JP2008228419A - Torque control method of motor based on model prediction control - Google Patents
Torque control method of motor based on model prediction control Download PDFInfo
- Publication number
- JP2008228419A JP2008228419A JP2007061642A JP2007061642A JP2008228419A JP 2008228419 A JP2008228419 A JP 2008228419A JP 2007061642 A JP2007061642 A JP 2007061642A JP 2007061642 A JP2007061642 A JP 2007061642A JP 2008228419 A JP2008228419 A JP 2008228419A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- current
- torque
- control
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
本発明は家庭用電化製品中に含まれる、又は産業用として広く用いられるモータのトルク(電流)制御技術に関するものである。 The present invention relates to a motor torque (current) control technology included in household appliances or widely used for industrial purposes.
永久磁石の性能向上や価格の低下に伴い高効率運転が可能な永久磁石同期モータの需要が高速駆動用途にたいしても高まっているが、従来のように電流誤差を基に生成した電圧指令値と三角波キャリアを比較しスイッチングベクトルを決定する三角波比較PWM方式では、原理的にキャリア周波数と駆動周波数が近接するような場合、所望の制御性能の実現は困難である。 The demand for permanent magnet synchronous motors capable of high-efficiency operation is increasing even for high-speed drive applications as the performance of permanent magnets improves and the price decreases. In the triangular wave comparison PWM method in which the carrier is compared and the switching vector is determined, it is difficult to realize the desired control performance in principle when the carrier frequency and the drive frequency are close to each other.
さらに、リンク電圧から決まる出力電圧上限値に対して速度起電力が大きくなるに従い、電圧余裕は小さくなるため電流過渡応答時に電圧飽和が発生しやすくなるが、従来の三角波比較PWM方式では上記特性を考慮し制御系が設計されていないため、適切なスイッチングができず制御性能の劣化を招くばかりでなく最悪の場合、制御不能に陥ることもある。これらの問題は,制御系設計の際にインバータの特性(電圧上限など)を考慮していない点にある. Furthermore, as the speed electromotive force increases with respect to the output voltage upper limit determined from the link voltage, the voltage margin becomes smaller and voltage saturation is likely to occur during current transient response. However, the conventional triangular wave comparison PWM method has the above characteristics. Since the control system is not designed in consideration, proper switching cannot be performed, and control performance is deteriorated. In the worst case, control may be disabled. These problems are that the characteristics of the inverter (such as the upper voltage limit) are not taken into account when designing the control system.
上記記載の問題点解決方法としては、例えば下記非特許文献1がある。ここでは、上記問題が発生する駆動領域においても、モータの数式モデルに基づき電圧位相を高速に変化することで高い電流(トルク)制御性能を実現している。 As a problem solving method described above, for example, there is the following Non-Patent Document 1. Here, even in the drive region where the above problem occurs, high current (torque) control performance is realized by changing the voltage phase at high speed based on the mathematical model of the motor.
しかし,上述の非特許文献は定常時における数式モデルに基づいた手法であるため、その電流(トルク)応答は制限を受ける。また、定常時においても選択されるスイッチングベクトルの最適性は補償されていない。 However, since the above-mentioned non-patent document is a method based on a mathematical model in a steady state, its current (torque) response is limited. Further, the optimality of the selected switching vector is not compensated even in the steady state.
そこで,本発明の目的は、インバータの特性や過渡状態を考慮し、なおかつスイッチングベクトルの選択において最適性を補償した新たな電流(トルク)制御法の実現である。 Therefore, an object of the present invention is to realize a new current (torque) control method that takes into account the characteristics and transient state of the inverter and compensates for the optimality in the selection of the switching vector.
本発明に係わるモータの電流(トルク)制御方法は、インバータを使用した三相交流駆動モータの回転動作制御系において、すべてのスイッチングモードの時系列を導出する第1ステップと、該モータに流れる電流、ロータ磁極位置および回転速度の情報を基に、第1ステップで導出された各時系列に対する未来の電流を導出する第2ステップと、第2ステップで導出された未来の電流値から最適スイッチングベクトルを導出する第3ステップと、第3ステップで導出されたスイッチングベクトルを回転動作制御系に導入する第4ステップとで構成されることを特徴とするモータのトルク制御方法である。更に、前記モータが永久磁石同期モータであることを特徴とするモータのトルク制御方法である。 The motor current (torque) control method according to the present invention includes a first step of deriving time series of all switching modes in a rotational operation control system of a three-phase AC drive motor using an inverter, and a current flowing through the motor. A second step for deriving a future current for each time series derived in the first step based on information on the rotor magnetic pole position and the rotational speed, and an optimum switching vector from the future current value derived in the second step. This is a torque control method for a motor characterized by comprising a third step for deriving and a fourth step for introducing the switching vector derived in the third step into the rotational motion control system. Furthermore, the motor torque control method is characterized in that the motor is a permanent magnet synchronous motor.
本発明によれば,従来手法では実現が困難な駆動領域における電流(トルク)制御を、インバータの特性や過渡応答を考慮した最適制御として実現可能であるため、従来に比して高い電流(トルク)制御性能が期待できる。 According to the present invention, the current (torque) control in the drive region, which is difficult to realize with the conventional method, can be realized as the optimum control in consideration of the characteristics of the inverter and the transient response. ) Control performance can be expected.
図1にモータ駆動システムの概要図を示す。モータはインバータ部分の計6個のスイッチのオン,オフにより制御され,上下スイッチの片方がオンすると他方はオフする.したがってスイッチングモードは8通りとなる。 FIG. 1 shows a schematic diagram of a motor drive system. The motor is controlled by turning on and off a total of six switches in the inverter section. When one of the upper and lower switches is turned on, the other is turned off. Therefore, there are 8 switching modes.
先ずステップ1について説明する。本方法では,モータの数式モデルを利用し,未来の電流(トルク)挙動を考慮し最適なスイッチングベクトルを選択する。数式1はd−q座標連続系におけるモータの数式モデルを示している。 First, step 1 will be described. In this method, a mathematical model of the motor is used, and an optimal switching vector is selected in consideration of future current (torque) behavior. Equation 1 shows a mathematical model of the motor in the dq coordinate continuous system.
数式1において,id,iqは,それぞれd軸電流,q軸電流である。Raは電機子巻線抵抗, LdおよびLqはd軸およびq軸インダクタンス, vdおよびvqはd軸およびq軸電圧を表し,ωreおよびφはそれぞれモータ回転角周波数および鎖交磁束数を表す。
Tsをサンプリング時間とし数式2を用いて数式1を離散化すると数式3が得られる。
Equation 3 is obtained by discretizing Equation 1 using
なお
n=0,1,..,7であり入力電圧ベクトルvn dq(t)は第nベクトルを意味する。
次に第2ステップについて説明する。数式3において,ある入力電圧ベクトルを与えると1ステップ未来の電流挙動が求まる.この操作をもう一度繰り返すと数式4に示すように2ステップ未来の電流挙動が求まる。
n = 0,1, .., 7, and the input voltage vector v n dq (t) means the n-th vector.
Next, the second step will be described. In Equation 3, if a certain input voltage vector is given, the current behavior of one step future can be obtained. When this operation is repeated once more, the current behavior of the future in two steps is obtained as shown in Equation 4.
したがって,あらかじめ予測ステップ数を決めておけば,上記繰返し計算によりあらゆる入力系列に対する電流挙動が導出可能である.そこで,次に得られた電流挙動と所望の電流指令が最も近い入力系列を数式5に示す評価関数を用いて一意に決定する。
数式5はd軸およびq軸電流の指令値との誤差(Δidq)の二乗和を予測毎に計算し加算する。この評価関数を用いることで,電流誤差を最小化可能なスイッチングが実現される(第3ステップ)。
モデル予測制御を用いた電流制御系を含んだモータ駆動システムのブロック図を図2に示す(第4ステップ)。なお,図2において右肩に“*”を含む文字(ωre *とidq *)は指令値を表している。
Formula 5 calculates and adds the sum of squares of errors (Δi dq ) with the command values of the d-axis and q-axis currents for each prediction. By using this evaluation function, switching capable of minimizing the current error is realized (third step).
FIG. 2 shows a block diagram of a motor drive system including a current control system using model predictive control (fourth step). In FIG. 2, characters (ω re * and i dq * ) including “*” on the right shoulder represent command values.
図3に本実施例に用いた装置を示す.今後自動車や鉄道の主機あるいはエアコンのコンプレッサを初め様々な分野での使用が期待される埋込磁石同期モータ(IPMSM :Interior Permanent Magnet Synchronous Motor )を制御対象とした。また,モータのフレームは防振ゴムにより支持され,負荷側のフレームはボルトを用いてベースに固定されている。ここで,ロータ位置の検出を行うためにロータリーエンコーダを使用した。 Figure 3 shows the equipment used in this example. In the future, interior permanent magnet synchronous motors (IPMSM), which are expected to be used in various fields such as automobiles and railway main machines or air conditioner compressors, were controlled. The motor frame is supported by anti-vibration rubber, and the load-side frame is fixed to the base using bolts. Here, a rotary encoder was used to detect the rotor position.
ここでは、埋込磁石同期モータ(IPMSM )を,1500[rpm],0.02[Nm]でモデル予測制御を用いて一定駆動させた場合に,負荷をステップ状に3.5[Nm]まで変化した際のd軸およびq軸電流応答の結果を図4(a)に示す。なお,参考までに図4(b)にシミュレーション結果についても示す。 Here, when the embedded magnet synchronous motor (IPMSM) is driven at a constant speed of 1500 [rpm] and 0.02 [Nm] using model predictive control, the load changes to 3.5 [Nm] stepwise. The results of d-axis and q-axis current responses are shown in FIG. For reference, the simulation results are also shown in FIG.
図4(a)から,急な負荷変動に対しても,インバータの性質を考慮し,スイッチングするため脱調することなく指令値に実電流が追従している。 From Fig. 4 (a), the actual current follows the command value without step-out because of switching due to the nature of the inverter even in response to sudden load fluctuations.
また、図4(a)および図4(b)から,シミュレーションと実験結果ではd軸およびq軸電流の脈動成分の振幅値に違いが見られるものの,概ね一致しているとはいえ、この脈動の原因としては,デットタイムの影響や磁気飽和によるインダクタンス変化および空間高調波におけるモデル化誤差などが考えられる。 4 (a) and 4 (b), there is a difference between the amplitude values of the pulsation components of the d-axis and q-axis currents in the simulation and the experimental results. Possible causes of this are the effects of dead time, inductance changes due to magnetic saturation, and modeling errors in spatial harmonics.
本手法は,モータの数式モデルに基づきスイッチングモードを決定する。したがって上記のモデル化誤差は直接制御性能の劣化につながるが,今後のさらなる研究によりモータの特性をより正確にモデル化できるようになれば,それにともない本手法の制御性能は格段に上昇する。 This method determines the switching mode based on the mathematical model of the motor. Therefore, the above modeling error directly leads to deterioration of control performance. However, if further studies can model the motor characteristics more accurately, the control performance of this method will increase dramatically.
本発明によれば、永久磁石同期モータの電流(トルク)応答の向上を始め、制約条件あるいは評価関数の工夫によるスイッチング周波数低減がもたらすスイッチング素子に対する冷却装置の小型化や損失低減による効率上昇など、産業の発展に資すること極めて大である。
According to the present invention, the improvement of the current (torque) response of the permanent magnet synchronous motor, the reduction of the cooling device with respect to the switching element caused by the reduction of the switching frequency by devising the constraint condition or the evaluation function, the efficiency increase by the loss reduction, etc. Contributing to industrial development is extremely important.
Claims (2)
The motor control method according to claim 1, wherein the motor according to claim 1 is a permanent magnet synchronous motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007061642A JP2008228419A (en) | 2007-03-12 | 2007-03-12 | Torque control method of motor based on model prediction control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007061642A JP2008228419A (en) | 2007-03-12 | 2007-03-12 | Torque control method of motor based on model prediction control |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008228419A true JP2008228419A (en) | 2008-09-25 |
Family
ID=39846380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007061642A Pending JP2008228419A (en) | 2007-03-12 | 2007-03-12 | Torque control method of motor based on model prediction control |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008228419A (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010252434A (en) * | 2009-04-10 | 2010-11-04 | Denso Corp | Device for control of rotary machine |
JP2010252432A (en) * | 2009-04-10 | 2010-11-04 | Denso Corp | Device for control of rotary machine |
JP2010252433A (en) * | 2009-04-10 | 2010-11-04 | Denso Corp | Device for control of rotary machine |
JP2011019319A (en) * | 2009-07-08 | 2011-01-27 | Denso Corp | Controller for rotary machines |
JP2011036098A (en) * | 2009-08-05 | 2011-02-17 | Denso Corp | Controller for electric rotating machine |
JP2011036099A (en) * | 2009-08-05 | 2011-02-17 | Denso Corp | Control apparatus for electric rotating machine |
JP2011050121A (en) * | 2009-08-25 | 2011-03-10 | Denso Corp | Device for controlling rotary machine |
JP2011142791A (en) * | 2010-01-11 | 2011-07-21 | Denso Corp | Control device for polyphase rotating machine |
JP2011166898A (en) * | 2010-02-08 | 2011-08-25 | Denso Corp | Device for control of rotary machine |
JP2011200000A (en) * | 2010-03-18 | 2011-10-06 | Denso Corp | Control apparatus for electric rotating machine |
JP2011223718A (en) * | 2010-04-08 | 2011-11-04 | Toyo Electric Mfg Co Ltd | Controller for permanent magnet synchronous motor |
JP2011234581A (en) * | 2010-04-30 | 2011-11-17 | Denso Corp | Control unit of rotary machine |
JP2011244638A (en) * | 2010-05-20 | 2011-12-01 | Denso Corp | Control device for rotary machine |
JP2012070469A (en) * | 2010-09-21 | 2012-04-05 | Denso Corp | Controller of rotary machine |
JP2012244653A (en) * | 2011-05-16 | 2012-12-10 | Denso Corp | Controller for rotary machine |
JP2013017355A (en) * | 2011-07-06 | 2013-01-24 | Denso Corp | Controller of rotary machine |
WO2013031828A1 (en) * | 2011-08-31 | 2013-03-07 | 日立オートモティブシステムズ株式会社 | Power conversion device |
WO2013046520A1 (en) * | 2011-09-28 | 2013-04-04 | 株式会社デンソー | Motor control device and motor control method |
WO2013125183A1 (en) * | 2012-02-22 | 2013-08-29 | 株式会社デンソー | Motor control device and motor control method |
US8847527B2 (en) | 2011-09-13 | 2014-09-30 | Denso Corporation | Control system for a rotary machine |
US8917155B2 (en) | 2012-02-03 | 2014-12-23 | Denso Corporation | Magnetic component |
US8922143B2 (en) | 2011-09-13 | 2014-12-30 | Denso Corporation | Control system for a rotary machiine |
CN105790664A (en) * | 2016-03-31 | 2016-07-20 | 华中科技大学 | Permanent magnet synchronous motor model prediction control method |
CN108880374A (en) * | 2018-07-02 | 2018-11-23 | 华中科技大学 | Line inductance electromotor is containing the double vector model forecast Control Algorithms of restriction of current |
CN109039189A (en) * | 2018-07-17 | 2018-12-18 | 东南大学 | Two vector prediction control system of permanent magnet synchronous motor and method based on geometric method |
JP2019208352A (en) * | 2018-05-23 | 2019-12-05 | 株式会社神戸製鋼所 | Electric motor drive control device and method, and electric motor drive control system |
JP2020010476A (en) * | 2018-07-05 | 2020-01-16 | 富士電機株式会社 | Control device of ac motor |
CN110943663A (en) * | 2019-12-02 | 2020-03-31 | 长安大学 | Permanent magnet synchronous motor dynamic finite state set model prediction torque control method |
CN112286054A (en) * | 2020-10-20 | 2021-01-29 | 江苏科技大学 | Prediction control method based on magnetic suspension damping device |
CN113098348A (en) * | 2021-04-09 | 2021-07-09 | 沈阳工业大学 | Double three-phase permanent magnet synchronous motor predicted torque control method |
CN113258834A (en) * | 2021-05-31 | 2021-08-13 | 郑州大学 | Dead-beat model prediction torque control method based on discrete space vector modulation |
CN116027672A (en) * | 2023-03-28 | 2023-04-28 | 山东大学 | Model prediction control method based on neural network |
-
2007
- 2007-03-12 JP JP2007061642A patent/JP2008228419A/en active Pending
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8164311B2 (en) | 2009-04-10 | 2012-04-24 | Denso Corporation | Control device for electric rotating machine |
JP2010252432A (en) * | 2009-04-10 | 2010-11-04 | Denso Corp | Device for control of rotary machine |
JP2010252433A (en) * | 2009-04-10 | 2010-11-04 | Denso Corp | Device for control of rotary machine |
JP2010252434A (en) * | 2009-04-10 | 2010-11-04 | Denso Corp | Device for control of rotary machine |
US8278854B2 (en) | 2009-04-10 | 2012-10-02 | Denso Corporation | Control device for electric rotating machine |
JP2011019319A (en) * | 2009-07-08 | 2011-01-27 | Denso Corp | Controller for rotary machines |
US8427088B2 (en) | 2009-07-08 | 2013-04-23 | Denso Corporation | Apparatus for carrying out improved control of rotary machine |
JP2011036099A (en) * | 2009-08-05 | 2011-02-17 | Denso Corp | Control apparatus for electric rotating machine |
US8384327B2 (en) | 2009-08-05 | 2013-02-26 | Denso Corporation | Control apparatus for electric rotating machine |
JP2011036098A (en) * | 2009-08-05 | 2011-02-17 | Denso Corp | Controller for electric rotating machine |
US8288985B2 (en) | 2009-08-05 | 2012-10-16 | Denso Corporation | Control apparatus for electric rotating machine |
JP2011050121A (en) * | 2009-08-25 | 2011-03-10 | Denso Corp | Device for controlling rotary machine |
US8310186B2 (en) | 2009-08-25 | 2012-11-13 | Denso Corporation | Apparatus for carrying out improved control of rotary machine |
JP2011142791A (en) * | 2010-01-11 | 2011-07-21 | Denso Corp | Control device for polyphase rotating machine |
US8421386B2 (en) | 2010-01-11 | 2013-04-16 | Denso Corporation | Control apparatus for multi-phase rotary machine |
JP2011166898A (en) * | 2010-02-08 | 2011-08-25 | Denso Corp | Device for control of rotary machine |
US8686673B2 (en) | 2010-02-08 | 2014-04-01 | Denso Corporation | Control device for electric rotary machine |
JP2011200000A (en) * | 2010-03-18 | 2011-10-06 | Denso Corp | Control apparatus for electric rotating machine |
JP2011223718A (en) * | 2010-04-08 | 2011-11-04 | Toyo Electric Mfg Co Ltd | Controller for permanent magnet synchronous motor |
JP2011234581A (en) * | 2010-04-30 | 2011-11-17 | Denso Corp | Control unit of rotary machine |
JP2011244638A (en) * | 2010-05-20 | 2011-12-01 | Denso Corp | Control device for rotary machine |
US8441220B2 (en) | 2010-09-21 | 2013-05-14 | Denso Corporation | Control device for electric rotating machine |
JP2012070469A (en) * | 2010-09-21 | 2012-04-05 | Denso Corp | Controller of rotary machine |
JP2012244653A (en) * | 2011-05-16 | 2012-12-10 | Denso Corp | Controller for rotary machine |
US8872454B2 (en) | 2011-05-16 | 2014-10-28 | Denso Corporation | Control unit of rotary device |
JP2013017355A (en) * | 2011-07-06 | 2013-01-24 | Denso Corp | Controller of rotary machine |
JP2013051808A (en) * | 2011-08-31 | 2013-03-14 | Hitachi Automotive Systems Ltd | Control device of permanent magnet motor |
WO2013031828A1 (en) * | 2011-08-31 | 2013-03-07 | 日立オートモティブシステムズ株式会社 | Power conversion device |
CN103733505A (en) * | 2011-08-31 | 2014-04-16 | 日立汽车系统株式会社 | Power conversion device |
US8847527B2 (en) | 2011-09-13 | 2014-09-30 | Denso Corporation | Control system for a rotary machine |
US8922143B2 (en) | 2011-09-13 | 2014-12-30 | Denso Corporation | Control system for a rotary machiine |
US9628012B2 (en) | 2011-09-28 | 2017-04-18 | Denso Corporation | Motor control device and motor control method |
WO2013046520A1 (en) * | 2011-09-28 | 2013-04-04 | 株式会社デンソー | Motor control device and motor control method |
US8917155B2 (en) | 2012-02-03 | 2014-12-23 | Denso Corporation | Magnetic component |
JP2013172613A (en) * | 2012-02-22 | 2013-09-02 | Denso Corp | Motor control device and motor control method |
WO2013125183A1 (en) * | 2012-02-22 | 2013-08-29 | 株式会社デンソー | Motor control device and motor control method |
US9184687B2 (en) | 2012-02-22 | 2015-11-10 | Denso Corporation | Motor control apparatus and motor control method |
CN105790664B (en) * | 2016-03-31 | 2018-05-22 | 华中科技大学 | Permanent magnet synchronous motor model predictive control method |
CN105790664A (en) * | 2016-03-31 | 2016-07-20 | 华中科技大学 | Permanent magnet synchronous motor model prediction control method |
JP2019208352A (en) * | 2018-05-23 | 2019-12-05 | 株式会社神戸製鋼所 | Electric motor drive control device and method, and electric motor drive control system |
JP7130595B2 (en) | 2018-05-23 | 2022-09-05 | 株式会社神戸製鋼所 | MOTOR DRIVE CONTROL APPARATUS AND METHOD, AND MOTOR DRIVE CONTROL SYSTEM |
CN108880374A (en) * | 2018-07-02 | 2018-11-23 | 华中科技大学 | Line inductance electromotor is containing the double vector model forecast Control Algorithms of restriction of current |
JP2020010476A (en) * | 2018-07-05 | 2020-01-16 | 富士電機株式会社 | Control device of ac motor |
JP7180149B2 (en) | 2018-07-05 | 2022-11-30 | 富士電機株式会社 | AC motor controller |
CN109039189B (en) * | 2018-07-17 | 2021-11-26 | 东南大学 | Permanent magnet synchronous motor two-vector prediction control method based on geometric method |
CN109039189A (en) * | 2018-07-17 | 2018-12-18 | 东南大学 | Two vector prediction control system of permanent magnet synchronous motor and method based on geometric method |
CN110943663A (en) * | 2019-12-02 | 2020-03-31 | 长安大学 | Permanent magnet synchronous motor dynamic finite state set model prediction torque control method |
CN110943663B (en) * | 2019-12-02 | 2021-07-02 | 长安大学 | Permanent magnet synchronous motor dynamic finite state set model prediction torque control method |
CN112286054B (en) * | 2020-10-20 | 2022-10-04 | 江苏科技大学 | Prediction control method based on magnetic suspension damping device |
CN112286054A (en) * | 2020-10-20 | 2021-01-29 | 江苏科技大学 | Prediction control method based on magnetic suspension damping device |
CN113098348A (en) * | 2021-04-09 | 2021-07-09 | 沈阳工业大学 | Double three-phase permanent magnet synchronous motor predicted torque control method |
CN113098348B (en) * | 2021-04-09 | 2023-10-31 | 沈阳工业大学 | Predictive torque control method for double three-phase permanent magnet synchronous motor |
CN113258834A (en) * | 2021-05-31 | 2021-08-13 | 郑州大学 | Dead-beat model prediction torque control method based on discrete space vector modulation |
CN116027672A (en) * | 2023-03-28 | 2023-04-28 | 山东大学 | Model prediction control method based on neural network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008228419A (en) | Torque control method of motor based on model prediction control | |
Lai et al. | Torque ripple modeling and minimization for interior PMSM considering magnetic saturation | |
Fazil et al. | Nonlinear dynamic modeling of a single-phase permanent-magnet brushless DC motor using 2-D static finite-element results | |
Miyamasu et al. | Efficiency comparison between Brushless dc motor and Brushless AC motor considering driving method and machine design | |
JP4961292B2 (en) | Motor control device | |
Luukko | Direct torque control of permanent magnet synchronous machines-analysis and implementation | |
Fuentes et al. | Predictive speed control of a synchronous permanent magnet motor | |
Liu et al. | A seamless transition scheme of position sensorless control in industrial permanent magnet motor drives with output filter and transformer for oil pump applications | |
Siami et al. | A comparative study between direct torque control and predictive torque control for axial flux permanent magnet synchronous machines | |
Raj et al. | Improved torque control performance of direct torque control for 5-phase induction machine | |
Parsapour et al. | Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique | |
Guven et al. | An improved sensorless DTC-SVM for three-level inverter-fed permanent magnet synchronous motor drive | |
Hasanhendoei et al. | Automatic and real time phase advancing in BLDC motor by employing an electronic governor for a desired speed-torque/angle profile | |
Villani et al. | Fault-tolerant PM brushless DC drive for aerospace application | |
Lee et al. | Phase advance control to reduce torque ripple of brush-less DC motor according to winding connection, wye and delta | |
Bello et al. | Comparative Review Of PMSM And BLDCM Based On Direct Torque Control Method | |
Pałka et al. | Experimental verification of Dead-Beat predictive current controller for small power, low speed PMSM | |
Toosi et al. | Increase Performance of IPMSM by Combination of Maximum Torque per Ampere and Flux‐Weakening Methods | |
JP5800933B2 (en) | Motor control device for controlling synchronous motor | |
Niwa et al. | A study of rotor position control for switched reluctance motor | |
Cheng et al. | Model Predictive Direct Torque Control of Permanent Magnet Synchronous Motor for Torque Ripple Reduction | |
JP2007014115A (en) | Motor control device | |
Lee et al. | Design and torque ripple analysis of brush-less dc motor according to delta winding connection | |
Patel et al. | Control Theory for Permanent Magnet Synchronous Motor–A Review | |
Siami et al. | Application of direct torque control technique for three phase surface mounted AFPM synchronous motors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120307 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120703 |