JP2008228387A - Thermoelectronic power generator - Google Patents

Thermoelectronic power generator Download PDF

Info

Publication number
JP2008228387A
JP2008228387A JP2007059645A JP2007059645A JP2008228387A JP 2008228387 A JP2008228387 A JP 2008228387A JP 2007059645 A JP2007059645 A JP 2007059645A JP 2007059645 A JP2007059645 A JP 2007059645A JP 2008228387 A JP2008228387 A JP 2008228387A
Authority
JP
Japan
Prior art keywords
emitter
collector
side member
temperature side
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007059645A
Other languages
Japanese (ja)
Inventor
Yoshihiro Makino
至洋 牧野
Teruo Kido
照雄 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007059645A priority Critical patent/JP2008228387A/en
Publication of JP2008228387A publication Critical patent/JP2008228387A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable efficiently manufacturing a thermoelectronic power generator (1), having improved output voltage by connecting a plurality of thermoelectronic elements (10) in series. <P>SOLUTION: The thermoelectronic power generator is provided with a plurality of coupled electrode (20), in which an emitter portion (21), a collector portion (22) and a conductive coupling portion (23) for coupling the emitter portion (21) to the collector portion (22) are integrated. The coupling electrodes (20) are disposed so that the emitter portion (21) of any one of the coupling electrodes (20) can be disposed with a predetermined gap from a collector portion (22) of another coupling electrode (20). With this configuration, a plurality of thermoelectronic power generating elements (10) is electrically connected in series. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱電子を放出するエミッタと該熱電子を捕集するコレクタとが所定の間隙を隔てて配置された熱電子発電素子を備えかつ、エミッタを相対的に高温の第1熱源に接続した熱電子発電装置に関する。   The present invention includes a thermoelectron generating element in which an emitter for emitting thermoelectrons and a collector for collecting the thermoelectrons are arranged with a predetermined gap therebetween, and the emitter is connected to a first heat source having a relatively high temperature. Relates to the thermoelectric generator.

従来より、高温の金属表面から熱電子が放出される現象を利用して、熱エネルギーを電気エネルギーに直接変換する熱電子発電素子が知られている(例えば、特許文献1参照)。熱電子発電素子は、熱電子を放出するエミッタと該熱電子を捕集するコレクタとを備えている。熱電子発電装置は、エミッタを高温熱源に接続する一方、コレクタを低温熱源に接続することによって構成されており、エミッタとコレクタは、熱電子発電素子の発電効率を高めるために、例えば真空中で所定の間隙を隔てて配置され、熱的にほぼ絶縁されている。   2. Description of the Related Art Conventionally, a thermoelectric power generation element that directly converts thermal energy into electrical energy using a phenomenon in which thermoelectrons are emitted from a high-temperature metal surface is known (see, for example, Patent Document 1). The thermoelectron power generation element includes an emitter that emits thermoelectrons and a collector that collects the thermoelectrons. The thermoelectron generator is configured by connecting an emitter to a high-temperature heat source while connecting a collector to a low-temperature heat source. The emitter and the collector are, for example, in a vacuum in order to increase the power generation efficiency of the thermoelectron generator. They are arranged at a predetermined gap and are substantially thermally insulated.

ここで、固体から真空中に電子を放出するのに必要な最低エネルギーは仕事関数と呼ばれており、熱電子発電素子の起電力はエミッタの仕事関数とコレクタの仕事関数の差によって定められる。このため、起電力を高める上では、エミッタの仕事関数は大きいことが望ましく、コレクタの仕事関数は小さいことが望ましい。エミッタについては、より高温の熱源を採用すれば、仕事関数の大きな材料を使用でき、そうすると出力電圧もより大きくなる。逆に、コレクタについては、材料の特性上、仕事関数の下限値があり、その値は一般に2eV程度であるが、電極間にセシウムを封入すると、セシウムがコレクタに吸着されてコレクタの仕事関数が小さくなることが知られている。この熱電子発電素子でエミッタに仕事関数がおよそ2eVの材料を用いた場合、従来は、エミッタ側の温度をおよそ1200K以上の高温に設定することが必要であった。   Here, the minimum energy required to emit electrons from the solid into the vacuum is called a work function, and the electromotive force of the thermoelectron generator is determined by the difference between the work function of the emitter and the work function of the collector. For this reason, in order to increase the electromotive force, it is desirable that the work function of the emitter is large and the work function of the collector is small. For the emitter, if a higher temperature heat source is used, a material having a high work function can be used, and the output voltage is also increased. On the other hand, the collector has a lower limit of the work function due to the characteristics of the material, and the value is generally about 2 eV. However, when cesium is sealed between the electrodes, the cesium is adsorbed by the collector, and the work function of the collector It is known to become smaller. When a material having a work function of about 2 eV is used for the emitter in this thermoelectron generator, it has been conventionally necessary to set the temperature on the emitter side to a high temperature of about 1200K or higher.

一方、低温度域で熱電子発電を行うことを考えた場合、例えばエミッタ側の熱源の温度をT=500Kとすると、仕事関数と温度の関係式(リチャードソン−ダッシュマンの式)から仕事関数はおよそ0.7eV以下でなければならないが、従来は上述したようにこのような条件を満たす材料は発見されていなかった。しかし、2003年に発見された、12CaO・7Alの結晶を母体とするエレクトライド(C12A7エレクトライド:例えば、非特許文献1参照)は、常温常圧で安定して存在し、仕事関数がおよそ0.6eVを示す場合がある。そこで、この材料を用いると、500K程度の低温度域での熱電子発電が可能になると考えられる。尚、エレクトライドは、イオン結晶の中で、陰イオンの占めるべき位置を電子が占める物質である。
特開平7−322659号公報 「機能材料」,シーエムシー出版,2005年3月5日発売号(2005年4月号),Vol.25 No.4,p.56〜64
On the other hand, when considering thermionic power generation in a low temperature range, for example, assuming that the temperature of the heat source on the emitter side is T = 500K, the work function is calculated from the relational expression (Richardson-Dashman's equation) between the work function and temperature. However, as described above, no material satisfying such a condition has been found in the past. However, an electride based on a 12CaO.7Al 2 O 3 crystal discovered in 2003 (C12A7 electride: see, for example, Non-Patent Document 1) stably exists at normal temperature and pressure, and has a work function. May indicate approximately 0.6 eV. Therefore, it is considered that the use of this material enables thermionic power generation in a low temperature range of about 500K. In addition, electride is a substance in which electrons occupy positions where anions should occupy in an ionic crystal.
JP 7-322659 A “Functional Materials”, CM Publishing, March 5, 2005 issue (April 2005), Vol.25 No.4, p. 56-64

しかし、低温度域での発電では、出力電圧が小さくならざるを得ない。そこで、出力電圧を上げるために、複数の熱電子発電素子を導線で直列に接続することが考えられる。   However, in power generation in a low temperature range, the output voltage must be reduced. Therefore, in order to increase the output voltage, it is conceivable to connect a plurality of thermionic power generation elements in series with conductive wires.

ところが、そうした熱電子発電装置を製造しようとすれば、次のような工程が必要になる。つまり、エミッタとコレクタとを所定の間隙となるようにそれぞれ配置することによって1つの熱電子発電素子を作成する工程と、その工程を複数回繰り返して、複数の熱電子発電素子を作成する工程と、それら複数の熱電子発電素子を所定の配置で並べる工程と、その後に、隣り合う熱電子発電素子同士を導線で接続する工程と、が少なくとも必要になる。この製造方法は、工程数が多く、製造効率が悪い。   However, in order to manufacture such a thermoelectric generator, the following steps are required. That is, a step of creating one thermionic power generation element by arranging the emitter and the collector so as to form a predetermined gap, and a step of repeating the process a plurality of times to create a plurality of thermionic power generation elements, The step of arranging the plurality of thermionic power generation elements in a predetermined arrangement and the step of connecting the adjacent thermionic power generation elements with a conducting wire are required at least. This manufacturing method has many steps and poor manufacturing efficiency.

本発明は、かかる点に鑑みてなされたものであり、その目的は、複数の熱電子発電素子を直列に接続することにより出力電圧を高めた熱電子発電装置を、効率よく製造可能にすることにある。   The present invention has been made in view of this point, and an object of the present invention is to enable efficient production of a thermionic power generator having an increased output voltage by connecting a plurality of thermionic power generation elements in series. It is in.

第1の発明は、熱電子を放出するエミッタ(11)と該熱電子を捕集するコレクタ(12)とが所定の間隙を隔てて配置された熱電子発電素子(10)を備えかつ、前記エミッタ(11)を相対的に高温の第1熱源に接続した熱電子発電装置を前提としている。   The first invention includes a thermoelectron power generation element (10) in which an emitter (11) for emitting thermoelectrons and a collector (12) for collecting the thermoelectrons are arranged with a predetermined gap therebetween, and It is premised on a thermionic power generator in which the emitter (11) is connected to a relatively high temperature first heat source.

そして、この熱電子発電装置は、前記熱電子発電素子(10)におけるエミッタ(11)を構成するエミッタ部(21)と、前記コレクタ(12)を構成するコレクタ部(22)と、前記エミッタ部(21)とコレクタ部(22)とを互いに連結する導電性連結部(23)と、が一体化された結合電極(20)を複数備え、前記複数の結合電極(20)が、その内の一の結合電極(20)のエミッタ部(21)と、それとは別の結合電極(20)のコレクタ部(22)とが所定の間隙を隔てて配置されるように、所定の方向に並んで配置され、それによって、複数の熱電子発電素子(10)が電気的に直列に接続されていることを特徴としている。   The thermoelectron generator includes an emitter part (21) constituting an emitter (11) in the thermoelectron power generation element (10), a collector part (22) constituting the collector (12), and the emitter part. (21) and a conductive connection part (23) for connecting the collector part (22) to each other, and a plurality of coupling electrodes (20) integrated, wherein the plurality of coupling electrodes (20) The emitter part (21) of one coupling electrode (20) and the collector part (22) of another coupling electrode (20) are arranged in a predetermined direction so as to be arranged with a predetermined gap. The plurality of thermionic power generation elements (10) are electrically connected in series.

この第1の発明では、エミッタ部(21)と、コレクタ部(22)と、導電性連結部(23)とが一体化されて結合電極(20)となっているため、この結合電極(20)を並べることで、エミッタ部(21)とコレクタ部(22)とを対向させて熱電子発電素子(10)を作成することと、熱電子発電素子(10)同士を導電性連結部(23)により接続することと、が同時に行い得る。つまり、複数の結合電極(20)を並べることだけで、複数の熱電子発電素子(10)を直列に接続した構成が得られる。   In the first invention, the emitter part (21), the collector part (22), and the conductive connecting part (23) are integrated into a coupling electrode (20). ) Are arranged so that the emitter part (21) and the collector part (22) face each other to form the thermoelectron power generation element (10), and the thermoelectron power generation elements (10) are connected to the conductive connection part (23 ) Can be performed simultaneously. That is, a configuration in which a plurality of thermionic power generation elements (10) are connected in series can be obtained simply by arranging the plurality of coupling electrodes (20).

第2の発明は、第1の発明において、前記導電性連結部(23)が、当該導電性連結部(23)を介した前記エミッタ部(21)からコレクタ部(22)への熱伝導を抑制するヒートチョーク(24)を有していることを特徴としている。   In a second aspect based on the first aspect, the conductive connection portion (23) conducts heat conduction from the emitter portion (21) to the collector portion (22) via the conductive connection portion (23). It is characterized by having a heat choke (24) to be suppressed.

この第2の発明では、熱電子発電装置の発電効率の低下が抑制される。つまり、熱電子発電素子(10)は、効率よく発電するために高温側のエミッタ(11)と低温側のコレクタ(12)を熱的にほぼ絶縁する必要がある。これに対して、エミッタ部(21)とコレクタ部(22)とが導電性連結部(23)により連結された構成では、その導電性連結部(23)を介してエミッタ部(21)からコレクタ部(22)へ熱が伝達されて、発電効率が低下してしまう虞がある。   In the second aspect of the invention, a decrease in power generation efficiency of the thermoelectric power generator is suppressed. That is, the thermionic power generation element (10) needs to thermally insulate the high temperature side emitter (11) from the low temperature side collector (12) in order to generate power efficiently. On the other hand, in the configuration in which the emitter part (21) and the collector part (22) are connected by the conductive connecting part (23), the collector is connected from the emitter part (21) via the conductive connecting part (23). Heat may be transmitted to the section (22) and power generation efficiency may be reduced.

これに対し第2の発明では、導電性連結部(23)がヒートチョーク(24)を有していることによって、エミッタ部(21)からコレクタ部(22)への熱伝導が抑制される。よって、熱電子発電装置の発電効率の低下が抑制される。   On the other hand, in the second invention, since the conductive connecting portion (23) has the heat choke (24), heat conduction from the emitter portion (21) to the collector portion (22) is suppressed. Therefore, a decrease in power generation efficiency of the thermoelectric power generator is suppressed.

第3の発明は、第1又は第2の発明において、前記熱電子発電装置が、前記第1熱源に接続される高温側部材(13)と、当該高温側部材(13)に対して第1方向に相対して配置されかつ、相対的に低温の第2熱源に接続される低温側部材(14)と、をさらに備え、前記複数の結合電極(20)が、前記エミッタ部(21)が前記高温側部材(13)に接触しかつ、前記コレクタ部(22)が前記低温側部材(14)に接触するように、前記高温側部材(13)と低温側部材(14)との間に並んで配置され、前記各エミッタ部(21)と各コレクタ部(22)とが、前記第1方向とは異なる第2方向に所定の間隙を隔てて配置されていることを特徴としている。   According to a third invention, in the first or second invention, the thermoelectric generator is a first member for the high temperature side member (13) connected to the first heat source and the high temperature side member (13). A low temperature side member (14) that is disposed relative to the direction and is connected to a relatively low temperature second heat source, wherein the plurality of coupling electrodes (20) include the emitter section (21). Between the high temperature side member (13) and the low temperature side member (14) so as to contact the high temperature side member (13) and the collector part (22) to contact the low temperature side member (14). The emitter parts (21) and the collector parts (22) are arranged side by side, and are arranged with a predetermined gap in a second direction different from the first direction.

エミッタ部(21)とコレクタ部(22)との間隔は、発電効率を向上させる上で、比較的狭くかつ、均一にすることが望ましい。一方で、高温熱源に曝される熱電子発電装置においては、熱応力による歪みによって、高温側部材(13)と低温側部材(14)との第1方向に対する間隔が変化する場合がある。その場合、高温側部材(13)及び低温側部材(14)のそれぞれに接触しているエミッタ部(21)及びコレクタ部(22)は変位してしまう。ここで、エミッタ部(21)とコレクタ部(22)とが第1方向に間隙を隔てていた場合は、熱歪みによってその間隔が変化してしまい、発電効率が低下してしまったり、最悪の場合、エミッタ(11)とコレクタ(12)とが互いに接触して短絡してしまったりする虞がある。   The distance between the emitter section (21) and the collector section (22) is preferably relatively narrow and uniform in order to improve power generation efficiency. On the other hand, in the thermoelectric power generator exposed to a high-temperature heat source, the distance between the high-temperature side member (13) and the low-temperature side member (14) in the first direction may change due to distortion due to thermal stress. In that case, the emitter part (21) and the collector part (22) in contact with the high temperature side member (13) and the low temperature side member (14), respectively, are displaced. Here, when the gap between the emitter part (21) and the collector part (22) is in the first direction, the gap is changed due to thermal strain, and the power generation efficiency is lowered or the worst. In this case, the emitter (11) and the collector (12) may come into contact with each other and short circuit.

これに対し、第3の発明では、エミッタ部(21)とコレクタ部(22)とを、第1方向とは異なる第2方向に所定の間隙を隔てて配置している。このため、熱歪みにより高温側部材(13)と低温側部材(14)との第1方向に対する間隔が変化したとしても、エミッタ部(21)とコレクタ部(22)との間隔はほとんど変化しない。   On the other hand, in the third invention, the emitter section (21) and the collector section (22) are arranged with a predetermined gap in a second direction different from the first direction. For this reason, even if the space | interval with respect to the 1st direction of a high temperature side member (13) and a low temperature side member (14) changes with thermal strain, the space | interval of an emitter part (21) and a collector part (22) hardly changes. .

第4の発明は、第3の発明において、前記第2方向が、前記複数の結合電極(20)の並び方向であることを特徴としている。   According to a fourth invention, in the third invention, the second direction is an arrangement direction of the plurality of coupling electrodes (20).

この第4の発明では、複数の結合電極(20)を並べて配置する際に、その結合電極(20)同士の間隔を調整することによって、エミッタ部(21)とコレクタ部(22)との間隔が調整される。   In the fourth aspect of the invention, when the plurality of coupling electrodes (20) are arranged side by side, the spacing between the coupling electrodes (20) is adjusted to thereby adjust the spacing between the emitter section (21) and the collector section (22). Is adjusted.

第5の発明は、第3又は第4の発明において、前記熱電子発電装置が、前記高温側部材(13)と低温側部材(14)との間隔を調整する第1調整部材(31)と、前記各エミッタ部(21)と各コレクタ部(22)との間隔を調整する第2調整部材(32)と、をさらに備え、前記第1及び第2調整部材(31,32)によって、前記高温側部材(13)と低温側部材(14)との間隔と、前記各エミッタ部(21)と各コレクタ部(22)との間隔とが、互いに独立して調整可能に構成されていることを特徴としている。   According to a fifth invention, in the third or fourth invention, the thermoelectric power generator includes a first adjustment member (31) for adjusting an interval between the high temperature side member (13) and the low temperature side member (14). And a second adjustment member (32) for adjusting a distance between each emitter part (21) and each collector part (22), and the first and second adjustment members (31, 32) The interval between the high temperature side member (13) and the low temperature side member (14) and the interval between each emitter (21) and each collector (22) can be adjusted independently of each other. It is characterized by.

この第5の発明では、各エミッタ部(21)と各コレクタ部(22)との間隔調整が、高温側部材(13)と低温側部材(14)との間隔調整とは独立して行い得る。   In the fifth aspect of the invention, the distance between each emitter (21) and each collector (22) can be adjusted independently of the distance between the high temperature side member (13) and the low temperature side member (14). .

上記第1の発明によれば、エミッタ部(21)とコレクタ部(22)と導電性連結部(23)とを一体化して結合電極(20)としていることで、その結合電極(20)を並べることだけで、複数の熱電子発電素子(10)を直列に接続した構成を得ることができる。従って、出力電圧の高い熱電子発電装置を効率よく製造することができる。   According to the first aspect, the emitter part (21), the collector part (22), and the conductive connecting part (23) are integrated to form the coupling electrode (20). A configuration in which a plurality of thermoelectric generators (10) are connected in series can be obtained simply by arranging them. Therefore, a thermionic power generator having a high output voltage can be efficiently manufactured.

上記第2の発明によれば、熱電子発電素子(10)同士を互いに接続する導電性連結部(23)がヒートチョーク(24)を有していることで、複数の熱電子発電素子(10)を直列に接続した構成において、熱伝導に起因する発電効率の低下を抑制することができる。   According to the second aspect of the invention, the conductive coupling part (23) that connects the thermoelectric generators (10) to each other has the heat choke (24), so that a plurality of thermoelectron generators (10 ) In series, it is possible to suppress a decrease in power generation efficiency due to heat conduction.

上記第3の発明によれば、エミッタ部(21)とコレクタ部(22)とが対向する方向(第2方向)を、高温側部材(13)と低温側部材(14)とが対向する方向(第1方向)とは異ならせることで、熱歪みに起因する発電効率の低下や短絡の発生を防止することができる。   According to the third aspect, the direction in which the emitter section (21) and the collector section (22) face (second direction) is the direction in which the high temperature side member (13) and the low temperature side member (14) face each other. By making it different from the (first direction), it is possible to prevent a reduction in power generation efficiency and occurrence of a short circuit due to thermal distortion.

上記第4の発明によれば、エミッタ部(21)とコレクタ部(22)とが対向する方向を結合電極(20)の並び方向に一致させることで、エミッタ部(21)とコレクタ部(22)との間隔調整が容易になり、高効率の熱電子発電装置を、より効率よく製造することができる。   According to the fourth aspect of the invention, the emitter part (21) and the collector part (22) are aligned by matching the direction in which the emitter part (21) and the collector part (22) face each other with the alignment direction of the coupling electrode (20). ) Can be easily adjusted, and a highly efficient thermionic power generator can be manufactured more efficiently.

上記第5の発明によれば、エミッタ部(21)とコレクタ部(22)との間隔を調整する部材(32)を、高温側部材(13)と低温側部材(14)との間隔を調整する部材(31)とは別にすることで、エミッタ部(21)とコレクタ部(22)との間隔調整を独立して行うことができ、発電効率の高い熱電子発電装置を、効率よく製造することができる。   According to the fifth aspect, the member (32) for adjusting the distance between the emitter (21) and the collector (22) is adjusted, and the distance between the high temperature side member (13) and the low temperature side member (14) is adjusted. By separating from the member (31) to be performed, the distance between the emitter part (21) and the collector part (22) can be adjusted independently, and a thermoelectric power generator with high power generation efficiency is efficiently manufactured. be able to.

以下、本発明の実施形態を図面に基づいて説明する。この実施形態の熱電子発電装置は、自動車のエンジンの排気ガスを熱源として発電を行うように構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The thermoelectric power generation device of this embodiment is configured to generate power using exhaust gas from an automobile engine as a heat source.

図1は、実施形態に係る熱電子発電装置(1)の電気回路を示す説明図である。この熱電子発電装置(1)は熱電子発電素子(10)を備え、熱電子発電素子(10)は、熱電子を放出するエミッタ(11)と、該熱電子を捕集するコレクタ(12)とを備えている。エミッタ(11)とコレクタ(12)は、真空中もしくは電気的に中性で電気の通りやすいプラズマ中で所定の微細な間隙を隔てて配置され、熱的にほぼ絶縁されている。   FIG. 1 is an explanatory diagram illustrating an electric circuit of the thermoelectric generator (1) according to the embodiment. The thermoelectron generator (1) includes a thermoelectron generator (10). The thermoelectron generator (10) includes an emitter (11) that emits thermoelectrons and a collector (12) that collects the thermoelectrons. And. The emitter (11) and the collector (12) are arranged in a vacuum or in a plasma that is electrically neutral and easy to conduct electricity with a predetermined minute gap therebetween, and are thermally insulated.

エミッタ(11)とコレクタ(12)には、負荷(R1)を介して発電回路(C1)が接続されている。この発電回路(C1)は、自動車のバッテリーに接続されている。   A power generation circuit (C1) is connected to the emitter (11) and the collector (12) via a load (R1). This power generation circuit (C1) is connected to the battery of the automobile.

この実施形態では、12CaO・7Alの結晶を母体とするエレクトライド(C12A7エレクトライド)が、エミッタ(11)及びコレクタ(12)の材料として用いられている。但し、エミッタ(11)及びコレクタ(12)の材料はこれに限るものではない。このC12A7エレクトライドをエミッタ(11)及びコレクタ(12)に使うには、エレクトライド化した12CaO・7Alの単結晶をそのまま電極にする方法や、エレクトライド化した12CaO・7Alの微結晶を金属中に分散させて電極にする方法、また、導電体からなる電極表面にエレクトライド化した12CaO・7Alの薄膜を形成する方法等が考えられる。 In this embodiment, an electride (C12A7 electride) based on a crystal of 12CaO.7Al 2 O 3 is used as a material for the emitter (11) and the collector (12). However, the material of the emitter (11) and the collector (12) is not limited to this. In order to use this C12A7 electride for the emitter (11) and the collector (12), a method of using an electrified single crystal of 12CaO · 7Al 2 O 3 as an electrode as it is, or an electrified 12CaO · 7Al 2 O 3 A method of forming a 12CaO · 7Al 2 O 3 thin film on the electrode surface made of a conductor, or the like can be considered.

図1において、エミッタ(11)に熱が印加されると、エミッタ(11)から熱電子が放出され、この熱電子がコレクタ(12)に捕集される。この熱電子は発電回路(C1)内を流れ、発電が行われることとなる。この実施形態では、排気ガスを熱源としており、500K程度という低温度域での発電であるから、熱電子発電素子(10)の1つについて出力電圧が小さい。そこで、本実施形態では、電圧を上げるために、複数の熱電子発電素子(10)を直列に接続するようにしている。   In FIG. 1, when heat is applied to the emitter (11), thermoelectrons are emitted from the emitter (11), and the thermoelectrons are collected by the collector (12). The thermoelectrons flow in the power generation circuit (C1), and power generation is performed. In this embodiment, exhaust gas is used as a heat source, and power generation is performed in a low temperature range of about 500 K. Therefore, the output voltage is low for one of the thermoelectric power generation elements (10). Therefore, in the present embodiment, a plurality of thermionic power generation elements (10) are connected in series in order to increase the voltage.

具体的には、図2に示すように、この熱電子発電装置(1)は、相対的に高温の熱源に接続された高温側部材(第1熱源)(13)と、高温側部材(13)に対して第1方向(図2における紙面上下方向)に所定の間隙を隔てて配置されかつ、相対的に低温の熱源に接続された低温側部材(第2熱源)(14)と、高温側部材(13)と低温側部材(14)との間で、第1方向に直交する第2方向(図2における紙面左右方向)に並んで配置された複数の結合電極(20)と、を備えている。   Specifically, as shown in FIG. 2, the thermoelectric generator (1) includes a high temperature side member (first heat source) (13) connected to a relatively high temperature heat source, and a high temperature side member (13 And a low temperature side member (second heat source) (14) disposed at a predetermined gap in the first direction (vertical direction in FIG. 2) and connected to a relatively low temperature heat source, and a high temperature Between the side member (13) and the low temperature side member (14), a plurality of coupling electrodes (20) arranged in a second direction (left and right direction in FIG. 2) orthogonal to the first direction, I have.

高温側部材(13)は、第2方向に延びる部材であり、図示していないが、自動車の排気ガスが流れる排気ガス通路を備えている。高温側部材(13)は、排気ガスの熱を、後述するエミッタ部(21)に伝達する。   The high temperature side member (13) is a member extending in the second direction, and includes an exhaust gas passage through which the exhaust gas of the automobile flows. The high temperature side member (13) transmits the heat of the exhaust gas to the emitter section (21) described later.

低温側部材(14)は、高温側部材(13)と同様に、第2方向に延びる部材であり、図示していないが、冷却水が流れる冷却水通路を備え、この冷却水通路は、図示しないラジエータに接続されている。低温側部材(14)は、後述するコレクタ部(22)から放出される熱を冷却水に吸熱させる。   Similar to the high temperature side member (13), the low temperature side member (14) is a member extending in the second direction. Although not shown, the low temperature side member (14) includes a cooling water passage through which cooling water flows. Not connected to the radiator. The low temperature side member (14) causes the cooling water to absorb heat released from the collector section (22) described later.

各結合電極(20)は、熱電子発電素子(10)におけるエミッタ(11)として機能するエミッタ部(21)と、熱電子発電素子(10)におけるコレクタ(12)として機能するコレクタ部(22)と、エミッタ部(21)とコレクタ部(22)とを電気的に互いに接続する連結部(23)と、を一体化した部材である。結合電極(20)は、導電材料を一体成形することにより作成してもよいし、別々に作成した各部分(21,22,23)を結合させることによって一体化してもよい。各結合電極(20)は正面視で、点対称性を有する略S字形状に形成されており、各結合電極(20)は、90°倒伏させた状態で用いられる。   Each coupling electrode (20) includes an emitter section (21) that functions as an emitter (11) in a thermionic power generation element (10), and a collector section (22) that functions as a collector (12) in the thermionic power generation element (10). And a connecting part (23) that electrically connects the emitter part (21) and the collector part (22) to each other. The coupling electrode (20) may be formed by integrally molding a conductive material, or may be integrated by combining the separately created portions (21, 22, 23). Each coupling electrode (20) is formed in a substantially S-shape having point symmetry when viewed from the front, and each coupling electrode (20) is used in a state of being tilted by 90 °.

エミッタ部(21)は、高温側部材(13)と低温側部材(14)との間に配置された結合電極(20)において、高温側部材(13)に当接してそこから熱を受ける部分である。エミッタ部(21)は、高温側部材(13)から低温側部材(14)に向かって突出しており、コレクタ部(22)に対し相対向する対向面(21a)は、第2方向を向くように設定されている。   The emitter portion (21) is a portion of the coupling electrode (20) disposed between the high temperature side member (13) and the low temperature side member (14) that contacts the high temperature side member (13) and receives heat therefrom. It is. The emitter portion (21) protrudes from the high temperature side member (13) toward the low temperature side member (14), and the opposing surface (21a) facing the collector portion (22) faces the second direction. Is set to

コレクタ部(22)は、結合電極(20)において、低温側部材(14)に当接してそこに熱を放出する部分である。コレクタ部(22)は、低温側部材(14)から高温側部材(13)に向かって突出しており、コレクタ部(22)の対向面(22a)は、第2方向を向くように(但しエミッタ部(21)の対向面(21a)に対しては逆向きである)設定されている。   The collector part (22) is a part of the coupling electrode (20) that comes into contact with the low temperature side member (14) and emits heat thereto. The collector part (22) protrudes from the low temperature side member (14) toward the high temperature side member (13), and the opposing surface (22a) of the collector part (22) faces the second direction (however, the emitter Set to the opposite surface (21a) of the portion (21).

連結部(23)は、エミッタ部(21)の下端部から高温側部材(13)に沿って延びた後に、低温側部材(14)に向かって屈曲して第1方向に延びると共に、低温側部材(14)側において再び屈曲してその低温側部材(14)に沿って延びた後に、コレクタ部(22)の上端部に接続されている。このエミッタ部(21)からコレクタ部(22)に至る連結部(23)の経路中において、第1方向に延びる中間部分(24)は、横断面積が比較的小さくされたヒートチョーク構造を有している。このヒートチョーク構造によって、高温側部材(13)に接続されたエミッタ部(21)から、連結部(23)を介して、コレクタ部(22)に熱が伝達することを抑制するようにしている。   The connecting portion (23) extends from the lower end portion of the emitter portion (21) along the high temperature side member (13), then bends toward the low temperature side member (14) and extends in the first direction. After being bent again on the member (14) side and extending along the low temperature side member (14), it is connected to the upper end of the collector portion (22). In the path of the connecting portion (23) from the emitter portion (21) to the collector portion (22), the intermediate portion (24) extending in the first direction has a heat choke structure with a relatively small cross-sectional area. ing. With this heat choke structure, heat transfer from the emitter section (21) connected to the high temperature side member (13) to the collector section (22) via the coupling section (23) is suppressed. .

この熱電子発電装置(1)において、各結合電極(20)のエミッタ部(21)の上端面と連結部(23)との間には、絶縁材料からなる第1調整部材(31)が配置されており、この第1調整部材(31)によって、高温側部材(13)と低温側部材(14)との、第1方向に対する間隔が、所定の間隔となるように規定されている。尚、第1調整部材(31)の配設位置は、これに限るものではない。例えば、コレクタ部(22)の下端面と連結部(23)との間に、第1調整部材を配置してもよい。   In the thermoelectric generator (1), a first adjustment member (31) made of an insulating material is disposed between the upper end surface of the emitter portion (21) of each coupling electrode (20) and the connecting portion (23). Thus, the first adjusting member (31) defines the distance between the high temperature side member (13) and the low temperature side member (14) in the first direction to be a predetermined distance. In addition, the arrangement | positioning position of a 1st adjustment member (31) is not restricted to this. For example, you may arrange | position a 1st adjustment member between the lower end surface of a collector part (22), and a connection part (23).

また、各結合電極(20)におけるエミッタ部(21)の対向面(21a)とコレクタ部(22)の対向面(22a)との間には、絶縁材料からなる第2調整部材(32)が配置され、この第2調整部材(32)によって、エミッタ部(21)とコレクタ部(22)との間隔が、所定の間隔となるように規定されている。この第2調整部材(32)としては、例えば直径がミクロンオーダーの、シリカ製やカーボン製のファイバ状部材を用いることができる。   Further, a second adjustment member (32) made of an insulating material is provided between the opposing surface (21a) of the emitter section (21) and the opposing surface (22a) of the collector section (22) in each coupling electrode (20). The second adjusting member (32) is arranged so that the distance between the emitter (21) and the collector (22) is defined to be a predetermined distance. As the second adjustment member (32), for example, a fiber-like member made of silica or carbon having a diameter of the order of microns can be used.

−熱電子発電装置の製造−
前記構成の熱電子発電装置(1)は、例えば以下の手順によって製造することが可能である。すなわち先ず、前述の結合電極(20)を複数個と、高温側部材(13)と、低温側部材(14)とを、それぞれ用意する。
-Manufacture of thermoelectric generators-
The thermoelectric generator (1) having the above-described configuration can be manufactured, for example, by the following procedure. That is, first, a plurality of the aforementioned coupling electrodes (20), a high temperature side member (13), and a low temperature side member (14) are prepared.

次に、高温側部材(13)(又は低温側部材(14)であってもよい)上に、複数の結合電極(20)を並べていく。   Next, a plurality of coupling electrodes (20) are arranged on the high temperature side member (13) (or the low temperature side member (14)).

このときに、一の結合電極(20)のエミッタ部(21)と、それとは別の結合電極(20)のコレクタ部(22)との間に第2調整部材(32)を介在させるようにして、該エミッタ部(21)の対向面(21a)と該コレクタ部(22)の対向面(22a)との間隔が所定の間隔となるように配置する。この熱電子発電装置(1)では、エミッタ部(21)とコレクタ部(22)とが、結合電極(20)の並び方向(第2方向)に相対して配置されるため、複数の結合電極(20)を並べて配置する際に、その結合電極(20)の間隔を調整することによって、エミッタ部(21)とコレクタ部(22)との間隔を調整することができるという利点がある。   At this time, the second adjustment member (32) is interposed between the emitter (21) of one coupling electrode (20) and the collector (22) of another coupling electrode (20). Thus, the gap between the opposed surface (21a) of the emitter section (21) and the opposed surface (22a) of the collector section (22) is arranged to be a predetermined distance. In this thermoelectron power generation device (1), the emitter part (21) and the collector part (22) are arranged relative to the alignment direction (second direction) of the coupling electrode (20), so that a plurality of coupling electrodes When arranging (20) side by side, there is an advantage that the distance between the emitter section (21) and the collector section (22) can be adjusted by adjusting the distance between the coupling electrodes (20).

ここで、例えば各結合電極(20)において、エミッタ部(21)及びコレクタ部(22)の少なくとも一方の対向面(21a,22a)に、第2調整部材(32)を予め担持しておくようにしてもよい。こうしておけば、結合電極(20)を配置するときに、第2調整部材(32)を、エミッタ部(21)及びコレクタ部(22)との間に一々、介在させる必要がなくなり、結合電極(20)の配置作業の容易化が図られる。   Here, for example, in each coupling electrode (20), the second adjustment member (32) is supported in advance on at least one opposing surface (21a, 22a) of the emitter section (21) and the collector section (22). It may be. In this way, when the coupling electrode (20) is arranged, it is not necessary to interpose the second adjustment member (32) between the emitter section (21) and the collector section (22) one by one. 20) The arrangement work can be facilitated.

尚、各結合電極(20)におけるエミッタ部(21)とコレクタ部(22)との電極構成が同じであるときには、結合電極(20)は点対称性を有することになる。そのため、結合電極(20)の配置に方向性がなくなるため、結合電極(20)の配置をより一層容易に行い得る。   In addition, when the electrode structure of the emitter part (21) and the collector part (22) in each coupling electrode (20) is the same, the coupling electrode (20) has point symmetry. Therefore, since the direction of the arrangement of the coupling electrode (20) is lost, the arrangement of the coupling electrode (20) can be more easily performed.

また、結合電極(20)を配置するときには、第1調整部材(31)を、エミッタ部(21)と連結部(23)との間に介在させておく。   When the coupling electrode (20) is disposed, the first adjustment member (31) is interposed between the emitter part (21) and the coupling part (23).

高温側部材(13)(又は低温側部材(14))に対して結合電極(20)を全て配置すれば、その結合電極(20)に対して、低温側部材(14)(又は高温側部材(13))を取り付ける。このときに、第1調整部材(31)によって、高温側部材(13)と低温側部材(14)との間隔が、所定の間隔に規定されることになる。   If all the coupling electrodes (20) are arranged with respect to the high temperature side member (13) (or the low temperature side member (14)), the low temperature side member (14) (or the high temperature side member with respect to the coupling electrode (20)) Install (13). At this time, the first adjusting member (31) defines the interval between the high temperature side member (13) and the low temperature side member (14) to a predetermined interval.

そうして、第1方向に相対して配置された高温側部材(13)と低温側部材(14)との間で、複数の熱電子発電素子(10)が電気的に直列に接続された熱電子発電装置(1)が完成する。   Thus, a plurality of thermionic power generation elements (10) are electrically connected in series between the high temperature side member (13) and the low temperature side member (14) arranged in the first direction. The thermoelectric generator (1) is completed.

尚、前記の製造手順は一例であり、適宜、その各工程の順番を入れ替えたり、所定の工程を省略したり、別の工程を追加したりすることが可能である。   In addition, the said manufacturing procedure is an example, The order of each process can be changed suitably, a predetermined process can be abbreviate | omitted, or another process can be added.

−発電動作−
自動車の運転時、排気ガスが高温側部材(13)の排気ガス通路内を流れ、排気ガスの熱が各熱電子発電素子(10)のエミッタ部(21)に与えられる。これによって、各エミッタ部(21)から熱電子が放出され、各コレクタ部(22)で熱電子が捕集される。そうして各熱電子発電素子(10)において起電力が発生する。コレクタ部(22)から放出される熱は、低温側部材(14)の冷却水通路内を流れる冷却水に吸熱され、ラジエータとの間を循環する。
-Power generation operation-
During operation of the automobile, the exhaust gas flows through the exhaust gas passage of the high temperature side member (13), and the heat of the exhaust gas is given to the emitter section (21) of each thermoelectric generator (10). Thereby, thermoelectrons are emitted from each emitter section (21), and the thermoelectrons are collected by each collector section (22). Thus, an electromotive force is generated in each thermoelectric generator (10). The heat released from the collector section (22) is absorbed by the cooling water flowing in the cooling water passage of the low temperature side member (14) and circulates between the radiator.

この実施形態では複数の熱電子発電素子(10)が連結部(23)で直列に接続されているので、出力電圧が所定値(バッテリー電圧)まで高められる。そうして、直列構造をとることによって、自動車の排熱のような低温度域の熱源で作動する熱電子発電装置(1)を実用化することができる。   In this embodiment, since a plurality of thermionic power generation elements (10) are connected in series at the connecting portion (23), the output voltage is increased to a predetermined value (battery voltage). Thus, the thermoelectric power generator (1) that operates with a heat source in a low temperature region such as exhaust heat of an automobile can be put into practical use by adopting a series structure.

−実施形態の効果−
以上のように、この実施形態では、エミッタ部(21)とコレクタ部(22)と連結部(23)とを一体化した結合電極(20)を複数個、並べることによって、複数の熱電子発電素子(10)を直列に接続した構造としている。このため、熱電子発電装置(1)の製造が容易になり、製造効率を向上させることができる。
-Effect of the embodiment-
As described above, in this embodiment, a plurality of thermoelectron generators are arranged by arranging a plurality of coupling electrodes (20) in which the emitter section (21), the collector section (22), and the coupling section (23) are integrated. The element (10) is connected in series. For this reason, the manufacture of the thermoelectric generator (1) is facilitated, and the production efficiency can be improved.

また、この実施形態では、エミッタ部(21)とコレクタ部(22)とは、高温側部材(13)と低温側部材(14)とが相対向する第1方向に直交する第2方向に、所定の間隙を隔てて配置されているため、仮に熱歪みによって高温側部材(13)と低温側部材(14)との間隔が第1方向に変化したとしても、エミッタ部(21)とコレクタ部(22)との間隔は変化しない。それによって、発電効率が低下してしまったり、短絡してしまったりすることが防止できる。尚、エミッタ部(21)とコレクタ部(22)とは、第1方向に直交する方向でなくても、第1方向とは異なる方向に所定の間隙を隔てて配置すれば、前記と同様の作用効果が得られる。   Further, in this embodiment, the emitter section (21) and the collector section (22) are in a second direction orthogonal to the first direction in which the high temperature side member (13) and the low temperature side member (14) face each other, Since they are arranged at a predetermined gap, even if the distance between the high temperature side member (13) and the low temperature side member (14) changes in the first direction due to thermal strain, the emitter (21) and the collector portion The distance from (22) does not change. Thereby, it is possible to prevent the power generation efficiency from being lowered or short-circuited. The emitter part (21) and the collector part (22) may be the same as described above if they are arranged in a direction different from the first direction with a predetermined gap, even if they are not perpendicular to the first direction. The effect is obtained.

そのように、エミッタ部(21)とコレクタ部(22)とを、第1方向とは異なる第2方向に、所定の間隙を隔てて配置する構成において、高温側部材(13)と低温側部材(14)との間隔を調整する第1調整部材(31)と、エミッタ部(21)とコレクタ部(22)との間隔を調整する第2調整部材(32)と、を個別に設けることによって、各エミッタ部(21)と各コレクタ部(22)との間隔調整が、高温側部材(13)と低温側部材(14)との間隔調整とは独立して行い得るようになり、熱電子発電装置(1)の製造がより一層容易になる。   As such, in the configuration in which the emitter (21) and the collector (22) are arranged in a second direction different from the first direction with a predetermined gap therebetween, the high temperature side member (13) and the low temperature side member are arranged. By separately providing a first adjustment member (31) for adjusting the distance between (14) and a second adjustment member (32) for adjusting the distance between the emitter (21) and the collector (22). The distance between each emitter part (21) and each collector part (22) can be adjusted independently of the distance between the high temperature side member (13) and the low temperature side member (14). The production of the power generation device (1) becomes even easier.

さらに、エミッタ部(21)とコレクタ部(22)とが連結部(23)を介して互いに接続されているため、通常では、この連結部(23)を介してエミッタ部(21)からコレクタ部(22)に熱が伝達されてしまうが、この実施形態では、連結部(23)の中間部分(24)がヒートチョーク構造を有しているため、熱伝導が抑制される。その結果、熱電子発電装置(1)の発電効率が低下してしまうことを抑制することができる。   Furthermore, since the emitter part (21) and the collector part (22) are connected to each other via the connecting part (23), the emitter part (21) is normally connected to the collector part via the connecting part (23). Although heat is transferred to (22), in this embodiment, since the intermediate part (24) of the connecting part (23) has a heat choke structure, heat conduction is suppressed. As a result, it is possible to suppress a decrease in power generation efficiency of the thermoelectric power generation device (1).

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

例えば、上記実施形態では、熱電子発電装置を自動車の排気ガスの排熱を利用して発電するものとして説明したが、ガスバーナー、ガス給湯器又はガスストーブなどにおけるガスの燃焼熱を利用した発電装置に応用したり、燃料電池の排熱を利用した発電装置に応用することもできる。   For example, in the above embodiment, the thermionic power generation apparatus has been described as generating power by using exhaust heat of automobile exhaust gas. However, power generation using the combustion heat of gas in a gas burner, gas water heater, gas stove, or the like. The present invention can be applied to a device or a power generation device that uses exhaust heat of a fuel cell.

また、本発明は低温度域での発電に特に有効であるが、それに限らず、高温度域の発電時に出力電圧を高めるのにも適用できる。   In addition, the present invention is particularly effective for power generation in a low temperature range, but is not limited thereto, and can be applied to increase the output voltage during power generation in a high temperature range.

尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、熱電子を放出するエミッタと該熱電子を捕集するコレクタとが所定の間隙を隔てて配置された熱電子発電素子を用いて構成された熱電子発電装置について有用である。   As described above, the present invention relates to a thermionic power generation apparatus configured using a thermionic power generation element in which an emitter for emitting thermoelectrons and a collector for collecting the thermoelectrons are arranged with a predetermined gap therebetween. Useful for.

実施形態に係る熱電子発電装置の電気回路を示す説明図である。It is explanatory drawing which shows the electric circuit of the thermoelectric power generator which concerns on embodiment. 実施形態に係る熱電子発電装置の概略構成図である。1 is a schematic configuration diagram of a thermoelectron generator according to an embodiment.

符号の説明Explanation of symbols

1 熱電子発電装置
10 熱電子発電素子
11 エミッタ
12 コレクタ
13 高温側部材
14 低温側部材
20 結合電極
21 エミッタ部
22 コレクタ部
23 連結部(導電性連結部)
24 中間部分(ヒートチョーク)
31 第1調整部材
32 第2調整部材
DESCRIPTION OF SYMBOLS 1 Thermionic power generation apparatus 10 Thermionic generation element 11 Emitter 12 Collector 13 High temperature side member 14 Low temperature side member 20 Coupling electrode 21 Emitter part 22 Collector part 23 Connection part (conductive connection part)
24 Middle part (heat choke)
31 1st adjustment member 32 2nd adjustment member

Claims (5)

熱電子を放出するエミッタ(11)と該熱電子を捕集するコレクタ(12)とが所定の間隙を隔てて配置された熱電子発電素子(10)を備えかつ、前記エミッタ(11)を相対的に高温の第1熱源に接続した熱電子発電装置であって、
前記熱電子発電素子(10)におけるエミッタ(11)を構成するエミッタ部(21)と、前記コレクタ(12)を構成するコレクタ部(22)と、前記エミッタ部(21)とコレクタ部(22)とを互いに連結する導電性連結部(23)と、が一体化された結合電極(20)を複数備え、
前記複数の結合電極(20)は、その内の一の結合電極(20)のエミッタ部(21)と、それとは別の結合電極(20)のコレクタ部(22)とが所定の間隙を隔てて配置されるように、所定の方向に並んで配置され、それによって、複数の熱電子発電素子(10)が電気的に直列に接続されていることを特徴とする熱電子発電装置。
An emitter (11) that emits thermoelectrons and a collector (12) that collects the thermoelectrons are provided with a thermoelectron generating element (10) arranged with a predetermined gap therebetween, and the emitter (11) is relatively A thermionic power generator connected to a first high temperature heat source,
The emitter section (21) constituting the emitter (11) in the thermoelectric power generation element (10), the collector section (22) constituting the collector (12), the emitter section (21) and the collector section (22) A plurality of coupling electrodes (20) integrated with a conductive coupling portion (23) that couples the two to each other;
In the plurality of coupling electrodes (20), an emitter part (21) of one of the coupling electrodes (20) and a collector part (22) of another coupling electrode (20) are separated from each other by a predetermined gap. The thermionic power generation apparatus, wherein the plurality of thermionic power generation elements (10) are electrically connected in series so as to be arranged side by side in a predetermined direction.
請求項1に記載の熱電子発電装置において、
前記導電性連結部(23)は、当該導電性連結部(23)を介した前記エミッタ部(21)からコレクタ部(22)への熱伝導を抑制するヒートチョーク(24)を有していることを特徴とする熱電子発電装置。
The thermoelectric generator according to claim 1,
The conductive connecting part (23) has a heat choke (24) for suppressing heat conduction from the emitter part (21) to the collector part (22) via the conductive connecting part (23). Thermionic power generator characterized by the above.
請求項1又は2に記載の熱電子発電装置において、
前記第1熱源に接続される高温側部材(13)と、当該高温側部材(13)に対して第1方向に相対して配置されかつ、相対的に低温の第2熱源に接続される低温側部材(14)と、をさらに備え、
前記複数の結合電極(20)は、前記エミッタ部(21)が前記高温側部材(13)に接触しかつ、前記コレクタ部(22)が前記低温側部材(14)に接触するように、前記高温側部材(13)と低温側部材(14)との間に並んで配置され、
前記各エミッタ部(21)と各コレクタ部(22)とは、前記第1方向とは異なる第2方向に所定の間隙を隔てて配置されていることを特徴とする熱電子発電装置。
The thermionic power generator according to claim 1 or 2,
A high temperature side member (13) connected to the first heat source, and a low temperature disposed relative to the high temperature side member (13) in the first direction and connected to a relatively low temperature second heat source. A side member (14),
The plurality of coupling electrodes (20) have the emitter part (21) in contact with the high temperature side member (13) and the collector part (22) in contact with the low temperature side member (14). Arranged side by side between the high temperature side member (13) and the low temperature side member (14),
Each said emitter part (21) and each collector part (22) are arrange | positioned at predetermined intervals in the 2nd direction different from the said 1st direction, The thermoelectron generator characterized by the above-mentioned.
請求項3に記載の熱電子発電装置において、
前記第2方向は、前記複数の結合電極(20)の並び方向であることを特徴とする熱電子発電装置。
The thermionic power generator according to claim 3,
The thermoelectron generator according to claim 2, wherein the second direction is an arrangement direction of the plurality of coupling electrodes (20).
請求項3又は4に記載の熱電子発電装置において、
前記高温側部材(13)と低温側部材(14)との間隔を調整する第1調整部材(31)と、
前記各エミッタ部(21)と各コレクタ部(22)との間隔を調整する第2調整部材(32)と、をさらに備え、
前記第1及び第2調整部材(31,32)によって、前記高温側部材(13)と低温側部材(14)との間隔と、前記各エミッタ部(21)と各コレクタ部(22)との間隔とが、互いに独立して調整可能に構成されていることを特徴とする熱電子発電装置。
The thermionic power generator according to claim 3 or 4,
A first adjustment member (31) for adjusting the distance between the high temperature side member (13) and the low temperature side member (14);
A second adjustment member (32) that adjusts the distance between each emitter section (21) and each collector section (22);
By the first and second adjusting members (31, 32), the distance between the high temperature side member (13) and the low temperature side member (14), and each emitter part (21) and each collector part (22) A thermionic power generation device characterized in that the interval can be adjusted independently of each other.
JP2007059645A 2007-03-09 2007-03-09 Thermoelectronic power generator Pending JP2008228387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059645A JP2008228387A (en) 2007-03-09 2007-03-09 Thermoelectronic power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059645A JP2008228387A (en) 2007-03-09 2007-03-09 Thermoelectronic power generator

Publications (1)

Publication Number Publication Date
JP2008228387A true JP2008228387A (en) 2008-09-25

Family

ID=39846352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059645A Pending JP2008228387A (en) 2007-03-09 2007-03-09 Thermoelectronic power generator

Country Status (1)

Country Link
JP (1) JP2008228387A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236058A (en) * 2013-05-31 2014-12-15 株式会社デンソー Thermal electron power-generation device
US9000652B2 (en) 2011-05-26 2015-04-07 Denso Corporation Thermionic generator
WO2017138290A1 (en) * 2016-02-11 2017-08-17 株式会社デンソー Thermoelectronic power generating element
CN110086239A (en) * 2019-05-13 2019-08-02 北京洪泰智造信息技术有限公司 A kind of electronic equipment and its heat energy utilization system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000652B2 (en) 2011-05-26 2015-04-07 Denso Corporation Thermionic generator
JP2014236058A (en) * 2013-05-31 2014-12-15 株式会社デンソー Thermal electron power-generation device
WO2017138290A1 (en) * 2016-02-11 2017-08-17 株式会社デンソー Thermoelectronic power generating element
CN110086239A (en) * 2019-05-13 2019-08-02 北京洪泰智造信息技术有限公司 A kind of electronic equipment and its heat energy utilization system and method

Similar Documents

Publication Publication Date Title
US7880079B2 (en) Dual gap thermo-tunneling apparatus and methods
JP5397414B2 (en) Thermoelectric generator
JP2008294129A (en) Thermionic generating element, and thermionic generating device with thermionic generating element
US9951671B2 (en) Heat transfer device, temperature controller, internal combustion engine, exhaust system thereof, and melting furnace
JP4687305B2 (en) Thermoelectric generator
TWI497698B (en) Infrared light emitting device
JP2008228478A (en) Themoelectronic power generator
JP2008228387A (en) Thermoelectronic power generator
JP2006073633A (en) Thermoelectric conversion device and its manufacturing method
CN105703214A (en) Liquid refrigeration semiconductor laser based on insulation heat sink
JP2008228386A (en) Manufacturing method of electrode for thermoelectronic power generation element, its electrode thereof, and thermoelectric power generation element using this electrode
JP2007157424A (en) Solid oxide fuel cell
WO2017138290A1 (en) Thermoelectronic power generating element
JP2007037318A (en) Thermoelectronic power generating element
JP2008177356A (en) Thermoelectric power generation element
JPH0529667A (en) Thermoelectric conversion module
JP2004088057A (en) Thermoelectric module
JP2010033788A (en) Fuel cell
JP4706983B2 (en) Heating device including thermoelectric module
JP2007005589A (en) Thermionic generator
CN210723092U (en) Heat-insulating semiconductor thermoelectric/electrothermal conversion element
US10636953B2 (en) Thermoelectric conversion module and method for manufacturing the same
JP2002064180A (en) Semiconductor module
JP2017143011A (en) Electron emitting element
KR102021664B1 (en) Multi-multi-array themoeletric generator and its manufacturing method