JP2008232970A - Displacement measuring device - Google Patents

Displacement measuring device Download PDF

Info

Publication number
JP2008232970A
JP2008232970A JP2007075970A JP2007075970A JP2008232970A JP 2008232970 A JP2008232970 A JP 2008232970A JP 2007075970 A JP2007075970 A JP 2007075970A JP 2007075970 A JP2007075970 A JP 2007075970A JP 2008232970 A JP2008232970 A JP 2008232970A
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
scale
scale member
displacement measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007075970A
Other languages
Japanese (ja)
Inventor
Akio Segawa
昭夫 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2007075970A priority Critical patent/JP2008232970A/en
Publication of JP2008232970A publication Critical patent/JP2008232970A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement measuring device capable of easily adjusting the gap between a scale member and a light-receiving element. <P>SOLUTION: The displacement measuring device includes a body case 10, a spindle 20 built into the case 10 and axially movable, the scale member 30, having a structure with a scale-drawn on a glass scale 32 and mounted on the spindle 20, and a light-projecting element 40 and the light-receiving element 41 which are provided opposite, across the scale member 30 in the body case 10. The displacement-measuring device also includes a gap adjustment mechanism 50 for moving the light-receiving element 41, closer to or farther away from the scale member 30 for fine adjustment of the gap, between the scale member 30 and the light-receiving element 41. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、被測定物に当接するスピンドルの変位を光学的に検出する構成を備えた変位測定器に関する。   The present invention relates to a displacement measuring instrument having a configuration for optically detecting the displacement of a spindle that comes into contact with an object to be measured.

変位測定器は、測長器あるいはダイヤルゲージとも称され、被測定物にスピンドルを当接し、基準に対する変位量を測定する場合などに用いられる。近年では光素子を利用した光学的な測定方法により、スピンドルの変位量をデジタル変換して検出する変位測定器も製造されている。変位測定器の従来技術としては、例えば本出願人により先に開示された特許文献1の変位測定器がある。   The displacement measuring device is also called a length measuring device or a dial gauge, and is used when a spindle is brought into contact with an object to be measured and a displacement amount with respect to a reference is measured. In recent years, a displacement measuring device for detecting the amount of displacement of a spindle by digital conversion by an optical measuring method using an optical element has also been manufactured. As a prior art of the displacement measuring device, for example, there is a displacement measuring device of Patent Document 1 previously disclosed by the present applicant.

特許文献1の変位測定器は、投光素子(40)と受光素子(41)との間にスケール部材(30)が配置されており、このスケール部材(30)が固定されたスピンドル(20)の変位を光学的に測定することで、測定対象の変位量を検出する構成となっている。スケール部材(30)を透過してきた投光素子(40)からの光線は、受光素子(41)に入射して電気信号に変換される。この受光素子(40)で発生する電気信号の強度は、変位測定器が接続される検出回路の仕様に合わせて調整する必要があり、当該検出回路の仕様に合致した強度の電気信号が受光素子(40)から出力されるとき、検出精度がもっとも高くなる。   In the displacement measuring device of Patent Document 1, a scale member (30) is disposed between a light projecting element (40) and a light receiving element (41), and a spindle (20) to which the scale member (30) is fixed. The amount of displacement of the measurement object is detected by optically measuring the displacement of. The light beam from the light projecting element (40) that has passed through the scale member (30) enters the light receiving element (41) and is converted into an electrical signal. The intensity of the electrical signal generated by the light receiving element (40) needs to be adjusted according to the specification of the detection circuit to which the displacement measuring device is connected. When output from (40), the detection accuracy is the highest.

ここで、スケール部材(30)と受光素子(41)との間のギャップは、受光素子(40)で発生する電気信号の強度に大きな影響を与えることが知られている。このため、特許文献1の変位測定器にあっては、構成部品の加工精度と組立精度に細心の注意を払って誤差を最小限に抑えるとともに、組立時に作業員が手作業により当該ギャップを微調整していた。   Here, it is known that the gap between the scale member (30) and the light receiving element (41) has a great influence on the intensity of the electric signal generated in the light receiving element (40). For this reason, in the displacement measuring instrument of Patent Document 1, the error is minimized by paying close attention to the processing accuracy and assembly accuracy of the component parts, and the worker manually reduces the gap during assembly. I was adjusting.

しかし、各構成部品の加工・組立を高精度に行う結果、従来の変位測定器は製作コストが高く生産性が悪いという問題があった。また、作業員の手作業によるギャップ調整には熟練が必要となり、作業能率が悪いという問題もあった。
特許文献2には、上記スケール部材に相当するスケール(1)と、上記受光素子(41)に相当する検出ヘッド(2)との間のギャップ調整を簡易化するための間隔調整機構(5)が開示されている。しかし、この間隔調整機構(5)はスケール(1)に突き当てて使用する構成のため、スケール(1)を傷付けてしまうおそれがあり、しかも間隔調整機構(5)には、スケール(1)と検出ヘッド(2)とを相対的に移動調整する機能はなく、特許文献2にはそのような移動調整機構については何ら開示されていない。
特開2006−349473号公報 特開平2−112724号公報
However, as a result of processing and assembling each component with high accuracy, the conventional displacement measuring instrument has a problem that the manufacturing cost is high and the productivity is poor. In addition, skill is required for manual gap adjustment of workers, and there is a problem that work efficiency is poor.
Patent Document 2 discloses an interval adjustment mechanism (5) for simplifying a gap adjustment between a scale (1) corresponding to the scale member and a detection head (2) corresponding to the light receiving element (41). Is disclosed. However, since this interval adjusting mechanism (5) is configured to abut against the scale (1), the scale (1) may be damaged, and the interval adjusting mechanism (5) includes the scale (1). There is no function to relatively move and adjust the detection head (2), and Patent Document 2 does not disclose any such movement adjusting mechanism.
JP 2006-349473 A JP-A-2-112724

本発明はこのような事情に鑑みてなされたもので、スケール部材と受光素子との間のギャップを容易に調整することができ、組立作業を効率的に行うことのできる変位測定器の提供を目的とする。   The present invention has been made in view of such circumstances, and it is possible to easily adjust a gap between a scale member and a light receiving element, and to provide a displacement measuring instrument that can efficiently perform an assembly operation. Objective.

上記目的を達成するために、本発明は、本体ケースと、本体ケースに組み込まれ、軸方向に移動自在なスピンドルと、透明板にスケールが描かれた構成を有し、スピンドルに装着されるスケール部材と、本体ケース内でスケール部材を挟んで対向位置に配設される投光素子および受光素子と、を含む変位測定器において、
スケール部材に対し受光素子を近接又は離間する方向に移動させてこれらスケール部材と受光素子との間隔を微調整するギャップ調整機構を備えたことを特徴とする。
In order to achieve the above object, the present invention provides a main body case, a spindle incorporated in the main body case and movable in the axial direction, a scale drawn on a transparent plate, and a scale attached to the spindle. In a displacement measuring instrument including a member, and a light projecting element and a light receiving element disposed at opposing positions across the scale member in the main body case,
A gap adjusting mechanism is provided that finely adjusts the distance between the scale member and the light receiving element by moving the light receiving element toward or away from the scale member.

かかる構成によれば、ギャップ調整機構によってスケール部材と受光素子との間隔をきわめて容易に微調整することができ、組立時の作業効率が飛躍的に向上する。   According to such a configuration, the gap adjustment mechanism can very finely adjust the distance between the scale member and the light receiving element, and the working efficiency during assembly is dramatically improved.

ここで、スケール部材は、透明板にスケール(目盛り)が刻まれた構成とし、
さらに、受光素子は、本体ケースの内部でスケール部材の奥側に配置され、当該スケール部材の透明板を透して視認可能な構成とすることが好ましい。
Here, the scale member has a structure in which a scale (scale) is engraved on a transparent plate,
Furthermore, it is preferable that the light receiving element is disposed on the back side of the scale member inside the main body case and is visible through the transparent plate of the scale member.

一般に、受光素子の検出精度を向上させるために、受光素子の受光面に対してスケールを平行に配置することはもとより、xy平面上における受光面の向きとスケールの向きとを合わせることも必要となる。上述したように、スケール部材の奥側に受光素子を配置する構成とすれば、スケール部材をスピンドルに取り付ける際に、透明板越しに受光素子の格子面を視認することができ、xy平面上における受光面の向きとスケールの向きとを容易に合わせることが可能となる。   In general, in order to improve the detection accuracy of the light receiving element, it is necessary not only to arrange the scale parallel to the light receiving surface of the light receiving element but also to match the direction of the light receiving surface on the xy plane with the direction of the scale. Become. As described above, if the light receiving element is arranged on the back side of the scale member, when the scale member is attached to the spindle, the lattice plane of the light receiving element can be visually recognized through the transparent plate, and on the xy plane. It becomes possible to easily match the direction of the light receiving surface with the direction of the scale.

また、ギャップ調整機構は、受光素子を移動調整するための操作部を本体ケースの外部に露出して備える構成とすれば、組立後においても必要に応じてスケール部材と受光素子との間のギャップ調整が可能となり、高い測定精度を長期間にわたり維持することが可能となる。   In addition, if the gap adjusting mechanism is configured to include an operation unit for adjusting the movement of the light receiving element exposed to the outside of the main body case, the gap between the scale member and the light receiving element is required even after assembly. Adjustment is possible, and high measurement accuracy can be maintained over a long period of time.

さらに、投光素子及び受光素子をホルダに保持させるとともに、上記操作部を、本体ケースの外部から挿通してホルダに螺合する調整ねじで構成し、この調節ねじの回転操作をもってホルダを移動させる構成とすれば、簡単な構成で組立が容易となり、しかも調整ねじの回転操作だけで、スケール部材と受光素子との間隔を微調整することができる。   Further, the light projecting element and the light receiving element are held by the holder, and the operation unit is configured by an adjustment screw that is inserted from the outside of the main body case and screwed into the holder, and the holder is moved by rotating the adjustment screw. With this configuration, assembly is facilitated with a simple configuration, and the interval between the scale member and the light receiving element can be finely adjusted only by rotating the adjusting screw.

以上、本発明の変位測定器によれば、スケール部材と受光素子との間のギャップを容易に調整することができるので、組立作業に必要なギャップ管理が不必要になり、組立の効率化を図ることができる。   As described above, according to the displacement measuring instrument of the present invention, since the gap between the scale member and the light receiving element can be easily adjusted, the gap management necessary for the assembly work becomes unnecessary, and the assembly efficiency is improved. Can be planned.

以下、この発明の実施の形態について図面を参照して詳細に説明する。
図1乃至図7は、本発明の実施形態に係る変位測定器の構成を示す図である。図1は、本実施形態に係る変位測定器の全体構成を示す斜視図であり、図2は、同じく変位測定器の全体構成を示す分解斜視図である。なお、以下の説明では、図2に示す配置をもって上下の方向を特定している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 7 are diagrams showing a configuration of a displacement measuring instrument according to an embodiment of the present invention. FIG. 1 is a perspective view showing the overall configuration of the displacement measuring instrument according to the present embodiment, and FIG. 2 is an exploded perspective view showing the overall configuration of the displacement measuring instrument. In the following description, the vertical direction is specified by the arrangement shown in FIG.

図1及び図2に示すように、本実施形態の変位測定器は、本体ケース10と、棒状のスピンドル20と、スケール部材30と、投光素子40及び受光素子41と、センサ位置調整部材47と付勢ばね54と調整ねじ53とを有して構成されるギャップ調整機構50とを備えている。本発明の特徴部分である、このギャップ調整機構50の詳細については後述する。   As shown in FIGS. 1 and 2, the displacement measuring instrument of the present embodiment includes a main body case 10, a rod-shaped spindle 20, a scale member 30, a light projecting element 40 and a light receiving element 41, and a sensor position adjusting member 47. And a bias adjusting mechanism 50 including an urging spring 54 and an adjusting screw 53. Details of the gap adjusting mechanism 50, which is a feature of the present invention, will be described later.

本体ケース10は、断面U字状をしたベース部材11と、このベース部材11の両端開口部に装着される隔壁部材12、13と、ベース部材11の正面開口部に装着される蓋体14とを含んでいる。各隔壁部材12、13には、ストッパゴム15を介して軸受部材16がそれぞれ装着される。このベース部材11の一方の側面には、案内ピン挿入孔17及び固定ねじ挿入孔18が穿設されており、またベース部材11の下面には調整ねじ挿入孔(図示せず)が穿設されている。これら各挿入孔には、後述する案内ピン51、固定ねじ52、調整ねじ53がそれぞれ挿通される。   The main body case 10 includes a base member 11 having a U-shaped cross section, partition members 12 and 13 attached to both end openings of the base member 11, and a lid body 14 attached to the front opening of the base member 11. Is included. A bearing member 16 is attached to each partition member 12, 13 via a stopper rubber 15. A guide pin insertion hole 17 and a fixing screw insertion hole 18 are formed in one side surface of the base member 11, and an adjustment screw insertion hole (not shown) is formed in the lower surface of the base member 11. ing. A guide pin 51, a fixing screw 52, and an adjusting screw 53, which will be described later, are inserted through these insertion holes.

図3は、本実施形態に係る変位測定器のスピンドル及びスケール部材の組立状態を示した斜視図である。
スピンドル20は、上記の各軸受部材16によって軸方向に移動自在に支持されて、本体ケース10へ組み込まれる。図1、図2に示すように、スピンドル20の先端部には、被測定物と接触する測定子21が装着される。また図3に示すように、スピンドル20には、中間部を切り欠いて中心軸と平行な平坦部22(図2参照)が形成してある。この平坦部22には、スピンドル20を貫通する位置決め孔が形成してあり、この位置決め孔に位置決めピン23が嵌合固定される。この平坦部22には、この位置決めピン23に係合するように、スケール部材30が、ねじ部材36によってねじ止めされる。
FIG. 3 is a perspective view showing an assembled state of the spindle and the scale member of the displacement measuring instrument according to the present embodiment.
The spindle 20 is supported by each of the bearing members 16 so as to be movable in the axial direction, and is incorporated into the main body case 10. As shown in FIGS. 1 and 2, a measuring element 21 that comes into contact with an object to be measured is attached to the tip of the spindle 20. As shown in FIG. 3, the spindle 20 is formed with a flat portion 22 (see FIG. 2) parallel to the central axis by cutting out the intermediate portion. A positioning hole that penetrates the spindle 20 is formed in the flat portion 22, and a positioning pin 23 is fitted and fixed to the positioning hole. The scale member 30 is screwed to the flat portion 22 by a screw member 36 so as to engage with the positioning pin 23.

スケール部材30は、金属板で形成したスケールホルダ31に、ガラススケール(透明板)32を組み込んだ構成となっている。ガラススケール32には、スケール(目盛り)となる遮光膜33が一定間隔毎に形成してあり、この遮光膜33の間にスリット状の光透過部34が一定間隔で並べて形成してある。また、スケールホルダ31の一端縁には、切欠き部35(図2参照)が形成してあり、この切欠き部35が前述した位置決めピン23に係合する構成である。   The scale member 30 has a configuration in which a glass scale (transparent plate) 32 is incorporated in a scale holder 31 formed of a metal plate. On the glass scale 32, light shielding films 33 serving as scales (scales) are formed at regular intervals, and slit-like light transmission portions 34 are formed at regular intervals between the light shielding films 33. Further, a notch 35 (see FIG. 2) is formed at one end edge of the scale holder 31, and this notch 35 is configured to engage with the positioning pin 23 described above.

図4は、投光素子と受光素子のセンサホルダへの組付け状態を示す斜視図である。
投光素子40と受光素子41は、断面略コ字状のセンサホルダ44に装着される。このとき、投光素子40と受光素子41は、一定のギャップをあけて互いに対向配置される。スピンドル20に装着されたスケール部材30は、この対向配置された投光素子40と受光素子41の間で、スピンドル20の移動方向に自在に可動できるようになっている。なお、投光素子40と受光素子41は、フレキシブル基板(FPC)42に搭載され、外部導線43(図2参照)を介し図示しない検出回路と接続される。
FIG. 4 is a perspective view showing an assembled state of the light projecting element and the light receiving element to the sensor holder.
The light projecting element 40 and the light receiving element 41 are mounted on a sensor holder 44 having a substantially U-shaped cross section. At this time, the light projecting element 40 and the light receiving element 41 are arranged to face each other with a certain gap. The scale member 30 mounted on the spindle 20 can be freely moved in the moving direction of the spindle 20 between the light projecting element 40 and the light receiving element 41 arranged opposite to each other. The light projecting element 40 and the light receiving element 41 are mounted on a flexible substrate (FPC) 42 and connected to a detection circuit (not shown) via an external conductor 43 (see FIG. 2).

図4に示すように、センサホルダ44は、受光素子41が取り付けられる受光側板部材45と、投光素子40が取り付けられる投光側板部材46と、受光側板部材45と投光側板部材46とを連結するセンサ位置調整部材47と、を備えた構成である。センサホルダ44は、これら各部材を組み立てることにより略コ字状に形成される。   As shown in FIG. 4, the sensor holder 44 includes a light receiving side plate member 45 to which the light receiving element 41 is attached, a light emitting side plate member 46 to which the light projecting element 40 is attached, a light receiving side plate member 45 and a light emitting side plate member 46. And a sensor position adjusting member 47 to be connected. The sensor holder 44 is formed in a substantially U shape by assembling these members.

本実施形態の変位測定器は、図5、図6に示すような構成のギャップ調整機構50を備えている。このギャップ調整機構50は、受光素子41とスケール部材30との間のギャップ(隙間)を微調整するための機構である。ギャップ調整機構50は、センサ位置調整部材47の下面にある下面ねじ孔(図示せず)に調整ねじ53が螺合し、さらに調整ねじ53が螺合した位置の両側にU字状に形成された付勢ばね54を備えた構成となっている。調整ねじ53は、変位測定器の組立状態において、本体ケース10から挿入されて、センサ位置調整部材47の下面ねじ孔にねじ込まれる。一方、付勢ばね54は、変位測定器の組立状態において、センサ位置調整部材47の切欠部47aに配置される。   The displacement measuring instrument of the present embodiment includes a gap adjusting mechanism 50 configured as shown in FIGS. The gap adjusting mechanism 50 is a mechanism for finely adjusting the gap (gap) between the light receiving element 41 and the scale member 30. The gap adjusting mechanism 50 is formed in a U-shape on both sides of the position where the adjusting screw 53 is screwed into a lower surface screw hole (not shown) on the lower surface of the sensor position adjusting member 47 and further the adjusting screw 53 is screwed. The biasing spring 54 is provided. The adjustment screw 53 is inserted from the main body case 10 and screwed into the lower surface screw hole of the sensor position adjustment member 47 in the assembled state of the displacement measuring instrument. On the other hand, the biasing spring 54 is disposed in the notch 47a of the sensor position adjusting member 47 in the assembled state of the displacement measuring device.

またセンサ位置調整部材47の背面には、上下に二つの長孔47bと、左右に二つの側面ねじ孔47cが穿設されている。センサ位置調整部材47は、変位測定器の組立時において、長孔47bに案内ピン51が挿入され、側面ねじ孔47cには固定ねじ52が螺合してある。   The back surface of the sensor position adjusting member 47 has two elongated holes 47b on the top and bottom and two side screw holes 47c on the left and right. In the sensor position adjusting member 47, when assembling the displacement measuring instrument, the guide pin 51 is inserted into the elongated hole 47b, and the fixing screw 52 is screwed into the side screw hole 47c.

ギャップ調整機構50による微調整は、本体ケース10の下面に挿入した調整ねじ53を回転操作してセンサホルダ44を上下に摺動する。これにより受光素子41を近接又は離間する方向に移動させて、スケール部材30とのギャップを微調整する。このとき、位置調整部材47の下部にある付勢ばね54が、センサホルダ44を上方向に付勢しているため、がたつきなく微調整が可能である。なお、この微調整は、外部導線43を介して接続された測定装置の表示を確認しながら行われる。   The fine adjustment by the gap adjusting mechanism 50 is performed by rotating the adjustment screw 53 inserted in the lower surface of the main body case 10 and sliding the sensor holder 44 up and down. Thereby, the light receiving element 41 is moved in the direction of approaching or separating, and the gap with the scale member 30 is finely adjusted. At this time, since the urging spring 54 at the lower part of the position adjusting member 47 urges the sensor holder 44 in the upward direction, fine adjustment is possible without rattling. This fine adjustment is performed while confirming the display of the measuring apparatus connected via the external lead wire 43.

固定ねじ52は、ギャップ調整に際して緩められ、調整作業が完了した後、強く締結する。これによって、センサホルダ44が本体ケース10へ固定される。なお、固定ねじ52を緩めた状態では、ワッシャ55のばね力によってセンサ位置調整部材47は、本体ケース10におけるベース部材11の外側に向けて引っ張られる。これにより、ギャップ調整を行っている段階であっても、センサホルダ44は、ワッシャ55によって本体ケース10の内周面に密着して位置決めすることができ、スケール部材30と受光素子41との位置関係を変えずに、ギャップのみの調整が可能となる。   The fixing screw 52 is loosened during the gap adjustment, and is tightened strongly after the adjustment work is completed. Thereby, the sensor holder 44 is fixed to the main body case 10. In the state where the fixing screw 52 is loosened, the sensor position adjusting member 47 is pulled toward the outside of the base member 11 in the main body case 10 by the spring force of the washer 55. Accordingly, even when the gap is being adjusted, the sensor holder 44 can be positioned in close contact with the inner peripheral surface of the main body case 10 by the washer 55, and the position of the scale member 30 and the light receiving element 41 can be adjusted. Only the gap can be adjusted without changing the relationship.

このように、変位測定器に上述したギャップ調整機構50を設ければ、図2に示した各部材を組み立てて変位測定器とした後に、必要に応じてスケール部材30と受光素子41との間のギャップを容易に調整することができ、センサの受光精度を微調整することができるようになる。また、本発明によれば、測定器を組み立てた後に上記ギャップを調整できるので、従来の構成のように測定精度を向上させるために、予め各部品が接触する当接面の加工精度を極端に高くする必要はなくなる。これにより、変位測定器の製造コストを低く抑えることができるようになる。したがって、組立作業に必要なギャップ管理が不必要になり、組立の効率化を図ることができる。   As described above, if the gap measuring mechanism 50 described above is provided in the displacement measuring device, the members shown in FIG. 2 are assembled to form the displacement measuring device, and then, if necessary, between the scale member 30 and the light receiving element 41. Can be easily adjusted, and the light receiving accuracy of the sensor can be finely adjusted. In addition, according to the present invention, since the gap can be adjusted after assembling the measuring instrument, in order to improve the measurement accuracy as in the conventional configuration, the processing accuracy of the contact surface with which each component comes in contact is extremely reduced. There is no need to increase it. Thereby, the manufacturing cost of the displacement measuring device can be kept low. Therefore, the gap management necessary for the assembly work becomes unnecessary, and the assembly efficiency can be improved.

また、長時間にわたって変位測定器を測定していて、測定結果に狂いが生じていると判明したら、変位測定器をわざわざ分解せずとも、ギャップ調整機構50により容易にスケール部材30と受光素子41との間のギャップを調整することができる。これにより、常に安定して高い測定精度を維持することが可能となる。   If the displacement measuring instrument is measured over a long period of time and it is found that the measurement result is out of order, the scale adjusting member 30 and the light receiving element 41 can be easily obtained by the gap adjusting mechanism 50 without having to disassemble the displacement measuring instrument. The gap between can be adjusted. Thereby, it becomes possible to always maintain high measurement accuracy stably.

次に、本実施形態に係る変位測定器の細部構造と各構成部材の組立手順について、図2を主に参照して説明する。
変位測定器の組立は、まず受光素子41を取り付けてある受光側板部材45をセンサ位置調整部材47にねじ止めし、この状態においてセンサホルダ44を本体ケース10に装着する。このとき、センサ位置調整部材47の切欠部47aには付勢ばね54を組み込み、さらに調整ねじ53を、本体ケース10の下から調整ねじ挿入孔に挿通して、センサ位置調整部材47の下面ねじ孔に螺合することでギャップ調整機構50を形成する。
Next, the detailed structure of the displacement measuring instrument according to the present embodiment and the assembly procedure of each component will be described with reference mainly to FIG.
To assemble the displacement measuring instrument, first, the light receiving side plate member 45 to which the light receiving element 41 is attached is screwed to the sensor position adjusting member 47, and the sensor holder 44 is mounted on the main body case 10 in this state. At this time, an urging spring 54 is incorporated in the notch 47 a of the sensor position adjusting member 47, and the adjusting screw 53 is inserted into the adjusting screw insertion hole from below the main body case 10, so that the lower surface screw of the sensor position adjusting member 47 The gap adjusting mechanism 50 is formed by screwing into the hole.

次に、本体ケース10のベース部材11の側面から、2本の案内ピン51を案内ピン挿入孔17に挿通し、センサ位置調整部材47の長孔47bに差し込む。同じくベース部材11の側面から、2つの固定ねじ52を弾性力を有したワッシャ55を介して固定ねじ挿入孔18に挿通し、センサ位置調整部材47の側面ねじ孔47cに緩く螺合して、センサホルダ44を本体ケース10に仮止めする。   Next, from the side surface of the base member 11 of the main body case 10, the two guide pins 51 are inserted into the guide pin insertion holes 17 and are inserted into the long holes 47 b of the sensor position adjustment member 47. Similarly, from the side surface of the base member 11, two fixing screws 52 are inserted into the fixing screw insertion hole 18 via a washer 55 having elasticity, and loosely screwed into the side screw hole 47 c of the sensor position adjusting member 47. The sensor holder 44 is temporarily fixed to the main body case 10.

ここで、本実施形態において、案内ピン挿入孔17の孔径は案内ピン51ががたつきなく嵌合する寸法に設定してあり、また長孔47bは上下に孔径が長く形成されている。このため、案内ピン挿入孔17及び長孔47bに案内ピン51を挿入した状態において、案内ピン51は、案内ピン挿通孔17に固く嵌合し、且つ長孔47bの挿入部分では上下に隙間を有した状態となる。
一方、固定ねじ挿入孔18の孔径は、固定ねじ52のねじ部の外径より充分に大きく形成されており、また側面ねじ孔47cは固定ねじ52と螺合可能な孔径に形成されている。このため、固定ねじ挿入孔18及び側面ねじ孔47cに固定ねじ52を挿入した状態では、固定ねじ52が、固定ねじ挿入孔18部分において周囲に隙間を残し、側面ねじ孔47cにおいて螺合した状態となる。
したがって、センサホルダ44は、センサ位置調整部材47に案内ピン51を挿入し、且つ固定ねじ52を緩く螺合して仮止めした段階において、上下に摺動可能な状態となっている。
Here, in this embodiment, the hole diameter of the guide pin insertion hole 17 is set to a dimension that allows the guide pin 51 to fit without rattling, and the long hole 47b is formed to have a long hole diameter in the vertical direction. For this reason, in a state where the guide pin 51 is inserted into the guide pin insertion hole 17 and the long hole 47b, the guide pin 51 is firmly fitted into the guide pin insertion hole 17, and a gap is vertically formed at the insertion portion of the long hole 47b. It will have a state.
On the other hand, the hole diameter of the fixing screw insertion hole 18 is sufficiently larger than the outer diameter of the thread portion of the fixing screw 52, and the side screw hole 47 c is formed to have a hole diameter that can be screwed with the fixing screw 52. For this reason, in the state where the fixing screw 52 is inserted into the fixing screw insertion hole 18 and the side screw hole 47c, the fixing screw 52 leaves a gap around the fixing screw insertion hole 18 and is screwed into the side screw hole 47c. It becomes.
Therefore, the sensor holder 44 is slidable up and down at the stage where the guide pin 51 is inserted into the sensor position adjusting member 47 and the fixing screw 52 is loosely screwed and temporarily fixed.

次に、スピンドル20に対し位置決めピン23を装着し、このスピンドル20を本体ケース10に組み込む。ここで、本体ケース10のベース部材11には、センサホルダ44の装着箇所と隣接して、ばね配置部19が形成してある。このばね配置部19の両側部には、隔壁19aが形成してあり、この隔壁19aに挟まれた部分に付勢ばね60を配置し、その一端部を係止する。またこの付勢ばね60の他端部には、位置決めピン23の先端を挿入する。これによりスピンドル20は、軸方向に摺動可能となる。   Next, the positioning pin 23 is attached to the spindle 20, and the spindle 20 is assembled into the main body case 10. Here, a spring arrangement portion 19 is formed on the base member 11 of the main body case 10 adjacent to the mounting location of the sensor holder 44. A partition wall 19a is formed on both sides of the spring arrangement portion 19, and an urging spring 60 is disposed at a portion sandwiched between the partition walls 19a and one end thereof is locked. Further, the tip of the positioning pin 23 is inserted into the other end of the biasing spring 60. As a result, the spindle 20 can slide in the axial direction.

さらに、本体ケース10の隔壁部材12、13に設けられた各軸受部材16によって、スピンドル20を軸方向に移動自在に支持する。この状態で、隔壁部材12、13をベース部材11に装着して、スピンドル20の本体ケース10への組み込みを行う。   Further, the spindle 20 is supported by the bearing members 16 provided on the partition members 12 and 13 of the main body case 10 so as to be movable in the axial direction. In this state, the partition members 12 and 13 are attached to the base member 11 and the spindle 20 is assembled into the main body case 10.

次に、スケール部材30を、本体ケース10に組み込まれたスピンドル20に対して装着する。スケール部材30は、切欠き部35を位置決めピン23に係合させた状態で、スピンドル20の平坦部22に配置され、ねじ部材36(図3参照)によりスピンドル20に装着される。
スケール部材30は、1本のねじ部材36によって締結されているだけなので、本体ケース10に組み込んだ後であっても、ねじ部材36を緩めるだけで容易にスケール部材30の平面位置を微調整することが可能である。
Next, the scale member 30 is attached to the spindle 20 incorporated in the main body case 10. The scale member 30 is disposed on the flat portion 22 of the spindle 20 with the notch 35 engaged with the positioning pin 23, and is attached to the spindle 20 by a screw member 36 (see FIG. 3).
Since the scale member 30 is only fastened by the single screw member 36, the planar position of the scale member 30 can be easily finely adjusted simply by loosening the screw member 36 even after being incorporated into the main body case 10. It is possible.

図7は、本実施形態に係る変位測定器のスケール部材と受光素子の関係を示す模式図である。
ここで、変位測定器の受光素子41は、図7(a)に示すように、受光面が複数の四角形状をした格子面41aの配列によって形成されている。そして、変位測定器を組み立てる際には、xy平面上における格子面41aの向きと、スケール部材30の遮光膜33によって形成したスケール(目盛り)の向きとを合わせる調整作業が必要となる。
図7(b)に示すように、格子面41aと遮光膜33によって形成したスケール(目盛り)とが所定の位置からずれて回転して配置されてしまうと、受光素子41の受光精度が低下するばかりでなく、測定精度の低下の原因となる。
FIG. 7 is a schematic diagram showing the relationship between the scale member and the light receiving element of the displacement measuring instrument according to this embodiment.
Here, as shown in FIG. 7A, the light receiving element 41 of the displacement measuring device is formed by an array of lattice planes 41a having a plurality of square-shaped light receiving surfaces. Then, when assembling the displacement measuring device, it is necessary to adjust the direction of the lattice surface 41a on the xy plane and the direction of the scale (scale) formed by the light shielding film 33 of the scale member 30.
As shown in FIG. 7B, the light receiving accuracy of the light receiving element 41 is reduced if the scale (scale) formed by the grating surface 41a and the light shielding film 33 is shifted from a predetermined position and rotated. In addition to this, it causes a decrease in measurement accuracy.

本実施形態の変位測定器は、センサホルダ44を本体ケース10に設置した状態にあって、受光素子41がスケール部材30の下側に配置される。したがって、スケール部材30のガラススケール32を透して受光素子41の格子面41aを視認することが可能である。このように視認可能とすることで、作業員は、スケール部材30をスピンドル20へ組み込む際に、スケール部材30のスケール(目盛り)と格子面41aとの間の調整を容易かつ正確に行うことができる。   The displacement measuring instrument of the present embodiment is in a state where the sensor holder 44 is installed in the main body case 10, and the light receiving element 41 is disposed below the scale member 30. Therefore, it is possible to visually recognize the lattice surface 41 a of the light receiving element 41 through the glass scale 32 of the scale member 30. By enabling the visual recognition in this way, the worker can easily and accurately adjust the scale (scale) of the scale member 30 and the lattice surface 41a when the scale member 30 is incorporated into the spindle 20. it can.

スピンドル20にスケール部材30を装着し、受光素子41とスケール部材30との配置関係を調整した後、センサ位置調整部材47の上部に投光素子40が取り付けられた投光側板部材46を装着する。これによりセンサホルダが完成され、このときセンサホルダ44は、投光素子40及び受光素子41に一定のギャップが形成されており、このギャップの間にスケール部材30が介在した状態となる。   After the scale member 30 is mounted on the spindle 20 and the positional relationship between the light receiving element 41 and the scale member 30 is adjusted, the light projecting side plate member 46 having the light projecting element 40 mounted on the sensor position adjusting member 47 is mounted. . Thus, the sensor holder is completed. At this time, the sensor holder 44 is in a state in which a certain gap is formed between the light projecting element 40 and the light receiving element 41, and the scale member 30 is interposed between the gaps.

上記のように組み立てた後、ギャップ調整機構50により受光素子41とスケール部材30との間のギャップを微調整する。この調整作業は既述したとおりである。   After assembling as described above, the gap between the light receiving element 41 and the scale member 30 is finely adjusted by the gap adjusting mechanism 50. This adjustment work is as described above.

最後に、ベース部材11の正面開口部に蓋体14を装着して、変位測定器の組立が完了する。このように変位測定器を組み立てることにより、組立作業の作業効率を向上させるとともに、製造コストを低下させることができる。   Finally, the lid 14 is attached to the front opening of the base member 11 to complete the assembly of the displacement measuring instrument. By assembling the displacement measuring device in this way, the work efficiency of the assembly work can be improved and the manufacturing cost can be reduced.

また組立完了後において、受光素子41の受光量を微調整したい場合は、前述したように、固定ねじ52を緩めてセンサホルダ44を仮止め状態とした後、調整ねじ53を回すことでセンサホルダ44を摺動させる。これにより、変位測定器を分解することなく、スケール部材30と受光素子41との間のギャップを容易に調整することができ、センサの受光精度を微調整することができる。   When fine adjustment of the amount of light received by the light receiving element 41 is desired after completion of the assembly, as described above, the sensor holder 44 is temporarily fixed by loosening the fixing screw 52 and then turning the adjustment screw 53 to turn the sensor holder. 44 is slid. Accordingly, the gap between the scale member 30 and the light receiving element 41 can be easily adjusted without disassembling the displacement measuring instrument, and the light receiving accuracy of the sensor can be finely adjusted.

なお、本発明は上述した実施形態に限定されるものではなく、必要に応じて種々の変形実施または応用実施が可能である。例えば、変位測定器における投光素子40と受光素子41の位置関係は、従来のように受光素子41を上側に、投光素子40を下側に配置することもできる。   In addition, this invention is not limited to embodiment mentioned above, A various deformation | transformation implementation or application implementation is possible as needed. For example, as for the positional relationship between the light projecting element 40 and the light receiving element 41 in the displacement measuring device, the light receiving element 41 can be disposed on the upper side and the light projecting element 40 can be disposed on the lower side as in the prior art.

また、上記説明では、スケール部材39のスケール(目盛り)と格子面41aとによりスケールの位置を調整する例を示したが、これに代えて、スケール(目盛り)と受光素子41の表面に別途設けたマークとによって調整しても構わないし、受光素子41の表面に設けたマークとスケールの表面に設けたマークとによって調整しても構わない。   In the above description, an example in which the position of the scale is adjusted by the scale (scale) of the scale member 39 and the lattice surface 41a has been described. Instead, the scale (scale) and the surface of the light receiving element 41 are provided separately. The adjustment may be made according to the mark or the mark provided on the surface of the light receiving element 41 and the mark provided on the surface of the scale.

さらに、本実施例では、ギャップ調整機構50における、調整ねじ53が螺合した位置の両側に配した付勢ばね54をU字状とした例を示したが、本発明で用いる付勢ばねは、一方に付勢力を与えるものであれば、コイル形状、V字状であっても本発明と同様な効果を得ることができる。   Furthermore, in the present embodiment, an example in which the biasing springs 54 disposed on both sides of the position where the adjustment screw 53 is screwed in the gap adjusting mechanism 50 is U-shaped has been shown. As long as an urging force is applied to one side, the same effect as in the present invention can be obtained even if the coil shape or the V shape is used.

本実施形態に係る変位測定器の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the displacement measuring device which concerns on this embodiment. 本実施形態に係る変位測定器の全体構成を示す分解斜視図である。It is a disassembled perspective view which shows the whole structure of the displacement measuring device which concerns on this embodiment. 本実施形態に係る変位測定器のスピンドル及びスケール部材の組立状態を示した斜視図である。It is the perspective view which showed the assembly state of the spindle and scale member of the displacement measuring device which concerns on this embodiment. 本実施形態に係る変位測定器のセンサホルダ及び投光素子、受光素子の組立状態を示す斜視図である。It is a perspective view which shows the assembly state of the sensor holder of the displacement measuring device which concerns on this embodiment, a light projection element, and a light receiving element. 本実施形態に係る変位測定器のセンサホルダ及び投光素子、受光素子の組立状態を別方向から見た斜視図である。It is the perspective view which looked at the assembly state of the sensor holder of the displacement measuring device which concerns on this embodiment, a light projection element, and a light receiving element from another direction. 本実施形態に係る変位測定器の構成を示す正面断面図である。It is front sectional drawing which shows the structure of the displacement measuring device which concerns on this embodiment. 本実施形態に係る変位測定器のスケール部材と受光素子の関係を示す模式図である。It is a schematic diagram which shows the relationship between the scale member and light receiving element of the displacement measuring device which concerns on this embodiment.

符号の説明Explanation of symbols

10:本体ケース、11:ベース部材、12、13:隔壁部材、14:蓋体、15:ストッパゴム、16:軸受部材、17:案内ピン挿入孔、18:固定ねじ挿入孔、19:ばね配置部、19a:隔壁、
20:スピンドル、21:測定子、22:平坦部、23:位置決めピン、
30:スケール部材、31:スケールホルダ、32:ガラススケール、33:遮光膜、34:光透過部、35:切り欠き部、36:ねじ部材、
40:投光素子、41:受光素子、42:フレキシブル基板、43:外部導線、44:センサホルダ、45:受光側板部材、46:投光側板部材、47:センサ位置調整部材、47a:切欠部、47b:長孔、47c:側面ねじ孔、
50:ギャップ調整機構、51:案内ピン、52:固定ねじ、53:調整ねじ、54:付勢ばね、55:ワッシャ
10: body case, 11: base member, 12, 13: partition member, 14: lid, 15: stopper rubber, 16: bearing member, 17: guide pin insertion hole, 18: fixing screw insertion hole, 19: spring arrangement Part, 19a: partition wall,
20: Spindle, 21: Measuring element, 22: Flat part, 23: Positioning pin,
30: Scale member, 31: Scale holder, 32: Glass scale, 33: Light shielding film, 34: Light transmission part, 35: Notch part, 36: Screw member,
40: light projecting element, 41: light receiving element, 42: flexible substrate, 43: external conductor, 44: sensor holder, 45: light receiving side plate member, 46: light emitting side plate member, 47: sensor position adjusting member, 47a: notch 47b: long hole, 47c: side screw hole,
50: Gap adjustment mechanism, 51: Guide pin, 52: Fixing screw, 53: Adjustment screw, 54: Biasing spring, 55: Washer

Claims (4)

本体ケースと、
前記本体ケースに組み込まれ、軸方向に移動自在なスピンドルと、
透明板にスケールが描かれた構成を有し、前記スピンドルに装着されるスケール部材と、
前記本体ケース内で前記スケール部材を挟んで対向位置に配設される投光素子および受光素子と、を含む変位測定器において、
前記スケール部材に対し前記受光素子を近接又は離間する方向に移動させてこれらスケール部材と受光素子との間隔を微調整するギャップ調整機構を備えたことを特徴とする変位測定器。
A body case,
A spindle built into the main body case and movable in the axial direction;
A scale member drawn on a transparent plate, and a scale member mounted on the spindle;
In the main body case, a displacement measuring instrument including a light projecting element and a light receiving element disposed at opposing positions across the scale member,
A displacement measuring instrument comprising a gap adjusting mechanism that finely adjusts an interval between the scale member and the light receiving element by moving the light receiving element toward or away from the scale member.
前記スケール部材は、前記透明板にスケールが刻まれた構成を有し、
前記受光素子は、前記本体ケースの内部で前記スケール部材の奥側に配置され、当該スケール部材の透明板を透して視認可能であることを特徴とする請求項1の変位測定器。
The scale member has a configuration in which a scale is engraved on the transparent plate,
The displacement measuring device according to claim 1, wherein the light receiving element is disposed on the back side of the scale member inside the main body case and is visible through a transparent plate of the scale member.
前記ギャップ調整機構は、前記受光素子を移動調整するための操作部を前記本体ケースの外部に露出して備えることを特徴とする請求項1又は2の変位測定器。 The displacement measuring device according to claim 1, wherein the gap adjusting mechanism includes an operation unit for adjusting the movement of the light receiving element exposed to the outside of the main body case. 前記投光素子及び受光素子は、ホルダに保持されており、
前記操作部は、前記本体ケースの外部から挿通して前記ホルダに螺合する調整ねじであり、当該調節ねじの回転操作をもって前記ホルダを移動させる構成であることを特徴とする請求項3の変位測定器。
The light projecting element and the light receiving element are held by a holder,
The displacement according to claim 3, wherein the operation unit is an adjustment screw that is inserted from the outside of the main body case and is screwed into the holder, and the holder is moved by a rotation operation of the adjustment screw. Measuring instrument.
JP2007075970A 2007-03-23 2007-03-23 Displacement measuring device Pending JP2008232970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075970A JP2008232970A (en) 2007-03-23 2007-03-23 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075970A JP2008232970A (en) 2007-03-23 2007-03-23 Displacement measuring device

Publications (1)

Publication Number Publication Date
JP2008232970A true JP2008232970A (en) 2008-10-02

Family

ID=39905926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075970A Pending JP2008232970A (en) 2007-03-23 2007-03-23 Displacement measuring device

Country Status (1)

Country Link
JP (1) JP2008232970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117804348A (en) * 2024-03-01 2024-04-02 中国科学技术大学 Grating displacement sensor based on longitudinal moire fringe correlation calculation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117804348A (en) * 2024-03-01 2024-04-02 中国科学技术大学 Grating displacement sensor based on longitudinal moire fringe correlation calculation
CN117804348B (en) * 2024-03-01 2024-04-30 中国科学技术大学 Grating displacement sensor based on longitudinal moire fringe correlation calculation

Similar Documents

Publication Publication Date Title
US9103678B2 (en) Attachment device and total station
JP4627410B2 (en) Measuring device using a spectrometer
KR101538612B1 (en) Target holding jig and measurement device
JP5419430B2 (en) Drive apparatus, exposure apparatus, and device manufacturing method
JP2007127530A (en) Assembling and adjusting system and method of optical linear encoder
US11561171B2 (en) Optical analyzer
EP2463675A1 (en) Test apparatus for power supply unit
EP2541575B1 (en) Method for fixing lens section in optical sensor and optical sensor
WO2012124208A1 (en) Light-emitting device, information acquisition device, and object detection device mounted therewith
JP2008232970A (en) Displacement measuring device
JP4766509B2 (en) Displacement measuring instrument
KR101018699B1 (en) Mechanical mount for cylindrical optical components with automatic center alignment
JP4485857B2 (en) Probe for measurement
JP5541312B2 (en) Polarizer unit and adjustment jig
JP2016110060A (en) Optical unit, optical device and manufacturing method of optical device
CN211504609U (en) Detection device and detection equipment
JP2007248358A (en) Device for measuring displacement
JP2009063476A (en) Gap measuring instrument
JP2000028894A (en) Driving device
JP7148262B2 (en) linear encoder
JP2006138970A (en) Laser diode adjusting and fixing mechanism
JP4666693B2 (en) Sensor adjustment method and sensor adjustment structure
JP2006194737A (en) Optical inspection apparatus
US9709876B2 (en) Optical device
WO2018135454A1 (en) Imaging device