JP2008231544A - Non-tempered steel product and method for manufacturing the same - Google Patents

Non-tempered steel product and method for manufacturing the same Download PDF

Info

Publication number
JP2008231544A
JP2008231544A JP2007075741A JP2007075741A JP2008231544A JP 2008231544 A JP2008231544 A JP 2008231544A JP 2007075741 A JP2007075741 A JP 2007075741A JP 2007075741 A JP2007075741 A JP 2007075741A JP 2008231544 A JP2008231544 A JP 2008231544A
Authority
JP
Japan
Prior art keywords
mns
less
area
ferrite
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007075741A
Other languages
Japanese (ja)
Other versions
JP4793298B2 (en
Inventor
Makoto Egashira
誠 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007075741A priority Critical patent/JP4793298B2/en
Publication of JP2008231544A publication Critical patent/JP2008231544A/en
Application granted granted Critical
Publication of JP4793298B2 publication Critical patent/JP4793298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an S-containing middle carbon non-tempered steel product having high upper shelf energy and excellent toughness. <P>SOLUTION: The non-tempered steel product contains 0.30 to 60% C, 0.05 to 0.5% Si, 0.2 to 1.50% Mn, ≤0.035% P, 0.03 to 0.10% S, ≤0.02% Ti, ≤0.05% Al, and ≤0.03% N, and consists of the balance Fe and impurities, in which the form and distribution of MnS at a plane parallel to a hot working direction satisfy the conditions that (1) the area of MnS in ≤10% of an aspect ratio is ≥50% with respect to the total MnS area, and that (2) the area of MnS of ≤2 μm in the width perpendicular to the maximum longitudinal direction is ≥75% with respect to the total MnS area, and in which the texture of the matrix is a ferrite-pearlite texture of 40 to 60% in the ratio of ferrite. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非調質鋼材およびその製造方法に関し、詳しくは、熱間加工のままで使用されるS含有中炭素系非調質鋼材とその製造方法、なかでも、自動車、産業機械および建設機械などの非調質機械部品の素材として好適なS含有中炭素系非調質構造用鋼材とその製造方法に関する。   The present invention relates to a non-heat treated steel material and a method for producing the same, and more particularly, to an S-containing medium carbon non-heat treated steel material used in hot working and a method for producing the same, and more particularly to automobiles, industrial machinery and construction machinery. The present invention relates to an S-containing medium carbon non-heat-treated structural steel material suitable as a material for non-heat treated machine parts and the like and a method for producing the same.

従来、自動車、産業機械および建設機械などの機械部品は、中炭素構造用鋼材を素材としてこれに圧延や鍛造などの熱間加工を繰り返して製造されているが、この熱間加工は要求される製品寸法に成形することが主な目的であるため、得られる組織は一般に、粗大な、フェライトとパーライトの混合組織の二相組織である。このため、調質処理(焼き入れ−焼き戻し処理)を施すことによって、組織の微細化を図り、前記の機械部品に所望の機械的性質を具備させることが行われている。   Conventionally, machine parts such as automobiles, industrial machines, and construction machines have been manufactured by repeatedly using hot working such as rolling and forging using medium carbon structural steel as a raw material, but this hot working is required. Since the main objective is to shape to product dimensions, the resulting structure is generally a coarse, two-phase structure of a mixed structure of ferrite and pearlite. For this reason, refinement | miniaturization of a structure | tissue is achieved by giving a tempering process (quenching-tempering process), and the said mechanical parts are made to have a desired mechanical property.

しかしながら、コスト削減や省エネルギーの観点から調質処理を省略することが望まれ、近年ではその要求が特に大きくなっている。   However, from the viewpoint of cost reduction and energy saving, it is desired to omit the tempering process, and in recent years, the demand has become particularly large.

一方、調質処理を省略して、熱間加工のままで使用する非調質鋼材は、調質鋼材に比べて機械的性質、なかでも靱性に劣るという問題がある。   On the other hand, there is a problem that non-heat treated steel materials that are used without being subjected to tempering treatment while being hot worked are inferior in mechanical properties, in particular, toughness, as compared with tempered steel materials.

このため、例えば、特許文献1および特許文献2に、調質処理を省略しても高い靱性を有する中炭素非調質鋼材を得る技術が提案されている。   For this reason, for example, Patent Literature 1 and Patent Literature 2 propose a technique for obtaining a medium carbon non-tempered steel material having high toughness even if the tempering treatment is omitted.

具体的には、特許文献1に、質量%で、C:030〜0.80%、Si:0.1〜2.5%、Mn:0.30〜2.0%、Al:0.001〜0.06%、N:0.005〜0.10%、P:0.30%以下(0%を含む)、S:0.12%以下(0%を含む)、Cr:1.0%以下(0%を含む)、Cu:0.3%以下(0%を含む)およびNi:0.3%以下(0%を含む)を含み、必要に応じてさらに、Pb:0.3%以下(0%を含まない)、Zr:0.2%以下(0%を含まない)、Ca:0.010%以下(0%を含まない)、Te:0.10%以下(0%を含まない)およびBi:0.1%以下(0%を含まない)の1種以上を含有し、残部がFeおよび不可避不純物からなり、かつ、式中の[元素]を、夫々の元素の質量%での含有率として、[Si]+3.4×[Mn]+19.5×[P]−13.4×[S]+2.7×[Cr]≧3.5および[C]+1.1×[Mn]−1.9×[S]+1.5×[Cu]+1.8×[Ni]+0.6×[Cr]≦2.6の関係を満たす鋼にさらに、Ti:0.05%以下(0%を含まない)を含有させ、かつ任意の横断面におけるTiの炭化物、窒化物、硫化物またはそれらの複合化合物からなる平均粒径10nm以上の析出物が、1μm2当たり3個以上存在する引張強さが600〜900N/mm2の「熱間鍛造用非調質鋼」が開示されている。 Specifically, in Patent Document 1, in mass%, C: 030 to 0.80%, Si: 0.1 to 2.5%, Mn: 0.30 to 2.0%, Al: 0.001 -0.06%, N: 0.005-0.10%, P: 0.30% or less (including 0%), S: 0.12% or less (including 0%), Cr: 1.0 % Or less (including 0%), Cu: 0.3% or less (including 0%) and Ni: 0.3% or less (including 0%), and if necessary, Pb: 0.3 % Or less (excluding 0%), Zr: 0.2% or less (not including 0%), Ca: 0.010% or less (not including 0%), Te: 0.10% or less (0% And Bi: not less than 0.1% (not including 0%), the balance being Fe and inevitable impurities, and [element] in the formula being mass% [Si] + 3.4 × [Mn] + 19.5 × [P] −13.4 × [S] + 2.7 × [Cr] ≧ 3.5 and [C] + 1.1 × [ Mn] -1.9 × [S] + 1.5 × [Cu] + 1.8 × [Ni] + 0.6 × [Cr] ≦ 2.6 Furthermore, Ti: 0.05% or less It is contained (not including 0%), and the Ti in any cross section carbides, nitrides, there sulfides or average particle size 10nm or more precipitates consisting of complex compounds, or 3 per 1 [mu] m 2 “Non-tempered steel for hot forging” having a tensile strength of 600 to 900 N / mm 2 is disclosed.

特許文献2に、重量%で、C:0.2〜0.6%、Si:0.05〜1.0%、Mn:0.1〜3.0%、Al:0.01〜0.05%、N:0.005〜0.050%、B:0.0005〜0.01%に加え、V:0.01〜0.4%、Nb:0.001〜0.05%、Ti:0.001〜0.05%のうちの1種または2種以上を含み、必要に応じてさらに、(a)S:≦0.15%、Pb:≦0.3%、Ca:≦0.005%、Bi:≦0.3%、Te:≦0.3%のうちの1種または2種以上、(b)Cr:0.01〜2.0%、Ni:0.01〜2.0%、Mo:0.01〜1.0%の1種または2種以上、の群から選ばれる1種または2種以上の元素を含有し、残部が実質的にFeおよび不可避不純物である「高靱性非調質鋼」が開示されている。   In Patent Document 2, in terms of% by weight, C: 0.2-0.6%, Si: 0.05-1.0%, Mn: 0.1-3.0%, Al: 0.01-0. 05%, N: 0.005 to 0.050%, B: 0.0005 to 0.01%, V: 0.01 to 0.4%, Nb: 0.001 to 0.05%, Ti : One or more of 0.001 to 0.05% is included, and if necessary, (a) S: ≦ 0.15%, Pb: ≦ 0.3%, Ca: ≦ 0 0.005%, Bi: ≦ 0.3%, Te: ≦ 0.3%, or 2 or more types, (b) Cr: 0.01-2.0%, Ni: 0.01-2 0.0%, Mo: 0.01 to 1.0% of one or more elements selected from the group of one or more elements, the balance being substantially Fe and inevitable impurities "High toughness non-heat treated steel" It has been disclosed.

特開平9−310152号公報JP-A-9-310152 特開平6−256892号公報JP-A-6-256892

前記の特許文献1で開示された技術は、Tiの炭化物、窒化物、硫化物またはそれらの複合化合物よりなる析出物によるピン止め効果を利用して、オーステナイト結晶粒を微細化して靱性の向上を図るものである。   The technique disclosed in Patent Document 1 utilizes the pinning effect caused by precipitates made of Ti carbide, nitride, sulfide, or a composite compound thereof to refine austenite crystal grains and improve toughness. It is intended.

また、特許文献2で開示された技術は、BNを微細分散させそのピン止め効果を利用した細粒化作用で靱性の向上を図るものである。   Further, the technique disclosed in Patent Document 2 aims to improve toughness by finely dispersing BN and utilizing its pinning effect.

上記特許文献1および特許文献2で提案されたような、ピン止め粒子が析出する鋼を熱間加工すると、粒径が微細化し「破面遷移温度」と称される延性脆性遷移温度が低下して、図1に模式的に示すように、確かに室温での吸収エネルギーが大きくなって靱性が向上する。なお、図1中に点線で示したものが、S含有量が少なく、かつ、粒径が微細化していない場合の「シャルピー吸収エネルギー−温度」曲線である。   When the steel in which pinning particles are precipitated, as proposed in Patent Document 1 and Patent Document 2, is hot-worked, the grain size becomes finer and the ductile brittle transition temperature called “fracture surface transition temperature” decreases. Thus, as schematically shown in FIG. 1, the absorbed energy at room temperature is certainly increased and the toughness is improved. In addition, what was shown with the dotted line in FIG. 1 is a "Charpy absorbed energy-temperature" curve when there is little S content and the particle size is not refined | miniaturized.

しかしながら、近年、環境問題からPbフリー(Pb非添加)の中炭素構造用鋼材の被削性向上のために、いわゆる「快削元素」としてよく知られているSを多量に含有させることがある。そして、Sを多量に含む鋼においては一般にMnSが析出するので、外部からの応力を受けたときに前記MnSに応力集中が生じ、破壊の起点となるため、図1に模式的に示すように、上部棚エネルギーが低くなってしまう。   However, in recent years, in order to improve the machinability of Pb-free (no Pb added) medium carbon structural steel due to environmental problems, a large amount of S, which is well known as a so-called “free-cutting element”, may be contained. . And in steel containing a large amount of S, since MnS generally precipitates, stress concentration occurs in the MnS when subjected to external stress, and it becomes a starting point of fracture. As shown schematically in FIG. The upper shelf energy will be lower.

このため、オーステナイト結晶粒の微細化は、延性脆性遷移温度が低くなるので低い「破面遷移温度」を得たいという観点からの靱性向上には資するものの、多量のSを含む鋼においては、室温での吸収エネルギーが低くなるため、高い「吸収エネルギー」を得たいという観点からの靱性向上には役立たないことがあった。   For this reason, the refinement of austenite crystal grains contributes to the improvement of toughness from the viewpoint of obtaining a low “fracture surface transition temperature” because the ductile brittle transition temperature is low, but in steels containing a large amount of S, room temperature Since the absorbed energy at the time becomes low, it may not be useful for improving toughness from the viewpoint of obtaining high “absorbed energy”.

そこで、本発明の目的は、高い上部棚エネルギーを有する靱性に優れたS含有中炭素系非調質鋼材とその製造方法、なかでも、質量%で、0.03%以上のSを含有する非調質鋼材であっても高い上部棚エネルギーを有し、自動車、産業機械および建設機械などの非調質機械部品の素材として好適な靱性に優れた中炭素系非調質鋼材と、その非調質鋼材の製造方法を提供することである。   Accordingly, an object of the present invention is to provide an S-containing medium-carbon non-heat treated steel material having a high upper shelf energy and excellent toughness, and a manufacturing method thereof, in particular, a non-containing steel containing 0.03% or more by mass%. Even in the case of tempered steel, it has a high upper shelf energy, and it has excellent toughness as a material for non-tempered machine parts such as automobiles, industrial machinery and construction machinery. It is providing the manufacturing method of quality steel materials.

本発明者らは前記した課題を解決するために、質量%で、0.03%以上のSを含む中炭素鋼を用いて熱間加工を模擬した試験を実施し、MnSの形態と分布が上部棚エネルギーに及ぼす影響および加工熱処理の条件がMnSの形態と分布に及ぼす影響について詳細に検討した。   In order to solve the above-mentioned problems, the present inventors conducted a test simulating hot working using medium carbon steel containing 0.03% or more by mass%, and the morphology and distribution of MnS are The influence on the upper shelf energy and the influence of the conditions of thermomechanical treatment on the morphology and distribution of MnS were examined in detail.

その結果、下記(a)〜(e)の知見を得た。   As a result, the following findings (a) to (e) were obtained.

(a)質量%で、0.03%以上のSを含む中炭素鋼材の上部棚エネルギーの低下は、熱間加工によりMnSのアスペクト比、つまり、MnSの最大長さ(以下、「最大長」ともいう。)とその最大長方向に垂直な幅との比が大きくなり、破面上にMnSが存在する確率が高くなるからである。   (A) The decrease in the upper shelf energy of the medium carbon steel material containing 0.03% or more of S by mass% is the aspect ratio of MnS by hot working, that is, the maximum length of MnS (hereinafter, “maximum length”). This is also because the ratio between the width perpendicular to the maximum length direction and the width perpendicular to the maximum length direction increases, and the probability that MnS exists on the fracture surface increases.

なお、図2に、上記MnSの「アスペクト比」と「幅」に関する概念図を示す。   FIG. 2 is a conceptual diagram regarding the “aspect ratio” and “width” of the MnS.

(b)質量%で、0.03%以上のSを含む中炭素鋼材であっても、熱間加工方向に平行な面におけるMnSの形態と分布として、アスペクト比が10以下のMnSの面積が全MnS面積に対して50%以上であり、しかも、最大長方向に垂直な幅が2μm以下であるMnSの面積が全MnS面積に対して75%以上であれば、上部棚エネルギーの低下は生じない。   (B) Even if it is a medium carbon steel material containing 0.03% or more of S by mass%, the area of MnS having an aspect ratio of 10 or less as the form and distribution of MnS in the plane parallel to the hot working direction If the area of MnS that is 50% or more with respect to the total MnS area and the width perpendicular to the maximum length direction is 2 μm or less is 75% or more with respect to the total MnS area, the upper shelf energy is reduced. Absent.

(c)質量%で、0.03%以上のSを含有する鋼材の熱間加工方向に平行な面におけるMnSが上記(b)の形態と分布であれば、上部棚エネルギーの低下が生じないばかりか、MnSを核とした粒内フェライトの生成が促進されることにより、組織に占めるフェライトの割合(以下、「フェライト率」ともいう。)が大きくなって、上部棚エネルギーがさらに高くなる。   (C) If the MnS in the plane parallel to the hot working direction of the steel material containing 0.03% or more of S by mass% is the form and distribution of (b) above, the upper shelf energy does not decrease. In addition, by promoting the formation of intragranular ferrite with MnS as a nucleus, the proportion of ferrite in the structure (hereinafter also referred to as “ferrite ratio”) increases, and the upper shelf energy further increases.

(d)質量%で、0.03%以上のSを含有する鋼材において、熱間加工方向に平行な面におけるMnSの形態と分布を、上記(b)に記載したものとするためには、例えば、被加工材を、1000〜1250℃に加熱して900℃以上の温度域で累積減面率90%以上の熱間加工を施した後、900℃以上の温度域で3min以上保持すればよい。   (D) In a steel material containing 0.03% or more of S by mass%, in order to have the form and distribution of MnS in a plane parallel to the hot working direction as described in (b) above, For example, if a workpiece is heated to 1000 to 1250 ° C. and subjected to hot working with a cumulative area reduction of 90% or more in a temperature range of 900 ° C. or higher, the workpiece is held for 3 minutes or more in a temperature range of 900 ° C. or higher. Good.

これは、MnSは熱間加工に伴い変形するが、1000〜1250℃に加熱され、900℃以上の温度域で累積減面率90%以上という高い減面率での加工を受けて幅が小さくなったMnSの場合には、加工の直後に900℃以上の温度域に3min以上保持されると、表面張力によって特に細くくびれた部分から分断して最大長が短くなり、しかも、MnSの幅が小さくても最大長が短いため、アスペクト比が小さくなるからである。   This is because MnS is deformed with hot working, but is heated to 1000 to 1250 ° C., and undergoes processing at a high surface reduction rate of 90% or more in a temperature range of 900 ° C. or higher, and the width is small. In the case of the formed MnS, if the temperature is kept at 900 ° C. or higher immediately after processing for 3 min or longer, the maximum length is shortened by dividing from the narrowed portion due to the surface tension, and the width of the MnS is reduced. This is because the aspect ratio is small because the maximum length is short even if it is small.

(e)また、前記(c)のフェライト率を大きくして、さらに高い上部棚エネルギーを得るためには、例えば、上記(d)の条件で熱間加工を施した鋼材に、さらに700℃以上900℃未満の温度域で累積減面率90%未満の熱間加工を行えばよい。   (E) Moreover, in order to increase the ferrite ratio of (c) and obtain a higher upper shelf energy, for example, a steel material that has been hot-worked under the condition (d) above is further 700 ° C. or higher. What is necessary is just to perform hot working with a cumulative surface reduction rate of less than 90% in a temperature range of less than 900 ° C.

すなわち、さらに700℃以上900℃未満の温度域で累積減面率90%未満の熱間加工を施すことにより、加工オーステナイトからのフェライト変態が生じるだけではなく、MnSを核とする粒内フェライトの生成も生じるので、フェライト率を40%以上と大きくできるのである。   That is, by further performing hot working with a cumulative area reduction of less than 90% in a temperature range of 700 ° C. or more and less than 900 ° C., not only ferrite transformation from the processed austenite occurs, but also the intragranular ferrite with MnS as the core. Since the generation also occurs, the ferrite ratio can be increased to 40% or more.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)に示す非調質鋼材および(2)に示すその製造方法にある。   The present invention has been completed based on the above findings, and the gist of the present invention resides in the non-heat treated steel material shown in (1) below and the production method shown in (2).

(1)質量%で、C:0.30〜0.60%、Si:0.05〜0.5%、Mn:0.2〜1.5%、P:0.035%以下、S:0.03〜0.10%、Ti:0.02%以下、Al:0.05%以下およびN:0.03%以下を含有し、残部はFeおよび不純物からなり、熱間加工方向に平行な面におけるMnSの形態と分布が下記〈1〉および〈2〉の条件を満たすとともに、マトリックスの組織が、フェライトの割合が40〜60%のフェライト・パーライト組織であることを特徴とする非調質鋼材。
〈1〉アスペクト比が10以下のMnSの面積が全MnS面積に対して50%以上であること、
〈2〉最大長さ方向に垂直な幅が2μm以下であるMnSの面積が全MnS面積に対して75%以上であること。
(1) By mass%, C: 0.30 to 0.60%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.5%, P: 0.035% or less, S: Contains 0.03-0.10%, Ti: 0.02% or less, Al: 0.05% or less, and N: 0.03% or less, with the balance being Fe and impurities, parallel to the hot working direction The shape and distribution of MnS on a rough surface satisfy the conditions <1> and <2> below, and the matrix structure is a ferrite pearlite structure with a ferrite ratio of 40 to 60%. Quality steel.
<1> The area of MnS having an aspect ratio of 10 or less is 50% or more based on the total MnS area;
<2> The area of MnS whose width perpendicular to the maximum length direction is 2 μm or less is 75% or more with respect to the total MnS area.

(2)質量%で、C:0.30〜0.60%、Si:0.05〜0.5%、Mn:0.2〜1.5%、P:0.035%以下、S:0.03〜0.10%、Ti:0.02%以下、Al:0.05%以下およびN:0.03%以下を含有し、残部はFeおよび不純物からなる素材鋼を、1000〜1250℃に加熱して900℃以上の温度域で累積減面率90%以上の熱間加工を行った後、900℃以上の温度域で3〜10min保持し、その後、さらに750℃以上900℃未満の温度域で累積減面率5%以上90%未満の熱間加工を行うことを特徴とする請求項1に記載の非調質鋼材の製造方法。   (2) By mass%, C: 0.30 to 0.60%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.5%, P: 0.035% or less, S: 0.03 to 0.10%, Ti: 0.02% or less, Al: 0.05% or less, and N: 0.03% or less, with the balance being made of steel with Fe and impurities, 1000 to 1250 After heating to 90 ° C. and performing hot working with a cumulative area reduction of 90% or more in a temperature range of 900 ° C. or higher, hold for 3 to 10 minutes in a temperature range of 900 ° C. or higher, and then further 750 ° C. or higher and lower than 900 ° C. The method for producing a non-tempered steel material according to claim 1, wherein hot working is performed in a temperature range of 5% or more and less than 90%.

なお、「熱間加工方向に平行な面」とは、例えば、熱間加工が「熱間圧延」であれば「圧延方向の面」を、また、熱間加工が「熱間鍛造」であれば「鍛錬軸に平行な面」を指す。   Note that the “surface parallel to the hot working direction” is, for example, “the surface in the rolling direction” if the hot working is “hot rolling”, and the hot working is “hot forging”. For example, "plane parallel to the training axis".

「全MnS面積」とは、JIS G 0555(2003)記載の「鋼の非金属介在物の顕微鏡試験方法」に準じて、上記の観察面を倍率400倍で64視野、合計で1.44mm2相当の面積を観察した際のMnS面積の合計を指す。 “Total MnS area” means that the observation surface is 64 fields of view at a magnification of 400 times and a total of 1.44 mm 2 according to “Microscopic test method for non-metallic inclusions in steel” described in JIS G 0555 (2003). The total of MnS areas when a considerable area is observed.

マトリックスであるフェライト・パーライト組織におけるフェライトの割合には、パーライトを構成するフェライトは含まないものとする。   It is assumed that the ferrite constituting the pearlite is not included in the ratio of ferrite in the ferrite-pearlite structure as the matrix.

「素材鋼」とは、例えば、鋼塊、連続鋳造材、あるいはそれらを分塊圧延したビレットなど、熱間加工に供されるものを指す。   “Raw steel” refers to, for example, a steel ingot, a continuous cast material, or a billet obtained by subjecting them to a hot work, such as a billet obtained by split rolling.

また、上記の「温度」とは対象となる素材鋼やそれを熱間加工したものの「表面温度」を指す。   The above “temperature” refers to the “surface temperature” of the target material steel or hot-worked steel.

以下、上記 (1)の非調質鋼材に係る発明および(2)に示す非調質鋼材の製造方法に係る発明を、それぞれ、「本発明(1)」および「本発明(2)」という。また、総称して「本発明」ということがある。   Hereinafter, the invention related to the non-heat treated steel material of (1) and the invention related to the method of manufacturing the non-heat treated steel material shown in (2) are referred to as “the present invention (1)” and “the present invention (2)”, respectively. . Also, it may be collectively referred to as “the present invention”.

本発明の非調質鋼材は、質量%で、0.03%以上のSを含有するにも拘わらず、圧延や鍛造など熱間加工後の調質処理を省略しても高い上部棚エネルギーを有するので、自動車、産業機械および建設機械などの非調質機械部品の素材として好適であり、製造コスト削減に大きく寄与する。なお、この非調質鋼材は本発明の方法によって製造することができる。   Although the non-tempered steel material of the present invention contains 0.03% or more of S by mass%, high upper shelf energy can be obtained even if the tempering treatment after hot working such as rolling or forging is omitted. Therefore, it is suitable as a material for non-tempered machine parts such as automobiles, industrial machines and construction machines, and greatly contributes to a reduction in manufacturing costs. In addition, this non-tempered steel material can be manufactured by the method of the present invention.

以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.

(A)化学組成:
C:0.30〜0.60%
Cは、鋼の強度を確保するのに有効であり、また、自動車、産業機械および建設機械などの非調質機械部品においては、耐摩耗性を確保するのにも非常に有効である。これらの効果を得るためには、Cは0.30%以上の含有量とする必要がある。しかしながら、Cの含有量が多くなり、特に、0.60%を超えると、上部棚エネルギーの低下をもたらす。したがって、Cの含有量を、0.30〜0.60%とした。なお、C含有量の望ましい範囲は0.38〜0.55%である。
(A) Chemical composition:
C: 0.30 to 0.60%
C is effective for ensuring the strength of steel, and is also very effective for ensuring wear resistance in non-heat treated machine parts such as automobiles, industrial machines and construction machines. In order to acquire these effects, it is necessary to make C content 0.30% or more. However, if the C content increases, especially when it exceeds 0.60%, the upper shelf energy is reduced. Therefore, the content of C is set to 0.30 to 0.60%. In addition, the desirable range of C content is 0.38 to 0.55%.

Si:0.05〜0.5%
Siは、脱酸効果を有する元素であり、また、フェライトの固溶強化にも有効な元素であるので、0.05%以上含有させる。しかしながら、Siの含有量が過剰になると熱間加工性を損ねるので、その含有量の上限は、フェライトの固溶強化に必要かつ十分な0.5%である。したがって、Siの含有量を、0.05〜0.5%とした。なお、Si含有量の望ましい範囲は0.15〜0.4%である。
Si: 0.05-0.5%
Si is an element having a deoxidizing effect, and is also an element effective for strengthening the solid solution of ferrite, so 0.05% or more is contained. However, since the hot workability is impaired when the Si content is excessive, the upper limit of the content is 0.5% necessary and sufficient for solid solution strengthening of ferrite. Therefore, the Si content is set to 0.05 to 0.5%. In addition, the desirable range of Si content is 0.15-0.4%.

Mn:0.2〜1.5%
Mnは、鋼中でMnSを形成して被削性を高めるために必要な元素であり、0.2%以上含有させる。しかしながら、Mnの含有量が過剰になるとMnS量をいたずらに増やして上部棚エネルギーの低下を招き、特に、1.5%を超えると、上部棚エネルギーの低下が著しくなる。したがって、Mnの含有量を0.2〜1.5%とした。なお、Mn含有量の望ましい範囲は0.4〜1.0%である。
Mn: 0.2 to 1.5%
Mn is an element necessary for improving the machinability by forming MnS in steel, and is contained in an amount of 0.2% or more. However, if the Mn content is excessive, the amount of MnS is increased unnecessarily, leading to a decrease in the upper shelf energy. In particular, when it exceeds 1.5%, the upper shelf energy is significantly decreased. Therefore, the Mn content is set to 0.2 to 1.5%. In addition, the desirable range of Mn content is 0.4 to 1.0%.

P:0.035%以下
Pは、鋼中に不純物として含有される元素であり、粒界に偏析して粒界脆化割れを助長し、特に、その含有量が0.035%を超えると、粒界脆化割れが生じやすくなる。したがって、Pの含有量を0.035%以下とした。なお、Pには強度向上作用があるので、この効果を得たい場合には、Pの含有量は0.005〜0.035%とすることが望ましい。
P: 0.035% or less P is an element contained as an impurity in steel and segregates at the grain boundary to promote grain boundary embrittlement cracking. In particular, when the content exceeds 0.035%. , Grain boundary embrittlement cracking is likely to occur. Therefore, the content of P is set to 0.035% or less. In addition, since there exists an intensity | strength improvement effect | action in P, when acquiring this effect, it is desirable that content of P shall be 0.005-0.035%.

S:0.03〜0.10%
Sは、MnSを形成して被削性を高めるために必要な元素である。しかも、前記MnSには、これを核として粒内フェライトの生成を促進し、フェライト率を大きくして、上部棚エネルギーを高くする作用、すなわち靱性を高める作用がある。こうした効果を得るためには、Sは0.03%以上の含有量とする必要がある。しかしながら、Sの含有量が多すぎてもその効果が飽和するばかりか、熱間加工性を低下させ、特に、0.10%を超えると、熱間加工性の低下が著しくなる。したがって、Sの含有量を0.03〜0.10%とした。なお、S含有量の望ましい範囲は0.03〜0.07%である。
S: 0.03-0.10%
S is an element necessary for forming MnS to improve machinability. In addition, the MnS has the effect of promoting the formation of intragranular ferrite using this as a nucleus, increasing the ferrite rate, and increasing the upper shelf energy, that is, increasing the toughness. In order to acquire such an effect, S needs to be 0.03% or more. However, if the content of S is too large, not only the effect is saturated but also the hot workability is lowered, and particularly when it exceeds 0.10%, the hot workability is significantly lowered. Therefore, the content of S is set to 0.03 to 0.10%. In addition, the desirable range of S content is 0.03 to 0.07%.

Ti:0.02%以下
Tiは、鋼中に不純物として含有されることがある元素であり、過剰に含有すれば上部棚エネルギーの低下を招き、特に、その含有量が0.02%を超えると、上部棚エネルギーの低下が著しくなる。したがって、Tiの含有量を0.02%以下とした。なお、TiにはNとともに窒化物を形成して粒径を微細にする作用があるので、この効果を得たい場合には、Tiの含有量は0.005〜0.02%とすることが望ましい。
Ti: 0.02% or less Ti is an element that may be contained as an impurity in steel, and if contained excessively, lowering of the upper shelf energy is caused. In particular, its content exceeds 0.02%. And the fall of the upper shelf energy becomes remarkable. Therefore, the Ti content is set to 0.02% or less. In addition, since Ti has the effect | action which forms a nitride with N and makes a particle size fine, when it wants to acquire this effect, content of Ti may be 0.005-0.02%. desirable.

Al:0.05%以下
Alも、鋼中に不純物として含有されることがある元素であり、過剰に含有すれば上部棚エネルギーの低下を招き、特に、その含有量が0.05%を超えると、上部棚エネルギーの低下が著しくなる。したがって、Alの含有量を0.05%以下とした。なお、Alには脱酸作用があり、また、Nとともに窒化物を形成して粒径を微細にする作用があるので、これらの効果を得たい場合には、Alの含有量は0.005〜0.05%とすることが望ましい。
Al: 0.05% or less Al is also an element that may be contained as an impurity in steel. If excessively contained, the upper shelf energy will be reduced, and in particular, its content exceeds 0.05%. And the fall of the upper shelf energy becomes remarkable. Therefore, the Al content is set to 0.05% or less. Al has a deoxidizing action, and also has an action of forming a nitride with N to make the particle size finer. Therefore, when these effects are desired, the Al content is 0.005. It is desirable to set it to -0.05%.

N:0.03%以下
Nは、鋼中に不純物として含有される元素であり、過剰に含有すれば気泡を生成し、特に、その含有量が0.03%を超えると、気泡の生成が著しくなって材質を損なうことになるし、Nを0.03%以上含有させることは工業的に困難な場合が多くコストの上昇を招く。したがって、Nの含有量を0.03%以下とした。なお、Nには固溶強化により強度を高める作用および、TiやAlとともに窒化物を形成して粒径を微細にする作用があるので、これらの効果を得たい場合には、Nの含有量は0.003〜0.03%とすることが望ましい。
N: 0.03% or less N is an element contained as an impurity in steel, and if excessively contained, bubbles are generated. Particularly, when the content exceeds 0.03%, bubbles are generated. It becomes remarkable and damages the material, and it is often industrially difficult to contain N in an amount of 0.03% or more, resulting in an increase in cost. Therefore, the N content is set to 0.03% or less. N has an effect of increasing strength by solid solution strengthening and an effect of forming a nitride together with Ti and Al to make the particle size fine. Is preferably 0.003 to 0.03%.

上記の理由から、本発明(1)に係る非調質鋼材の化学組成は、C、Si、Mn、P、S、Ti、AlおよびNを上述した範囲で含有し、残部はFeおよび不純物からなることとした。   For the above reasons, the chemical composition of the non-tempered steel material according to the present invention (1) contains C, Si, Mn, P, S, Ti, Al and N in the above-mentioned range, and the balance is made of Fe and impurities. It was decided to become.

なお、本発明(1)に係る非調質鋼材においては、以上に述べたCからNまでの元素以外は、本質的に不純物であって、意図的に添加することはない。   In the non-heat treated steel material according to the present invention (1), elements other than the elements C to N described above are essentially impurities, and are not intentionally added.

ここで、不純物除去のための製鋼工程でのいたずらなコストアップを避け、また、過剰な含有による熱間割れを防止するという観点から、不純物中のCr、CuおよびNiの含有量は、いずれも、0.3%以下の範囲で許容できる。   Here, from the standpoint of avoiding unnecessarily high costs in the steelmaking process for removing impurities and preventing hot cracking due to excessive inclusion, the contents of Cr, Cu and Ni in the impurities are all In the range of 0.3% or less, it is acceptable.

(B)熱間加工方向に平行な面におけるMnSの形態と分布:
本発明(1)に係る非調質鋼材が、前記(A)項に記載の化学組成を有する場合であっても、熱間加工方向に平行な面におけるMnSの形態と分布が、「アスペクト比が10以下のMnSの面積が全MnS面積に対して50%以上であること」という前記〈1〉の条件、および、「最大長方向に垂直な幅が2μm以下であるMnSの面積が全MnS面積に対して75%以上であること」という前記〈2〉の条件の少なくとも一方から外れる場合には、MnSに起因した上部棚エネルギーの低下が生じてしまう。
(B) MnS morphology and distribution in a plane parallel to the hot working direction:
Even when the non-tempered steel material according to the present invention (1) has the chemical composition described in the item (A), the form and distribution of MnS in the plane parallel to the hot working direction is “aspect ratio”. That the area of MnS of 10 or less is 50% or more with respect to the total MnS area, and “the area of MnS whose width perpendicular to the maximum length direction is 2 μm or less is the total MnS” When it deviates from at least one of the above-mentioned <2> conditions of “75% or more with respect to the area”, the upper shelf energy is reduced due to MnS.

したがって、本発明(1)に係る非調質鋼材においては、MnSに起因した上部棚エネルギーの低下を生じないようにするために、さらには、MnSを核とした粒内フェライトの生成が促進されることによるフェライト率の増大でさらに高い上部棚エネルギーを有するようにするために、熱間加工方向に平行な面におけるMnSの形態と分布が、アスペクト比が10以下のMnSの面積が全MnS面積に対して50%以上であり、しかも、最大長方向に垂直な幅が2μm以下であるMnSの面積が全MnS面積に対して75%以上であることと規定した。   Therefore, in the non-tempered steel material according to the present invention (1), in order to prevent the lower shelf energy from being reduced due to MnS, the generation of intragranular ferrite with MnS as a nucleus is further promoted. In order to have a higher upper shelf energy by increasing the ferrite ratio, the MnS morphology and distribution in the plane parallel to the hot working direction is the total MnS area with an aspect ratio of MnS of 10 or less The area of MnS whose width perpendicular to the maximum length direction is 2 μm or less is 75% or more with respect to the total MnS area.

なお、既に述べたように、「熱間加工方向に平行な面」とは、例えば、熱間加工が「熱間圧延」であれば「圧延方向の面」を、また、熱間加工が「熱間鍛造」であれば「鍛錬軸に平行な面」を指す。   As already described, the “surface parallel to the hot working direction” means, for example, “the surface in the rolling direction” if the hot working is “hot rolling”, and the hot working is “ “Hot forging” refers to “a plane parallel to the forging axis”.

また、「全MnS面積」とは、JIS G 0555(2003)記載の「鋼の非金属介在物の顕微鏡試験方法」に準じて、上記の観察面を倍率400倍で64視野、合計で1.44mm2相当の面積を観察した際のMnS面積の合計を指す。 In addition, “total MnS area” means that the observation surface is 64 fields of view at a magnification of 400 times and a total of 1. in accordance with “Microscopic test method of non-metallic inclusions in steel” described in JIS G 0555 (2003). The total area of MnS when an area corresponding to 44 mm 2 is observed.

(C)マトリックスの組織:
本発明(1)に係る非調質鋼材が、前記(A)項に記載の化学組成を有する場合であっても、マトリックスの組織としてのフェライト・パーライト組織におけるフェライト率が40%に満たない場合には、さらに高い上部棚エネルギーは得られない。
(C) Matrix organization:
Even when the non-heat treated steel material according to the present invention (1) has the chemical composition described in the item (A), the ferrite ratio in the ferrite pearlite structure as the matrix structure is less than 40%. Does not provide higher upper shelf energy.

一方、上記マトリックスの組織としてのフェライト・パーライト組織におけるフェライト率が60%を超える場合には、中炭素構造用鋼としての所望の強度を保てなくなる。   On the other hand, when the ferrite ratio in the ferrite-pearlite structure as the matrix structure exceeds 60%, the desired strength as the medium carbon structural steel cannot be maintained.

したがって、本発明(1)に係る非調質鋼材においては、さらに高い上部棚エネルギーを有するようにするために、マトリックスの組織が、フェライトの割合が40〜60%のフェライト・パーライト組織であることと規定した。   Therefore, in the non-heat treated steel material according to the present invention (1), in order to have a higher upper shelf energy, the matrix structure is a ferrite pearlite structure having a ferrite ratio of 40 to 60%. Stipulated.

なお、既に述べたように、マトリックスであるフェライト・パーライト組織におけるフェライトの割合には、パーライトを構成するフェライトは含まない。   As described above, the ferrite constituting the pearlite is not included in the ratio of ferrite in the ferrite-pearlite structure as the matrix.

(D)非調質鋼材の製造方法:
本発明(1)に係る非調質鋼材は、例えば、前記(A)項に記載の化学組成を有する素材鋼を、「1000〜1250℃に加熱して900℃以上の温度域で累積減面率90%以上の熱間加工を行った後、900℃以上の温度域で3〜10min保持し、その後、さらに750℃以上900℃未満の温度域で累積減面率5%以上90%未満の熱間加工を行う」ことを特徴とする前記本発明(2)によって、製造することができる。
(D) Production method of non-heat treated steel:
The non-heat treated steel according to the present invention (1) is, for example, a material steel having the chemical composition described in the above item (A), “cumulative surface reduction in a temperature range of 900 ° C. or higher by heating to 1000 to 1250 ° C. After performing hot working at a rate of 90% or higher, hold at a temperature range of 900 ° C. or higher for 3 to 10 minutes, and then, at a temperature range of 750 ° C. or higher and lower than 900 ° C., a cumulative area reduction rate of 5% or higher and lower than 90% According to the present invention (2), which is characterized by performing “hot working”.

すなわち、熱間加工方向に平行な面において、前記(B)項で述べたアスペクト比が10以下のMnSの面積が全MnS面積に対して50%以上であり、しかも、最大長方向に垂直な幅が2μm以下であるMnSの面積が全MnS面積に対して75%以上というMnSの形態と分布、および(C)項で述べたフェライトの割合が40〜60%であるフェライト・パーライト組織のマトリックスを得るためには、
〔1〕素材鋼を、1000〜1250℃に加熱して900℃以上の温度域で累積減面率90%以上の熱間加工を行った後、900℃以上の温度域で3〜10min保持する、
〔2〕上記〔1〕の処理の後、さらに750℃以上900℃未満の温度域で累積減面率5%以上90%未満の熱間加工を行う、
という2段階での処理を施すのが効果的である。
That is, in the plane parallel to the hot working direction, the area of MnS having an aspect ratio of 10 or less described in the above (B) is 50% or more with respect to the total MnS area, and perpendicular to the maximum length direction. MnS morphology and distribution in which the area of MnS having a width of 2 μm or less is 75% or more with respect to the total MnS area, and a matrix of ferrite and pearlite structure in which the proportion of ferrite described in the section (C) is 40 to 60% To get
[1] The material steel is heated to 1000 to 1250 ° C. and hot-worked with a cumulative area reduction of 90% or more in a temperature range of 900 ° C. or higher, and then held for 3 to 10 minutes in a temperature range of 900 ° C. or higher. ,
[2] After the treatment of [1], hot working is further performed with a cumulative area reduction of 5% or more and less than 90% in a temperature range of 750 ° C. or more and less than 900 ° C.
It is effective to perform the process in two stages.

なお、既に述べたように、上記〔1〕の処理でいう「素材鋼」とは、例えば、鋼塊、連続鋳造材、あるいはそれらを分塊圧延したビレットなど、熱間加工に供されるものを指す。   In addition, as already stated, the “material steel” referred to in the above-mentioned process [1] is, for example, a steel ingot, a continuous cast material, or a billet obtained by subjecting them to hot rolling, etc. Point to.

また、上記の「温度」が、対象となる素材鋼やそれを熱間加工したものの「表面温度」を指すことも既に述べたとおりである。   In addition, as described above, the “temperature” refers to the “surface temperature” of the target material steel or hot-worked steel.

(D−1)〔1〕の処理について:
上記〔1〕の処理を施すことによって、MnSの幅が小さくなり、しかも、表面張力によって特に細くくびれた部分から分断して最大長が短くなるので、アスペクト比も小さくなる。
(D-1) Regarding the processing of [1]:
By performing the treatment [1], the width of MnS is reduced, and the aspect length is also reduced because the maximum length is shortened by dividing from a particularly narrow portion by surface tension.

加熱温度が1000℃より低い場合には、MnS自体の変形抵抗が高くなってMnSが変形しにくいため、MnSの幅を効果的に小さくすることが困難である。また、加熱温度が1250℃より高い場合も、MnSとマトリックスであるオーステナイトとの変形抵抗の差が大きくなり、マトリックスに比べてMnSが変形しにくいので、MnSの幅を小さくすることが困難である。   When the heating temperature is lower than 1000 ° C., the deformation resistance of MnS itself is increased and MnS is difficult to deform, so that it is difficult to effectively reduce the width of MnS. In addition, even when the heating temperature is higher than 1250 ° C., the difference in deformation resistance between MnS and austenite, which is a matrix, is large, and MnS is difficult to deform compared to the matrix, so it is difficult to reduce the width of MnS. .

同様に熱間加工の温度が900℃より低い場合も、MnSの幅を効果的に小さくすることが困難である。また、900℃以上の温度域での累積減面率が90%に満たない場合も、MnSの幅を効果的に小さくすることが困難である。   Similarly, when the temperature of hot working is lower than 900 ° C., it is difficult to effectively reduce the width of MnS. In addition, it is difficult to effectively reduce the width of MnS even when the cumulative area reduction in a temperature range of 900 ° C. or higher is less than 90%.

なお、上記〔1〕の熱間加工において、1回の加熱だけでは、900℃以上の温度域での累積減面率が90%以上なるような熱間加工が行えない場合には、1000〜1250℃の温度域に再加熱して、900℃以上の温度域での累積減面率が90%以上となるようにすればよい。   In addition, in the hot working of [1] above, in the case where hot working cannot be performed such that the cumulative area reduction in a temperature range of 900 ° C. or higher is 90% or more by only one heating, 1000 to What is necessary is just to reheat to the temperature range of 1250 degreeC, and to make it the cumulative area reduction rate in the temperature range of 900 degreeC or more becoming 90% or more.

900℃以上の累積減面率を大きくしすぎると、加工時間、加工コストをいたずらに高めることになるため、900℃以上の温度域での累積減面率は、98%以下とすることが望ましい。   If the cumulative area reduction rate of 900 ° C. or higher is excessively increased, the processing time and the processing cost are unnecessarily increased. Therefore, the cumulative area reduction rate in the temperature range of 900 ° C. or higher is desirably 98% or less. .

さらに、900℃以上の温度域で累積減面率90%以上の熱間加工を行った後、900℃以上の温度域で3min以上保持することによって、MnSは表面張力によって特に細くくびれた部分から分断して最大長が短くなり、しかも、MnSの幅が小さくても最大長が短いので、MnSの形態として、図3(a)に示すようなアスペクト比の小さいものが得られる。   Furthermore, after performing hot working with a cumulative area reduction ratio of 90% or more in a temperature range of 900 ° C. or higher, and holding for 3 minutes or more in a temperature range of 900 ° C. or higher, MnS is removed from a portion that is particularly narrow due to surface tension. The maximum length is shortened by dividing, and even if the width of MnS is small, the maximum length is short, so that the MnS has a small aspect ratio as shown in FIG.

一方、前記の熱間加工後に900℃以上の温度域で保持される時間が3minに満たない場合には、MnSが分断するのに十分な時間がないために、MnSの形態は、図3(b)に示すようなアスペクト比の大きなものとなってしまう。   On the other hand, when the time kept in the temperature range of 900 ° C. or higher after the hot working is less than 3 min, there is not enough time for MnS to divide. The aspect ratio becomes large as shown in b).

なお、図3の(a)および(b)は、それぞれ、後述の実施例における試験番号3および試験番号12におけるMnSの形態と分布を示すものである。   3A and 3B show the form and distribution of MnS in test number 3 and test number 12 in the examples described later, respectively.

上記の、900℃以上の温度域での3min以上という保持時間は、前記の熱間加工後に連続的に冷却して確保してもよいし、補熱や加熱をして確保してもよい。また、補熱や加熱と冷却を繰り返して確保してもよく、「900℃以上の温度域に保持される時間が3min以上」になりさえすればよい。   The holding time of 3 min or longer in the temperature range of 900 ° C. or higher may be secured by continuously cooling after the hot working, or may be secured by supplementary heating or heating. Further, supplementary heating, heating and cooling may be ensured repeatedly as long as “the time maintained in the temperature range of 900 ° C. or higher is 3 min or longer”.

しかしながら、900℃以上の温度域で長時間保持すると、いたずらに組織を粗大化し、吸収エネルギーの低下を招くため、900℃以上の温度域での保持時間の上限は、10minとする。   However, if the structure is held for a long time in a temperature range of 900 ° C. or higher, the structure is unnecessarily coarsened and the absorbed energy is reduced. Therefore, the upper limit of the holding time in the temperature range of 900 ° C. or higher is set to 10 min.

なお、900℃以上の温度域で累積減面率90%以上の熱間加工を施された場合であっても、900℃以上の温度域で保持される時間が3minに満たずに一旦900℃未満に温度低下し、その後900℃以上に再加熱されて、900℃以上に3min以上保持されたものでは、顕著なMnSの分断は生じない。このことから、900℃以上の温度域で累積減面率90%以上の熱間加工を行った後に、900℃以上の温度域で3min以上保持することによるMnSの分断は、〔1〕の熱間加工直後に存在する加工歪を駆動力として起こっているものと推察される。   Even when hot working with a cumulative area reduction ratio of 90% or more is performed in a temperature range of 900 ° C. or higher, the time that is maintained in the temperature range of 900 ° C. or higher is less than 3 minutes, and is temporarily 900 ° C. When the temperature is lowered to less than 90 ° C. and then reheated to 900 ° C. or higher and held at 900 ° C. or higher for 3 min or longer, no significant MnS fragmentation occurs. From this, after performing hot working with a cumulative area reduction of 90% or more in a temperature range of 900 ° C. or higher, the MnS fragmentation by holding for 3 min or longer in the temperature range of 900 ° C. or higher is the heat of [1]. It is inferred that the machining strain existing immediately after the inter-machining occurs as a driving force.

(D−2)〔2〕の処理について:
前記〔1〕の処理を施した後、さらに〔2〕の処理を行うこと、つまり、750℃以上900℃未満の温度域で累積減面率5%以上90%未満の熱間加工を行うことによって、加工オーステナイトからのフェライト変態が生じるだけではなく、MnSを核とする粒内フェライトの生成も生じるので、フェライト率が大きくなる。
(D-2) Regarding process [2]:
After performing the process [1], the process [2] is further performed, that is, hot working with a cumulative area reduction of 5% or more and less than 90% in a temperature range of 750 ° C. or more and less than 900 ° C. This not only causes ferrite transformation from the processed austenite, but also produces intragranular ferrite with MnS as the nucleus, so that the ferrite ratio increases.

たとえ前記〔1〕の処理によってMnSを分断しても、〔2〕の処理における750℃以上900℃未満の温度域での累積減面率が90%以上となる場合には、分断されたMnSが延伸することとなり、アスペクト比が大きくなってしまうので、所望のMnSの形態と分布を得ることが困難となる。   Even if MnS is divided by the treatment [1], if the cumulative area reduction in the temperature range of 750 ° C. to less than 900 ° C. in the treatment [2] is 90% or more, the divided MnS Will be stretched and the aspect ratio will increase, making it difficult to obtain the desired form and distribution of MnS.

また、〔2〕の処理における累積減面率が90%未満であっても、その加工温度が900℃以上の場合には、MnSがより一層延伸しやすくなるので、アスペクト比が大きくなって、所望のMnSの形態と分布を得ることが困難となる。しかも、MnSを核とした粒内フェライトの生成を促進することができないので、フェライト率を向上させることも困難となる。   Further, even if the cumulative area reduction ratio in the treatment of [2] is less than 90%, when the processing temperature is 900 ° C. or higher, MnS is more easily stretched, so the aspect ratio is increased, It becomes difficult to obtain the desired form and distribution of MnS. Moreover, since it is not possible to promote the formation of intragranular ferrite with MnS as a nucleus, it is difficult to improve the ferrite rate.

加工温度を750℃未満とすることは、オーステナイト単相域での加工とはならず、加工オーステナイトからのフェライト変態を起こさせることができないので、累積減面率で5%以上90%未満の加工を行う前記900℃未満の温度域の下限温度は、750℃とする。   When the processing temperature is less than 750 ° C., it is not processing in the austenite single-phase region, and ferrite transformation from the processed austenite cannot be caused. The lower limit temperature of the temperature range below 900 ° C. is 750 ° C.

また、加工オーステナイトからのフェライト変態を起こさせるため、750℃以上900℃未満の温度域で行う前記熱間加工における累積減面率の下限は、5%とする。   Further, in order to cause ferrite transformation from the processed austenite, the lower limit of the cumulative area reduction in the hot working performed in a temperature range of 750 ° C. or higher and lower than 900 ° C. is set to 5%.

なお、この〔2〕の処理における熱間加工は、前記〔1〕の処理から連続して行ってもよいし、前記〔1〕の処理の後で一旦温度降下したものを、例えば、1100〜800℃に再度加熱してから施してもよい。   In addition, the hot working in the process [2] may be performed continuously from the process [1], or the temperature once lowered after the process [1] You may apply after heating again at 800 degreeC.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1に示す化学組成を有する鋼1〜12を真空溶解炉によって溶解し、直径約230mmの円筒状インゴットを作製した。   Steels 1 to 12 having the chemical composition shown in Table 1 were melted in a vacuum melting furnace to produce a cylindrical ingot having a diameter of about 230 mm.

なお、表1中の鋼1〜3および鋼9〜12は、化学組成が本発明で規定する範囲内にある鋼である。一方、鋼4〜8は、Sの含有量が本発明で規定する条件から外れた鋼である。   In addition, the steel 1-3 in Table 1 and the steel 9-12 are steel which has a chemical composition in the range prescribed | regulated by this invention. On the other hand, Steels 4 to 8 are steels in which the S content deviates from the conditions specified in the present invention.

Figure 2008231544
Figure 2008231544

上記のインゴットを、1200〜1250℃に加熱して2時間保持した後、熱間鍛造を行い、厚さ100mm×幅100mm、厚さ60mm×幅60mmおよび厚さ30mm×幅60mmの角材を製造した。   After heating said ingot to 1200-1250 degreeC and hold | maintaining for 2 hours, hot forging was performed and the square material of thickness 100mm x width 100mm, thickness 60mm x width 60mm, and thickness 30mm x width 60mm was manufactured. .

熱間鍛造に際しては、鍛造中の温度が900℃を下回ることがないように、最初の加熱温度と同じ温度に再加熱して鍛造加工を繰り返した。したがって、上記の厚さ100mm×幅100mm、厚さ60mm×幅60mmおよび厚さ30mm×幅60mmの角材の900℃以上の温度域での累積減面率はそれぞれ、75%、90%および95%である。   During hot forging, the forging process was repeated by reheating to the same temperature as the initial heating temperature so that the temperature during forging did not fall below 900 ° C. Therefore, the cumulative area reduction ratios in the temperature range of 900 ° C. or higher of the above-mentioned square members having a thickness of 100 mm × width of 100 mm, thickness of 60 mm × width of 60 mm, and thickness of 30 mm × width of 60 mm are 75%, 90% and 95%, respectively. It is.

なお、上記の熱間鍛造の終了温度は、加熱温度、製造した角材の寸法(したがって、総減面率)により異なるが、全て1050℃を下回らないようにした。   In addition, although the completion temperature of said hot forging changes with heating temperature and the dimension (thus total area reduction rate) of the manufactured square bar, it was made not to fall below 1050 degreeC.

熱間鍛造終了後は、大気中での放冷または水冷によって室温まで冷却した。   After completion of hot forging, the product was cooled to room temperature by cooling in the air or water cooling.

表2に、熱間鍛造の加熱温度、900℃以上の温度域での累積減面率および900℃以上の温度域での保持時間の詳細を示す。   Table 2 shows details of the heating temperature for hot forging, the cumulative area reduction in a temperature range of 900 ° C. or higher, and the holding time in a temperature range of 900 ° C. or higher.

なお、表2において900℃以上の温度域での保持時間が3〜4minの各試験番号が熱間鍛造終了後に大気中で放冷したものである。また、900℃以上の温度域での保持時間が3secの各試験番号が熱間鍛造終了後に水冷したものである。   In Table 2, each test number having a holding time of 3 to 4 minutes in a temperature range of 900 ° C. or higher is left to cool in the air after hot forging. In addition, each test number having a holding time of 3 sec in a temperature range of 900 ° C. or higher is water-cooled after completion of hot forging.

なお、既に述べたように、上記の各温度は、対象となるインゴットやそれを熱間鍛造したものの「表面温度」を指す。   In addition, as already stated, each said temperature points out the "surface temperature" of what became the target ingot and it hot forged.

Figure 2008231544
Figure 2008231544

上記のようにして得た厚さ100mm×幅100mm、厚さ60mm×幅60mmおよび厚さ30mm×幅60mmの角材について、その厚さおよび幅の中央部から試験片を切り出し、樹脂に埋め込んで熱間鍛造方向に平行な面、つまり、鍛錬軸に平行な面が観察面になるように鏡面研磨した後、ナイタルで腐食し、JIS G 0551(2005)記載の「鋼−結晶粒度の顕微鏡試験方法」に準じて、0.8mm径の円に相当する面積の視野を画像解析してフェライト率を算出した。   About the square material of thickness 100 mm × width 100 mm, thickness 60 mm × width 60 mm and thickness 30 mm × width 60 mm obtained as described above, a test piece is cut out from the central portion of the thickness and width, embedded in resin, and heated. The surface parallel to the forging direction, that is, the surface parallel to the forging axis is mirror-polished so that it becomes the observation surface, and then corroded with nital, and described in JIS G 0551 (2005). The ferrite ratio was calculated by image analysis of the field of view corresponding to a circle with a diameter of 0.8 mm.

また、前記の厚さ100mm×幅100mm、厚さ60mm×幅60mmおよび厚さ30mm×幅60mmの角材の残りの部分を、1050℃に加熱して30min保持した後、800℃にて、いずれも減面率が40%の熱間圧延を施し、それぞれ、厚さ52mm×幅115mm、厚さ31mm×幅70mmおよび厚さ16mm×幅68mmの鋼板に仕上げた。   In addition, the remaining portions of the square material having a thickness of 100 mm × width of 100 mm, thickness of 60 mm × width of 60 mm, and thickness of 30 mm × width of 60 mm were heated to 1050 ° C. and held for 30 minutes, and then at 800 ° C. Hot rolling with a reduction in area of 40% was performed to finish steel sheets each having a thickness of 52 mm × width of 115 mm, thickness of 31 mm × width of 70 mm, and thickness of 16 mm × width of 68 mm.

なお、上記の800℃における40%の減面率は、本発明(2)でいう900℃未満の温度域での累積減面率に相当するものである。なお、前記の表2に、この熱間圧延を併記した。   The 40% area reduction rate at 800 ° C. corresponds to the cumulative area reduction rate in the temperature range below 900 ° C. in the present invention (2). In Table 2, the hot rolling is also shown.

次いで、上記のようにして得た各圧延鋼板の中央部から試験片を切り出し、樹脂に埋め込んで熱間圧延方向に平行な面、つまり、圧延方向の面が観察面になるように鏡面研磨して、JIS G 0555(2003)記載の「鋼の非金属介在物の顕微鏡試験方法」に準じて、上記の観察面を倍率400倍で64視野、合計で1.44mm2相当の面積を共焦点顕微鏡を用いて観察し、画像処理によりMnSの形態と分布を求めた。また、上記の鏡面研磨した面をナイタルで腐食し、マトリックスの組織を観察するとともに、JIS G 0551(2005)記載の「鋼−結晶粒度の顕微鏡試験方法」に準じて、0.8mm径の円に相当する面積の視野を画像解析してフェライト率を算出した。 Next, a test piece is cut out from the center of each rolled steel plate obtained as described above, embedded in resin, and mirror-polished so that the surface parallel to the hot rolling direction, that is, the surface in the rolling direction becomes the observation surface. According to JIS G 0555 (2003), “Microscopic test method for non-metallic inclusions in steel”, the observation surface is 64 fields at a magnification of 400 times, and a total area equivalent to 1.44 mm 2 is confocal. Observation was made using a microscope, and the morphology and distribution of MnS were determined by image processing. In addition, the mirror-polished surface is corroded with nital, the matrix structure is observed, and a circle with a diameter of 0.8 mm is used in accordance with “steel-crystal grain size microscopic test method” described in JIS G 0551 (2005). The ferrite ratio was calculated by image analysis of the visual field of the area corresponding to.

また、各圧延鋼板の厚さ方向の中央部の圧延方向と平行な方向から、JIS Z 2202(1998)に記載の幅が10mmの「Uノッチ試験片」を切り出し、100℃にてシャルピー衝撃試験を実施した。   Further, a “U-notch test piece” having a width of 10 mm described in JIS Z 2202 (1998) was cut out from a direction parallel to the rolling direction of the central portion in the thickness direction of each rolled steel sheet, and a Charpy impact test was performed at 100 ° C. Carried out.

表3に、上記の各試験結果をまとめて示す。   Table 3 summarizes the above test results.

なお、熱間圧延した鋼板のマトリックスの組織は全て、「フェライト・パーライト組織」であった。このため、表3においては、上記熱間圧延した鋼板のマトリックス組織の記載を省略した。シャルピー試験では、全ての試験片について延性破面が得られたことから、表3においては、100℃での吸収エネルギーを上部棚エネルギー(UUSE)と表記した。 The matrix structure of the hot-rolled steel sheet was all “ferrite / pearlite structure”. For this reason, in Table 3, description of the matrix structure of the hot-rolled steel sheet was omitted. In the Charpy test, since ductile fracture surfaces were obtained for all the test pieces, in Table 3, the absorbed energy at 100 ° C. was expressed as upper shelf energy ( U E USE ).

また、図3に、900℃以上の温度域で累積減面率90%以上の熱間加工を受けた後の、900℃以上の温度域での保持時間がMnSの形態と分布に及ぼす影響の一例として、試験番号3および試験番号12の場合を示す。なお、同図(a)は試験番号3の場合で、前記の保持時間は3minである。同図(b)は試験番号12の場合で、前記の保持時間は3secである。   FIG. 3 shows the influence of the retention time in the temperature range of 900 ° C. or higher on the shape and distribution of MnS after the hot working with a cumulative area reduction of 90% or higher in the temperature range of 900 ° C. or higher. As an example, the case of test number 3 and test number 12 is shown. FIG. 4A shows the case of test number 3 and the holding time is 3 min. FIG. 5B shows the case of test number 12, and the holding time is 3 sec.

Figure 2008231544
Figure 2008231544

表3から、化学組成が本発明で規定する範囲内にある鋼1〜3を用いた試験番号1〜3の場合、0.03%以上のSを含有するにも拘わらず、MnSの形態と分布が本発明(1)で規定する範囲内にあって、熱間鍛造後に対して熱間圧延後のフェライト率も増加しているので、上部棚エネルギーは108.8〜119.2Jであり、同等のS含有量の鋼9〜12を用いた試験番号9〜12のそれより高いばかりか、S含有量が0.008〜0.018%と低い鋼4〜8を用いた試験番号4〜8のそれをも上回っており、靱性に優れていることが明らかである。   From Table 3, in the case of Test Nos. 1 to 3 using steels 1 to 3 whose chemical composition is within the range specified in the present invention, the form of MnS, despite containing 0.03% or more of S, Since the distribution is within the range specified in the present invention (1) and the ferrite ratio after hot rolling is increased with respect to after hot forging, the upper shelf energy is 108.8 to 119.2 J, Test numbers 4 to 8 using steels 4 to 8 which are not only higher than those of test numbers 9 to 12 using steels 9 to 12 having the same S content, but also have a low S content of 0.008 to 0.018%. It is higher than that of 8 and it is clear that the toughness is excellent.

これに対して、Sの含有量が本発明で規定する条件から外れた鋼4〜8を用いた試験番号4〜8の場合は、MnSの形態と分布に拘わらず、上部棚エネルギーは高々95.2Jでしかない。   On the other hand, in the case of test numbers 4 to 8 using steels 4 to 8 whose S content deviates from the conditions specified in the present invention, the upper shelf energy is 95 at most regardless of the form and distribution of MnS. Only 2J.

また、試験番号9〜12の場合、用いた鋼9〜12の化学組成は本発明で規定する範囲内にあるものの、MnSの形態と分布が本発明(1)で規定する範囲から外れているため、上部棚エネルギーは低い。   Moreover, in the case of test numbers 9-12, although the chemical composition of the steels 9-12 used was in the range prescribed | regulated by this invention, the form and distribution of MnS are outside the range prescribed | regulated by this invention (1). Therefore, the upper shelf energy is low.

すなわち、鋼9および10を用いた試験番号9および10の場合は、最大長さ方向に垂直な幅が2μm以下であるMnSの面積が全MnS面積に対して75%を下回っているため、上部棚エネルギーはそれぞれ、79.2Jおよび80Jであって、S含有量が0.008〜0.018%と低い鋼4〜8を用いた試験番号4〜8のそれより低く、靱性が極めて劣るものである。   That is, in the case of test numbers 9 and 10 using steels 9 and 10, since the area of MnS whose width perpendicular to the maximum length direction is 2 μm or less is less than 75% with respect to the total MnS area, Shelf energy is 79.2 J and 80 J, respectively, and the S content is lower than that of test numbers 4 to 8 using steels 4 to 8 with a low S content of 0.008 to 0.018%, and the toughness is extremely inferior It is.

なお、上記の試験番号9および10の場合に、全MnS面積に対する最大長さ方向に垂直な幅が2μm以下であるMnSの面積が小さいのは、表2に示したように、熱間鍛造における900℃以上の温度域での累積減面率が75%と低いので、MnSの幅を効果的に小さくすることができなかったことに基づく。   In the case of the test numbers 9 and 10, the area of MnS whose width perpendicular to the maximum length direction with respect to the total MnS area is 2 μm or less is small as shown in Table 2 in hot forging. This is based on the fact that the width of MnS could not be effectively reduced because the cumulative area reduction in the temperature range of 900 ° C. or higher is as low as 75%.

同様に、鋼11および12を用いた試験番号11および12の場合も、アスペクト比が10以下のMnSの面積が全MnS面積に対して50%を下回っているため、上部棚エネルギーはそれぞれ、84.8Jおよび74.4Jであって、S含有量が0.008〜0.018%と低い鋼4〜8を用いた試験番号4〜8のそれより低く、靱性が極めて劣るものである。   Similarly, in the case of test numbers 11 and 12 using steels 11 and 12, since the area of MnS having an aspect ratio of 10 or less is less than 50% with respect to the total MnS area, the upper shelf energy is 84 respectively. 8J and 74.4J, and the S content is lower than that of test numbers 4 to 8 using steels 4 to 8 having a low content of 0.008 to 0.018%, and the toughness is extremely inferior.

なお、上記の試験番号11および12の場合に、全MnS面積に対するアスペクト比が10以下のMnSの面積が小さいのは、表2に示したように、熱間鍛造終了後の900℃以上の温度域での保持時間が3secと極めて短いので、幅が短いMnSの場合であっても、それが分断する時間がないために、アスペクト比の大きなまま残存してしまうことに基づく。   In the case of the test numbers 11 and 12, the area of MnS having an aspect ratio of 10 or less with respect to the total MnS area is small, as shown in Table 2, at a temperature of 900 ° C. or higher after completion of hot forging. Since the holding time in the region is as extremely short as 3 sec, even when MnS has a short width, it does not have time to divide it, so that it remains based on a large aspect ratio.

本発明の非調質鋼材は、質量%で、0.03%以上のSを含有するにも拘わらず、圧延や鍛造など熱間加工後の調質処理を省略しても、高い上部棚エネルギーを有するので、自動車、産業機械および建設機械などの非調質機械部品の素材として好適であり、製造コスト削減に大きく寄与する。なお、この非調質鋼材は本発明の方法によって製造することができる。   Although the non-heat treated steel material of the present invention contains 0.03% or more of S by mass%, high upper shelf energy can be obtained even if heat treatment after hot working such as rolling or forging is omitted. Therefore, it is suitable as a material for non-tempered machine parts such as automobiles, industrial machines and construction machines, and greatly contributes to a reduction in manufacturing costs. In addition, this non-tempered steel material can be manufactured by the method of the present invention.

粒径の微細化による延性脆性遷移温度の低下に基づく靱性の向上と、MnSによる上部棚エネルギーが低くなることに基づく靱性の低下を模式的に示す図である。It is a figure which shows typically the improvement of toughness based on the fall of the ductile brittle transition temperature by refinement | miniaturization of a particle size, and the fall of toughness based on the upper shelf energy by MnS becoming low. MnSのアスペクト比と幅についての説明する図である。It is a figure explaining the aspect-ratio and width | variety of MnS. 900℃以上の温度域で累積減面率90%以上の熱間加工を受けた後の、900℃以上の温度域での保持時間がMnSの形態と分布に及ぼす影響の一例を示す図である。(a)は実施例の試験番号3の場合で、前記の保持時間は3minである。(b)は実施例の試験番号12の場合で、前記の保持時間は3secである。It is a figure which shows an example of the influence which the holding time in the temperature range of 900 degreeC or more has received on the form and distribution of MnS after receiving the hot working of the cumulative surface reduction rate of 90% or more in the temperature range of 900 degreeC or more. . (A) is the case of test number 3 of an Example, The said holding time is 3 minutes. (B) is the case of test number 12 of the Example, and the holding time is 3 sec.

Claims (2)

質量%で、C:0.30〜0.60%、Si:0.05〜0.5%、Mn:0.2〜1.5%、P:0.035%以下、S:0.03〜0.10%、Ti:0.02%以下、Al:0.05%以下およびN:0.03%以下を含有し、残部はFeおよび不純物からなり、熱間加工方向に平行な面におけるMnSの形態と分布が下記〈1〉および〈2〉の条件を満たすとともに、マトリックスの組織が、フェライトの割合が40〜60%のフェライト・パーライト組織であることを特徴とする非調質鋼材。
〈1〉アスペクト比が10以下のMnSの面積が全MnS面積に対して50%以上であること、
〈2〉最大長さ方向に垂直な幅が2μm以下であるMnSの面積が全MnS面積に対して75%以上であること。
In mass%, C: 0.30 to 0.60%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.5%, P: 0.035% or less, S: 0.03 -0.10%, Ti: 0.02% or less, Al: 0.05% or less, and N: 0.03% or less, with the balance being composed of Fe and impurities in a plane parallel to the hot working direction A non-tempered steel material in which the form and distribution of MnS satisfy the following conditions <1> and <2>, and the matrix structure is a ferrite pearlite structure with a ferrite ratio of 40 to 60%.
<1> The area of MnS having an aspect ratio of 10 or less is 50% or more based on the total MnS area;
<2> The area of MnS whose width perpendicular to the maximum length direction is 2 μm or less is 75% or more with respect to the total MnS area.
質量%で、C:0.30〜0.60%、Si:0.05〜0.5%、Mn:0.2〜1.5%、P:0.035%以下、S:0.03〜0.10%、Ti:0.02%以下、Al:0.05%以下およびN:0.03%以下を含有し、残部はFeおよび不純物からなる素材鋼を、1000〜1250℃に加熱して900℃以上の温度域で累積減面率90%以上の熱間加工を行った後、900℃以上の温度域で3〜10min保持し、その後、さらに750℃以上900℃未満の温度域で累積減面率5%以上90%未満の熱間加工を行うことを特徴とする請求項1に記載の非調質鋼材の製造方法。   In mass%, C: 0.30 to 0.60%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.5%, P: 0.035% or less, S: 0.03 ~ 0.10%, Ti: 0.02% or less, Al: 0.05% or less, and N: 0.03% or less, with the balance being heated to 1000 to 1250 ° C with steel made of Fe and impurities After performing hot working with a cumulative area reduction ratio of 90% or more in a temperature range of 900 ° C. or higher, hold for 3 to 10 minutes in a temperature range of 900 ° C. or higher, and then further in a temperature range of 750 ° C. or higher and lower than 900 ° C. The method for producing a non-tempered steel material according to claim 1, wherein hot working is performed at a cumulative area reduction of 5% or more and less than 90%.
JP2007075741A 2007-03-23 2007-03-23 Non-tempered steel and manufacturing method thereof Active JP4793298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075741A JP4793298B2 (en) 2007-03-23 2007-03-23 Non-tempered steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075741A JP4793298B2 (en) 2007-03-23 2007-03-23 Non-tempered steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008231544A true JP2008231544A (en) 2008-10-02
JP4793298B2 JP4793298B2 (en) 2011-10-12

Family

ID=39904698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075741A Active JP4793298B2 (en) 2007-03-23 2007-03-23 Non-tempered steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4793298B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043302A (en) * 2008-08-11 2010-02-25 Sumitomo Metal Ind Ltd Steel material to be hot-forged and manufacturing method therefor
JP2012106283A (en) * 2010-10-28 2012-06-07 Jx Nippon Mining & Metals Corp Rolled copper foil
JP2013071138A (en) * 2011-09-27 2013-04-22 Jx Nippon Mining & Metals Corp Rolled copper foil
KR101665886B1 (en) * 2015-09-04 2016-10-13 주식회사 포스코 Non-quenched and tempered steel having excellent cold workability and impact toughness and method for manufacturing same
JP6813127B1 (en) * 2019-11-13 2021-01-13 日本製鉄株式会社 Steel
WO2023234702A1 (en) * 2022-05-31 2023-12-07 주식회사 포스코 Non-quenched and non-tempered steel wire rod for hot forging with excellent machinability and impact toughness and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043302A (en) * 2008-08-11 2010-02-25 Sumitomo Metal Ind Ltd Steel material to be hot-forged and manufacturing method therefor
JP2012106283A (en) * 2010-10-28 2012-06-07 Jx Nippon Mining & Metals Corp Rolled copper foil
JP2013071138A (en) * 2011-09-27 2013-04-22 Jx Nippon Mining & Metals Corp Rolled copper foil
KR101665886B1 (en) * 2015-09-04 2016-10-13 주식회사 포스코 Non-quenched and tempered steel having excellent cold workability and impact toughness and method for manufacturing same
JP6813127B1 (en) * 2019-11-13 2021-01-13 日本製鉄株式会社 Steel
WO2021095186A1 (en) * 2019-11-13 2021-05-20 日本製鉄株式会社 Steel stock
WO2023234702A1 (en) * 2022-05-31 2023-12-07 주식회사 포스코 Non-quenched and non-tempered steel wire rod for hot forging with excellent machinability and impact toughness and method for manufacturing same

Also Published As

Publication number Publication date
JP4793298B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
KR101965520B1 (en) Rolled steel bar or rolled wire material for cold-forged component
CN112877602A (en) High-strength seamless steel pipe for oil well and method for producing same
JP2007302974A (en) High strength steel plate having excellent delayed fracture resistance and method for producing the same
JP5620336B2 (en) Steel parts for high fatigue strength and high toughness machine structure and manufacturing method thereof
KR101965521B1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5152441B2 (en) Steel parts for machine structure and manufacturing method thereof
JP2010216008A (en) Stock steel sheet for high strength machine component, method for producing the same, and method for producing high strength machine component
KR20080034958A (en) Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
JP4793298B2 (en) Non-tempered steel and manufacturing method thereof
JP5035159B2 (en) High-strength steel rough product and method for producing the same
JP2019178405A (en) Production method of steel wire
JP5801529B2 (en) Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
JP5152440B2 (en) Steel parts for machine structure and manufacturing method thereof
JP2008240130A (en) Non-heat treated steel material
JP2012193404A (en) Seamless steel pipe and method for manufacturing the same
JP5257460B2 (en) Method of manufacturing age-hardening steel and machine parts
JP4752800B2 (en) Non-tempered steel
JP5050515B2 (en) Non-tempered steel containing V for crankshaft
CN108699650B (en) Rolled wire
JP5589335B2 (en) Manufacturing method of high toughness steel
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP2010280978A (en) Non-heat-treated bar steel for direct cutting
JP2009024213A (en) High carbon steel with excellent fracture separability, and its manufacturing method
JP5097047B2 (en) Steel for hot forging and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4793298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350