JP2008232132A - Material transfer device - Google Patents

Material transfer device Download PDF

Info

Publication number
JP2008232132A
JP2008232132A JP2007174995A JP2007174995A JP2008232132A JP 2008232132 A JP2008232132 A JP 2008232132A JP 2007174995 A JP2007174995 A JP 2007174995A JP 2007174995 A JP2007174995 A JP 2007174995A JP 2008232132 A JP2008232132 A JP 2008232132A
Authority
JP
Japan
Prior art keywords
substance
rotating member
transfer device
blade
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007174995A
Other languages
Japanese (ja)
Other versions
JP4093586B1 (en
Inventor
Toshio Kabe
敏雄 加邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plant Construction & Engineering Co Ltd
Original Assignee
Plant Construction & Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plant Construction & Engineering Co Ltd filed Critical Plant Construction & Engineering Co Ltd
Priority to JP2007174995A priority Critical patent/JP4093586B1/en
Priority to US12/526,021 priority patent/US20100303609A1/en
Priority to PCT/JP2008/000232 priority patent/WO2008102530A1/en
Priority to CN200880005738.XA priority patent/CN101918717B/en
Application granted granted Critical
Publication of JP4093586B1 publication Critical patent/JP4093586B1/en
Publication of JP2008232132A publication Critical patent/JP2008232132A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • F04D3/02Axial-flow pumps of screw type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Screw Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material transfer device capable of not only transferring a great quantity of material per unit area and per unit time without damaging the same but also energetically discharging, from the outlet, the material transferred to an outlet. <P>SOLUTION: A rotary member 30 rotates with having a center axis on a straight line 36 (imaginary line) passing on a center point of a round top surface 32 and a center line of a round bottom surface 34. A spiral blade 50 is formed on an outer circumference surface 31 of the rotary member 30 and the blade 50 rotates together with the rotary member 30. The blade 50 extends in a spiral shape from a leading end to a trailing end (from end to end) of the outer circumference surface 31 of the rotary member 30. The blades 50 expands from the outer circumference surface 31 of the rotary member 31 to a position close to an inner circumference surface of the casing 20, and material hardly leaks from a gap between a tip of the blade 50 and the inner circumference surface 24. The distance d between mutually facing surfaces of the blade 50 is constant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、入口から出口まで物質を移送する物質移送装置に関する。   The present invention relates to a substance transfer device for transferring a substance from an inlet to an outlet.

固形物が含まれる流動物を入口から入れて(供給して)出口から出す(排出する)物質移送装置が知られている。このような物質移送装置は、例えば、大量の流動物が収容された大きな容器(タンクなど)から多数の小さな容器に流動物を移送する際に使用される。従来の物質移送装置としては、円筒状の回転部材の外周面に螺旋状の羽根を取り付けたものが知られている(例えば、特許文献1参照。)。この従来の物質移送装置を使用して物質を移送する場合、円筒状の回転部材の回転速度を上昇させるほど、移送できる物質の量は多くなる。また、出口から物質が出される際の吐出圧(勢い)も、回転部材の回転速度を上昇させるほど高くなる。
特開2003−269358号公報
2. Description of the Related Art A material transfer device is known in which a fluid containing solid matter is input (supplied) from an inlet and supplied (discharged) from an outlet. Such a material transfer device is used, for example, when transferring a fluid from a large container (such as a tank) containing a large amount of fluid to a large number of small containers. As a conventional substance transfer device, one in which a spiral blade is attached to the outer peripheral surface of a cylindrical rotating member is known (for example, see Patent Document 1). When a substance is transferred using this conventional substance transfer device, the amount of substance that can be transferred increases as the rotational speed of the cylindrical rotating member increases. Moreover, the discharge pressure (momentum) when the substance is discharged from the outlet also increases as the rotational speed of the rotating member is increased.
JP 2003-269358 A

しかし、上記した回転部材の回転速度には限界があり、回転部材を速く回転させた場合、入口から入れられた物質が損傷するおそれもある。また、移送される物質の種類によっては損傷され易いものもあるので、回転部材を速く回転させることができないこともある。また、物質移送装置の出口から小さな容器までの間に移送管などが存在する場合は、物質移送装置の出口における物質の吐出圧をある程度高くしておく必要がある。この吐出圧が小さいときは、移送管の内部で物質が滞留するおそれがある。   However, there is a limit to the rotation speed of the rotating member described above, and if the rotating member is rotated quickly, the material put in from the inlet may be damaged. In addition, depending on the type of substance to be transferred, there are some that are easily damaged, and thus the rotating member may not be able to rotate quickly. Further, when a transfer pipe or the like exists between the outlet of the substance transfer device and a small container, it is necessary to increase the discharge pressure of the substance at the outlet of the substance transfer device to some extent. When this discharge pressure is small, there is a possibility that the substance stays inside the transfer pipe.

本発明は、上記事情に鑑み、単位面積及び単位時間当たりに多量の物質を損傷させずに移送できるだけでなく、出口まで移送されてきた物質を出口から勢い良く出せる(高い吐出圧で吐出できる)物質移送装置を提供することを目的とする。   In view of the above circumstances, the present invention can not only transfer a large amount of material per unit area and unit time without damaging the material, but also can vigorously eject the material transferred to the outlet from the outlet (can be discharged at a high discharge pressure). An object is to provide a mass transfer device.

上記目的を達成するための本発明の物質移送装置は、物質が入れられる入口から、物質が出される出口まで物質を移送する物質移送装置において、
(1)前記入口と前記出口が形成されると共にその内径を大きくしながら前記入口から前記出口まで延びる内部空間、及び前記内部空間を画定する内周面が形成された筐体と、
(2)前記内部空間に収容されてその太さを大きくしながら前記入口から前記出口まで延びる、その頂点又はその頂面の中心点とその底面の中心点とを通る直線を中心軸として回転する回転部材と、
(3)前記回転部材の外周面に螺旋状に形成されて前記回転部材と共に回転する羽根とを備えたことを特徴とするものである。
In order to achieve the above object, the mass transfer apparatus of the present invention is a mass transfer apparatus for transferring a substance from an inlet where a substance is placed to an outlet where the substance is discharged.
(1) A housing in which the inlet and the outlet are formed and an inner space extending from the inlet to the outlet while increasing an inner diameter thereof, and an inner peripheral surface defining the inner space are formed;
(2) Rotating about a straight line passing through the vertex or the center point of the top surface and the center point of the bottom surface that is accommodated in the internal space and extends from the entrance to the exit while increasing its thickness. A rotating member;
(3) The rotary member is provided with a blade formed in a spiral shape on the outer peripheral surface of the rotary member and rotating together with the rotary member.

ここで、
(4)前記内部空間は、円錐形状又は円錐台形状のものであり、
(5)前記回転部材は円錐形状又は円錐台形状のものであってもよい。
here,
(4) The internal space has a conical shape or a truncated cone shape,
(5) The rotating member may have a conical shape or a truncated cone shape.

また、
(6)前記筐体の内部空間と前記回転部材は相似形であってもよい。
Also,
(6) The internal space of the housing and the rotating member may be similar.

さらに、
(7)前記羽根は、前記回転部材の前記外周面から前記筐体の前記内周面に近接した位置まで広がるものであってもよい。
further,
(7) The blade may extend from the outer peripheral surface of the rotating member to a position close to the inner peripheral surface of the casing.

さらにまた、
(8)前記羽根は、前記回転部材の外周面のうち前記入口近傍の部分から前記出口近傍の部分まで連続して延びるものであってもよい。
Furthermore,
(8) The blade may extend continuously from a portion near the inlet to a portion near the outlet on the outer peripheral surface of the rotating member.

さらにまた、
(9)前記羽根のうち互いに向き合う表面の間の距離は、前記出口に近づくほど長くなってもよい。
Furthermore,
(9) The distance between the surfaces of the blades facing each other may be longer as the distance to the outlet is approached.

さらにまた、
(10)前記羽根のうち互いに向き合う表面の間から、該羽根に接触しないように前記回転部材の前記外周面を螺旋状に延びる第2の羽根を備えてもよい。
Furthermore,
(10) You may provide the 2nd blade | wing which extends the said outer peripheral surface of the said rotation member helically so that it may not contact this blade | wing from the surface which mutually faces among the said blade | wings.

さらにまた、
(11)前記羽根は、前記出口に近づくほど厚くなるものであってもよい。
Furthermore,
(11) The blade may be thicker as it approaches the outlet.

さらにまた、
(12)前記羽根と前記外周面との境界における接線を前記中心軸に向けて平行移動して該接線が前記中心軸に交差したときに該接線と該中心軸との成す傾斜角度は、前記出口に近づくほど小さくなるように構成してもよい。
Furthermore,
(12) When the tangent at the boundary between the blade and the outer peripheral surface is translated toward the central axis and the tangent intersects the central axis, the inclination angle formed by the tangent and the central axis is You may comprise so that it may become so small that it approaches an exit.

さらにまた、
(13)前記羽根のうち互いに向き合う部分の間に広がって前記回転部材の前記外周面に並行に延びる、該外周面を前記筐体の前記内周面から遮蔽する遮蔽壁を備えてもよい。
Furthermore,
(13) You may provide the shielding wall which spreads between the parts which face each other among the said blade | wings, and extends in parallel with the said outer peripheral surface of the said rotation member which shields this outer peripheral surface from the said inner peripheral surface of the said housing | casing.

さらにまた、
(14)前記入口は、前記回転軸に交差する方向から、又は、前記回転軸に平行な方向から物質が入れられるように形成されたものであってもよい。
Furthermore,
(14) The inlet may be formed so that a substance can be introduced from a direction intersecting the rotation axis or from a direction parallel to the rotation axis.

さらにまた、
(15)前記回転部材は、移送中の物質が前記筐体の底面に衝突することを防止する堰板が前記回転部材の底面に形成されたものであってもよい。
Furthermore,
(15) The rotating member may have a barrier plate formed on the bottom surface of the rotating member that prevents a substance being transferred from colliding with the bottom surface of the casing.

さらにまた、
(16)前記物質は、流動物、及び流動物に固形物が混在したもののいずれであってもよい。
Furthermore,
(16) The substance may be either a fluid or a mixture of solids in the fluid.

なお、回転部材の外形は、入口から出口に近づくほど太さ(又は、外径)が徐々に大きくなっていく形状のものを全て含み、回転部材の側面図における外周面の輪郭が放物線や指数曲線、双曲線などになるような外形であってもよい。   The outer shape of the rotating member includes all shapes whose thickness (or outer diameter) gradually increases as it approaches the outlet from the inlet, and the contour of the outer peripheral surface in the side view of the rotating member is a parabola or index. The outer shape may be a curve, a hyperbola, or the like.

本発明の物質移送装置では、羽根の回転に支障が無い程度に羽根を筐体の内周面に近接(接近)させられるので、回転部材の外周面、螺旋状の羽根、及び筐体の内周面に囲まれた空間が物質の移送路(移送空間)となる。この移送路は螺旋状の羽根に沿って連続して延びるので、移送路は回転部材の外周面上に螺旋状に形成されていることとなる。回転部材は、その太さ(又は、外径)を大きくしながら入口から出口まで延びるので、頂点(又は頂面であり、最も細い部分)は入口近傍に位置し、その底面(最も太い部分)は出口近傍に位置することとなる。このため、回転部材は出口に近づくほど太くなる(外径が大きくなる)。従って、回転部材が一定速度で回転している場合、その外周面においては、出口に近い部分ほど周速度が速くなり(回転部材の外周面における定点の一回転当たりの移動距離が長くなり)、換言すれば、回転部材の中心軸から離れるほど(出口に近いほど)周速度が速くなる。即ち、入口から出口まで続く移送路においては回転部材の太さ(外径)に応じて、出口に近い部分ほど周速度が速くなる。このため、入口から入れられた物質は移送路に到達し、移送路においては、上記の周速度にほぼ比例して移送速度を徐々に上げながら出口に向かって移送されることとなる。移送路のうち入口近傍部分では回転部材が細いので、物質が移送される速度は、物質が損傷するほどは速くない。   In the substance transfer device of the present invention, since the blade can be brought close to (approaching) the inner peripheral surface of the casing to the extent that the rotation of the blade is not hindered, the outer peripheral surface of the rotating member, the spiral blade, A space surrounded by the peripheral surface becomes a material transfer path (transfer space). Since this transfer path extends continuously along the spiral blade, the transfer path is formed in a spiral shape on the outer peripheral surface of the rotating member. The rotating member extends from the inlet to the outlet while increasing its thickness (or outer diameter), so that the apex (or the top surface, the thinnest part) is located near the inlet, and the bottom surface (thickest part) Will be located near the exit. For this reason, a rotating member becomes thick, so that an exit is approached (an outer diameter becomes large). Therefore, when the rotating member is rotating at a constant speed, the peripheral speed of the outer peripheral surface of the rotating member is closer to the exit (the moving distance per rotation of the fixed point on the outer peripheral surface of the rotating member is longer), In other words, the circumferential speed increases as the distance from the central axis of the rotating member increases. That is, in the transfer path that continues from the inlet to the outlet, the peripheral speed increases as the portion is closer to the outlet, depending on the thickness (outer diameter) of the rotating member. For this reason, the substance put in from the inlet reaches the transfer path, and is transferred toward the outlet while gradually increasing the transfer speed substantially in proportion to the peripheral speed. Since the rotating member is thin in the vicinity of the entrance in the transfer path, the speed at which the substance is transferred is not so fast as to damage the substance.

上記のように物質の移送速度は、回転部材の外周面における周速度にほぼ比例するので、徐々に増加する周速度にほぼ比例して(伴って)物質の移送速度も徐々に増加し、移送速度の急激な変動が生じることなく、移送中の物質は層流を形成しながら(乱流を形成せずに)円滑に出口まで移送されることとなる。このように入口よりも出口に到達したときのほうが物質の移送速度は速いので、出口まで移送されてきた物質は、回転部材の回転速度に応じて出口から勢い良く出される(高い吐出圧で吐出される)こととなる。また、上記のように移送路では物質の層流が形成されるので、移送中の物質が筐体の内周面や羽根に激しく衝突することがなく、この衝突に起因する騒音や振動が発生せず、物質も破損しない。   As described above, since the material transfer speed is substantially proportional to the peripheral speed on the outer peripheral surface of the rotating member, the material transfer speed gradually increases in proportion to (in association with) the gradually increasing peripheral speed. The material being transferred is smoothly transferred to the outlet while forming a laminar flow (without forming a turbulent flow) without causing a rapid change in velocity. Thus, since the material transfer speed is faster when the outlet is reached than the inlet, the substance transferred to the outlet is ejected vigorously from the outlet according to the rotational speed of the rotating member (discharged at a high discharge pressure). Will be). In addition, since a laminar flow of material is formed in the transfer path as described above, the material being transferred does not collide violently with the inner peripheral surface and blades of the housing, and noise and vibration due to this collision are generated. And the material is not damaged.

ところで、上記のように移送路では出口に近づくほど移送速度が速くなるので、入口から入れられた物質の量(供給量)と出口から出る物質の量(排出量)を単位面積及び単位時間当たりで比較した場合、供給量よりも排出量が多くなるはずである。しかし、実際は、入口から入れられた量の物質しか出口から出ないので、入口から入れられた物質を移送路の奥に(出口に向けて)吸い込むような力が作用する。従って、入口から次々に多量の物質を入れても詰まることなく円滑に出口まで移送でき、この出口から物質を吐出できる。   By the way, as the transfer path is closer to the outlet as described above, the transfer speed becomes faster. Therefore, the amount of substance introduced from the inlet (supply amount) and the amount of substance exited from the outlet (discharge amount) per unit area and unit time. When compared in, the amount of emissions should be greater than the amount supplied. However, in actuality, only a quantity of the substance put in from the inlet comes out from the outlet, so that a force acts to suck the substance put in from the inlet into the back of the transfer path (toward the outlet). Therefore, even if a large amount of substance is put in one after another from the inlet, it can be smoothly transferred to the outlet without clogging, and the substance can be discharged from this outlet.

本発明は、乳製品や調味料などの食品・食料品、塗料などの化学品、クリームなどの化粧品や軟膏などの医薬品を移送する物質移送装置に実現された。   The present invention has been realized in a substance transfer device that transfers foods and foods such as dairy products and seasonings, chemicals such as paints, cosmetics such as creams, and pharmaceuticals such as ointments.

図1から図6までを参照して、本発明の実施例1を説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の物質移送装置の実施例1が配置された物質移動システムを示す模式図である。図2は、図1の物質移送装置の筐体だけを切断してその内部を側方から示す側面図である。図3(a)は、図2に示す物質移送装置の回転部材と羽根を示す側面図であり、(b)は、内部空間(回転部材も同様)の他の例を示す側面図であり、(c)は、内部空間(回転部材も同様)の更に他の例を示す側面図である。図4は、図3(a)のB−B断面図である。図5は、実施例1の物質移送装置と比較例の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。図6は、入口と出口における圧力を示すグラフであり、横軸は筐体の長さ方向を表し、縦軸は水柱(m)での圧力を表す。 FIG. 1 is a schematic view showing a mass transfer system in which a mass transfer apparatus according to a first embodiment of the present invention is arranged. FIG. 2 is a side view of the substance transfer device of FIG. 3 (a) is a side view showing a rotating member and blades of the substance transfer device shown in FIG. 2, and FIG. 3 (b) is a side view showing another example of the internal space (the same applies to the rotating member). (C) is a side view which shows the further another example of internal space (a rotation member is also the same). 4 is a cross-sectional view taken along the line BB in FIG. FIG. 5 is a graph showing a comparison of the amount transferred by the material transfer device of Example 1 and the material transfer device of the comparative example, where the horizontal axis represents the number of rotations (rpm) of the rotating member, and the vertical axis represents the transfer at the outlet. It represents the transfer amount (L / min (liter per minute)) per 1 cm 2 of the surface orthogonal to the direction. FIG. 6 is a graph showing the pressure at the inlet and the outlet, where the horizontal axis represents the length direction of the casing, and the vertical axis represents the pressure at the water column (m).

物質移送装置10は、図1に示すように例えば、大量の流動物が収容された大きな容器(タンクなど)2から搬送管4A、4Bを経由して多数の小さな容器6−1、6―2、……に流動物を移送する際に使用される。物質移送装置10は搬送管4A、4Bの間(接続部分)に取り付けられており、重力によって容器2から物質移送装置10の入口12に落下してきた物質を出口14まで移送して搬送管4Bに出す(吐出させる、排出する)ものである。なお、多数の小さな容器6−1、6―2、……は、矢印A方向に搬送ベルト8によって順次に搬送される。   As shown in FIG. 1, for example, the substance transfer apparatus 10 is configured such that a large number of small containers 6-1 and 6-2 are transferred from a large container (tank or the like) 2 in which a large amount of fluid is stored via transfer pipes 4A and 4B. Used to transfer fluid to ... The substance transfer apparatus 10 is attached between the transfer pipes 4A and 4B (connection portion), and the substance that has fallen from the container 2 to the inlet 12 of the substance transfer apparatus 10 by gravity is transferred to the outlet 14 to the transfer pipe 4B. It discharges (discharges, discharges). A number of small containers 6-1, 6-2,... Are sequentially conveyed by the conveyance belt 8 in the direction of arrow A.

物質移送装置10は、図2などに示すように、物質が入れられる(供給される)入口12と、入口12から入れられた物質が出される(吐出される、排出される)出口14とが形成された筐体(ケーシング)20を備えている。入口12と出口14は横断面(物質の流出入方向(矢印IN、OUTで示す方向)に直交する面)を円形のものとした。筐体20には内部空間22が形成されており、この内部空間22は、その内径を大きくしながら入口12から出口14まで延びている。即ち、内部空間22は入口12の近傍の内径R2が最小であり、出口14の近傍の内径R1が最大となるように徐々に広がっている。内部空間22の形状としては、図1の側面図には円錐台形状のものが示されているが、円錐形状のものでもよい。また、内部空間22の形状は、図3(b)に示すように側面図が山裾の広がったようなものであってもよく、図3(c)に示すように側面図が弾のようになるものであってもよい。筐体20には、内部空間22を画定する内周面24が形成されており、この内周面24は、例えば円錐台形状の外周面に相当するものである。出口14には、出口14から出る物質の流量を計測する流量計16が配置されている。この流量計16によれば、出口14の横断面(物質が出される方向(矢印OUT方向)に直交する面)1cm当たりの移送量(L/min(リットル毎分))が測定される。また、入口12には、入口12における流動物による圧力を測定する圧力計13が配置されており、出口14には、出口14における流動物による圧力を測定する圧力計15配置されている。これらの圧力計13,15で測定した圧力の一例を水柱(m)に換算して後述する図6に示す。圧力計13としては、株式会社プラントコンストラクトアンドエンジニアリング製のマノメータ(測定単位は、水柱(m))を用い、圧力計15としては、株式会社第一計器製作所製のブルドン管式圧力計(一般形圧力計であり、測定単位はMPa)を用いて水柱(m)に換算し後述するグラフを作成した。流量計16としては、東京計装株式会社製のフロート式流量計(フロメータ、測定単位はL/min)を用いた。なお、流量計16は、水の流量しか計測できない。 As shown in FIG. 2 and the like, the substance transfer device 10 includes an inlet 12 through which a substance is introduced (supplied) and an outlet 14 through which the substance entered from the inlet 12 is discharged (discharged and discharged). A formed casing (casing) 20 is provided. The inlet 12 and outlet 14 have circular cross sections (surfaces orthogonal to the material inflow / outflow direction (directions indicated by arrows IN and OUT)). An internal space 22 is formed in the housing 20, and the internal space 22 extends from the inlet 12 to the outlet 14 while increasing its inner diameter. That is, the internal space 22 gradually expands so that the inner diameter R2 near the inlet 12 is the smallest and the inner diameter R1 near the outlet 14 is the largest. As for the shape of the internal space 22, a frustoconical shape is shown in the side view of FIG. 1, but it may be conical. Further, the shape of the internal space 22 may be such that the side view is widened as shown in FIG. 3 (b), and the side view is like a bullet as shown in FIG. 3 (c). It may be. The casing 20 is formed with an inner peripheral surface 24 that defines an internal space 22, and the inner peripheral surface 24 corresponds to, for example, a frustoconical outer peripheral surface. The outlet 14 is provided with a flow meter 16 for measuring the flow rate of the substance exiting from the outlet 14. According to the flow meter 16, the transfer amount (L / min (liter per minute)) per 1 cm 2 of the cross section of the outlet 14 (surface perpendicular to the direction in which the substance is discharged (direction of arrow OUT)) is measured. A pressure gauge 13 for measuring the pressure due to the fluid at the inlet 12 is arranged at the inlet 12, and a pressure gauge 15 for measuring the pressure due to the fluid at the outlet 14 is arranged at the outlet 14. An example of the pressure measured by these pressure gauges 13 and 15 is shown in FIG. As the pressure gauge 13, a manometer manufactured by Plant Construct and Engineering Co., Ltd. (measurement unit is water column (m)) is used. As the pressure gauge 15, a Bourdon tube pressure gauge manufactured by Daiichi Keiki Seisakusho Co., Ltd. It was a pressure gauge, and the unit of measurement was converted to a water column (m) using a MPa, and a graph described later was created. As the flow meter 16, a float type flow meter (flow meter, measurement unit is L / min) manufactured by Tokyo Instrumentation Co., Ltd. was used. The flow meter 16 can measure only the flow rate of water.

筐体20の内部空間22には、この内部空間22の中で回転する回転部材30が収容されている。回転部材30は、その太さ(円錐形状や円錐台形状の場合は外径に相当する)を大きくしながら入口12から出口14まで延びている。回転部材30は内部空間22と相似形であることが好ましいが、相似形でなくてもよい。実施例1では内部空間22の形状を円錐台形状としたので、回転部材30の形状も、図2や図3(a)に示すように円錐台形状とした。筐体20の内部空間22と回転部材30を円錐形状又は円錐台形状にした場合は、これらを作製し易く、また、物質の移送も円滑に行われる。また、内部空間22と回転部材30を相似形にした場合は、物質移送装置10の製造上の都合が良い。   A rotating member 30 that rotates in the internal space 22 is accommodated in the internal space 22 of the housing 20. The rotating member 30 extends from the inlet 12 to the outlet 14 while increasing its thickness (corresponding to the outer diameter in the case of a cone shape or a truncated cone shape). The rotating member 30 is preferably similar in shape to the internal space 22, but may not be similar. In the first embodiment, since the shape of the internal space 22 is a truncated cone shape, the shape of the rotating member 30 is also a truncated cone shape as shown in FIG. 2 and FIG. When the internal space 22 of the housing 20 and the rotating member 30 are formed in a conical shape or a truncated cone shape, these can be easily manufactured, and the material can be transferred smoothly. Further, when the internal space 22 and the rotating member 30 are similar, it is convenient for manufacturing the substance transfer device 10.

回転部材30は、円形の頂面32の中心点と円形の底面34の中心点とを通る直線36(仮想線)を中心軸として回転する。ここでは、直線36と同心の中心軸38を回転部材30の回転中心とした。中心軸38の長手方向両端部は軸受40,42に回転自在に固定されている。また、中心軸38のうち軸受42に回転自在に固定されている部分はモータ44に連結されており、このモータ44が駆動することによって回転部材30が回転する。モータ44は制御器(図示せず)によって制御されている。回転部材30の底面34には、移送中の物質が筐体20の底面(内壁の底面)に衝突することを防止する堰板35が固定されている(形成されている)。堰板35は、底面34よりも広く(外径が大きく)、底面34付近における羽根50の外径とほぼ等しい。回転部材30の頂面32と堰板35は筐体20の内壁面に接触しないように構成されており、固定されて回転しない筐体20に接触せずに回転部材30は円滑に回転する。   The rotating member 30 rotates about a straight line 36 (virtual line) passing through the center point of the circular top surface 32 and the center point of the circular bottom surface 34 as a central axis. Here, the central axis 38 concentric with the straight line 36 is set as the rotation center of the rotary member 30. Both ends in the longitudinal direction of the central shaft 38 are fixed to the bearings 40 and 42 so as to be freely rotatable. A portion of the central shaft 38 that is rotatably fixed to the bearing 42 is connected to a motor 44, and the rotating member 30 is rotated by driving the motor 44. The motor 44 is controlled by a controller (not shown). On the bottom surface 34 of the rotating member 30 is fixed (formed) a barrier plate 35 that prevents the substance being transferred from colliding with the bottom surface of the housing 20 (the bottom surface of the inner wall). The dam plate 35 is wider than the bottom surface 34 (having a larger outer diameter) and is substantially equal to the outer diameter of the blade 50 near the bottom surface 34. The top surface 32 and the dam plate 35 of the rotating member 30 are configured not to contact the inner wall surface of the casing 20, and the rotating member 30 rotates smoothly without contacting the fixed and non-rotating casing 20.

回転部材30の外周面31には螺旋状の羽根50が形成されており、この羽根50は回転部材30と共に回転する。羽根50は、回転部材30の外周面31の先端から後端まで(端から端まで)螺旋状に延びている。しかし、羽根50は、端から端までではなくて、外周面31のうち入口12の近傍部分から出口14の近傍部分まで連続して延びているように構成してもよい。従って、後述するように、回転部材30の長手方向両端部には羽根50が無いように構成してもよい。また、羽根50は、回転部材30の外周面31から筐体20の内周面24に近接した位置まで広がっており、羽根50の先端(内周面24に向き合う部分)と内周面24との隙間から物質がほとんど漏れないようになっている。羽根50のうち互いに向き合う表面の間の距離(間隔)dは一定である(表面のどの位置でも等しい)。さらに、羽根50と内周面24は接触しないようになっており、羽根50の回転に支障は無い。なお、筐体20は回転しないように固定されており、床などに安定して配置するための脚(図示せず)が取り付けられている。   A spiral blade 50 is formed on the outer peripheral surface 31 of the rotating member 30, and the blade 50 rotates together with the rotating member 30. The blade 50 extends spirally from the front end to the rear end (from end to end) of the outer peripheral surface 31 of the rotating member 30. However, the blades 50 may be configured to extend continuously from the vicinity of the inlet 12 to the vicinity of the outlet 14 of the outer peripheral surface 31 instead of from end to end. Therefore, as will be described later, the rotating member 30 may be configured such that there are no blades 50 at both ends in the longitudinal direction. The blade 50 extends from the outer peripheral surface 31 of the rotating member 30 to a position close to the inner peripheral surface 24 of the housing 20, and the tip of the blade 50 (the portion facing the inner peripheral surface 24) and the inner peripheral surface 24. Material is hardly leaked from the gap. The distance (spacing) d between the surfaces of the blades 50 facing each other is constant (any position on the surface is the same). Further, the blade 50 and the inner peripheral surface 24 are not in contact with each other, and there is no hindrance to the rotation of the blade 50. In addition, the housing | casing 20 is being fixed so that it may not rotate, and the leg (not shown) for stably arrange | positioning on the floor etc. is attached.

回転部材30の外周面31と羽根50との境界における接線52を中心軸38(直線36)に向けて平行移動して接線52が中心軸38に交差したときに接線52と中心軸38との成す傾斜角度θは、図3(a)に示すように、一定であり84°である。物質の移送量を増加させるためには、後述するように傾斜角度θを変更してもよい。   When the tangent line 52 at the boundary between the outer peripheral surface 31 of the rotating member 30 and the blade 50 is translated toward the central axis 38 (straight line 36) and the tangent line 52 intersects the central axis 38, the tangent line 52 and the central axis 38 The formed inclination angle θ is constant and 84 ° as shown in FIG. In order to increase the transfer amount of the substance, the inclination angle θ may be changed as described later.

上記した各種部品(筐体20、回転部材30、羽根50など)は、移送する物質に応じて金属や樹脂などから作製される。物質移送装置10によって移送される物質としては、食品・食料品、化学品、化粧品・洗剤、及び医薬品などが挙げられる。食品・食料品の例としては、乳製品、調味料、調理食品、飲料、酒類、及び菓子製品などがある。化学品の例としては、塗料などがある。化粧品・洗剤の例としては、クリーム、シャンプー、及び洗剤などがある。医薬品の例としては、軟膏、目薬、グリセリンなどがある。   The above-described various parts (the casing 20, the rotating member 30, the blade 50, etc.) are made of metal, resin, or the like depending on the substance to be transferred. Examples of the substance transferred by the substance transfer apparatus 10 include foods / foodstuffs, chemicals, cosmetics / detergents, and pharmaceuticals. Examples of food / food products include dairy products, seasonings, cooked foods, beverages, alcoholic beverages, and confectionery products. Examples of chemical products include paints. Examples of cosmetics and detergents include creams, shampoos, and detergents. Examples of pharmaceuticals include ointments, eye drops, glycerin and the like.

筐体20の内部空間22の底面の直径R1を18cmとし、頂面の直径R2を4cmとし、内部空間22の長さL1(回転部材30の長さでもある)を20.7cmとし、横断面が円形の入口12の直径R5は、出口14の横断面積に比べて2倍の横断面積になる直径とし、出口14の直径R6を2.0cmとした。回転部材30の底面の直径R3を13cmとし、頂面の直径R4を1.3cmとし、羽根50のうち互いに向き合う表面の間の距離(間隔)dを2.5cmとした。このように設定した場合の移送量を測定した。実施例1では物質として水を移送した。後述する他の実施例も物質として水を使った。測定結果を図5に示す。図5には、比較例の物質移送装置の流量も示す。比較例の物質移送装置では、回転部材と筐体の内部空間を円柱形としてその内部空間の直径を7cmのものとし、回転部材の直径(外径)を1.3cmとし、他の部品は物質移送装置10と同じもの、同じサイズとした。なお、この測定では流量計16を用いて流量を測定しており、また、物質移送装置10も比較例の物質移送装置も樹脂製のものを用いた。   The diameter R1 of the bottom surface of the internal space 22 of the housing 20 is 18 cm, the diameter R2 of the top surface is 4 cm, the length L1 of the internal space 22 (also the length of the rotating member 30) is 20.7 cm, The diameter R5 of the circular inlet 12 is a diameter that doubles the cross-sectional area of the outlet 14, and the diameter R6 of the outlet 14 is 2.0 cm. The diameter R3 of the bottom surface of the rotating member 30 was 13 cm, the diameter R4 of the top surface was 1.3 cm, and the distance (interval) d between the surfaces of the blades 50 facing each other was 2.5 cm. The amount transferred in this way was measured. In Example 1, water was transferred as a substance. Other examples described later also used water as a substance. The measurement results are shown in FIG. FIG. 5 also shows the flow rate of the material transfer device of the comparative example. In the substance transfer device of the comparative example, the inner space of the rotating member and the casing is cylindrical, the inner space has a diameter of 7 cm, the diameter (outer diameter) of the rotating member is 1.3 cm, and other parts are substances. It was the same as the transfer device 10 and the same size. In this measurement, the flow rate was measured using the flow meter 16, and the material transfer device 10 and the material transfer device of the comparative example were made of resin.

図5に示すように、回転数(rpm)に比例して、実施例1の物質移送装置10も、比較例の物質移送装置も流量が増すが、回転数の増加に伴う流量の増加割合は物質移送装置10の方が非常に大きい。   As shown in FIG. 5, the flow rate of the mass transfer device 10 of Example 1 and the mass transfer device of the comparative example increase in proportion to the rotation speed (rpm), but the increase rate of the flow rate with the increase of the rotation speed is The mass transfer device 10 is much larger.

上記のサイズの物質移送装置10の入口12と出口14における圧力を測定した結果を図6に示す。図6には、水柱の高さ(m)で圧力を示しており、入口12での圧力はマイナスであり、出口14での圧力は2mを超えた。この結果から、入口12では、物質を内部に吸い込むような負圧が発生していると考えられる。   FIG. 6 shows the result of measuring the pressure at the inlet 12 and the outlet 14 of the mass transfer device 10 having the above size. In FIG. 6, the pressure is indicated by the height (m) of the water column, the pressure at the inlet 12 is negative, and the pressure at the outlet 14 exceeds 2 m. From this result, it is considered that a negative pressure is generated at the inlet 12 so as to suck the substance into the inside.

上記の図5と図6のようになる理由について検討する。   The reason why it becomes as shown in FIGS. 5 and 6 will be examined.

物質移送装置10では、羽根50の回転に支障が無い程度に羽根50を筐体20の内周面24に近接(接近)させており、羽根50と内周面24との隙間からは物質が漏れないと考えられるので、物質の移送路(移送空間)60は、回転部材30の外周面31、螺旋状の羽根50、及び筐体20の内周面24に囲まれた空間になる。この移送路60は螺旋状の羽根50に沿って連続して螺旋状に延びるので、移送路60は回転部材30の外周面31上に螺旋状に形成されていることとなる。   In the substance transfer device 10, the blade 50 is brought close to (approaching) the inner peripheral surface 24 of the housing 20 to the extent that there is no hindrance to the rotation of the blade 50, and the substance is released from the gap between the blade 50 and the inner peripheral surface 24. Since it is considered that there is no leakage, the substance transfer path (transfer space) 60 is a space surrounded by the outer peripheral surface 31 of the rotating member 30, the spiral blade 50, and the inner peripheral surface 24 of the housing 20. Since the transfer path 60 continuously extends spirally along the spiral blade 50, the transfer path 60 is formed on the outer peripheral surface 31 of the rotating member 30 in a spiral shape.

回転部材30は、その外径(最小がR4であり、最大がR3である)を大きくしながら入口12から出口14まで延びるので、頂面32は入口12の近傍に位置し、その底面34は出口14の近傍に位置することとなる。このため、回転部材30は出口14に近づくほど太くなる。従って、回転部材30が一定速度で回転している場合、その外周面31においては出口14に近い部分ほど周速度が速くなり(回転部材30の外周面31の定点の一回転当たりの移動距離が長くなり)、換言すれば、外周面31の定点は回転部材30の中心軸38から離れるほど(出口14に近いほど)周速度が速くなる。即ち、入口12から出口14まで螺旋状に続く移送路60においては回転部材30の外径に応じて、出口14に近い部分ほど周速度が徐々に速くなる。このため、入口12から入れられた物質は、入口12の近傍の移送路60に到達し、移送路60においては、上記の周速度にほぼ比例して移送速度を徐々に上げながら(加速しながら)出口14に向かって移送されることとなる。このときの流れを螺旋状の二点鎖線Fで示す。これに対して、比較例の物質移送装置では、内部空間も回転部材も円柱状のものなので、入口での移送速度も出口での移送速度もほぼ同じである。   The rotating member 30 extends from the inlet 12 to the outlet 14 while increasing its outer diameter (minimum is R4 and maximum is R3), so that the top surface 32 is located in the vicinity of the inlet 12, and its bottom surface 34 is It will be located in the vicinity of the outlet 14. For this reason, the rotating member 30 becomes thicker as it approaches the outlet 14. Therefore, when the rotating member 30 is rotating at a constant speed, the peripheral speed of the outer peripheral surface 31 is closer to the outlet 14 (the moving distance per rotation of the fixed point of the outer peripheral surface 31 of the rotating member 30 is larger). In other words, the peripheral speed of the fixed point of the outer peripheral surface 31 increases as the distance from the central axis 38 of the rotating member 30 increases (closer to the outlet 14). That is, in the transfer path 60 that spirally extends from the inlet 12 to the outlet 14, the peripheral speed gradually increases as the portion is closer to the outlet 14 according to the outer diameter of the rotating member 30. For this reason, the substance put in from the inlet 12 reaches the transfer path 60 in the vicinity of the inlet 12, and the transfer path 60 gradually increases (accelerates) the transfer speed almost in proportion to the peripheral speed. ) It will be transferred toward the outlet 14. The flow at this time is indicated by a spiral two-dot chain line F. On the other hand, in the substance transfer device of the comparative example, both the internal space and the rotating member are cylindrical, so that the transfer speed at the inlet and the transfer speed at the outlet are substantially the same.

上記のように物質移送装置10では、物質の移送速度は、回転部材30の外周面31における周速度にほぼ比例するので、徐々に増加する周速度にほぼ比例して(伴って)物質の移送速度も徐々に増加し、移送速度の急激な変動が生じることなく、移送中の物質は層流(乱れの少ない流れをいう)を形成しながら(乱流(乱れの多い流れをいう)を形成せずに)円滑に出口14まで移送されることとなる。このように入口12よりも出口14に到達したときのほうが物質の移送速度は速いので、出口14まで移送されてきた物質は、回転部材30の回転速度に応じて出口14から勢い良く出される(高い吐出圧で吐出される)こととなる。また、上記のように移送路60では物質の層流が形成されるので、移送中の物質が筐体20の内周面24や羽根50に激しく衝突することがなく、この衝突に起因する騒音や振動が発生せず、物質も破損しない。   As described above, in the substance transfer device 10, the substance transfer speed is substantially proportional to the peripheral speed on the outer peripheral surface 31 of the rotating member 30, and therefore the substance transfer speed is substantially proportional to (with) the gradually increasing peripheral speed. The velocity also increases gradually, and the material being transferred forms a laminar flow (refers to a flow with less turbulence) (a turbulent flow (refers to a flow with a lot of turbulence)) without causing rapid fluctuations in the transfer rate. (Without) smooth transfer to the outlet 14. Thus, since the material transfer speed is faster when the outlet 14 is reached than the inlet 12, the substance transferred to the outlet 14 is ejected from the outlet 14 according to the rotational speed of the rotating member 30 ( (It is discharged at a high discharge pressure). Further, since a laminar flow of material is formed in the transfer path 60 as described above, the material being transferred does not collide violently with the inner peripheral surface 24 or the blades 50 of the housing 20, and noise resulting from this collision. No vibration and no material damage.

上記のように物質移送装置10の移送路60では出口14に近づくほど移送速度が速くなるので、入口12から入れられた物質の量(供給量)と出口14から出る物質の量(排出量)を単位面積及び単位時間当たりで比較した場合、供給量よりも排出量が多くなるはすである。しかし、実際は、入口12から入れられた量の物質しか出口14から出ないので、図6に示すように、入口12から入れられた物質を移送路60の奥に(出口14に向けて)吸い込むような力(負圧)が作用する。従って、入口12から次々に多量の物質を入れても詰まることなく円滑に出口14まで移送でき、この出口14から吐出できる。これに対し、比較例の物質移送装置では、内部空間も回転部材も円柱状のものなので、入口付近での移送量も出口付近での移送量も同じである。   As described above, in the transfer path 60 of the substance transfer apparatus 10, the transfer speed becomes faster as it approaches the outlet 14, so the amount of substance introduced from the inlet 12 (supply amount) and the amount of substance exited from the outlet 14 (discharge amount). When the unit is compared per unit area and unit time, the discharge amount should be larger than the supply amount. However, in reality, only the amount of the substance put in from the inlet 12 comes out from the outlet 14, so that the substance put in from the inlet 12 is sucked into the back of the transfer path 60 (toward the outlet 14) as shown in FIG. Such a force (negative pressure) acts. Therefore, even if a large amount of substance is put in one after another from the inlet 12, it can be smoothly transferred to the outlet 14 without clogging and discharged from the outlet 14. On the other hand, in the substance transfer device of the comparative example, since the internal space and the rotating member are cylindrical, the transfer amount in the vicinity of the inlet and the transfer amount in the vicinity of the outlet are the same.

ここで、筐体20の長さ(回転部材30の長さ)、羽根50の巻数、羽根間距離d、羽根50の傾きθの設計手法を説明する。   Here, a design method of the length of the casing 20 (the length of the rotating member 30), the number of turns of the blade 50, the distance d between the blades, and the inclination θ of the blade 50 will be described.

回転部材30の長さをL1とし、回転部材30の底面の直径をR3とし、対向する羽根50の距離をdとし、羽根50の巻数をNとし、内部空間22のうち出口14の近傍の内径をR1(羽根50の端部の直径とほぼ等しい)とし、中心軸38に対する羽根50の傾斜角度をθとした場合、L1=dxN、θ=90°―(tan−1(d/3.14xR1))°、固形物の幅W<d、固形物の厚さH<(R1−R3)/2、固形物の奥行きをBとしたとき、固形物の最大径d1=(W+H+B1/2
ここで、d1<dとする。
The length of the rotating member 30 is L1, the diameter of the bottom surface of the rotating member 30 is R3, the distance between the facing blades 50 is d, the number of turns of the blades 50 is N, and the inner diameter of the inner space 22 near the outlet 14 Is R1 (approximately equal to the diameter of the end portion of the blade 50), and the inclination angle of the blade 50 with respect to the central axis 38 is θ, L1 = dxN, θ = 90 ° − (tan −1 (d / 3.14xR1) )) °, solid width W <d, solid thickness H <(R1−R3) / 2, and the solid depth is B, the maximum diameter of the solid d1 = (W 2 + H 2 + B) 2 ) 1/2
Here, d1 <d.

固形物の最大径d1と必要流量から出口14の直径R6を決め、入口12の直径R5は、出口14の直径R6よりも、横断面積の比で2倍から3倍の径にする。なお、羽根50と筐体20の内周面との距離は、移送中の物質の漏れ、加工、組み立ての制約等を考慮して0.01mmから0.2mmまでの範囲内であることが好ましい。   The diameter R6 of the outlet 14 is determined from the maximum diameter d1 of the solid matter and the required flow rate, and the diameter R5 of the inlet 12 is set to be two to three times as large as the cross-sectional area ratio than the diameter R6 of the outlet 14. Note that the distance between the blade 50 and the inner peripheral surface of the housing 20 is preferably in the range of 0.01 mm to 0.2 mm in consideration of leakage of substances being transferred, processing, assembly restrictions, and the like. .

図7と図8を参照して、本発明の物質移送装置の実施例2を説明する。   With reference to FIG. 7 and FIG. 8, Example 2 of the substance transfer apparatus of this invention is demonstrated.

図7は、実施例2の物質移送装置の回転部材と羽根を示す側面図である。図8は、実施例2の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。これらの図では、図1から図6までに示す構成要素と同じ構成要素には同じ符号が付されている。 FIG. 7 is a side view illustrating a rotating member and blades of the substance transfer device according to the second embodiment. FIG. 8 is a graph showing a comparison of the amounts transferred by the substance transfer device of Example 2 and the substance transfer device of Example 1, in which the horizontal axis represents the number of rotations (rpm) of the rotating member, and the vertical axis represents the outlet. It represents the transfer amount per 1 cm 2 of the surface perpendicular to the transfer direction (L / min (liter per minute)). In these drawings, the same components as those shown in FIGS. 1 to 6 are denoted by the same reference numerals.

実施例2の物質移送装置110の基本的な構造は実施例1の物質移送装置10と同じであり、物質移送装置10との相違点は羽根の形状である。物質移送装置110の羽根150のうち互いに向き合う表面の間の距離(間隔)dは、出口14(図2等参照)に向かうほど長くなっている。具体的には、入口12(図2等参照)近傍における距離dを2.5cmとし、出口14近傍における距離d5を6.7cmとし、この間では、羽根150の一巻きごとに距離(dからd5)を3.0cm、3.75cm、4.75cmのように増加させた。なお、羽根150の巻数は、実施例1の羽根50の巻数に比べて減少する(八巻きから六巻きとなる)。   The basic structure of the mass transfer device 110 of the second embodiment is the same as that of the mass transfer device 10 of the first embodiment, and the difference from the mass transfer device 10 is the shape of the blades. The distance (interval) d between the mutually facing surfaces of the blades 150 of the substance transfer device 110 becomes longer toward the outlet 14 (see FIG. 2 and the like). Specifically, the distance d in the vicinity of the inlet 12 (see FIG. 2, etc.) is 2.5 cm, and the distance d5 in the vicinity of the outlet 14 is 6.7 cm. ) Was increased to 3.0 cm, 3.75 cm, 4.75 cm. Note that the number of turns of the blade 150 is smaller than the number of turns of the blade 50 of the first embodiment (from eight turns to six turns).

このように入口12から出口14に向かうにしたがって距離d〜d5を徐々に広げることにより、移送路160の横断面(移送方向に直交する面)は出口14に向かうほど広くなるので、物質をいっそう円滑、大量に移送できる。しかし、距離dが長くなり過ぎるときは、移送路160において物質が滞留し易くなって乱流が発生し易くなる。この乱流の発生を防止するためには、後述する第2の羽根を形成する。ここでは、距離dを変更した実施例2の物質移送装置110と実施例1の物質移送装置10による移送量を比較して図8に示す。   By gradually increasing the distances d to d5 from the inlet 12 to the outlet 14 in this way, the cross section of the transfer path 160 (the plane perpendicular to the transfer direction) becomes wider toward the outlet 14, so that the substance is further increased. It can be transported smoothly and in large quantities. However, when the distance d becomes too long, the substance tends to stay in the transfer path 160 and turbulence tends to occur. In order to prevent the occurrence of this turbulent flow, a second blade described later is formed. Here, the transfer amounts by the substance transfer device 110 of the second embodiment and the substance transfer device 10 of the first embodiment in which the distance d is changed are compared and shown in FIG.

図8に示すように回転数(rpm)に比例して、実施例1の物質移送装置10も、実施例2の物質移送装置110も流量が増すが、回転数の増加に伴う流量の増加割合は物質移送装置110の方が大きい。この理由は、上述したように、移送路160の横断面(移送方向に直交する面)は広くなって物質をいっそう大量に移送できるからであり、入口12から入れられた物質を移送路160の奥に(出口14に向けて)吸い込むような力(負圧)が作用するからである。但し、むやみに距離d5を広げた場合は、上述したように移送路160において物質が滞留し易くなって乱流が発生し易くなる。   As shown in FIG. 8, the flow rate of the mass transfer device 10 of Example 1 and the mass transfer device 110 of Example 2 increase in proportion to the rotation speed (rpm). The material transfer device 110 is larger. The reason for this is that, as described above, the cross section of the transfer path 160 (the plane orthogonal to the transfer direction) is widened so that a larger amount of material can be transferred. This is because a force (negative pressure) that sucks into the back (toward the outlet 14) acts. However, when the distance d5 is increased unnecessarily, the substance tends to stay in the transfer path 160 as described above, and turbulence is likely to occur.

尚、距離d〜d5については、実施例1で記載した筐体20の長さ(回転部材30の長さ)、羽根50の巻数、羽根間距離d、羽根50の傾きθの設計手法に基づいて定めることとなる。   The distances d to d5 are based on the design method of the length of the casing 20 (the length of the rotating member 30), the number of turns of the blade 50, the distance d between the blades, and the inclination θ of the blade 50 described in the first embodiment. Will be determined.

図9と図10を参照して、本発明の物質移送装置の実施例3を説明する。   A third embodiment of the substance transfer device of the present invention will be described with reference to FIGS.

図9は、実施例3の物質移送装置の回転部材と羽根を示す側面図である。図10は、実施例3の物質移送装置、実施例1及び実施例2の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。これらの図では、図1から図9までに示す構成要素と同じ構成要素には同じ符号が付されている。 FIG. 9 is a side view illustrating a rotating member and blades of the substance transfer device according to the third embodiment. FIG. 10 is a graph showing a comparison of transfer amounts by the substance transfer device of Example 3 and the substance transfer devices of Example 1 and Example 2, and the horizontal axis represents the number of rotations (rpm) of the rotating member, and An axis | shaft represents the transfer amount (L / min (liter per minute)) per 1 cm < 2 > of the surface orthogonal to the transfer direction in an exit. In these drawings, the same components as those shown in FIGS. 1 to 9 are denoted by the same reference numerals.

実施例3の物質移送装置210の基本的な構造は実施例2の物質移送装置110と同じであり、物質移送装置110との相違点は羽根の間隔と第2の羽根252を形成した点である。実施例3の物質移送装置210の羽根250のうち互いに向き合う表面の間の距離(間隔)dは、実施例2の物質移送装置110と同様に、出口14(図2等参照)に向かうほど長くなっているが、出口14の近傍における距離dは、羽根150よりも羽根250のほうが長い。具体的には、入口12(図2等参照)近傍における距離dを2.5cmとし、出口14近傍における距離d5を7.45cmとし、この間では、羽根250の一巻きごとに距離d2〜d5を3.0cm、3.75cm、4.75cmのように増加させた。   The basic structure of the mass transfer device 210 of the third embodiment is the same as that of the mass transfer device 110 of the second embodiment. The difference from the mass transfer device 110 is that the interval between the blades and the second blade 252 are formed. is there. The distance (interval) d between the surfaces facing each other of the blades 250 of the mass transfer device 210 of the third embodiment is longer as it goes to the outlet 14 (see FIG. 2 and the like), as in the mass transfer device 110 of the second embodiment. However, the distance d in the vicinity of the outlet 14 is longer for the blade 250 than for the blade 150. Specifically, the distance d in the vicinity of the inlet 12 (see FIG. 2 etc.) is 2.5 cm, the distance d5 in the vicinity of the outlet 14 is 7.45 cm, and during this time, the distance d2 to d5 is set for each turn of the blade 250. Increased to 3.0 cm, 3.75 cm, 4.75 cm.

このように入口12から出口14に向かうにしたがって距離d、d2、d3、d4、d5を広げることにより、移送路260の横断面(移送方向に直交する面)は出口14に向かうほど広くなるが、出口14の付近では距離d5が長くなり過ぎて、移送路260において物質が滞留し易くなって乱流が発生し易くなる。この乱流の発生を防止するために、第2の羽根252を形成した。   In this way, by increasing the distances d, d2, d3, d4, and d5 from the inlet 12 to the outlet 14, the cross section (surface perpendicular to the transfer direction) of the transfer path 260 becomes wider toward the outlet 14. In the vicinity of the outlet 14, the distance d5 becomes too long, and the substance tends to stay in the transfer path 260, so that turbulent flow is likely to occur. In order to prevent the occurrence of this turbulent flow, the second blade 252 was formed.

この第2の羽根252は、図9に示すように、羽根250のうち互いに向き合う表面の間(ここでは、距離d4の羽根の間)から、羽根250に接触しないように回転部材30の外周面31を螺旋状に延びている。具体的には、羽根250の最後の1.5巻きの開始位置とは中心軸38(図2参照)を介して反対側の位置から出口14に向かって、第2の羽根252が形成され始めている。第2の羽根252の形成され始めの高さは低くて徐々に高くなっており、出口14の近傍では、第2の羽根252の高さと羽根250の高さはほぼ同じである。このように第2の羽根252を形成することにより、移送路260を移送される物質に整流作用が働くので、羽根250の距離dが広すぎることに起因する物質の滞留、乱流の発生が防止される。なお、第2の羽根の形成され始めの位置は、移送される物質の種類に応じて実験などによって決められる。   As shown in FIG. 9, the second blade 252 has an outer peripheral surface of the rotating member 30 so as not to contact the blade 250 from between the surfaces of the blade 250 facing each other (here, between the blades having a distance d4). 31 is spirally extended. Specifically, the second blade 252 starts to be formed from the position opposite to the start position of the last 1.5 turns of the blade 250 from the position opposite to the outlet 14 via the central shaft 38 (see FIG. 2). Yes. The height at which formation of the second blade 252 starts is low and gradually increases. In the vicinity of the outlet 14, the height of the second blade 252 and the height of the blade 250 are substantially the same. By forming the second blade 252 in this manner, a rectifying action is exerted on the material transferred through the transfer path 260, so that the retention of the material and the generation of turbulent flow due to the distance d of the blade 250 being too wide. Is prevented. Note that the position at which the second blade starts to be formed is determined by an experiment or the like according to the type of substance to be transferred.

図10に、距離dを変更すると共に第2の羽根252が形成された実施例3の物質移送装置210、実施例2の物質移送装置110、及び実施例1の物質移送装置10による移送量を比較して示す。   In FIG. 10, the amount transferred by the mass transfer device 210 of the third embodiment, the mass transfer device 110 of the second embodiment, and the mass transfer device 10 of the first embodiment in which the distance d is changed and the second blade 252 is formed is shown. Shown in comparison.

図10に示すように回転数(rpm)に比例して、実施例1、2の物質移送装置10、110も、実施例3の物質移送装置210も流量が増すが、回転数の増加に伴う流量の増加割合はこれらのなかでは物質移送装置210が最大である。この理由は、上述したように、移送路260の横断面(移送方向に直交する面)は広くなって物質をいっそう大量に移送できると共に第2の羽根252によって層流が形成されるからであり、入口12から入れられた物質を移送路260の奥に(出口14に向けて)吸い込むような力(負圧)が作用するからである。なお、乱流は発生しないので、移送される物質には損傷は発生しない。   As shown in FIG. 10, in proportion to the number of rotations (rpm), the mass transfer devices 10 and 110 of Examples 1 and 2 and the material transfer device 210 of Example 3 increase in flow rate, but with an increase in the number of rotations. Among these, the mass transfer device 210 has the largest increase rate of the flow rate. This is because, as described above, the cross section of the transfer path 260 (the plane orthogonal to the transfer direction) is widened so that a larger amount of material can be transferred and a laminar flow is formed by the second blade 252. This is because a force (negative pressure) acts to suck the substance put in from the inlet 12 into the back of the transfer path 260 (toward the outlet 14). In addition, since turbulent flow does not occur, there is no damage to the transferred material.

図11と図12を参照して、本発明の物質移送装置の実施例4を説明する。   With reference to FIG. 11 and FIG. 12, Example 4 of the substance transfer apparatus of this invention is demonstrated.

図11は、実施例4の物質移送装置の回転部材と羽根を示す側面図である。図12は、実施例4の物質移送装置、実施例1、2、3の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。これらの図では、図1から図10までに示す構成要素と同じ構成要素には同じ符号が付されている。 FIG. 11 is a side view illustrating a rotating member and blades of the substance transfer device according to the fourth embodiment. FIG. 12 is a graph showing a comparison of the transfer amounts by the substance transfer device of Example 4 and the substance transfer devices of Examples 1, 2, and 3. The horizontal axis represents the number of rotations (rpm) of the rotating member, and the vertical axis An axis | shaft represents the transfer amount (L / min (liter per minute)) per 1 cm < 2 > of the surface orthogonal to the transfer direction in an exit. In these drawings, the same components as those shown in FIGS. 1 to 10 are denoted by the same reference numerals.

実施例4の物質移送装置310の基本的な構造は実施例1の物質移送装置10と同じであり、物質移送装置10との相違点は羽根の厚さtが出口14に近いほど厚くなる(入口12に近いほど薄くなる)点である。実施例4の物質移送装置310の羽根350の厚さtは、入口12(図2等参照)近傍における厚さtを2.0mmとし、出口14近傍における厚さtを5.0mmとし、この間では、羽根350の一巻きごとに厚さtを約0.5mmずつ増加させた。なお、羽根350の厚みは、流路の幅(d〜d5)を狭めない程度の厚みとする。   The basic structure of the mass transfer device 310 of the fourth embodiment is the same as that of the mass transfer device 10 of the first embodiment. The difference from the mass transfer device 10 is that the thickness t of the blade is closer to the outlet 14 ( The closer to the entrance 12, the thinner). The thickness t of the blade 350 of the mass transfer device 310 of Example 4 is 2.0 mm in the vicinity of the inlet 12 (see FIG. 2 and the like), and 5.0 mm in the vicinity of the outlet 14. Then, the thickness t was increased by about 0.5 mm for each turn of the blade 350. The thickness of the blade 350 is set to a thickness that does not reduce the width (d to d5) of the flow path.

このように入り口12から出口14に向かうにしたがって羽根350の厚さtを徐々に厚くすることにより、移送速度の速い領域では羽根350が厚くなるので、羽根350の耐久性が向上する。また、入口12の近傍部分(移送速度の遅い領域)では羽根350が薄いので、入口12から入れられた物質が羽根350に衝突しにくくなって、物質の損傷も少なくなる。また、物質の移送に対する抵抗は小さくなり、物質は円滑に移送されることとなる。   Thus, by gradually increasing the thickness t of the blade 350 from the inlet 12 toward the outlet 14, the blade 350 becomes thicker in a region where the transfer speed is high, and thus the durability of the blade 350 is improved. In addition, since the blade 350 is thin in the vicinity of the inlet 12 (region where the transfer speed is low), the material put in from the inlet 12 is less likely to collide with the blade 350, and the damage to the material is reduced. Moreover, the resistance to the transfer of the substance is reduced, and the substance is transferred smoothly.

図12に、実施例4の物質移送装置310、実施例1、2、3の物質移送装置10、110、210による移送量を比較して示す。   In FIG. 12, the transfer amount by the substance transfer apparatus 310 of Example 4 and the substance transfer apparatuses 10, 110, and 210 of Examples 1, 2, and 3 is compared and shown.

図12に示すように回転数(rpm)に比例して、いずれの物質移送装置10、110、210、310も流量が増すが、回転数の増加に伴う流量の増加割合はこれらのなかでは物質移送装置210が最大である。   As shown in FIG. 12, the flow rate of each substance transfer device 10, 110, 210, 310 increases in proportion to the number of rotations (rpm). The transfer device 210 is the largest.

図13と図14を参照して、本発明の物質移送装置の実施例5を説明する。   With reference to FIG. 13 and FIG. 14, Example 5 of the substance transfer apparatus of this invention is demonstrated.

図13は、実施例5の物質移送装置の回転部材と羽根を示す側面図である。図14は、実施例5の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。これらの図では、図1から図12までに示す構成要素と同じ構成要素には同じ符号が付されている。 FIG. 13 is a side view illustrating a rotating member and blades of the substance transfer device according to the fifth embodiment. FIG. 14 is a graph showing a comparison of the amount transferred by the substance transfer apparatus of Example 5 and the substance transfer apparatus of Example 1, in which the horizontal axis represents the number of rotations (rpm) of the rotating member, and the vertical axis represents the outlet. It represents the transfer amount per 1 cm 2 of the surface perpendicular to the transfer direction (L / min (liter per minute)). In these drawings, the same components as those shown in FIGS. 1 to 12 are denoted by the same reference numerals.

実施例5の物質移送装置410の基本的な構造は実施例1の物質移送装置10と同じであり、実施例1の物質移送装置10との相違点は、羽根450と外周面31との境界における接線52を中心線(直線)36(中心軸38)に向けて平行移動して接線52が中心線36に交差したときに接線52と中心線36との成す傾斜角度θが、出口14に近くなるほど小さくなる点にある。この傾斜角度θは、移送される物質の種類や固形物の大きさに応じて実験的に決定する。ここでは、傾斜角度θを変えた2つの例を図14に示して、傾斜角度θと流量(移送量)との関係を説明する。   The basic structure of the mass transfer device 410 of the fifth embodiment is the same as that of the mass transfer device 10 of the first embodiment. The difference from the mass transfer device 10 of the first embodiment is the boundary between the blade 450 and the outer peripheral surface 31. When the tangent line 52 is translated toward the center line (straight line) 36 (center axis 38) and the tangent line 52 intersects the center line 36, the inclination angle θ formed by the tangent line 52 and the center line 36 is The closer it is, the smaller it is. This inclination angle θ is experimentally determined according to the type of substance to be transferred and the size of the solid matter. Here, two examples in which the tilt angle θ is changed are shown in FIG. 14, and the relationship between the tilt angle θ and the flow rate (transfer amount) will be described.

図14の直線Iは、実施例1(物質移送装置10)の場合の流量を表し、傾斜角度θ1〜θ3は羽根50のどの部分でも84°である。図14の直線IIは、羽根450のうち入口12に最も近い部分の傾斜角度θ1を85°とし、中央部分の傾斜角度θ2を82°とし、出口14に最も近い部分の傾斜角度θ3を75°とした場合の流量を表す。図14の直線IIIは、羽根450のうち入口12に最も近い部分の傾斜角度θ1を77°とし、中央部分の傾斜角度θ2を73°とし、出口14に最も近い部分の傾斜角度θ3を55°とした場合の流量を表す。   A straight line I in FIG. 14 represents the flow rate in the case of Example 1 (the material transfer device 10), and the inclination angles θ1 to θ3 are 84 ° in any part of the blade 50. In the straight line II of FIG. 14, the inclination angle θ1 of the portion closest to the inlet 12 of the blades 450 is 85 °, the inclination angle θ2 of the central portion is 82 °, and the inclination angle θ3 of the portion closest to the outlet 14 is 75 °. Represents the flow rate. A straight line III in FIG. 14 indicates that the inclination angle θ1 of the portion closest to the inlet 12 of the blades 450 is 77 °, the inclination angle θ2 of the central portion is 73 °, and the inclination angle θ3 of the portion closest to the outlet 14 is 55 °. Represents the flow rate.

上記の実験によれば、羽根450のうち入口12に最も近い部分の傾斜角度θ1を85°とし、出口14に近づくほど徐々に傾斜角度を小さくし、出口14に最も近い部分の傾斜角度θ3を75°とした場合が最も流量が多いことが判明した。この理由は、傾斜角度θが小さいほど、移送されている物質の移送速度(外周面31の周速度)が速くなるから(物質の加速度が大きくなるから)である。傾斜角度θを小さくしすぎた場合は、加速度が大きくなるので、移送中の物質が損傷され易くなる。   According to the above experiment, the inclination angle θ1 of the portion closest to the inlet 12 of the blades 450 is set to 85 °, the inclination angle is gradually decreased toward the outlet 14, and the inclination angle θ3 of the portion closest to the outlet 14 is set. It was found that the flow rate was highest when the angle was 75 °. The reason for this is that the smaller the inclination angle θ, the higher the transfer speed of the substance being transferred (peripheral speed of the outer peripheral surface 31) (because the acceleration of the substance increases). If the inclination angle θ is too small, the acceleration increases, and the material being transferred is easily damaged.

移送した物質の例としては、水を流体とし、10mmほどのサイズの茹でたジャガイモ、人参、大根、米粒、豆粒など、形の壊れ易い固形物を用いたが、本実験では、移送前の形状を保ったまま出口から排出された。また、水と共に生きたメダカを移送したが、生きたまま出口から排出された。   As an example of the transferred substance, water was used as a fluid, and fragile solids such as boiled potatoes, carrots, radishes, rice grains, and bean grains having a size of about 10 mm were used. It was discharged from the exit while keeping In addition, the medaka that lived with water was transported, but it was discharged from the exit alive.

図15と図16を参照して、本発明の物質移送装置の実施例6を説明する。   With reference to FIG. 15 and FIG. 16, Example 6 of the substance transfer apparatus of this invention is demonstrated.

図15(a)は、実施例6の物質移送装置を示す側面図であり、(b)は、(a)の一部を拡大して示す断面図である。図16は、実施例6の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。これらの図では、図1から図14までに示す構成要素と同じ構成要素には同じ符号が付されている。 FIG. 15A is a side view showing the substance transfer device of Example 6, and FIG. 15B is a sectional view showing a part of FIG. FIG. 16 is a graph showing a comparison of the amounts transferred by the substance transfer device of Example 6 and the substance transfer device of Example 1, in which the horizontal axis represents the number of rotations (rpm) of the rotating member, and the vertical axis represents the outlet. It represents the transfer amount per 1 cm 2 of the surface perpendicular to the transfer direction (L / min (liter per minute)). In these drawings, the same components as those shown in FIGS. 1 to 14 are denoted by the same reference numerals.

実施例6の物質移送装置510の基本的な構造は実施例1の物質移送装置10と同じであり、実施例1の物質移送装置10との相違点は、羽根50のうち出口14に近い部分に遮蔽壁(蓋)552を配置した点にある。遮蔽壁(蓋)552は、回転部材30の外周面31を筐体20の内周面24から遮蔽するものであり、羽根50のうち互いに向き合う部分の先端(頂面)の間に広がって外周面31に並行に延びている(広がっている)。羽根50の全ての部分に遮蔽壁552を配置してもよいが、物質移送装置510を清掃するときに遮蔽壁552が邪魔になる。   The basic structure of the mass transfer device 510 of the sixth embodiment is the same as that of the mass transfer device 10 of the first embodiment. The difference from the mass transfer device 10 of the first embodiment is that the portion of the blade 50 close to the outlet 14. The point is that a shielding wall (lid) 552 is arranged. The shielding wall (lid) 552 shields the outer peripheral surface 31 of the rotating member 30 from the inner peripheral surface 24 of the housing 20, and spreads between the tips (top surfaces) of portions facing each other of the blades 50. It extends parallel to the surface 31 (spreads). Although the shielding wall 552 may be disposed in all parts of the blade 50, the shielding wall 552 becomes an obstacle when the mass transfer device 510 is cleaned.

上記のように遮蔽壁552が形成されている部分では、移送中の物質が筐体20の内周面24(固定されている)に接触しないので、移送中の物質と内周面24との摩擦を無くすことができていっそう円滑に物質を移送できる。   In the portion where the shielding wall 552 is formed as described above, since the substance being transferred does not contact the inner peripheral surface 24 (fixed) of the housing 20, the substance being transferred and the inner peripheral face 24 are not in contact with each other. Friction can be eliminated and materials can be transferred smoothly.

図16には遮蔽壁552の有無によって流量を比較した例を示す。遮蔽壁552が配置された物質移送装置510は、遮蔽壁552が無い物質移送装置10(実施例1)に比べて流量が増したことが判明した。   FIG. 16 shows an example in which the flow rate is compared depending on the presence or absence of the shielding wall 552. It was found that the mass transfer device 510 provided with the shielding wall 552 has an increased flow rate compared to the material transfer device 10 (Example 1) without the shielding wall 552.

図17と図18を参照して、本発明の物質移送装置の実施例7を説明する。   With reference to FIG. 17 and FIG. 18, Example 7 of the mass transfer apparatus of this invention is demonstrated.

図17は、実施例7の物質移送装置を示す側面図である。図18は、実施例7の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。これらの図では、図1から図16までに示す構成要素と同じ構成要素には同じ符号が付されている。 FIG. 17 is a side view illustrating the substance transfer device according to the seventh embodiment. FIG. 18 is a graph showing a comparison of the amount transferred by the substance transfer apparatus of Example 7 and the substance transfer apparatus of Example 1, in which the horizontal axis represents the number of rotations (rpm) of the rotating member, and the vertical axis represents the outlet. It represents the transfer amount per 1 cm 2 of the surface perpendicular to the transfer direction (L / min (liter per minute)). In these drawings, the same components as those shown in FIGS. 1 to 16 are denoted by the same reference numerals.

実施例7の物質移送装置610の基本的な構造は実施例1の物質移送装置10と同じであり、実施例1の物質移送装置10との相違点は、回転部材30の外周面31のうち入口近傍部分には、羽根650が形成されていない点にある。実施例1から実施例6までの物質移送装置には、回転部材30の外周面31の端から端まで羽根が形成されているが、実施例7の物質移送装置610では、回転部材30の外周面31のうち入口近傍部分には羽根650を形成しない。このようにした場合、入口近傍部分における羽根650による抵抗が減少するので、図18に示すように流量は僅かに増加する傾向にある。入口12から入れられた物質が羽根650に直ぐには接触しないので、物質の損傷が低減される。このような物質移送装置610は、移送される物質に含まれている固形物が壊れ易いもの(損傷し易いもの、例えば、軟らかいもの等)の場合に好適である。   The basic structure of the substance transfer device 610 of the seventh embodiment is the same as the substance transfer device 10 of the first embodiment. The difference from the substance transfer device 10 of the first embodiment is that the outer peripheral surface 31 of the rotating member 30 is the same. The blade 650 is not formed in the vicinity of the entrance. In the substance transfer devices according to the first to sixth embodiments, blades are formed from end to end of the outer peripheral surface 31 of the rotating member 30. In the substance transferring device 610 according to the seventh embodiment, the outer periphery of the rotating member 30 is used. No blade 650 is formed in the vicinity of the entrance of the surface 31. In this case, the resistance by the blades 650 in the vicinity of the inlet decreases, so that the flow rate tends to increase slightly as shown in FIG. Since the material introduced from the inlet 12 does not immediately contact the blades 650, material damage is reduced. Such a substance transfer device 610 is suitable when the solid contained in the substance to be transferred is fragile (easy to be damaged, for example, soft).

なお、上記した羽根650の無い部分の距離Lxは、Lx/L1が0.5以下の範囲内(好ましくは0.3以下)が好適と考えられる。   In addition, it is considered that the distance Lx of the portion without the blade 650 described above is preferably within a range where Lx / L1 is 0.5 or less (preferably 0.3 or less).

図19と図20を参照して、本発明の物質移送装置の実施例8を説明する。   With reference to FIG. 19 and FIG. 20, Example 8 of the substance transfer apparatus of this invention is demonstrated.

図19は、実施例8の物質移送装置を示す側面図である。図20(a)は、実施例8の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表し、(b)は、入口と出口における圧力を示すグラフであり、横軸は筐体の長さ方向を表し、縦軸は水柱(m)での圧力を表す。これらの図では、図1から図18までに示す構成要素と同じ構成要素には同じ符号が付されている。 FIG. 19 is a side view illustrating the substance transfer device according to the eighth embodiment. FIG. 20 (a) is a graph showing a comparison of transfer amounts by the substance transfer device of Example 8 and the substance transfer device of Example 1, and the horizontal axis represents the number of rotations (rpm) of the rotating member, and the vertical axis Represents the transfer amount per 1 cm 2 of the surface orthogonal to the transfer direction at the outlet (L / min (liter per minute)), (b) is a graph showing the pressure at the inlet and outlet, and the horizontal axis is the housing The vertical direction represents the pressure in the water column (m). In these drawings, the same components as those shown in FIGS. 1 to 18 are denoted by the same reference numerals.

実施例8の物質移送装置710の基本的な構造は実施例1の物質移送装置10と同じであり、実施例1の物質移送装置10との相違点は、筐体720と回転部材730の長さや、羽根750、752,754の枚数にある。なお、回転部材730には、堰板35(図2参照)と同様の堰板735が固定されている。   The basic structure of the substance transfer device 710 of the eighth embodiment is the same as that of the substance transfer device 10 of the first embodiment, and the difference from the substance transfer device 10 of the first embodiment is the length of the casing 720 and the rotating member 730. The number of blades 750, 752, and 754 is as follows. A dam plate 735 similar to the dam plate 35 (see FIG. 2) is fixed to the rotating member 730.

物質移送装置710は物質移送装置10に比べて、筐体720やその内部空間722、回転部材730が太くて短い。内部空間722と回転部材730は円錐台形状である。内部空間722の底面の直径R1は20cmであり、頂面の直径R2は12cmであり、長さL1は17.5cmである。回転部材730の底面734の直径R3は15cmであり、頂面732の直径R4は7cmである。また、回転部材730の外周面731には、互いに連続していない(独立した)3枚の羽根750、752(第2の羽根)、754(第3の羽根)が形成されている。   Compared to the substance transfer apparatus 10, the substance transfer apparatus 710 has a casing 720, its internal space 722, and a rotating member 730 that are thick and short. The internal space 722 and the rotating member 730 have a truncated cone shape. The diameter R1 of the bottom surface of the internal space 722 is 20 cm, the diameter R2 of the top surface is 12 cm, and the length L1 is 17.5 cm. The diameter R3 of the bottom surface 734 of the rotating member 730 is 15 cm, and the diameter R4 of the top surface 732 is 7 cm. In addition, on the outer peripheral surface 731 of the rotating member 730, three blades 750, 752 (second blade) and 754 (third blade) that are not continuous (independent) are formed.

羽根750は、回転部材730の外周面731のうち頂面732の間際の部分から巻き始められて、底面734の間際の部分まで巻かれて(端から端まで巻かれて)おり、巻き始めから巻き終わりまで外周面731を約一回りしている(約360°巻かれている)。第2の羽根752は、回転部材730の外周面731のうち回転部材730の長手方向中央部分から巻かれ始められて、底面734の間際の部分まで巻かれており、巻き始めから巻き終わりまで外周面731を約半周弱している(中心角で約120°〜130°巻かれている)。第3の羽根754は、回転部材730の外周面731のうち回転部材730の長手方向中央部分から巻かれ始められており、この位置は、第2の羽根752の巻き始め位置とほぼ同じであるが、中心角で約120°ずれている。第3の羽根754は、底面734の間際の部分まで巻かれており、巻き始めから巻き終わりまで外周面731を約半周弱している(中心角で約120°〜130°巻かれている)。   The blade 750 starts to be wound from a portion near the top surface 732 of the outer peripheral surface 731 of the rotating member 730, and is wound to a portion near the bottom surface 734 (wound from end to end). The outer peripheral surface 731 is turned about once until the end of winding (about 360 ° is wound). The second blade 752 starts to be wound from the central portion in the longitudinal direction of the rotating member 730 on the outer peripheral surface 731 of the rotating member 730, and is wound from the beginning to the end of winding. The surface 731 is slightly weakened by about a half circumference (winded at a central angle of about 120 ° to 130 °). The third blade 754 starts to be wound from the central portion in the longitudinal direction of the rotating member 730 on the outer peripheral surface 731 of the rotating member 730, and this position is substantially the same as the winding start position of the second blade 752. However, the central angle is shifted by about 120 °. The third blade 754 is wound up to the middle of the bottom surface 734 and weakens the outer peripheral surface 731 by about a half turn from the start of winding to the end of winding (winded at a central angle of about 120 ° to 130 °). .

羽根750の互いに向き合う表面の間隔dは長いので、実施例3で説明したように、移送路760において物質が滞留し易くなって乱流が発生し易くなるが、この乱流の発生は、第2の羽根752と第3の羽根754によって防止される。   Since the distance d between the surfaces of the blades 750 facing each other is long, as described in the third embodiment, the substance is likely to stay in the transfer path 760 and turbulent flow is likely to occur. This is prevented by the second blade 752 and the third blade 754.

上記の物質移送装置710を使用した場合の流量と入口12と出口14での圧力差とを、物質移送装置10(実施例1)に比較して図20に示す。ここでは、水のみを移送した例を示す。なお、本例では、上記のように第2の羽根752と第3の羽根754を回転部材730の外周面731に巻いた例を示したが、3枚の短い羽根を中心角で90°ずつずらして巻いてもよい。   FIG. 20 shows the flow rate and the pressure difference between the inlet 12 and the outlet 14 when the above-described mass transfer device 710 is used, as compared with the mass transfer device 10 (Example 1). Here, the example which transferred only water is shown. In the present example, the example in which the second blade 752 and the third blade 754 are wound around the outer peripheral surface 731 of the rotating member 730 as described above is shown. You may stagger and roll.

図21と図22を参照して、本発明の物質移送装置の実施例9を説明する。   With reference to FIG. 21 and FIG. 22, Example 9 of the mass transfer apparatus of this invention is demonstrated.

図21は、実施例9の物質移送装置を示す側面図である。図22(a)は、実施例9の物質移送装置と実施例1〜実施例8の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表し、(b)は、入口と出口における圧力を示すグラフであり、横軸は筐体の長さ方向を表し、縦軸は水柱(m)での圧力を表す。これらの図では、図1から図20までに示す構成要素と同じ構成要素には同じ符号が付されている。 FIG. 21 is a side view illustrating the substance transfer device according to the ninth embodiment. FIG. 22 (a) is a graph showing a comparison of the amount transferred by the substance transfer apparatus of Example 9 and the substance transfer apparatus of Examples 1 to 8, and the horizontal axis represents the rotation speed (rpm) of the rotating member. The vertical axis represents the transfer amount per 1 cm 2 of the surface orthogonal to the transfer direction at the outlet (L / min (liter per minute)), and (b) is a graph showing the pressure at the inlet and the outlet. The axis represents the length direction of the housing, and the vertical axis represents the pressure at the water column (m). In these drawings, the same components as those shown in FIGS. 1 to 20 are denoted by the same reference numerals.

実施例9の物質移送装置810は、実施例1の物質移送装置10を基本として、実施例2の物質移送装置110と同様に羽根850の間隔(d、d2、d3、d4、d5)を徐々に広げ、さらに、実施例3の物質移送装置210と同様に第2の羽根852を設け、さらに、実施例6の物質移送装置510と同様に遮蔽壁854を配置した。   The substance transfer device 810 according to the ninth embodiment is based on the substance transfer device 10 according to the first embodiment, and the intervals (d, d2, d3, d4, d5) of the blades 850 are gradually increased in the same manner as the substance transfer device 110 according to the second embodiment. Further, a second blade 852 was provided in the same manner as the mass transfer device 210 in Example 3, and a shielding wall 854 was further arranged in the same manner as the mass transfer device 510 in Example 6.

物質移送装置810は、図22に示すように、他の物質移送装置10、110、210、310、410、510、610に比べて、移送量や圧力の点で優れていることが判明した。   As shown in FIG. 22, the substance transfer device 810 was found to be superior in terms of transfer amount and pressure as compared to the other substance transfer devices 10, 110, 210, 310, 410, 510, and 610.

図23を参照して、本発明の物質移送装置の実施例10を説明する。   With reference to FIG. 23, Example 10 of the mass transfer apparatus of this invention is described.

図23は、実施例10の物質移送装置の概略を示す側面図である。   FIG. 23 is a side view illustrating an outline of the substance transfer device according to the tenth embodiment.

上記した実施例1から実施例9までの物質移送装置では、回転部材30の回転軸38に直交する方向(交差する方向の一例である)から物質が入れられるように入口12が形成されている。実施例10の物質移送装置910では、回転部材930の回転軸938に平行な方向(矢印IN方向)から物質が入れられるように入口912が形成されている。物質の出口914では、実施例1から実施例9までと同様に回転軸938に直交する方向(矢印OUT方向)に物質が出される。   In the substance transfer devices according to the first to ninth embodiments described above, the inlet 12 is formed so that the substance can be introduced from a direction orthogonal to the rotation shaft 38 of the rotating member 30 (an example of a crossing direction). . In the substance transfer device 910 according to the tenth embodiment, the inlet 912 is formed so that the substance can be introduced from a direction parallel to the rotation shaft 938 of the rotating member 930 (arrow IN direction). At the substance outlet 914, the substance is discharged in the direction (arrow OUT direction) orthogonal to the rotation axis 938, as in the first to ninth embodiments.

物質移送装置910は、回転軸938に平行な方向(矢印IN方向)から物質が入れられる(供給される)入口912と、入口912から入れられた物質が、回転軸938に直交する方向(矢印OUT方向)に出される(吐出される、排出される)出口914とが形成された筐体(ケーシング)920を備えている。入口12と出口14は横断面(物質の流出入方向(矢印IN、OUTで示す方向)に直交する面)を円形のものとした。筐体920には内部空間922が形成されており、この内部空間922は、その内径を大きくしながら入口912から出口914まで延びている。即ち、内部空間922は入口912の近傍の内径が最小であり、出口914の近傍の内径が最大となるように徐々に広がっている。内部空間922の形状としては、図23の側面図には円錐台形状のものが示されているが、円錐形状のものでもよい。また、内部空間922の形状は、図3(b)に示すように側面図が山裾の広がったようなものであってもよく、図3(c)に示すように側面図が弾のようになるものであってもよい。   The substance transfer device 910 includes an inlet 912 in which a substance is introduced (supplied) from a direction parallel to the rotation axis 938 (arrow IN direction), and a direction in which the substance entered from the inlet 912 is orthogonal to the rotation axis 938 (arrow). A housing (casing) 920 formed with an outlet 914 that is discharged (discharged and discharged) in the OUT direction) is provided. The inlet 12 and outlet 14 have circular cross sections (surfaces orthogonal to the material inflow / outflow direction (directions indicated by arrows IN and OUT)). An internal space 922 is formed in the housing 920, and this internal space 922 extends from the inlet 912 to the outlet 914 while increasing its inner diameter. That is, the internal space 922 gradually expands so that the inner diameter in the vicinity of the inlet 912 is the smallest and the inner diameter in the vicinity of the outlet 914 is the largest. As a shape of the internal space 922, a truncated cone shape is shown in the side view of FIG. 23, but it may be a cone shape. Also, the shape of the internal space 922 may be such that the side view is widened as shown in FIG. 3B, and the side view is like a bullet as shown in FIG. It may be.

筐体920には、内部空間922を画定する内周面924が形成されており、この内周面924は、例えば円錐台形状の外周面に相当するものである。出口914には、出口914から出る物質の流量を計測する流量計16が配置されている。この流量計16によれば、出口914の横断面(物質が出される方向(矢印OUT方向)に直交する面)1cm当たりの移送量(L/min(リットル毎分))が測定される。また、入口912には、入口912における圧力を測定する圧力計13が配置されており、出口914には、出口914における圧力を測定する圧力計15配置されている。 The casing 920 has an inner peripheral surface 924 that defines an internal space 922. The inner peripheral surface 924 corresponds to, for example, a frustoconical outer peripheral surface. A flow meter 16 for measuring the flow rate of the substance exiting from the outlet 914 is disposed at the outlet 914. According to this flow meter 16, the transfer amount (L / min (liter per minute)) per 1 cm 2 of the cross section of the outlet 914 (the surface orthogonal to the direction in which the substance is put out (arrow OUT direction)) is measured. A pressure gauge 13 that measures the pressure at the inlet 912 is disposed at the inlet 912, and a pressure gauge 15 that measures the pressure at the outlet 914 is disposed at the outlet 914.

筐体920の内部空間922には、この内部空間922の中で回転する回転部材930が収容されている。回転部材930は、その外径を大きくしながら入口912から出口914まで延びている。回転部材930は内部空間922と相似形であることが好ましいが、相似形でなくてもよい。実施例10では内部空間22の形状を円錐台形状としたので、回転部材930の形状も円錐台形状とした。しかし、回転部材930の頂上部(先端部)932は、入口912から入れられた物質が衝突しても破損されにくいように、滑らかな湾曲面になっている。   A rotating member 930 that rotates in the internal space 922 is accommodated in the internal space 922 of the housing 920. The rotating member 930 extends from the inlet 912 to the outlet 914 while increasing its outer diameter. The rotating member 930 is preferably similar to the internal space 922, but may not be similar. In the tenth embodiment, since the shape of the internal space 22 is a truncated cone shape, the shape of the rotating member 930 is also a truncated cone shape. However, the top portion (tip portion) 932 of the rotating member 930 has a smooth curved surface so that it is not easily damaged even when a substance put in from the inlet 912 collides.

回転部材930は、滑らかに湾曲した頂上部932の頂点と円形の底面934の中心点とを通る中心軸938を中心にして回転する。中心軸38の長手方向一端部は軸受942に回転自在に固定されており、中心軸938のうち軸受942に回転自在に固定されている部分はモータ944に連結されている。このモータ944が駆動することによって回転部材930が回転する。モータ944は制御器(図示せず)によって制御されている。回転部材930の頂上部932と底面934は筐体920の内壁面に接触しないように構成されており、固定されている筐体920に接触せずに回転部材930は円滑に回転する。なお、回転部材930には、堰板35(図2参照)と同様の堰板935が固定されている(形成されている)。   The rotating member 930 rotates around a central axis 938 that passes through the top of the smoothly curved top 932 and the center of the circular bottom 934. One end of the central shaft 38 in the longitudinal direction is rotatably fixed to the bearing 942, and a portion of the central shaft 938 that is rotatably fixed to the bearing 942 is connected to the motor 944. When the motor 944 is driven, the rotating member 930 rotates. The motor 944 is controlled by a controller (not shown). The top portion 932 and the bottom surface 934 of the rotating member 930 are configured not to contact the inner wall surface of the housing 920, and the rotating member 930 smoothly rotates without contacting the fixed housing 920. Note that a dam plate 935 similar to the dam plate 35 (see FIG. 2) is fixed (formed) to the rotating member 930.

回転部材930の外周面931には螺旋状の羽根950、952が形成されており、この羽根950、952は回転部材930と共に回転する。   Helical blades 950 and 952 are formed on the outer peripheral surface 931 of the rotating member 930, and the blades 950 and 952 rotate together with the rotating member 930.

羽根950は、回転部材930の外周面931の先端(頂上部932)のやや内側から後端(底面934)まで螺旋状に延びている。また、羽根952は、外周面931の長手方向中央部から底面934まで螺旋状に延びており、羽根950とは交差しない。このように2枚の羽根950、952にした作用効果は、実施例3と同様に、移送路960の横断面(移送方向に直交する面)は広くなって物質をいっそう大量に移送できると共に第2の羽根952によって層流が形成されるので、多量の物質を破損させずに円滑に移送できる。   The blade 950 spirally extends from a slightly inner side to the rear end (bottom surface 934) of the front end (top portion 932) of the outer peripheral surface 931 of the rotating member 930. In addition, the blade 952 spirally extends from the longitudinal center of the outer peripheral surface 931 to the bottom surface 934 and does not intersect the blade 950. In this way, the effect of the two blades 950 and 952 is the same as in the third embodiment. The cross section of the transfer path 960 (the plane perpendicular to the transfer direction) is widened, so that a larger amount of material can be transferred. Since a laminar flow is formed by the two blades 952, a large amount of material can be smoothly transferred without being damaged.

なお、実施例10では、羽根を2枚としたが、実施例1のように連続する1枚の羽根にしてもよく、また、実施例6のように遮蔽壁を形成してもよい。さらに、実施例2のように第2の羽根を形成しなくてもよく、また、実施例4のように出口914に近づくほど厚い羽根としてもよい。   In the tenth embodiment, two blades are used, but a single continuous blade may be used as in the first embodiment, and a shielding wall may be formed as in the sixth embodiment. Further, the second blade may not be formed as in the second embodiment, and the blade may be thicker as it approaches the outlet 914 as in the fourth embodiment.

上記のように回転軸938に平行な方向(矢印IN方向)から物質が入れられる(供給される)入口912を形成した場合、物質の流れ込む方向と回転部材930の外周面931がほぼ平行であるので、入口912から入れられた直後の物質が破壊しにくい。また、
回転軸938に直交する方向から物質が入れられるように入口を形成した場合に比べて、回転部材930を短くできるので、回転軸938の回転中の平衡を保ち易い。また、回転軸938の支持(軸受942)も一箇所であるので保守点検が容易である。さらに、物質移送装置910全体の組立、分解が容易となり、内部の洗浄も容易となる。
As described above, when the inlet 912 into which the substance is introduced (supplied) from the direction parallel to the rotation axis 938 (the direction of the arrow IN) is formed, the direction in which the substance flows and the outer peripheral surface 931 of the rotating member 930 are substantially parallel. Therefore, the material immediately after entering from the inlet 912 is not easily destroyed. Also,
Since the rotation member 930 can be shortened compared to the case where the inlet is formed so that the substance can be introduced from the direction orthogonal to the rotation shaft 938, it is easy to maintain the equilibrium during the rotation of the rotation shaft 938. In addition, since the support (bearing 942) of the rotating shaft 938 is also provided at one place, maintenance and inspection are easy. Furthermore, the entire material transfer device 910 can be easily assembled and disassembled, and the inside can be easily cleaned.

本発明の物質移送装置の実施例1が配置された物質移動システムを示す模式図である。It is a schematic diagram which shows the mass transfer system by which Example 1 of the mass transfer apparatus of this invention is arrange | positioned. 図1の物質移送装置の筐体だけを切断してその内部を側方から示す側面図である。It is a side view which cut | disconnects only the housing | casing of the substance transfer apparatus of FIG. 1, and shows the inside from the side. (a)は、図2に示す物質移送装置の回転部材と羽根を示す側面図であり、(b)は、内部空間(回転部材も同様)の他の例を示す側面図であり、(c)は、内部空間(回転部材も同様)の更に他の例を示す側面図である。(A) is a side view which shows the rotation member and blade | wing of the substance transfer apparatus shown in FIG. 2, (b) is a side view which shows the other example of internal space (a rotation member is also the same), (c ) Is a side view showing still another example of the internal space (the same applies to the rotating member). 図3(a)のB−B断面図である。It is BB sectional drawing of Fig.3 (a). 実施例1の物質移送装置と比較例の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。It is a graph which compares and shows the transfer amount by the substance transfer apparatus of Example 1, and the substance transfer apparatus of a comparative example, a horizontal axis represents the rotation speed (rpm) of a rotation member, and a vertical axis | shaft is orthogonal to the transfer direction in an exit. It represents the transfer amount per 1 cm 2 of the surface (L / min (liter per minute)). 入口と出口における圧力を示すグラフであり、横軸は筐体の長さ方向を表し、縦軸は水柱(m)での圧力を表す。It is a graph which shows the pressure in an inlet_port | entrance and an exit, a horizontal axis represents the length direction of a housing | casing, and a vertical axis | shaft represents the pressure in a water column (m). 実施例2の物質移送装置の回転部材と羽根を示す側面図である。It is a side view which shows the rotating member and blade | wing of the substance transfer apparatus of Example 2. FIG. 実施例2の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。It is a graph which compares and shows the transfer amount by the substance transfer apparatus of Example 2, and the substance transfer apparatus of Example 1, a horizontal axis represents the rotation speed (rpm) of a rotation member, and a vertical axis | shaft is orthogonal to the transfer direction in an exit. This represents the transfer amount (L / min (liter per minute)) per 1 cm 2 of the surface to be processed. 実施例3の物質移送装置の回転部材と羽根を示す側面図である。It is a side view which shows the rotating member and blade | wing of the substance transfer apparatus of Example 3. 実施例3の物質移送装置、実施例1及び実施例2の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。It is a graph which compares and shows the transfer amount by the substance transfer apparatus of Example 3, and the substance transfer apparatus of Example 1 and Example 2, a horizontal axis represents the rotation speed (rpm) of a rotating member, and a vertical axis | shaft is in an exit. It represents the transfer amount per 1 cm 2 of the surface perpendicular to the transfer direction (L / min (liter per minute)). 実施例4の物質移送装置の回転部材と羽根を示す側面図である。It is a side view which shows the rotating member and blade | wing of the substance transfer apparatus of Example 4. 実施例4の物質移送装置、実施例1、2、3の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。It is a graph which compares and shows the transfer amount by the substance transfer apparatus of Example 4, and the substance transfer apparatus of Examples 1, 2, and 3, a horizontal axis represents the rotation speed (rpm) of a rotation member, and a vertical axis | shaft is in an exit. It represents the transfer amount per 1 cm 2 of the surface perpendicular to the transfer direction (L / min (liter per minute)). 実施例5の物質移送装置の回転部材と羽根を示す側面図である。It is a side view which shows the rotating member and blade | wing of the substance transfer apparatus of Example 5. 実施例5の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。It is a graph which compares and shows the transfer amount by the substance transfer apparatus of Example 5 and the substance transfer apparatus of Example 1, a horizontal axis represents the rotation speed (rpm) of a rotation member, and a vertical axis | shaft is orthogonal to the transfer direction in an exit. This represents the transfer amount (L / min (liter per minute)) per 1 cm 2 of the surface to be processed. (a)は、実施例6の物質移送装置を示す側面図であり、(b)は、(a)の一部を拡大して示す断面図である。(A) is a side view which shows the substance transfer apparatus of Example 6, (b) is sectional drawing which expands and shows a part of (a). 実施例6の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。It is a graph which compares and shows the transfer amount by the substance transfer apparatus of Example 6 and the substance transfer apparatus of Example 1, a horizontal axis represents the rotation speed (rpm) of a rotation member, and a vertical axis | shaft is orthogonal to the transfer direction in an exit. This represents the transfer amount (L / min (liter per minute)) per 1 cm 2 of the surface to be processed. 実施例7の物質移送装置を示す側面図である。It is a side view which shows the substance transfer apparatus of Example 7. 実施例7の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表す。It is a graph which compares and shows the transfer amount by the substance transfer apparatus of Example 7, and the substance transfer apparatus of Example 1, a horizontal axis represents the rotation speed (rpm) of a rotation member, and a vertical axis | shaft is orthogonal to the transfer direction in an exit. This represents the transfer amount (L / min (liter per minute)) per 1 cm 2 of the surface to be processed. 実施例8の物質移送装置を示す側面図である。It is a side view which shows the substance transfer apparatus of Example 8. (a)は、実施例8の物質移送装置と実施例1の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表し、(b)は、入口と出口における圧力を示すグラフであり、横軸は筐体の長さ方向を表し、縦軸は水柱(m)での圧力を表す。(A) is the graph which compares and shows the transfer amount by the substance transfer apparatus of Example 8, and the substance transfer apparatus of Example 1, a horizontal axis represents the rotation speed (rpm) of a rotation member, and a vertical axis | shaft is an exit. Represents the transfer amount per 1 cm 2 of the surface orthogonal to the transfer direction in (L / min (liter per minute)), (b) is a graph showing the pressure at the inlet and outlet, the horizontal axis is the length of the housing The vertical direction represents the pressure in the water column (m). 実施例9の物質移送装置を示す側面図である。It is a side view which shows the substance transfer apparatus of Example 9. (a)は、実施例9の物質移送装置と実施例1〜実施例8の物質移送装置による移送量を比較して示すグラフであり、横軸は回転部材の回転数(rpm)を表し、縦軸は出口における移送方向に直交する面の1cm当たりの移送量(L/min(リットル毎分))を表し、(b)は、入口と出口における圧力を示すグラフであり、横軸は筐体の長さ方向を表し、縦軸は水柱(m)での圧力を表す。(A) is a graph showing a comparison of the transfer amount by the substance transfer device of Example 9 and the substance transfer device of Example 1 to Example 8, the horizontal axis represents the rotational speed (rpm) of the rotating member, The vertical axis represents the transfer amount per 1 cm 2 of the surface orthogonal to the transfer direction at the outlet (L / min (liter per minute)), (b) is a graph showing the pressure at the inlet and outlet, and the horizontal axis is The length direction of a housing | casing is represented, and a vertical axis | shaft represents the pressure in a water column (m). 実施例10の物質移送装置の概略を示す側面図である。It is a side view which shows the outline of the substance transfer apparatus of Example 10. FIG.

符号の説明Explanation of symbols

10、110、210、310、410、510、610、710、810、910 物質移送装置
12 入口
14 出口
20 筐体
30 回転部材
50、150、250、350、450、650、750、850 羽根
10, 110, 210, 310, 410, 510, 610, 710, 810, 910 Mass transfer device 12 Inlet 14 Outlet 20 Housing 30 Rotating member 50, 150, 250, 350, 450, 650, 750, 850 Blade

Claims (13)

物質が入れられる入口から、物質が出される出口まで物質を移送する物質移送装置において、
前記入口と前記出口が形成されると共にその内径を大きくしながら前記入口から前記出口まで延びる内部空間、及び前記内部空間を画定する内周面が形成された筐体と、
前記内部空間に収容されてその太さを大きくしながら前記入口から前記出口まで延びる、その頂点又はその頂面の中心点とその底面の中心点とを通る直線を中心軸として回転する回転部材と、
前記回転部材の外周面に螺旋状に形成されて前記回転部材と共に回転する羽根とを備えたことを特徴とする物質移送装置。
In a substance transfer device for transferring a substance from an inlet where the substance is put to an outlet where the substance is put out,
A housing in which an inner space extending from the inlet to the outlet is formed while increasing the inner diameter of the inlet and the outlet, and an inner peripheral surface defining the inner space;
A rotating member that is housed in the internal space and extends from the entrance to the exit while increasing its thickness, and that rotates about a straight line passing through the center point of the apex or the top surface and the center point of the bottom surface thereof as a central axis; ,
A substance transfer device comprising: a blade formed in a spiral shape on an outer peripheral surface of the rotating member and rotating with the rotating member.
前記内部空間は、円錐形状又は円錐台形状のものであり、
前記回転部材は円錐形状又は円錐台形状のものであることを特徴とする請求項1に記載の物質移送装置。
The internal space is conical or frustoconical,
The mass transfer device according to claim 1, wherein the rotating member has a conical shape or a truncated cone shape.
前記筐体の内部空間と前記回転部材は相似形であることを特徴とする請求項1又は2に記載の物質移送装置。 The mass transfer device according to claim 1, wherein the internal space of the housing and the rotating member have a similar shape. 前記羽根は、前記回転部材の前記外周面から前記筐体の前記内周面に近接した位置まで広がるものであることを特徴とする請求項1、2、又は3に記載の物質移送装置。 4. The substance transfer device according to claim 1, wherein the blade extends from the outer peripheral surface of the rotating member to a position close to the inner peripheral surface of the casing. 前記羽根は、前記回転部材の外周面のうち前記入口近傍の部分から前記出口近傍の部分まで連続して延びるものであることを特徴とする請求項1から4までのうちのいずれか一項に記載の物質移送装置。 5. The blade according to claim 1, wherein the blade continuously extends from a portion in the vicinity of the inlet to a portion in the vicinity of the outlet on the outer peripheral surface of the rotating member. The substance transfer device described. 前記羽根のうち互いに向き合う表面の間の距離は、前記出口に近づくほど長くなることを特徴とする請求項1から5までのうちのいずれか一項に記載の物質移送装置。 6. The mass transfer device according to claim 1, wherein a distance between surfaces facing each other of the blades becomes longer as the distance to the outlet is approached. 6. 前記羽根のうち互いに向き合う表面の間から、該羽根に接触しないように前記回転部材の前記外周面を螺旋状に延びる第2の羽根を備えたことを特徴とする請求項6に記載の物質移送装置。 The material transfer according to claim 6, further comprising a second blade extending in a spiral manner on the outer peripheral surface of the rotating member so as not to contact the blade from between surfaces facing each other of the blade. apparatus. 前記羽根は、前記出口に近づくほど厚くなるものであることを特徴とする請求項1から7までのうちのいずれか一項に記載の物質移送装置。 The mass transfer device according to any one of claims 1 to 7, wherein the blades are thicker as they approach the outlet. 前記羽根と前記外周面との境界における接線を前記中心軸に向けて平行移動して該接線が前記中心軸に交差したときに該接線と該中心軸との成す傾斜角度は、前記出口に近づくほど小さくなることを特徴とする請求項1から8までのうちのいずれか一項に記載の物質移送装置。 When the tangent at the boundary between the blade and the outer peripheral surface is translated toward the central axis, and the tangent intersects the central axis, the inclination angle formed by the tangent and the central axis approaches the outlet. The mass transfer device according to any one of claims 1 to 8, wherein the mass transfer device becomes smaller. 前記羽根のうち互いに向き合う部分の間に広がって前記回転部材の前記外周面に並行に延びる、該外周面を前記筐体の前記内周面から遮蔽する遮蔽壁を備えたことを特徴とする請求項1から9までのうちのいずれか一項に記載の物質移送装置。 A shielding wall that shields the outer peripheral surface from the inner peripheral surface of the casing and extends in parallel with the outer peripheral surface of the rotating member by spreading between portions facing each other of the blades. Item 10. The substance transfer device according to any one of Items 1 to 9. 前記入口は、前記回転軸に交差する方向から、又は、前記回転軸に平行な方向から物質が入れられるように形成されたものであることを特徴とする請求項1から請求項10までのうちのいずれか一項に記載の物質移送装置。 The inlet is formed so that a substance can be introduced from a direction intersecting the rotation axis or from a direction parallel to the rotation axis. The mass transfer apparatus as described in any one of these. 前記回転部材は、
移送中の物質が前記筐体の底面に衝突することを防止する堰板が前記回転部材の底面に形成されたものであることを特徴とする請求項1から11までのうちのいずれか一項に記載の物質移送装置。
The rotating member is
12. The barrier plate for preventing a substance being transferred from colliding with the bottom surface of the casing is formed on the bottom surface of the rotating member. The substance transfer device described in 1.
前記物質は、流動物、及び流動物に固形物が混在したもののいずれかであることを特徴とする請求項1から請求項12までのうちのいずれか一項に記載の物質移送装置。 The substance transfer device according to any one of claims 1 to 12, wherein the substance is one of a fluid and a mixture of solids in the fluid.
JP2007174995A 2007-02-23 2007-07-03 Mass transfer device Expired - Fee Related JP4093586B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007174995A JP4093586B1 (en) 2007-02-23 2007-07-03 Mass transfer device
US12/526,021 US20100303609A1 (en) 2007-02-23 2008-02-15 Substance transfer device
PCT/JP2008/000232 WO2008102530A1 (en) 2007-02-23 2008-02-15 Substance transfer device
CN200880005738.XA CN101918717B (en) 2007-02-23 2008-02-15 Material delivery apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007043087 2007-02-23
JP2007043087 2007-02-23
JP2007174995A JP4093586B1 (en) 2007-02-23 2007-07-03 Mass transfer device

Publications (2)

Publication Number Publication Date
JP4093586B1 JP4093586B1 (en) 2008-06-04
JP2008232132A true JP2008232132A (en) 2008-10-02

Family

ID=39560799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174995A Expired - Fee Related JP4093586B1 (en) 2007-02-23 2007-07-03 Mass transfer device

Country Status (4)

Country Link
US (1) US20100303609A1 (en)
JP (1) JP4093586B1 (en)
CN (1) CN101918717B (en)
WO (1) WO2008102530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042738A (en) * 2019-09-12 2021-03-18 古河産機システムズ株式会社 Suction screw for suction screw type pump and suction screw type pump including the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367799B (en) * 2011-10-20 2013-04-24 苏州市伦琴工业设计有限公司 Spiral pipe pump
TWI647148B (en) * 2014-04-08 2019-01-11 泰商清潔未來能源有限公司 High pitch anti-stall propeller structure
CN109209860A (en) * 2018-10-24 2019-01-15 汪平 A kind of large capacity superhigh pressure fire-fighting water pump
CN116817287B (en) * 2023-07-26 2023-12-12 江苏道捷环境科技有限公司 Organic silicon slurry residue residual liquid incinerator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US140808A (en) * 1873-07-15 Improvement in water-elevators
US534428A (en) * 1895-02-19 Phineas dean
US3299821A (en) * 1964-08-21 1967-01-24 Sundstrand Corp Pump inducer
US3697190A (en) * 1970-11-03 1972-10-10 Walter D Haentjens Truncated conical drag pump
US3771900A (en) * 1971-10-14 1973-11-13 S Baehr Graduated screw pump
US3951565A (en) * 1974-12-09 1976-04-20 Rockwell International Corporation High suction inducer
JPS53101104A (en) * 1977-02-16 1978-09-04 Mitsubishi Electric Corp Screw type axial-flow pump
WO1994009274A1 (en) * 1992-10-19 1994-04-28 The Cleveland Clinic Foundation Sealless rotodynamic pump
BE1008654A3 (en) * 1994-08-24 1996-07-02 Haegeman J H Combined screw water treatment equipment.
US6514035B2 (en) * 2000-01-07 2003-02-04 Kashiyama Kougyou Industry Co., Ltd. Multiple-type pump
DK200200598A (en) * 2002-04-22 2003-10-23 Alfa Laval Copenhagen As decanter centrifuge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042738A (en) * 2019-09-12 2021-03-18 古河産機システムズ株式会社 Suction screw for suction screw type pump and suction screw type pump including the same
JP7396839B2 (en) 2019-09-12 2023-12-12 古河産機システムズ株式会社 Suction screw for suction screw pumps and suction screw pumps equipped with the same

Also Published As

Publication number Publication date
CN101918717B (en) 2012-12-26
WO2008102530A1 (en) 2008-08-28
CN101918717A (en) 2010-12-15
JP4093586B1 (en) 2008-06-04
US20100303609A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP4093586B1 (en) Mass transfer device
JP6564092B2 (en) Gas-liquid dissolution tank and fine bubble generator
US6755611B1 (en) Vacuum pump
JP2019143630A (en) Finger pump
US9289733B2 (en) Mixing apparatus with stationary shaft
US11236756B2 (en) Cavitation device
US8721168B2 (en) Homogenizer device having a rotor and an advance wheel (inducer screw) that can rotate opposite to the rotor and a counter-current rotor that can rotate opposite to the rotor
US11078923B2 (en) Solid body vortex pump
JP4963836B2 (en) Centrifugal pump device
US20180216625A1 (en) Shaft seal device and vertical pump with this shaft seal device
US20050069409A1 (en) Rotary disc pump
JP6873031B2 (en) Centrifugal casing and centrifugal pump
JP2001074517A (en) Flow rate measuring device
JPS5949435B2 (en) propeller pump
JP6014337B2 (en) System and method for assembling a supersonic compressor rotor including a radial flow path
JP2008101553A (en) Impeller of water pump
JP5857042B2 (en) Double flow centrifugal pump
CN102434487A (en) Method for designing double-helix axial-flow pump impeller
US20110280718A1 (en) Pressurizing centrifugal pump
CA2937398C (en) Cavitation device
US9744504B2 (en) Double-cone pumping device
AU2018201107B2 (en) Debris removing impeller backvane
JP5957243B2 (en) underwater pump
JP6601073B2 (en) Fluid heating device
Kim Air-Water Two-phase Flow Patterns and Pressure Distributions in a Screw-type Centrifugal Pump

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees