JP2008228419A - Torque control method of motor based on model prediction control - Google Patents

Torque control method of motor based on model prediction control Download PDF

Info

Publication number
JP2008228419A
JP2008228419A JP2007061642A JP2007061642A JP2008228419A JP 2008228419 A JP2008228419 A JP 2008228419A JP 2007061642 A JP2007061642 A JP 2007061642A JP 2007061642 A JP2007061642 A JP 2007061642A JP 2008228419 A JP2008228419 A JP 2008228419A
Authority
JP
Japan
Prior art keywords
motor
current
torque
control
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007061642A
Other languages
Japanese (ja)
Inventor
Tadanao Zanma
忠直 残間
Kenji Kawai
健司 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Original Assignee
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC filed Critical Mie University NUC
Priority to JP2007061642A priority Critical patent/JP2008228419A/en
Publication of JP2008228419A publication Critical patent/JP2008228419A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem, wherein there is proposed a technique for speedily changing voltage phase, on the basis of a numerical expression of a motor as a technique for enabling high-performance torque (current) control, even in a motor drive region where conventional vector control is difficult to be applied, however, since this technique is based on a numerical expression model at a stationary period, restrictions may be imposed on its current (torque) response, and the optimization of a switching vector to be selected cannot be compensated, even at the stationary time. <P>SOLUTION: On the basis of a control system for controlling the rotation operation of the motor, the current flowing in the motor, the position of a rotor magnetic pole, and the rotation speed information, there is selected, as a solution for the optimization of problem, the switching vector in which an error of a future torque (current) behavior, calculated on the basis of a motor model whose transient state is taken into consideration is minimized, with respect to a torque (current) command value necessary for controlling the rotation operation of the motor with high performance, and thereby high-response torque (current) control is achieved, even in a speed range which may be the problem by inputting the switching vector into the control system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は家庭用電化製品中に含まれる、又は産業用として広く用いられるモータのトルク(電流)制御技術に関するものである。 The present invention relates to a motor torque (current) control technology included in household appliances or widely used for industrial purposes.

永久磁石の性能向上や価格の低下に伴い高効率運転が可能な永久磁石同期モータの需要が高速駆動用途にたいしても高まっているが、従来のように電流誤差を基に生成した電圧指令値と三角波キャリアを比較しスイッチングベクトルを決定する三角波比較PWM方式では、原理的にキャリア周波数と駆動周波数が近接するような場合、所望の制御性能の実現は困難である。 The demand for permanent magnet synchronous motors capable of high-efficiency operation is increasing even for high-speed drive applications as the performance of permanent magnets improves and the price decreases. In the triangular wave comparison PWM method in which the carrier is compared and the switching vector is determined, it is difficult to realize the desired control performance in principle when the carrier frequency and the drive frequency are close to each other.

さらに、リンク電圧から決まる出力電圧上限値に対して速度起電力が大きくなるに従い、電圧余裕は小さくなるため電流過渡応答時に電圧飽和が発生しやすくなるが、従来の三角波比較PWM方式では上記特性を考慮し制御系が設計されていないため、適切なスイッチングができず制御性能の劣化を招くばかりでなく最悪の場合、制御不能に陥ることもある。これらの問題は,制御系設計の際にインバータの特性(電圧上限など)を考慮していない点にある. Furthermore, as the speed electromotive force increases with respect to the output voltage upper limit determined from the link voltage, the voltage margin becomes smaller and voltage saturation is likely to occur during current transient response. However, the conventional triangular wave comparison PWM method has the above characteristics. Since the control system is not designed in consideration, proper switching cannot be performed, and control performance is deteriorated. In the worst case, control may be disabled. These problems are that the characteristics of the inverter (such as the upper voltage limit) are not taken into account when designing the control system.

上記記載の問題点解決方法としては、例えば下記非特許文献1がある。ここでは、上記問題が発生する駆動領域においても、モータの数式モデルに基づき電圧位相を高速に変化することで高い電流(トルク)制御性能を実現している。 As a problem solving method described above, for example, there is the following Non-Patent Document 1. Here, even in the drive region where the above problem occurs, high current (torque) control performance is realized by changing the voltage phase at high speed based on the mathematical model of the motor.

中沢、戸田、安岡:「電圧固定モードでの誘導電動機ベクトル制御」、電気学会論文誌、Vol.118-D No.9, 1998Nakazawa, Toda, Yasuoka: “Induction motor vector control in fixed voltage mode”, IEEJ Transactions, Vol.118-D No.9, 1998

しかし,上述の非特許文献は定常時における数式モデルに基づいた手法であるため、その電流(トルク)応答は制限を受ける。また、定常時においても選択されるスイッチングベクトルの最適性は補償されていない。 However, since the above-mentioned non-patent document is a method based on a mathematical model in a steady state, its current (torque) response is limited. Further, the optimality of the selected switching vector is not compensated even in the steady state.

そこで,本発明の目的は、インバータの特性や過渡状態を考慮し、なおかつスイッチングベクトルの選択において最適性を補償した新たな電流(トルク)制御法の実現である。 Therefore, an object of the present invention is to realize a new current (torque) control method that takes into account the characteristics and transient state of the inverter and compensates for the optimality in the selection of the switching vector.

本発明に係わるモータの電流(トルク)制御方法は、インバータを使用した三相交流駆動モータの回転動作制御系において、すべてのスイッチングモードの時系列を導出する第1ステップと、該モータに流れる電流、ロータ磁極位置および回転速度の情報を基に、第1ステップで導出された各時系列に対する未来の電流を導出する第2ステップと、第2ステップで導出された未来の電流値から最適スイッチングベクトルを導出する第3ステップと、第3ステップで導出されたスイッチングベクトルを回転動作制御系に導入する第4ステップとで構成されることを特徴とするモータのトルク制御方法である。更に、前記モータが永久磁石同期モータであることを特徴とするモータのトルク制御方法である。   The motor current (torque) control method according to the present invention includes a first step of deriving time series of all switching modes in a rotational operation control system of a three-phase AC drive motor using an inverter, and a current flowing through the motor. A second step for deriving a future current for each time series derived in the first step based on information on the rotor magnetic pole position and the rotational speed, and an optimum switching vector from the future current value derived in the second step. This is a torque control method for a motor characterized by comprising a third step for deriving and a fourth step for introducing the switching vector derived in the third step into the rotational motion control system. Furthermore, the motor torque control method is characterized in that the motor is a permanent magnet synchronous motor.

本発明によれば,従来手法では実現が困難な駆動領域における電流(トルク)制御を、インバータの特性や過渡応答を考慮した最適制御として実現可能であるため、従来に比して高い電流(トルク)制御性能が期待できる。   According to the present invention, the current (torque) control in the drive region, which is difficult to realize with the conventional method, can be realized as the optimum control in consideration of the characteristics of the inverter and the transient response. ) Control performance can be expected.

図1にモータ駆動システムの概要図を示す。モータはインバータ部分の計6個のスイッチのオン,オフにより制御され,上下スイッチの片方がオンすると他方はオフする.したがってスイッチングモードは8通りとなる。 FIG. 1 shows a schematic diagram of a motor drive system. The motor is controlled by turning on and off a total of six switches in the inverter section. When one of the upper and lower switches is turned on, the other is turned off. Therefore, there are 8 switching modes.

先ずステップ1について説明する。本方法では,モータの数式モデルを利用し,未来の電流(トルク)挙動を考慮し最適なスイッチングベクトルを選択する。数式1はd−q座標連続系におけるモータの数式モデルを示している。 First, step 1 will be described. In this method, a mathematical model of the motor is used, and an optimal switching vector is selected in consideration of future current (torque) behavior. Equation 1 shows a mathematical model of the motor in the dq coordinate continuous system.

Figure 2008228419
Figure 2008228419

数式1において,id,iqは,それぞれd軸電流,q軸電流である。Raは電機子巻線抵抗, LdおよびLqはd軸およびq軸インダクタンス, vdおよびvqはd軸およびq軸電圧を表し,ωreおよびφはそれぞれモータ回転角周波数および鎖交磁束数を表す。

Tsをサンプリング時間とし数式2を用いて数式1を離散化すると数式3が得られる。

Figure 2008228419
Figure 2008228419
In Equation 1, i d and i q are a d-axis current and a q-axis current, respectively. R a is the armature winding resistance, L d and L q are the d-axis and q-axis inductances, v d and v q are the d-axis and q-axis voltages, and ω re and φ are the motor rotational angular frequency and linkage, respectively. Represents the number of magnetic flux.

Equation 3 is obtained by discretizing Equation 1 using Equation 2 with T s as the sampling time.
Figure 2008228419
Figure 2008228419

なお
n=0,1,..,7であり入力電圧ベクトルvn dq(t)は第nベクトルを意味する。
次に第2ステップについて説明する。数式3において,ある入力電圧ベクトルを与えると1ステップ未来の電流挙動が求まる.この操作をもう一度繰り返すと数式4に示すように2ステップ未来の電流挙動が求まる。

Figure 2008228419
In addition
n = 0,1, .., 7, and the input voltage vector v n dq (t) means the n-th vector.
Next, the second step will be described. In Equation 3, if a certain input voltage vector is given, the current behavior of one step future can be obtained. When this operation is repeated once more, the current behavior of the future in two steps is obtained as shown in Equation 4.
Figure 2008228419

したがって,あらかじめ予測ステップ数を決めておけば,上記繰返し計算によりあらゆる入力系列に対する電流挙動が導出可能である.そこで,次に得られた電流挙動と所望の電流指令が最も近い入力系列を数式5に示す評価関数を用いて一意に決定する。

Figure 2008228419
Therefore, if the number of prediction steps is determined in advance, the current behavior for all input sequences can be derived by the above iterative calculation. Therefore, the input sequence closest to the next obtained current behavior and the desired current command is uniquely determined using the evaluation function shown in Formula 5.
Figure 2008228419

数式5はd軸およびq軸電流の指令値との誤差(Δidq)の二乗和を予測毎に計算し加算する。この評価関数を用いることで,電流誤差を最小化可能なスイッチングが実現される(第3ステップ)。
モデル予測制御を用いた電流制御系を含んだモータ駆動システムのブロック図を図2に示す(第4ステップ)。なお,図2において右肩に“*”を含む文字(ωre *とidq *)は指令値を表している。
Formula 5 calculates and adds the sum of squares of errors (Δi dq ) with the command values of the d-axis and q-axis currents for each prediction. By using this evaluation function, switching capable of minimizing the current error is realized (third step).
FIG. 2 shows a block diagram of a motor drive system including a current control system using model predictive control (fourth step). In FIG. 2, characters (ω re * and i dq * ) including “*” on the right shoulder represent command values.

図3に本実施例に用いた装置を示す.今後自動車や鉄道の主機あるいはエアコンのコンプレッサを初め様々な分野での使用が期待される埋込磁石同期モータ(IPMSM :Interior Permanent Magnet Synchronous Motor )を制御対象とした。また,モータのフレームは防振ゴムにより支持され,負荷側のフレームはボルトを用いてベースに固定されている。ここで,ロータ位置の検出を行うためにロータリーエンコーダを使用した。   Figure 3 shows the equipment used in this example. In the future, interior permanent magnet synchronous motors (IPMSM), which are expected to be used in various fields such as automobiles and railway main machines or air conditioner compressors, were controlled. The motor frame is supported by anti-vibration rubber, and the load-side frame is fixed to the base using bolts. Here, a rotary encoder was used to detect the rotor position.

ここでは、埋込磁石同期モータ(IPMSM )を,1500[rpm],0.02[Nm]でモデル予測制御を用いて一定駆動させた場合に,負荷をステップ状に3.5[Nm]まで変化した際のd軸およびq軸電流応答の結果を図4(a)に示す。なお,参考までに図4(b)にシミュレーション結果についても示す。 Here, when the embedded magnet synchronous motor (IPMSM) is driven at a constant speed of 1500 [rpm] and 0.02 [Nm] using model predictive control, the load changes to 3.5 [Nm] stepwise. The results of d-axis and q-axis current responses are shown in FIG. For reference, the simulation results are also shown in FIG.

図4(a)から,急な負荷変動に対しても,インバータの性質を考慮し,スイッチングするため脱調することなく指令値に実電流が追従している。   From Fig. 4 (a), the actual current follows the command value without step-out because of switching due to the nature of the inverter even in response to sudden load fluctuations.

また、図4(a)および図4(b)から,シミュレーションと実験結果ではd軸およびq軸電流の脈動成分の振幅値に違いが見られるものの,概ね一致しているとはいえ、この脈動の原因としては,デットタイムの影響や磁気飽和によるインダクタンス変化および空間高調波におけるモデル化誤差などが考えられる。   4 (a) and 4 (b), there is a difference between the amplitude values of the pulsation components of the d-axis and q-axis currents in the simulation and the experimental results. Possible causes of this are the effects of dead time, inductance changes due to magnetic saturation, and modeling errors in spatial harmonics.

本手法は,モータの数式モデルに基づきスイッチングモードを決定する。したがって上記のモデル化誤差は直接制御性能の劣化につながるが,今後のさらなる研究によりモータの特性をより正確にモデル化できるようになれば,それにともない本手法の制御性能は格段に上昇する。   This method determines the switching mode based on the mathematical model of the motor. Therefore, the above modeling error directly leads to deterioration of control performance. However, if further studies can model the motor characteristics more accurately, the control performance of this method will increase dramatically.

本発明によれば、永久磁石同期モータの電流(トルク)応答の向上を始め、制約条件あるいは評価関数の工夫によるスイッチング周波数低減がもたらすスイッチング素子に対する冷却装置の小型化や損失低減による効率上昇など、産業の発展に資すること極めて大である。
According to the present invention, the improvement of the current (torque) response of the permanent magnet synchronous motor, the reduction of the cooling device with respect to the switching element caused by the reduction of the switching frequency by devising the constraint condition or the evaluation function, the efficiency increase by the loss reduction, etc. Contributing to industrial development is extremely important.

モータ駆動システムを示す概要図である。It is a schematic diagram showing a motor drive system. 本発明の制御系を示す構成図である。It is a block diagram which shows the control system of this invention. 本実施例に用いた実験装置である。This is an experimental apparatus used in this example. 本発明による実験結果(a)およびシミュレーション結果(b)である。It is the experimental result (a) and simulation result (b) by this invention.

Claims (2)

インバータを使用した三相交流駆動モータの回転動作制御系において、すべてのスイッチングモードの時系列を導出する第1ステップと、該モータに流れる電流、ロータ磁極位置および回転速度の情報を基に、第1ステップで導出された各時系列に対する未来の電流を導出する第2ステップと、第2ステップで導出された未来の電流値から最適スイッチングベクトルを導出する第3ステップと、第3ステップで導出されたスイッチングベクトルを回転動作制御系に導入する第4ステップとで構成されることを特徴とするモータのトルク制御方法。 In the rotational operation control system of a three-phase AC drive motor using an inverter, the first step for deriving the time series of all switching modes and the information on the current flowing through the motor, the rotor magnetic pole position and the rotational speed A second step for deriving a future current for each time series derived in one step, a third step for deriving an optimum switching vector from a future current value derived in the second step, and a third step. And a fourth step of introducing the switching vector into the rotational motion control system. 請求項1に記載のモータが永久磁石同期モータであることを特徴とする請求項1に記載のモータのトルク制御方法。

The motor control method according to claim 1, wherein the motor according to claim 1 is a permanent magnet synchronous motor.

JP2007061642A 2007-03-12 2007-03-12 Torque control method of motor based on model prediction control Pending JP2008228419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061642A JP2008228419A (en) 2007-03-12 2007-03-12 Torque control method of motor based on model prediction control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061642A JP2008228419A (en) 2007-03-12 2007-03-12 Torque control method of motor based on model prediction control

Publications (1)

Publication Number Publication Date
JP2008228419A true JP2008228419A (en) 2008-09-25

Family

ID=39846380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061642A Pending JP2008228419A (en) 2007-03-12 2007-03-12 Torque control method of motor based on model prediction control

Country Status (1)

Country Link
JP (1) JP2008228419A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252434A (en) * 2009-04-10 2010-11-04 Denso Corp Device for control of rotary machine
JP2010252432A (en) * 2009-04-10 2010-11-04 Denso Corp Device for control of rotary machine
JP2010252433A (en) * 2009-04-10 2010-11-04 Denso Corp Device for control of rotary machine
JP2011019319A (en) * 2009-07-08 2011-01-27 Denso Corp Controller for rotary machines
JP2011036098A (en) * 2009-08-05 2011-02-17 Denso Corp Controller for electric rotating machine
JP2011036099A (en) * 2009-08-05 2011-02-17 Denso Corp Control apparatus for electric rotating machine
JP2011050121A (en) * 2009-08-25 2011-03-10 Denso Corp Device for controlling rotary machine
JP2011142791A (en) * 2010-01-11 2011-07-21 Denso Corp Control device for polyphase rotating machine
JP2011166898A (en) * 2010-02-08 2011-08-25 Denso Corp Device for control of rotary machine
JP2011200000A (en) * 2010-03-18 2011-10-06 Denso Corp Control apparatus for electric rotating machine
JP2011223718A (en) * 2010-04-08 2011-11-04 Toyo Electric Mfg Co Ltd Controller for permanent magnet synchronous motor
JP2011234581A (en) * 2010-04-30 2011-11-17 Denso Corp Control unit of rotary machine
JP2011244638A (en) * 2010-05-20 2011-12-01 Denso Corp Control device for rotary machine
JP2012070469A (en) * 2010-09-21 2012-04-05 Denso Corp Controller of rotary machine
JP2012244653A (en) * 2011-05-16 2012-12-10 Denso Corp Controller for rotary machine
JP2013017355A (en) * 2011-07-06 2013-01-24 Denso Corp Controller of rotary machine
WO2013031828A1 (en) * 2011-08-31 2013-03-07 日立オートモティブシステムズ株式会社 Power conversion device
WO2013046520A1 (en) * 2011-09-28 2013-04-04 株式会社デンソー Motor control device and motor control method
WO2013125183A1 (en) * 2012-02-22 2013-08-29 株式会社デンソー Motor control device and motor control method
US8847527B2 (en) 2011-09-13 2014-09-30 Denso Corporation Control system for a rotary machine
US8917155B2 (en) 2012-02-03 2014-12-23 Denso Corporation Magnetic component
US8922143B2 (en) 2011-09-13 2014-12-30 Denso Corporation Control system for a rotary machiine
CN105790664A (en) * 2016-03-31 2016-07-20 华中科技大学 Permanent magnet synchronous motor model prediction control method
CN108880374A (en) * 2018-07-02 2018-11-23 华中科技大学 Line inductance electromotor is containing the double vector model forecast Control Algorithms of restriction of current
CN109039189A (en) * 2018-07-17 2018-12-18 东南大学 Two vector prediction control system of permanent magnet synchronous motor and method based on geometric method
JP2019208352A (en) * 2018-05-23 2019-12-05 株式会社神戸製鋼所 Electric motor drive control device and method, and electric motor drive control system
JP2020010476A (en) * 2018-07-05 2020-01-16 富士電機株式会社 Control device of ac motor
CN110943663A (en) * 2019-12-02 2020-03-31 长安大学 Permanent magnet synchronous motor dynamic finite state set model prediction torque control method
CN112286054A (en) * 2020-10-20 2021-01-29 江苏科技大学 Prediction control method based on magnetic suspension damping device
CN113098348A (en) * 2021-04-09 2021-07-09 沈阳工业大学 Double three-phase permanent magnet synchronous motor predicted torque control method
CN113258834A (en) * 2021-05-31 2021-08-13 郑州大学 Dead-beat model prediction torque control method based on discrete space vector modulation
CN116027672A (en) * 2023-03-28 2023-04-28 山东大学 Model prediction control method based on neural network

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164311B2 (en) 2009-04-10 2012-04-24 Denso Corporation Control device for electric rotating machine
JP2010252432A (en) * 2009-04-10 2010-11-04 Denso Corp Device for control of rotary machine
JP2010252433A (en) * 2009-04-10 2010-11-04 Denso Corp Device for control of rotary machine
JP2010252434A (en) * 2009-04-10 2010-11-04 Denso Corp Device for control of rotary machine
US8278854B2 (en) 2009-04-10 2012-10-02 Denso Corporation Control device for electric rotating machine
JP2011019319A (en) * 2009-07-08 2011-01-27 Denso Corp Controller for rotary machines
US8427088B2 (en) 2009-07-08 2013-04-23 Denso Corporation Apparatus for carrying out improved control of rotary machine
JP2011036099A (en) * 2009-08-05 2011-02-17 Denso Corp Control apparatus for electric rotating machine
US8384327B2 (en) 2009-08-05 2013-02-26 Denso Corporation Control apparatus for electric rotating machine
JP2011036098A (en) * 2009-08-05 2011-02-17 Denso Corp Controller for electric rotating machine
US8288985B2 (en) 2009-08-05 2012-10-16 Denso Corporation Control apparatus for electric rotating machine
JP2011050121A (en) * 2009-08-25 2011-03-10 Denso Corp Device for controlling rotary machine
US8310186B2 (en) 2009-08-25 2012-11-13 Denso Corporation Apparatus for carrying out improved control of rotary machine
JP2011142791A (en) * 2010-01-11 2011-07-21 Denso Corp Control device for polyphase rotating machine
US8421386B2 (en) 2010-01-11 2013-04-16 Denso Corporation Control apparatus for multi-phase rotary machine
JP2011166898A (en) * 2010-02-08 2011-08-25 Denso Corp Device for control of rotary machine
US8686673B2 (en) 2010-02-08 2014-04-01 Denso Corporation Control device for electric rotary machine
JP2011200000A (en) * 2010-03-18 2011-10-06 Denso Corp Control apparatus for electric rotating machine
JP2011223718A (en) * 2010-04-08 2011-11-04 Toyo Electric Mfg Co Ltd Controller for permanent magnet synchronous motor
JP2011234581A (en) * 2010-04-30 2011-11-17 Denso Corp Control unit of rotary machine
JP2011244638A (en) * 2010-05-20 2011-12-01 Denso Corp Control device for rotary machine
US8441220B2 (en) 2010-09-21 2013-05-14 Denso Corporation Control device for electric rotating machine
JP2012070469A (en) * 2010-09-21 2012-04-05 Denso Corp Controller of rotary machine
JP2012244653A (en) * 2011-05-16 2012-12-10 Denso Corp Controller for rotary machine
US8872454B2 (en) 2011-05-16 2014-10-28 Denso Corporation Control unit of rotary device
JP2013017355A (en) * 2011-07-06 2013-01-24 Denso Corp Controller of rotary machine
JP2013051808A (en) * 2011-08-31 2013-03-14 Hitachi Automotive Systems Ltd Control device of permanent magnet motor
WO2013031828A1 (en) * 2011-08-31 2013-03-07 日立オートモティブシステムズ株式会社 Power conversion device
CN103733505A (en) * 2011-08-31 2014-04-16 日立汽车系统株式会社 Power conversion device
US8847527B2 (en) 2011-09-13 2014-09-30 Denso Corporation Control system for a rotary machine
US8922143B2 (en) 2011-09-13 2014-12-30 Denso Corporation Control system for a rotary machiine
US9628012B2 (en) 2011-09-28 2017-04-18 Denso Corporation Motor control device and motor control method
WO2013046520A1 (en) * 2011-09-28 2013-04-04 株式会社デンソー Motor control device and motor control method
US8917155B2 (en) 2012-02-03 2014-12-23 Denso Corporation Magnetic component
JP2013172613A (en) * 2012-02-22 2013-09-02 Denso Corp Motor control device and motor control method
WO2013125183A1 (en) * 2012-02-22 2013-08-29 株式会社デンソー Motor control device and motor control method
US9184687B2 (en) 2012-02-22 2015-11-10 Denso Corporation Motor control apparatus and motor control method
CN105790664B (en) * 2016-03-31 2018-05-22 华中科技大学 Permanent magnet synchronous motor model predictive control method
CN105790664A (en) * 2016-03-31 2016-07-20 华中科技大学 Permanent magnet synchronous motor model prediction control method
JP2019208352A (en) * 2018-05-23 2019-12-05 株式会社神戸製鋼所 Electric motor drive control device and method, and electric motor drive control system
JP7130595B2 (en) 2018-05-23 2022-09-05 株式会社神戸製鋼所 MOTOR DRIVE CONTROL APPARATUS AND METHOD, AND MOTOR DRIVE CONTROL SYSTEM
CN108880374A (en) * 2018-07-02 2018-11-23 华中科技大学 Line inductance electromotor is containing the double vector model forecast Control Algorithms of restriction of current
JP2020010476A (en) * 2018-07-05 2020-01-16 富士電機株式会社 Control device of ac motor
JP7180149B2 (en) 2018-07-05 2022-11-30 富士電機株式会社 AC motor controller
CN109039189B (en) * 2018-07-17 2021-11-26 东南大学 Permanent magnet synchronous motor two-vector prediction control method based on geometric method
CN109039189A (en) * 2018-07-17 2018-12-18 东南大学 Two vector prediction control system of permanent magnet synchronous motor and method based on geometric method
CN110943663A (en) * 2019-12-02 2020-03-31 长安大学 Permanent magnet synchronous motor dynamic finite state set model prediction torque control method
CN110943663B (en) * 2019-12-02 2021-07-02 长安大学 Permanent magnet synchronous motor dynamic finite state set model prediction torque control method
CN112286054B (en) * 2020-10-20 2022-10-04 江苏科技大学 Prediction control method based on magnetic suspension damping device
CN112286054A (en) * 2020-10-20 2021-01-29 江苏科技大学 Prediction control method based on magnetic suspension damping device
CN113098348A (en) * 2021-04-09 2021-07-09 沈阳工业大学 Double three-phase permanent magnet synchronous motor predicted torque control method
CN113098348B (en) * 2021-04-09 2023-10-31 沈阳工业大学 Predictive torque control method for double three-phase permanent magnet synchronous motor
CN113258834A (en) * 2021-05-31 2021-08-13 郑州大学 Dead-beat model prediction torque control method based on discrete space vector modulation
CN116027672A (en) * 2023-03-28 2023-04-28 山东大学 Model prediction control method based on neural network

Similar Documents

Publication Publication Date Title
JP2008228419A (en) Torque control method of motor based on model prediction control
Lai et al. Torque ripple modeling and minimization for interior PMSM considering magnetic saturation
Fazil et al. Nonlinear dynamic modeling of a single-phase permanent-magnet brushless DC motor using 2-D static finite-element results
Miyamasu et al. Efficiency comparison between Brushless dc motor and Brushless AC motor considering driving method and machine design
JP4961292B2 (en) Motor control device
Luukko Direct torque control of permanent magnet synchronous machines-analysis and implementation
Fuentes et al. Predictive speed control of a synchronous permanent magnet motor
Liu et al. A seamless transition scheme of position sensorless control in industrial permanent magnet motor drives with output filter and transformer for oil pump applications
Siami et al. A comparative study between direct torque control and predictive torque control for axial flux permanent magnet synchronous machines
Raj et al. Improved torque control performance of direct torque control for 5-phase induction machine
Parsapour et al. Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique
Guven et al. An improved sensorless DTC-SVM for three-level inverter-fed permanent magnet synchronous motor drive
Hasanhendoei et al. Automatic and real time phase advancing in BLDC motor by employing an electronic governor for a desired speed-torque/angle profile
Villani et al. Fault-tolerant PM brushless DC drive for aerospace application
Lee et al. Phase advance control to reduce torque ripple of brush-less DC motor according to winding connection, wye and delta
Bello et al. Comparative Review Of PMSM And BLDCM Based On Direct Torque Control Method
Pałka et al. Experimental verification of Dead-Beat predictive current controller for small power, low speed PMSM
Toosi et al. Increase Performance of IPMSM by Combination of Maximum Torque per Ampere and Flux‐Weakening Methods
JP5800933B2 (en) Motor control device for controlling synchronous motor
Niwa et al. A study of rotor position control for switched reluctance motor
Cheng et al. Model Predictive Direct Torque Control of Permanent Magnet Synchronous Motor for Torque Ripple Reduction
JP2007014115A (en) Motor control device
Lee et al. Design and torque ripple analysis of brush-less dc motor according to delta winding connection
Patel et al. Control Theory for Permanent Magnet Synchronous Motor–A Review
Siami et al. Application of direct torque control technique for three phase surface mounted AFPM synchronous motors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703