At the time of start-up, if there is an initial abnormal value in each of the both-end voltage values obtained through the storage element voltage detection circuit, the initial normal value average value (H) of each of the both-end voltage values is calculated as the initial abnormal value. Instead of the voltage value at both ends,
In normal use, if there is an abnormal value in each of the both-end voltage values obtained through the storage element voltage detection circuit, the previous measurement both-end voltage value and the current measurement both-end voltage value in the storage element module having a normal value are obtained. An average rate of change (D) is obtained, and a value obtained by multiplying the previous measured both-ends voltage value of the power storage element module having the abnormal value by the average rate of change (D) is used as the both-ends voltage value instead of the abnormal value. A power storage device.
前記制御部は、前記蓄電素子電圧検出回路を介して同一の前記蓄電素子モジュールにおける前記両端電圧値の前記異常値を、既定回数まで連続して求めた時に、前記蓄電素子モジュールが異常であると判断するようにした請求項4に記載の蓄電装置。 The control unit determines that the storage element module is abnormal when the abnormal value of the both-end voltage value in the same storage element module is continuously obtained up to a predetermined number of times via the storage element voltage detection circuit. The power storage device according to claim 4, wherein the power storage device is determined. 前記制御部は、異常を判断した場合に異常信号を出力するようにした請求項2、または5に記載の蓄電装置。 The power storage device according to claim 2, wherein the control unit outputs an abnormality signal when an abnormality is determined. 前記異常信号には異常のある前記蓄電素子、前記蓄電素子群、または前記蓄電素子モジュールの識別情報が含まれる請求項6に記載の蓄電装置。 The power storage device according to claim 6, wherein the abnormality signal includes identification information of the storage element having abnormality, the storage element group, or the storage element module.
JP2007076323A 2007-03-23 2007-03-23 Power storage device Expired - Fee Related JP5003229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076323A JP5003229B2 (en) 2007-03-23 2007-03-23 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076323A JP5003229B2 (en) 2007-03-23 2007-03-23 Power storage device

Publications (2)

Publication Number Publication Date
JP2008232988A true JP2008232988A (en) 2008-10-02
JP5003229B2 JP5003229B2 (en) 2012-08-15

Family

ID=39905941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076323A Expired - Fee Related JP5003229B2 (en) 2007-03-23 2007-03-23 Power storage device

Country Status (1)

Country Link
JP (1) JP5003229B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034964A (en) * 2009-08-03 2011-02-17 Samsung Sdi Co Ltd Battery id setting system and its driving method
JP2011102727A (en) * 2009-11-10 2011-05-26 Ntt Facilities Inc Storage battery controller and storage battery control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285824A (en) * 1997-04-11 1998-10-23 Matsushita Electric Ind Co Ltd Generator for emergency
JP2005114401A (en) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd Device and method for determining abnormality of battery pack
JP2005322617A (en) * 2004-04-09 2005-11-17 Sanyo Electric Co Ltd Power source device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285824A (en) * 1997-04-11 1998-10-23 Matsushita Electric Ind Co Ltd Generator for emergency
JP2005114401A (en) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd Device and method for determining abnormality of battery pack
JP2005322617A (en) * 2004-04-09 2005-11-17 Sanyo Electric Co Ltd Power source device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034964A (en) * 2009-08-03 2011-02-17 Samsung Sdi Co Ltd Battery id setting system and its driving method
US8436575B2 (en) 2009-08-03 2013-05-07 Samsung Sdi Co., Ltd. Battery ID setting system and method of driving the same
JP2011102727A (en) * 2009-11-10 2011-05-26 Ntt Facilities Inc Storage battery controller and storage battery control method

Also Published As

Publication number Publication date
JP5003229B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4745879B2 (en) Hybrid vehicle control system, hybrid vehicle control method, and vehicle storage battery control system
US9846198B2 (en) Battery management system, battery, motor vehicle having a battery management system, and method for monitoring a battery
KR100906907B1 (en) Car battery management system
US7019488B2 (en) Battery power source device of electric power vehicle
KR20180045954A (en) Battery management system and the controlling method thereof
CN102270866A (en) Vehicle power management system
JP5593553B2 (en) Battery monitoring device
JP2010249793A (en) Battery monitoring system and method of diagnosing the same
JP5527183B2 (en) Battery control system, charge / discharge control ECU
JP2007252175A (en) Capacitor device
JP2010239850A (en) Charging system, charger, electric vehicle, and charging completion method at power failure
CN102790408B (en) Energy balancing storage method in double-accumulator car power supply system
KR101856367B1 (en) System and method for measuring offset current of current sensor for sensing current of battery
CN111546938B (en) Vehicle hybrid storage battery management system and method
EP3466742B1 (en) System for managing, identifying and interconnecting a plurality of propulsion batteries of an electric vehicle
US9694698B2 (en) Power storage system and control device of power storage device
CN209148854U (en) Determine device, electrical system and the control module of vehicle low-voltage electric system failure
JP5003229B2 (en) Power storage device
JP5908903B2 (en) How to determine the state of charge of a battery
US11624783B2 (en) Battery diagnosis apparatus and vehicle
JP7111642B2 (en) battery controller
CN112693357A (en) Power supply and discharge method and device for power battery of new energy automobile
JP2016115619A (en) Battery monitoring system
KR102485778B1 (en) 12V battery performance abnormality diagnosis system and method of mild hybrid vehicle
JP2009092627A (en) Electric storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5003229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees