JP2008227428A - Production process of longitudinal glass member and longitudinal glass molding - Google Patents

Production process of longitudinal glass member and longitudinal glass molding Download PDF

Info

Publication number
JP2008227428A
JP2008227428A JP2007067834A JP2007067834A JP2008227428A JP 2008227428 A JP2008227428 A JP 2008227428A JP 2007067834 A JP2007067834 A JP 2007067834A JP 2007067834 A JP2007067834 A JP 2007067834A JP 2008227428 A JP2008227428 A JP 2008227428A
Authority
JP
Japan
Prior art keywords
vertically long
glass member
glass
long glass
connecting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007067834A
Other languages
Japanese (ja)
Inventor
Hisakuni Ito
寿国 伊藤
Satoru Yamamoto
哲 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP2007067834A priority Critical patent/JP2008227428A/en
Publication of JP2008227428A publication Critical patent/JP2008227428A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for producing a small-size longitudinal glass member to be used as a homogenizer of light condensing solar energy generation system with a shorter time and at a lower cost. <P>SOLUTION: A forming die comprises a drum plate 11 equipped with a plurality of longitudinal via holes 10 and a bottom plate 12 closely attached to its bottom. Melt glass 16 is supplied and pressed onto the top. The glass moldingf 20 where an interconnection part 18 on a top surface and a projection part 19 corresponding to the via hole 10 are combined is thus formed. After cooling, the glass molding 20 is removed by pushing up the interconnection part 18 with a push-up pin 15, the external surface of the projection part 19 is polished, followed by the separation of the interconnection part 18 to obtain a plurality of longitudinal glass members. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、小型の縦長ガラス部材の製造技術に関するものであり、特に集光式太陽光発電装置のホモジナイザーとして用いられる小型の縦長ガラス部材の製造技術に関するものである。   The present invention relates to a technique for manufacturing a small vertically long glass member, and particularly relates to a technique for manufacturing a small vertically long glass member used as a homogenizer of a concentrating solar power generation device.

集光式太陽光発電装置は、大型のフレネルレンズで太陽光を集光して小面積の発電用チップに照射し、発電を行わせる装置である。この集光式太陽光発電装置は、コスト構成比において大きな部分を占める発電用チップを小型化することができるうえに、発電用チップの表面に集光された太陽光のエネルギー密度が高くなり、エネルギー変換効率が高まるという利点があるため、注目されている。最近では、多層構造の発電用チップを用い、30%を越える発電効率を達成することが可能となっている。   A concentrating solar power generation device is a device that collects sunlight with a large Fresnel lens and irradiates the power generation chip with a small area to generate power. This concentrating solar power generation device can reduce the size of the power generation chip that occupies a large portion of the cost composition ratio, and the energy density of the sunlight concentrated on the surface of the power generation chip increases, It attracts attention because it has the advantage of increased energy conversion efficiency. Recently, it has become possible to achieve a power generation efficiency exceeding 30% by using a multi-layer power generation chip.

この集光式太陽光発電装置においては、一次光学系であるフレネルレンズで集光した光をそのまま発電用チップに照射すると、発電用チップ表面における光強度が不均一になり、発電効率が低下することが指摘されている。そこでフレネルレンズで集光した光を二次光学系であるホモジナイザーと呼ばれる縦長角柱状のガラスの上面(受光面)に導いてその側面で何度も反射を繰り返させることによって光強度を均一化したうえ、その下面(射出面)から発電用チップに導くことが行われている。   In this concentrating solar power generation device, when the light collected by the Fresnel lens, which is the primary optical system, is directly irradiated to the power generation chip, the light intensity on the surface of the power generation chip becomes non-uniform and the power generation efficiency decreases. It has been pointed out. Therefore, the light intensity was made uniform by guiding the light collected by the Fresnel lens to the upper surface (light-receiving surface) of a vertically long prismatic glass called a homogenizer that is a secondary optical system, and repeating the reflection many times on the side surface. In addition, the lower surface (injection surface) is guided to the power generation chip.

このようなホモジナイザーについては、特許文献1〜特許文献3に記載されており、特に幾何学的集光倍率が300倍以上の集光式太陽光発電装置においては、必須のものとされている。特許文献3に記載されているように、ホモジナイザーの材質はソーダ石灰ガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、ソーダカリバリウムガラス等である。またその形状は上方に広がるテーパを持った角柱状のものが多用されている。   Such a homogenizer is described in Patent Documents 1 to 3, and is essential particularly in a concentrating solar power generation apparatus having a geometric condensing magnification of 300 times or more. As described in Patent Document 3, the material of the homogenizer is soda lime glass, borosilicate glass, aluminosilicate glass, soda calibarium glass, or the like. In addition, a prismatic shape having a taper extending upward is often used.

上記したホモジナイザーは重要な光学部品であり、従来は成形・徐冷されたガラス板材やガラスブロックから適正形状のガラス材料を切り出し、このガラス材料を加熱軟化させて型に投入し、プレスするリヒートプレスと呼ばれる方法で1個ずつ成形されていた。成形体は型から取り出されたのち、徐冷、粗加工、研磨加工という公知のガラス加工工程を経て製品となる。   The above-mentioned homogenizer is an important optical component. Conventionally, a reheat press that cuts a glass material of an appropriate shape from a glass plate or glass block that has been molded and annealed, heat-softens the glass material, puts it into a mold, and presses it. One by one was formed by the method called. After the molded body is taken out from the mold, it becomes a product through known glass processing steps such as slow cooling, rough processing, and polishing.

ところがこのような従来方法は、ガラスを溶融して板材やブロックを一度成形し、徐冷したうえでその一部を切り出し、再度加熱してプレス成形する必要がある。また成形された後も、徐冷、粗加工、研磨加工という多くの工程を必要とする。このため、長い加工時間、大量のエネルギー、多くの作業時間を要し、コスト高となるという問題があった。さらに量産するには特別な装置が必要となるという問題もあった。   However, in such a conventional method, it is necessary to melt glass, once form a plate material or block, slowly cool it, cut out a part of it, heat it again, and press-mold it. Further, even after being molded, many processes such as slow cooling, roughing and polishing are required. For this reason, there is a problem that a long processing time, a large amount of energy, and a lot of work time are required, resulting in an increase in cost. There is also a problem that special equipment is required for mass production.

また、前記した集光式太陽光発電装置の利点を生かすために、最近ではその幾何学的集光倍率は300倍から500倍以上と次第に高まり、それに連れて発電用チップ及びホモジナイザーの小型化が進行している。その結果、最近ではホモジナイザー1個の重量も数gにまで減少し、成形や加工時のハンドリングに困難を生ずるようになった。またホモジナイザー1個の重量が小さくなると溶融ガラスの熱容量も小さくなるため、プレス成形自体も非常に行いにくくなっていた。
特開2003−258291号公報 特開2004−214470号公報 特開2006−278581号公報
In addition, in order to take advantage of the above-described concentrating solar power generation apparatus, recently, the geometric concentrating magnification is gradually increased from 300 times to 500 times or more, and accordingly, the power generation chip and the homogenizer are downsized. Progressing. As a result, the weight of a single homogenizer has recently been reduced to several grams, making it difficult to handle during molding and processing. Further, when the weight of one homogenizer is reduced, the heat capacity of the molten glass is also reduced, so that the press molding itself is very difficult.
JP 2003-258291 A JP 2004-214470 A JP 2006-275881 A

従って本発明の目的は、上記したホモジナイザーとして用いられるような小型の縦長ガラス部材を、従来よりも短時間、低コストで容易に量産することができ、しかも製造工程中のハンドリングを容易にした縦長ガラス部材の製造方法を提供することである。ここで小型とは1個当たりの重量が2.5g程度以下を意味し、縦長とはアスペクト比(全長/径)が2以上であることを意味している。   Therefore, the object of the present invention is to make it possible to easily mass-produce a small vertically long glass member used as the above-mentioned homogenizer in a shorter time and at a lower cost than before, and to facilitate handling during the manufacturing process. It is providing the manufacturing method of a glass member. Here, the small size means that the weight per piece is about 2.5 g or less, and the vertically long means that the aspect ratio (full length / diameter) is 2 or more.

上記の課題を解決するためになされた請求項1の発明は、複数の縦長の貫通孔を備えた胴プレートと、その底面に密着する底プレートとによって形成された成形型の上面に溶融ガラスを供給してプレスすることにより、上面の連結部と前記貫通孔に対応する凸部とが一体となったガラス成形体を成形し、この連結部を突き上げてガラス成形体を成形型から取り出した後に連結部を切り離し、複数の縦長ガラス部材を得ることを特徴とするものである。   In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that molten glass is applied to the upper surface of a mold formed by a body plate having a plurality of vertically long through holes and a bottom plate closely contacting the bottom surface. After feeding and pressing, a glass molded body in which the connecting portion on the upper surface and the convex portion corresponding to the through hole are formed, and after pushing up the connecting portion, the glass molded body is taken out from the mold. The connecting portion is cut off to obtain a plurality of vertically long glass members.

また請求項2の発明は、請求項1の発明において、ガラス成形体を成形型から取り出したうえ、凸部の外周面を研磨し、その後に連結部を切り離すことを特徴とするものである。また請求項3の発明は、請求項2の発明において、研磨された凸部を保持し連結部を切り離したうえ、切り離し面を研磨することを特徴とするものである。また請求項4の発明は、請求項1の発明において、胴プレートと底プレートとからなる成形型を多孔質体により構成したことを特徴とするものである。なお、縦長ガラス部材は例えば集光式太陽光発電装置のホモジナイザーであり、その場合にはテーパ付きの多角柱形状または円錐台形状であることが好ましい。その1個の重量は、2.5g以下のものとすることができ、縦長ガラス部材のアスペクト比(全長/最小径)は2以上であることが好ましい。   The invention of claim 2 is characterized in that, in the invention of claim 1, the glass molded body is taken out of the mold, the outer peripheral surface of the convex portion is polished, and then the connecting portion is cut off. The invention of claim 3 is characterized in that, in the invention of claim 2, the polished convex portion is held, the connecting portion is cut off, and the cut surface is polished. According to a fourth aspect of the present invention, in the first aspect of the present invention, the mold comprising the body plate and the bottom plate is formed of a porous body. Note that the vertically long glass member is, for example, a homogenizer of a concentrating solar power generation device, and in that case, it is preferably a tapered polygonal column shape or a truncated cone shape. The weight of one piece can be 2.5 g or less, and the aspect ratio (full length / minimum diameter) of the vertically long glass member is preferably 2 or more.

請求項9は請求項1の方法により縦長ガラス部材を製造する工程の中間製品であるガラス成形体に関するものであり、複数の縦長の貫通孔を備えた胴プレートと、その底面に密着する底プレートとによって形成された成形型の上面に溶融ガラスを供給してプレスすることにより、上面の連結部と前記貫通孔に対応する凸部とが一体となったガラス成形体を成形し、この連結部を突き上げて得られたことを特徴とするものである。   Claim 9 relates to a glass molded body, which is an intermediate product in the process of producing a vertically long glass member by the method of Claim 1, and a body plate having a plurality of vertically long through holes, and a bottom plate closely contacting the bottom surface By supplying molten glass to the upper surface of the mold formed by pressing and pressing, a glass molded body in which the connecting portion on the upper surface and the convex portion corresponding to the through hole are integrated is formed, and this connecting portion It is characterized by being obtained by pushing up.

請求項1の発明によれば、溶融ガラスから複数の縦長ガラス部材を一度に成形することができるので、従来のように成形済みのガラス材から材料を切り出し再加熱するリヒートプレスを行う必要がない。このため小型の縦長ガラス部材を、従来よりも短時間、低コストで、容易に量産することができる。しかも複数の縦長の貫通孔を備えた胴プレートと、その底面に密着する底プレートとによって形成された成形型を用いるので、貫通孔の内周面を平滑に研磨し易く、成形型の製造及びメンテナンスが容易となるうえ、成形時の胴プレートと底プレートとの接合部からの空気抜きも容易に行うことができる。   According to the first aspect of the present invention, since a plurality of vertically long glass members can be formed at a time from molten glass, it is not necessary to perform a reheat press in which a material is cut out from a molded glass material and reheated as in the prior art. . For this reason, a small vertically long glass member can be easily mass-produced in a shorter time and at a lower cost than before. Moreover, since a molding die formed by a body plate having a plurality of vertically long through holes and a bottom plate that is in close contact with the bottom surface is used, the inner peripheral surface of the through holes can be easily polished smoothly, Maintenance is facilitated, and air can be easily removed from the joint between the body plate and the bottom plate during molding.

請求項2の発明によれば、連結部を備えたガラス成形体を型から取り出し、凸部の外周面を研磨してその後に連結部を切り離すので、研磨作業時のハンドリングが行い易くなる。また請求項3の発明によれば、連結部の作業も容易に行うことができるとともに、切り離後の研磨作業の負担も軽減される。さらに請求項4の発明によれば、成形型を多孔質体により構成するので、成形時の空気抜きがより容易になるとともに、空気やガスの圧力により離型を促進することも可能となる。   According to the second aspect of the present invention, the glass molded body provided with the connecting portion is taken out from the mold, the outer peripheral surface of the convex portion is polished, and then the connecting portion is separated. Therefore, handling during the polishing operation is facilitated. According to the invention of claim 3, the work of the connecting portion can be easily performed, and the burden of the polishing work after the separation is reduced. Further, according to the invention of claim 4, since the molding die is made of a porous body, it becomes easier to vent the air at the time of molding, and it is possible to promote mold release by the pressure of air or gas.

以下に本発明の好ましい実施形態を説明する。
図1は集光式太陽光発電装置の説明図であり、1は大型のフレネルレンズ、2はこのフレネルレンズ1によって集光された太陽光を発電用チップ3に導くホモジナイザーである。フレネルレンズ1の幾何学的集光倍率は300倍から500倍程度であり、エネルギー密度を高めて小面積の発電用チップ3で効率の良い発電を行わせる。またホモジナイザー2は図2に示すようなテーパ付きの縦長角柱状のガラス部材である。なお角柱状のほか、円錐台状とすることもできる。
Hereinafter, preferred embodiments of the present invention will be described.
FIG. 1 is an explanatory diagram of a concentrating solar power generation apparatus, wherein 1 is a large Fresnel lens, and 2 is a homogenizer that guides sunlight condensed by the Fresnel lens 1 to a power generation chip 3. The geometrical focusing magnification of the Fresnel lens 1 is about 300 to 500 times, and the energy density is increased so that efficient power generation is performed with the power generation chip 3 having a small area. Moreover, the homogenizer 2 is a vertically long prismatic glass member with a taper as shown in FIG. In addition to a prismatic shape, a truncated cone shape may be used.

ホモジナイザー2は上部の受光面から入射した光線を側面で何度も全反射させることによって光強度を均一化し、下面に配置された発電用チップ3に導く部材である。この機能を発揮するためには各面が平滑に研磨されていること、内部に気泡を含まないことなどの光学的特性を要求される。   The homogenizer 2 is a member that uniformizes the light intensity by repeatedly reflecting light incident from the upper light receiving surface many times on the side surface and guides it to the power generation chip 3 disposed on the lower surface. In order to exhibit this function, optical characteristics such as smooth polishing of each surface and the absence of bubbles inside are required.

また発電効率を高めるためとともにコストダウンのために発電用チップ3の小型化が進行しており、それに連れてホモジナイザー2の小型化も進んでいる。本実施形態において製造されるホモジナイザー2は、アスペクト比(全長/最小径)が2以上、1個当たりの重量が2.5g以下の縦長ガラス部材である。またそのサイズは例えば、受光面である上端面は一辺が3.5〜8.0mm、射出面である下端面が2.0〜5.0mm,高さ7〜13mm程度である。以下に本発明による製造工程を詳述する。   Further, downsizing of the power generation chip 3 is progressing to increase power generation efficiency and cost reduction, and accordingly, downsizing of the homogenizer 2 is also progressing. The homogenizer 2 manufactured in the present embodiment is a vertically long glass member having an aspect ratio (full length / minimum diameter) of 2 or more and a weight per piece of 2.5 g or less. The size of the upper end surface, which is a light receiving surface, is about 3.5 to 8.0 mm on one side, the lower end surface, which is an emission surface, is about 2.0 to 5.0 mm, and the height is about 7 to 13 mm. The production process according to the present invention will be described in detail below.

図3に示すように、本発明では複数の縦長の貫通孔10を備えた胴プレート11と、その底面に密着する底プレート12とによって構成された成形型を用いる。縦長の貫通孔10は縦長ガラス部材の外形状に対応するもので、ここでは断面が正方形で上部が広がった形状である。ただしホモジナイザーの形状に応じて、断面を円形とすることも可能であることはいうまでもない。   As shown in FIG. 3, in the present invention, a molding die constituted by a body plate 11 having a plurality of vertically long through holes 10 and a bottom plate 12 in close contact with the bottom surface thereof is used. The vertically long through-hole 10 corresponds to the outer shape of the vertically long glass member. Here, the vertically long through hole 10 has a square cross section and a shape in which the upper portion is widened. However, it is needless to say that the cross section can be circular according to the shape of the homogenizer.

これらの胴プレート11と底プレート12との材質は、カーボン、金属多孔体、金属、超硬合金、セラミックスなどの様々な材質とすることができるが、この実施形態では通気性のある金属多孔体を用いている。縦長の貫通孔10の内周面は型製作時にもメンテナンス時にも研磨する必要があるが、本発明では胴プレート11と底プレート12とを分離可能な構造としてあるので、研磨作業が容易に行える利点がある。また成形時における胴プレート11と底プレート12との接合部からのエアー抜き効果も得ることができる。   The material of the body plate 11 and the bottom plate 12 can be various materials such as carbon, porous metal, metal, cemented carbide, ceramics, etc., but in this embodiment, the porous metal has a breathability. Is used. Although it is necessary to polish the inner peripheral surface of the vertically long through-hole 10 at the time of mold production and maintenance, in the present invention, since the barrel plate 11 and the bottom plate 12 are separable, the polishing operation can be easily performed. There are advantages. Moreover, the air venting effect from the joint part of the trunk | drum plate 11 and the bottom plate 12 at the time of shaping | molding can also be acquired.

胴プレート11と底プレート12とはホルダーを兼ねるガス制御型13の内部に収納されている。このガス制御型13もまた金属多孔体からなるものである。ガス制御型13はその底部に外部接続口14を備えており、内部に収納された成形型に空気または不活性ガスを吹き込んだり、あるいは内部に収納された成形型から空気を吸引したりすることができるようになっている。   The body plate 11 and the bottom plate 12 are housed in a gas control mold 13 that also serves as a holder. This gas control type 13 is also made of a metal porous body. The gas control mold 13 is provided with an external connection port 14 at the bottom thereof, and air or an inert gas is blown into the mold housed inside, or air is sucked from the mold housed inside. Can be done.

さらにこれらの胴プレート11、底プレート12、ガス制御型13を貫通して突き上げピン15が配置されている。この突き上げピン15は貫通孔10から外れた位置に複数個が配置されている。図3では成形型の両側に配置してあるが、中央部にも配置することも可能である。またピンの代わりにプレート状のものとすることも可能である。成形開始時には、突き上げピン15の上端が胴プレート11の上面と同一面となるように高さを設定しておく。   Further, a push-up pin 15 is disposed through the body plate 11, the bottom plate 12, and the gas control mold 13. A plurality of the push-up pins 15 are arranged at positions away from the through holes 10. In FIG. 3, although it has arrange | positioned at the both sides of a shaping | molding die, it is also possible to arrange | position also in a center part. It is also possible to use a plate instead of a pin. At the start of molding, the height is set so that the upper end of the push-up pin 15 is flush with the upper surface of the body plate 11.

このような構造の成形型の上面に、溶融ガラス16を供給する。溶融ガラス16は定法によりガラスフィーダからゴブとして供給されるものでよく、その材質は例えばソーダ石灰ガラスである。縦長ガラス部材の1個の重量はわずか数gに過ぎないが、溶融ガラス16の重量は数10gとすることができるので、定法による供給が可能である。   Molten glass 16 is supplied to the upper surface of the mold having such a structure. The molten glass 16 may be supplied as a gob from a glass feeder by a conventional method, and the material thereof is, for example, soda-lime glass. Although the weight of one vertically long glass member is only a few grams, the weight of the molten glass 16 can be several tens of grams, so that it can be supplied by a regular method.

続いて、図4のように下面がフラットになった上型17により溶融ガラス16をプレスする。溶融ガラスは上型17によって扁平に押しつぶされるとともにその一部が胴プレート11の縦長の貫通孔10の内部に押し込まれ、上面の連結部18と貫通孔10に対応する多数の凸部19とが一体となったガラス成形体20が成形される。   Subsequently, the molten glass 16 is pressed by an upper mold 17 having a flat bottom surface as shown in FIG. The molten glass is crushed flat by the upper mold 17 and a part thereof is pushed into the vertically long through-hole 10 of the body plate 11, so that the connecting portion 18 on the upper surface and a large number of convex portions 19 corresponding to the through-hole 10 are formed. The integrated glass molded body 20 is molded.

なお、成形時に貫通孔10の内部の空気は底プレート12との合わせ面を通じて排出されるので、ガラス成形体20の凸部19に気泡が残ることはない。また成形時にガス制御型13の外部接続口14から空気を吸引することにより溶融ガラスを真空吸引し、貫通孔10に密着させるようにすれば、より確実に空気抜きを行うことができる。このようにして気泡のないガラス成形体20が成形される。通常、アスペクト比が大きくなると空気抜け不良が発生しやすくなるが、本発明では上記構成によってこの不良発生を確実に防止することができる。   In addition, since the air inside the through-hole 10 is discharged through the mating surface with the bottom plate 12 at the time of molding, bubbles do not remain on the convex portion 19 of the glass molded body 20. Further, if the molten glass is vacuum-sucked by sucking air from the external connection port 14 of the gas control mold 13 at the time of molding and is brought into close contact with the through-hole 10, air can be vented more reliably. In this way, the glass molded body 20 without bubbles is formed. Usually, when the aspect ratio is increased, air leakage defects are likely to occur. However, according to the present invention, the occurrence of the defects can be surely prevented by the above configuration.

ガラス成形体20が固化したのち、突き上げピン15を上昇させてガラス成形体20の連結部18を突き上げ、図5に示すようにガラス成形体20を取り出す。突き上げピン15は貫通孔10のない部分に配置されているため、ガラス成形体20の凸部19が損傷されることはない。また、ガス制御型13の外部接続口14から空気または窒素のような不活性ガスを吹き込めば、成形型からのガラス成形体20の離型性を向上させることができる。このようにして請求項9に記載したガラス成形体20を得ることができる。このガラス成形体20は、連結部18の下面に貫通孔10に対応する多数の凸部19が一体に成形されたものである。   After the glass molded body 20 is solidified, the push-up pin 15 is raised to push up the connecting portion 18 of the glass molded body 20, and the glass molded body 20 is taken out as shown in FIG. Since the push-up pin 15 is disposed in a portion where the through hole 10 is not provided, the convex portion 19 of the glass molded body 20 is not damaged. Moreover, if an inert gas such as air or nitrogen is blown from the external connection port 14 of the gas control mold 13, the releasability of the glass molded body 20 from the mold can be improved. Thus, the glass molded body 20 described in claim 9 can be obtained. The glass molded body 20 is formed by integrally forming a large number of convex portions 19 corresponding to the through holes 10 on the lower surface of the connecting portion 18.

取り出されたガラス成形体20は多数の凸部19が連結部18により一体に接続されたものであるためハンドリングし易く、そのままの状態で図6のように凸部19の外面を研磨する。研磨にはバフ研磨またはブラシ研磨が適しており、適宜の手段により連結部18を保持して研磨を行うことができる。   Since the glass molded body 20 taken out has a large number of convex portions 19 integrally connected by the connecting portion 18, it is easy to handle, and the outer surface of the convex portion 19 is polished as it is as shown in FIG. Buffing or brush polishing is suitable for polishing, and the connecting portion 18 can be held by an appropriate means for polishing.

次に図7に示すように、研磨された凸部19を保持して連結部18を切り離す。凸部19の保持手段としては例えば図7のような真空チャック21を用いることができる。しかし保持手段はこれに限定されるものではなく、樹脂ホルダー、ゲル化材、凍結接着等の公知の接着固定法を採用することができる。   Next, as shown in FIG. 7, the polished projection 19 is held and the connecting portion 18 is separated. For example, a vacuum chuck 21 as shown in FIG. However, the holding means is not limited to this, and a known adhesion fixing method such as a resin holder, a gelling material, and freeze adhesion can be employed.

また、図8に示すように凸部19の底面を露出させることができる形状の加工冶具21を使用し、熱可塑性の仮止め接着塗膜22が形成された固定板23を加工冶具21の下面に当てて凸部19の底面に接着し、ガラス成形体20を加工冶具21に固定する方法を取ることもできる。連結部18を切り離したのちに、加熱して仮止め接着塗膜22を溶かし、加工冶具21から分離すればよい。なお連結部18の切り離しには、例えばバーチカル研削機を用いることができる。   Further, as shown in FIG. 8, a processing jig 21 having a shape capable of exposing the bottom surface of the convex portion 19 is used, and the fixing plate 23 on which the thermoplastic temporary fixing adhesive coating film 22 is formed is attached to the lower surface of the processing jig 21. The glass molded body 20 can be fixed to the processing jig 21 by adhering to the bottom surface of the convex portion 19 and applying the method. After disconnecting the connecting portion 18, the temporary fixing adhesive coating film 22 is melted by heating and separated from the processing jig 21. For example, a vertical grinding machine can be used to separate the connecting portion 18.

このようにして連結部18を切り離すと、各凸部19がばらばらになって複数の縦長ガラス部材となる。そして各縦長ガラス部材の切り離し面を研磨すれば、各面が研磨された縦長ガラス部材を得ることができる。この縦長ガラス部材は、そのまま集光式太陽光発電装置のホモジナイザーとして使用することができる。   Thus, when the connection part 18 is cut | disconnected, each convex part 19 will become disjoint and will become a some vertically long glass member. And if the cut surface of each vertically long glass member is grind | polished, the vertically long glass member by which each surface was grind | polished can be obtained. This vertically long glass member can be used as it is as a homogenizer of a concentrating solar power generation device.

以上に説明した本発明の方法によれば、従来のようなコストと手数のかかるリヒートプレス法を用いることなく、小型の縦長ガラス部材を安価に量産することができる。また成形体のハンドリングが容易であり、成形型の製作及びメンテナンスも容易である。このように本発明はホモジナイザーとして用いられるような小型の縦長ガラス部材を、従来よりも短時間、低コストで量産するに適したものである。更にこのような縦長ガラス部材には寸法精度も要求されるが、本発明によれば次の実施例に示すように寸法ばらつきの少ない成形体を得ることができる。なお、請求項9のガラス成形体はそのまま販売され、集光式太陽光発電装置のメーカーにおいて分離されて使用される。   According to the method of the present invention described above, small vertical glass members can be mass-produced at low cost without using the reheat press method which is costly and troublesome. In addition, the molded body can be easily handled, and the mold can be easily manufactured and maintained. As described above, the present invention is suitable for mass production of a small vertically long glass member used as a homogenizer in a shorter time and at a lower cost than conventional ones. Further, such a vertically long glass member is required to have dimensional accuracy, but according to the present invention, as shown in the following examples, a molded product with little dimensional variation can be obtained. In addition, the glass molded object of Claim 9 is sold as it is, and is separated and used in the manufacturer of a concentrating solar power generation device.

実施形態において説明した金属多孔体製の成形型を用いて、図9に示す形状のホモジナイザーとして用いられる縦長ガラス部材を成形した。規格値は、受光面が4.00×4.00mm,射出面が2.55×2.55mm,高さ7.55mmである。また4面の受光面角度1と受光面角度2は何れも83.03度、射出面角度1と射出面角度2とは何れも96.97度である。   A vertically long glass member used as a homogenizer having the shape shown in FIG. 9 was molded using the porous metal mold described in the embodiment. The standard values are 4.00 × 4.00 mm for the light receiving surface, 2.55 × 2.55 mm for the exit surface, and 7.55 mm in height. The four light receiving surface angles 1 and 2 are both 83.03 degrees, and the exit surface angle 1 and the exit surface angle 2 are both 96.97 degrees.

本発明の製法によって同時に4個の縦長ガラス部材ABCDを成形し、各面を研磨した後の寸法データを採取したところ、表1に示すとおりとなった。本発明によれば、寸法ばらつきの少ない成形が可能であることが分かる。   Four vertically long glass members ABCD were simultaneously formed by the manufacturing method of the present invention, and dimensional data after each surface was polished were collected. According to the present invention, it can be seen that molding with little dimensional variation is possible.

Figure 2008227428
Figure 2008227428

集光式太陽光発電装置の説明図である。It is explanatory drawing of a concentrating solar power generation device. ホモジナイザーの形状を示す正面図である。It is a front view which shows the shape of a homogenizer. 溶融ガラスが供給された成形型の断面図である。It is sectional drawing of the shaping | molding die with which the molten glass was supplied. プレス状態を示す成形型の断面図である。It is sectional drawing of the shaping | molding die which shows a press state. ガラス成形体の取り出し状態を示す断面図である。It is sectional drawing which shows the taking-out state of a glass molded object. 外面研磨工程の説明図である。It is explanatory drawing of an outer surface grinding | polishing process. 切り離し工程を示す断面図である。It is sectional drawing which shows a cutting-off process. 他の加工冶具を示す断面図である。It is sectional drawing which shows another processing jig. 実施例における各部の寸法説明図である。It is dimension explanatory drawing of each part in an Example.

符号の説明Explanation of symbols

1 フレネルレンズ
2 ホモジナイザー
3 発電用チップ
10 貫通孔
11 胴プレート
12 底プレート
13 ガス制御型
14 外部接続口
15 突き上げピン
16 溶融ガラス
17 上型
18 連結部
19 凸部
20 ガラス成形体
21 真空チャック
22 仮止め接着塗膜
23 固定板
DESCRIPTION OF SYMBOLS 1 Fresnel lens 2 Homogenizer 3 Power generation chip 10 Through-hole 11 Body plate 12 Bottom plate 13 Gas control mold 14 External connection port 15 Push-up pin 16 Molten glass 17 Upper mold 18 Connection part 19 Convex part 20 Glass molded body 21 Vacuum chuck 22 Temporary Fixing adhesive coating 23 Fixing plate

Claims (9)

複数の縦長の貫通孔を備えた胴プレートと、その底面に密着する底プレートとによって形成された成形型の上面に溶融ガラスを供給してプレスすることにより、上面の連結部と前記貫通孔に対応する凸部とが一体となったガラス成形体を成形し、この連結部を突き上げてガラス成形体を成形型から取り出した後に連結部を切り離し、複数の縦長ガラス部材を得ることを特徴とする縦長ガラス部材の製造方法。   By supplying and pressing molten glass to the upper surface of a molding die formed by a cylinder plate having a plurality of vertically long through holes and a bottom plate that is in close contact with the bottom surface, the connecting portion on the upper surface and the through hole are pressed. A glass molded body formed by integrating corresponding convex portions is molded, and after the connecting portion is pushed up and the glass molded body is taken out of the mold, the connecting portion is separated to obtain a plurality of vertically long glass members. A method for producing a vertically long glass member. ガラス成形体を成形型から取り出したうえ、凸部の外周面を研磨し、その後に連結部を切り離すことを特徴とする請求項1記載の縦長ガラス部材の製造方法。   The method for producing a vertically long glass member according to claim 1, wherein the glass molded body is taken out of the mold, the outer peripheral surface of the convex portion is polished, and then the connecting portion is cut off. 研磨された凸部を保持し連結部を切り離したうえ、切り離し面を研磨することを特徴とする請求項2記載の縦長ガラス部材の製造方法。   The method for producing a vertically long glass member according to claim 2, wherein the polished convex portion is held and the connecting portion is cut off, and the cut surface is polished. 胴プレートと底プレートとからなる成形型を多孔質体により構成したことを特徴とする請求項1〜3の何れかに記載の縦長ガラス部材の製造方法。   The manufacturing method of the vertically long glass member according to any one of claims 1 to 3, wherein a forming die including a body plate and a bottom plate is formed of a porous body. 縦長ガラス部材が集光式太陽光発電装置のホモジナイザーであることを特徴とする請求項1〜4の何れかに記載の縦長ガラス部材の製造方法。   The method for producing a vertically long glass member according to claim 1, wherein the vertically long glass member is a homogenizer of a concentrating solar power generation device. 縦長ガラス部材がテーパ付きの多角柱形状または円錐台形状である請求項1〜5の何れかに記載の縦長ガラス部材の製造方法。   The method for producing a vertically long glass member according to claim 1, wherein the vertically long glass member has a tapered polygonal column shape or a truncated cone shape. 縦長ガラス部材の1個の重量が2.5g以下のものである請求項1〜6の何れかに記載の縦長ガラス部材の製造方法。   The method for producing a vertically long glass member according to any one of claims 1 to 6, wherein the weight of each vertically long glass member is 2.5 g or less. 縦長ガラス部材のアスペクト比(全長/最小径)が2以上であることを特徴とする請求項1〜7の何れかに記載の縦長ガラス部材の製造方法。   The aspect ratio (full length / minimum diameter) of the vertically long glass member is 2 or more, The method for producing a vertically long glass member according to any one of claims 1 to 7. 複数の縦長の貫通孔を備えた胴プレートと、その底面に密着する底プレートとによって形成された成形型の上面に溶融ガラスを供給してプレスすることにより、上面の連結部と前記貫通孔に対応する凸部とが一体となったガラス成形体を成形し、この連結部を突き上げて得られたことを特徴とするガラス成形体。   By supplying and pressing molten glass to the upper surface of a molding die formed by a cylinder plate having a plurality of vertically long through holes and a bottom plate that is in close contact with the bottom surface, the connecting portion on the upper surface and the through hole are pressed. A glass molded body obtained by molding a glass molded body integrated with corresponding convex portions and pushing up the connecting portion.
JP2007067834A 2007-03-16 2007-03-16 Production process of longitudinal glass member and longitudinal glass molding Ceased JP2008227428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067834A JP2008227428A (en) 2007-03-16 2007-03-16 Production process of longitudinal glass member and longitudinal glass molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067834A JP2008227428A (en) 2007-03-16 2007-03-16 Production process of longitudinal glass member and longitudinal glass molding

Publications (1)

Publication Number Publication Date
JP2008227428A true JP2008227428A (en) 2008-09-25

Family

ID=39845638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067834A Ceased JP2008227428A (en) 2007-03-16 2007-03-16 Production process of longitudinal glass member and longitudinal glass molding

Country Status (1)

Country Link
JP (1) JP2008227428A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251136A (en) * 1984-05-28 1985-12-11 Hoya Corp Method for forming rodlike glass
JPH0355215U (en) * 1989-09-30 1991-05-28
JPH046114A (en) * 1990-04-23 1992-01-10 Nippon Sheet Glass Co Ltd Production of pressed lens
JPH05147047A (en) * 1991-11-29 1993-06-15 Canon Inc Method for molding optical element
WO1993021120A1 (en) * 1992-04-13 1993-10-28 Geltech, Inc. Glass and ceramic components having microscopic features
JPH06254876A (en) * 1993-03-09 1994-09-13 Olympus Optical Co Ltd Composite optical element and production thereof
JP2002289896A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
JP2003258291A (en) * 2001-12-27 2003-09-12 Daido Steel Co Ltd Light condensing photovoltaic power generator
JP2003277084A (en) * 2002-03-26 2003-10-02 Fuji Photo Optical Co Ltd Glass sheet united integrally with a plurality of optical elements and manufacturing method therefor
JP2004214470A (en) * 2003-01-07 2004-07-29 Daido Steel Co Ltd Light condensing solar energy generation system
JP2006278581A (en) * 2005-03-28 2006-10-12 Daido Steel Co Ltd Condensing solar power generation apparatus and optical member used therefor
JP2007055883A (en) * 2005-07-28 2007-03-08 Hoya Corp Optical glass, optical element and process for production thereof
JP2009535856A (en) * 2006-05-03 2009-10-01 スリーエム イノベイティブ プロパティズ カンパニー Method for producing LED light extraction member array

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251136A (en) * 1984-05-28 1985-12-11 Hoya Corp Method for forming rodlike glass
JPH0355215U (en) * 1989-09-30 1991-05-28
JPH046114A (en) * 1990-04-23 1992-01-10 Nippon Sheet Glass Co Ltd Production of pressed lens
JPH05147047A (en) * 1991-11-29 1993-06-15 Canon Inc Method for molding optical element
WO1993021120A1 (en) * 1992-04-13 1993-10-28 Geltech, Inc. Glass and ceramic components having microscopic features
JPH06254876A (en) * 1993-03-09 1994-09-13 Olympus Optical Co Ltd Composite optical element and production thereof
JP2002289896A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
JP2003258291A (en) * 2001-12-27 2003-09-12 Daido Steel Co Ltd Light condensing photovoltaic power generator
JP2003277084A (en) * 2002-03-26 2003-10-02 Fuji Photo Optical Co Ltd Glass sheet united integrally with a plurality of optical elements and manufacturing method therefor
JP2004214470A (en) * 2003-01-07 2004-07-29 Daido Steel Co Ltd Light condensing solar energy generation system
JP2006278581A (en) * 2005-03-28 2006-10-12 Daido Steel Co Ltd Condensing solar power generation apparatus and optical member used therefor
JP2007055883A (en) * 2005-07-28 2007-03-08 Hoya Corp Optical glass, optical element and process for production thereof
JP2009535856A (en) * 2006-05-03 2009-10-01 スリーエム イノベイティブ プロパティズ カンパニー Method for producing LED light extraction member array

Similar Documents

Publication Publication Date Title
CN103380482B (en) Single crystallization base plate manufacture method and inner upgrading layer form single crystals parts
EP2650705B1 (en) Lens plate for wafer-level camera and method of manufacturing same
CN1871713A (en) A method for producing a light-emitting device
CN105892230B (en) mold, imprint apparatus, and method of manufacturing article
JP2007304569A (en) Compound lens and manufacture method thereof
WO2010058740A1 (en) Aspheric lens manufacturing method
JP2008063207A (en) Manufacturing method of quartz glass member, and quartz glass member
JP2008227428A (en) Production process of longitudinal glass member and longitudinal glass molding
JP2009179486A (en) Method for producing hot-molded article, method for producing preform for precision press molding, and method for producing optical element
JP2013067544A (en) Punch tool for processing molding surface, method for manufacturing mold for microlens array, mold for microlens array, and microlens array
JP2007297221A (en) Method for manufacturing glass molding and method for manufacturing optical element
JP2007045696A (en) Method of manufacturing preform for press molding and molding apparatus, preform for press molding and method of manufacturing optical device
JP2007186415A (en) Method and apparatus for manufacturing optical component by thermal molding
JP2012201523A (en) Method for manufacturing infrared lens
JP2014212282A (en) Processing method of wafer
JP3789968B2 (en) Aspherical lens molding method
JP5319569B2 (en) Method and apparatus for molding glass molded product
CN214175998U (en) Film expanding machine
JP5263165B2 (en) Method for producing glass molded body
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JP5543531B2 (en) Microstructure transfer molding device with release plate
JP5566432B2 (en) Method for producing hot-formed product, method for producing precision press-molding preform, and method for producing optical element
JP2005231946A (en) Apparatus and method for manufacturing glass preform, glass preform and optical element
JP2003063832A (en) Mold for forming optical element
JPH10101346A (en) Glass preform and production of optical element using the preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130322