JP2008226690A - Cell unit of polymer electrolyte fuel cell, and stack structure - Google Patents

Cell unit of polymer electrolyte fuel cell, and stack structure Download PDF

Info

Publication number
JP2008226690A
JP2008226690A JP2007064702A JP2007064702A JP2008226690A JP 2008226690 A JP2008226690 A JP 2008226690A JP 2007064702 A JP2007064702 A JP 2007064702A JP 2007064702 A JP2007064702 A JP 2007064702A JP 2008226690 A JP2008226690 A JP 2008226690A
Authority
JP
Japan
Prior art keywords
hole side
gas
power generation
gas introduction
generation efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007064702A
Other languages
Japanese (ja)
Other versions
JP5168954B2 (en
Inventor
Kenji Obara
健児 小原
Tatsuya Yaguchi
竜也 矢口
Shigeo Ibuka
重夫 井深
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007064702A priority Critical patent/JP5168954B2/en
Publication of JP2008226690A publication Critical patent/JP2008226690A/en
Application granted granted Critical
Publication of JP5168954B2 publication Critical patent/JP5168954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell unit of a polymer electrolyte fuel cell capable of simply and inexpensively achieving manufacturing, of equalizing a temperature distribution, of minimizing occurrence frequency of mechanical trouble such as distortion and cracks, of preventing deterioration of unit cells, and of improving the overall fuel utilization ratio; and a stack structure. <P>SOLUTION: This cell unit of a polymer electrolyte fuel cell is provided with: cell plates 2 holding unit cells 6, and each having a gas introduction hole 21 and gas exhaust holes 22 in the center part; separator plates 3 each having a gas introduction hole 31 and gas exhaust holes 32 in the center part, and having an edge part jointed to the edge part of the cell plate 2; and straightening plates 4 making a fuel gas supplied into a space S between the both plates 2 and 3 through the gas introduction holes 21 and 31 reach the gas exhaust holes 22 and 32 in the center part via the edge parts of the plates 2 and 3. Power generation efficiency on the side of the gas introduction holes 21 and 31 is set higher than that on the side of the gas exhaust holes 22 and 32 partitioned by the straightening plates 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、単セルを保持した固体電解質型燃料電池セルユニット及びこれを積層して成るスタック構造体に関するものである。     The present invention relates to a solid oxide fuel cell unit holding a single cell and a stack structure formed by laminating the unit.

上記したような固体電解質型燃料電池セルユニットでは、単セルの燃料極側に燃料ガスを流すと共に、空気極側に酸化ガスである空気を流すことで発電するが、ガス濃度が高いガス流上流側と、ガス濃度が低くなるガス流下流側との発熱量の違いによって、温度分布のばらつきが生じる。   In the solid oxide fuel cell unit as described above, power is generated by flowing the fuel gas to the fuel electrode side of the single cell and the air as the oxidizing gas to the air electrode side, but the gas flow upstream of the gas concentration is high. The temperature distribution varies due to the difference in the amount of heat generated between the gas flow downstream side and the gas flow downstream side where the gas concentration decreases.

従来において、この温度分布のばらつきを少なく抑えるために、単セルの電解質の厚さをガス流の流れに沿って漸次薄くすることによって、ガス流上流側及びガス流下流側の発熱量の差をなくそうとする試みがなされている。
特開平11−086886号公報
Conventionally, in order to suppress this variation in temperature distribution, the thickness of the electrolyte in the single cell is gradually reduced along the gas flow, thereby reducing the difference in heat generation between the gas flow upstream side and the gas flow downstream side. Attempts have been made to eliminate it.
JP 11-086886 A

ところが、温度分布のばらつきを少なく抑えるべく提案された固体電解質型燃料電池セルユニットでは、同一の単セルにおいて電解質の厚さをガス流の流れに沿って漸次薄くするようにしているが、同一の単セルで電解質の厚さを段階ごとに変えることは、製造上極めて困難であり、例え製造することができたとしても、製造コストが高くついてしまうという問題を有しており、この問題を解決することが従来の課題となっていた。   However, in the solid oxide fuel cell unit proposed to suppress the variation in temperature distribution to a minimum, the thickness of the electrolyte is gradually reduced along the gas flow in the same single cell. Changing the thickness of the electrolyte step by step in a single cell is extremely difficult in manufacturing, and even if it can be manufactured, there is a problem that the manufacturing cost is high, and this problem is solved. This has been a conventional problem.

本発明は、上記した従来の課題に着目してなされたもので、簡単且つ低コストでの製造を実現したうえで、温度分布の均一化を図ることでき、その結果、歪みやクラックや剥離などの機械的不具合の発生頻度を少なく抑えることができると共に、単セルの劣化を防ぐことが可能であり、加えて、全体の燃料利用率を向上させることができる固体電解質型燃料電池セルユニット及びスタック構造体を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and can achieve a uniform temperature distribution after realizing simple and low-cost manufacturing. As a result, distortion, cracks, peeling, etc. The solid oxide fuel cell unit and the stack can reduce the frequency of occurrence of mechanical problems and can prevent deterioration of a single cell, and can improve the overall fuel utilization rate. The object is to provide a structure.

本発明の固体電解質型燃料電池セルユニットは、単セルを保持し且つ中心部分にガス導入孔及びガス排出孔を有するセル板と、中心部分にガス導入孔及びガス排出孔を有し且つ周縁部分をセル板の周縁部分に接合させたセパレータ板と、セル板及びセパレータ板間に形成される空間内にガス導入孔を通して供給される燃料ガス及び空気のうちの一方のガスを両板の周縁部分を経由して中心部分のガス排出孔まで到達させる整流板を備え、ガス導入孔側の単セルによる発電効率よりも整流板で仕切られるガス排出孔側の単セルによる発電効率を高く設定してある構成としたことを特徴としており、この固体電解質型燃料電池セルユニットの構成を前述した従来の課題を解決するための手段としている。   The solid oxide fuel cell unit of the present invention includes a cell plate that holds a single cell and has a gas introduction hole and a gas discharge hole in the center part, and has a gas introduction hole and a gas discharge hole in the center part, and a peripheral part. The separator plate is bonded to the peripheral portion of the cell plate, and one of the fuel gas and air supplied through the gas introduction hole in the space formed between the cell plate and the separator plate is supplied to the peripheral portion of the two plates. The power generation efficiency of the single cell on the gas discharge hole side partitioned by the rectification plate is set higher than the power generation efficiency of the single cell on the gas introduction hole side. It is characterized by having a certain configuration, and the configuration of the solid oxide fuel cell unit is used as a means for solving the above-described conventional problems.

本発明の固体電解質型燃料電池セルユニットにおいて、発熱効率とは、所定の温度域におけるガス濃度及びガス流量の積に基づく単位面積あたりの発熱量である。   In the solid oxide fuel cell unit of the present invention, the heat generation efficiency is a heat generation amount per unit area based on a product of a gas concentration and a gas flow rate in a predetermined temperature range.

この固体電解質型燃料電池セルユニットにおいて、燃料ガス又は空気ガスのうちの一方のガスは、ガス導入孔を通して袋構造を成す両板間の空間内に導入され、整流板によって形成された往路を通って両板の周縁部分に到達し、そして、同じく整流板によって形成された復路を介して中心部分のガス排出孔から排出され、他方のガスは積層した固体電解質型燃料電池セルユニットの層間を流れるが、ガス濃度が高いことで反応が促進され易いガス導入孔側の発電効率に比べて、整流板で仕切られるガス濃度が低いことで反応が促進され難いガス排出孔側の発電効率を高く設定してあるので、ガス導入孔側及びガス排出孔側の発熱量の差が少ないものとなり、温度分布の均一化が図られることとなる。   In this solid oxide fuel cell unit, one of the fuel gas and air gas is introduced into the space between the two plates forming the bag structure through the gas introduction hole, and passes through the forward path formed by the rectifying plate. To the peripheral edge of both plates, and is discharged from the gas discharge hole in the central portion via the return path similarly formed by the rectifying plate, and the other gas flows between the layers of the stacked solid oxide fuel cell units. However, compared with the power generation efficiency on the gas introduction hole side where the reaction is likely to be promoted due to the high gas concentration, the power generation efficiency on the gas exhaust hole side where the reaction is difficult to be promoted due to the low gas concentration partitioned by the rectifying plate is set high. Therefore, the difference in the amount of heat generated between the gas introduction hole side and the gas discharge hole side becomes small, and the temperature distribution is made uniform.

この際、ガス導入孔側及びガス排出孔側の各単セルの活性や電解質の厚さやイオン伝導率を変えることで、ガス導入孔側及びガス排出孔側の各発電効率を変えるようになせば、製造の容易化及び低コスト化を図りつつ、歪みやクラックや剥離などの機械的不具合の発生頻度を少なく抑え得ると共に、単セルの劣化をも防ぎ得ることとなる。   At this time, it is necessary to change the power generation efficiency on the gas introduction hole side and the gas discharge hole side by changing the activity of each single cell on the gas introduction hole side and the gas discharge hole side, the thickness of the electrolyte, and the ionic conductivity. In addition, while facilitating manufacture and cost reduction, the frequency of occurrence of mechanical problems such as distortion, cracks, and peeling can be suppressed, and deterioration of the single cell can be prevented.

本発明によれば、上記した構成としているので、簡単且つ低コストでの製造を実現しつつ、温度分布を均一化することが可能であり、したがって、歪みやクラックや剥離などの機械的不具合の発生及び単セルの劣化を防止することができ、加えて、全体の燃料利用率の向上をも実現可能であるという非常に優れた効果がもたらされる。   According to the present invention, since it is configured as described above, it is possible to make the temperature distribution uniform while realizing simple and low-cost manufacturing, and therefore, mechanical defects such as distortion, cracks, and peeling are eliminated. Generation | occurrence | production and deterioration of a single cell can be prevented, and also the outstanding effect that improvement of the whole fuel utilization rate is realizable is brought about.

本発明の固体電解質型燃料電池セルユニットにおいて、その一実施態様として、図1及び図2に示すように、単セル6を保持し且つ中心部分にガス導入孔21及びガス排出孔22を有する円形状のセル板2と、中心部分にガス導入孔31及びガス排出孔32を有し且つ外周縁部分をセル板2の外周縁部分に絶縁接合させた円形状のセパレータ板3を具備した構成を採用することができ、本発明の一実施態様によるスタック構造体11は、上記固体電解質型燃料電池セルユニット1を図示しない集電体を介して複数積層して得ることができる。   In the solid oxide fuel cell unit of the present invention, as an embodiment thereof, as shown in FIGS. 1 and 2, a circle that holds a single cell 6 and has a gas introduction hole 21 and a gas discharge hole 22 in the central portion. The configuration includes a cell plate 2 having a shape, and a circular separator plate 3 having a gas introduction hole 31 and a gas discharge hole 32 in the central portion and having an outer peripheral edge portion insulatively bonded to the outer peripheral edge portion of the cell plate 2. The stack structure 11 according to an embodiment of the present invention can be obtained by stacking a plurality of the solid oxide fuel cell units 1 via a current collector (not shown).

この際、両板2,3のガス導入孔21,31及びガス排出孔22,32と連通するガス導入口51及びガス排出口52を具備して両板2,3間に形成される空間S内に対する一方のガスの供給及び排出を行う中央流路部品5をセル板2及びセパレータ板3の中心部分間に配置することができる。   At this time, the space S formed between the plates 2 and 3 is provided with the gas introduction ports 51 and 52 communicating with the gas introduction holes 21 and 31 and the gas discharge holes 22 and 32 of the plates 2 and 3. A central flow path component 5 that supplies and discharges one gas to the inside can be disposed between the central portions of the cell plate 2 and the separator plate 3.

本発明の固体電解質型燃料電池セルユニットにおける整流板4は、ガス導入孔21(31)を中心にして両板2,3の外周縁部に向けて配置することで、空間S内に往路A及び復路Bを形成するようになっており、ガス濃度が高いガス導入孔21(31)側の往路Aの発電効率に比べて、ガス濃度が低いガス排出孔22(32)側の復路Bの発電効率を高く設定することで、温度分布の均一化が図られる。   The rectifying plate 4 in the solid oxide fuel cell unit of the present invention is disposed toward the outer peripheral edge of the plates 2 and 3 with the gas introduction hole 21 (31) as the center, so that the forward path A in the space S is achieved. The return path B is formed, and compared with the power generation efficiency of the forward path A on the gas introduction hole 21 (31) side where the gas concentration is high, the return path B on the gas discharge hole 22 (32) side where the gas concentration is low. By setting the power generation efficiency high, the temperature distribution can be made uniform.

ここで、上記固体電解質型燃料電池セルユニット1のように、一個のガス導入孔21(31)及び四個のガス排出孔22(32)を有している場合には、中央流路部品5を中心にして八枚の整流板4を放射状に延出させて、四つの往路A及び四つの復路Bを交互に配置するように成すことが望ましく、このように、往路A及び復路Bを交互に配置すると、より一層の均熱効果が得られることとなる。   Here, in the case of having one gas introduction hole 21 (31) and four gas discharge holes 22 (32) as in the case of the solid oxide fuel cell unit 1, the central flow path component 5 It is desirable that the eight rectifying plates 4 extend radially around the center, and the four forward paths A and the four return paths B are alternately arranged. In this way, the forward paths A and the return paths B are alternately arranged. If it arrange | positions to, a much more soaking effect will be acquired.

本発明の固体電解質型燃料電池セルユニット1において、一方のガスは、ガス導入孔21(31)からセル板2及びセパレータ板3間の空間S内に導入されて外周縁部分を経由して流れるので、セル板2(セパレータ板3)を円形状としてガス導入孔21(31)から両板の外周縁部分までの距離を等しくすることが望ましいが、セル板2(セパレータ板3)を多角形状、例えば、図6に示すように、セル板2(セパレータ板3)を八角形状としてもよい。   In the solid oxide fuel cell unit 1 of the present invention, one gas is introduced into the space S between the cell plate 2 and the separator plate 3 from the gas introduction hole 21 (31) and flows through the outer peripheral edge portion. Therefore, it is desirable that the cell plate 2 (separator plate 3) is circular and the distance from the gas introduction hole 21 (31) to the outer peripheral edge portions of both plates is equal, but the cell plate 2 (separator plate 3) is polygonal. For example, as shown in FIG. 6, the cell plate 2 (separator plate 3) may have an octagonal shape.

なお、図1及び図6に示した固体電解質型燃料電池セルユニット1は、セル板2(セパレータ板3)が一個のガス導入孔21(31)及び四個のガス排出孔22(32)を有しているが、ガス導入孔21(31)の個数及びガス排出孔22(32)の個数はいずれもこれに限定されるものではなく、例えば、図7に示すように、一個のガス導入孔21(31)に対して二個のガス排出孔22(32)とすることができ、この場合には、二枚の整流板4をガス導入孔21(31)を中心にして相反する方向に向けて配置することが望ましい。   In the solid oxide fuel cell unit 1 shown in FIGS. 1 and 6, the cell plate 2 (separator plate 3) has one gas introduction hole 21 (31) and four gas discharge holes 22 (32). However, the number of the gas introduction holes 21 (31) and the number of the gas discharge holes 22 (32) are not limited to this. For example, as shown in FIG. Two gas discharge holes 22 (32) can be formed with respect to the hole 21 (31). In this case, the two rectifying plates 4 are in opposite directions around the gas introduction hole 21 (31). It is desirable to arrange for

また、本発明の固体電解質型燃料電池セルユニットにおいて、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定する構成として、ガス導入孔側に配置した単セルよりも高い発電効率の単セルをガス排出孔側に配置する構成を採用することができる。   In the solid oxide fuel cell unit of the present invention, the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate is set higher than the power generation efficiency on the gas introduction hole side. The structure which arrange | positions the single cell of higher electric power generation efficiency than a cell to the gas exhaust hole side is employable.

具体的には、図5に示すように、ガス導入孔21(31)側の往路Aからガス排出孔22(32)側の復路Bにかけて単セル6の活性をあげたり(同一基板上に異なる活性、例えば電極をガス流れ方向に沿って成膜したり)、図8に示すように、ガス導入孔21(31)側の往路A及びガス排出孔22(32)側の復路Bに活性の異なる単セル6をそれぞれガス流れ方向に沿って配置したりする構成を採用することができる。   Specifically, as shown in FIG. 5, the activity of the single cell 6 is increased from the forward path A on the gas introduction hole 21 (31) side to the return path B on the gas discharge hole 22 (32) side (different on the same substrate). Activity, for example, an electrode is formed along the gas flow direction), and as shown in FIG. 8, the active path A is active on the outward path A on the gas introduction hole 21 (31) side and the return path B on the gas discharge hole 22 (32) side. It is possible to employ a configuration in which different single cells 6 are arranged along the gas flow direction.

このように、ガス流れ方向に沿って単セル6の活性を変えて成膜することで、製造の容易化及び低コスト化を図りつつ、歪みやクラックや剥離などの機械的不具合の発生頻度を少なく抑え得ると共に、単セルの劣化をも防ぎ得ることとなり、加えて、固体電解質型燃料電池セルユニット1内に機能の異なる複数の単セル6を分散させることで、大型の単セルを搭載する場合と比べて、製造段階における反りや歪みの発生が少なく抑えられると共に、異なる材料間の熱膨張係数差に起因して運転時や停止時に生じるクラックや材料間の剥離も少なく抑え得る。   In this way, by forming the film by changing the activity of the single cell 6 along the gas flow direction, the frequency of occurrence of mechanical troubles such as distortion, cracks, and peeling is reduced while facilitating manufacturing and reducing costs. In addition to reducing the number of single cells 6, the single cell 6 can be prevented from being deteriorated. In addition, a plurality of single cells 6 having different functions are dispersed in the solid oxide fuel cell unit 1 to mount a large single cell. Compared to the case, the occurrence of warpage and distortion in the manufacturing stage can be suppressed to a small extent, and cracks and separation between materials caused during operation and stoppage due to the difference in thermal expansion coefficient between different materials can be suppressed.

さらに、本発明の固体電解質型燃料電池セルユニットにおいて、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定する構成として、ガス導入孔側に配置した単セルよりも薄い電解質の単セルをガス排出孔側に配置する構成、具体的には、ガス流れ方向に沿って配置した複数の単セルの各電解質が漸次薄くなるようにする構成を採用することができる。   Furthermore, in the solid oxide fuel cell unit of the present invention, the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate is set higher than the power generation efficiency on the gas introduction hole side. Adopting a configuration in which a single cell of electrolyte thinner than the cell is arranged on the gas discharge hole side, specifically, a configuration in which each electrolyte of a plurality of single cells arranged along the gas flow direction becomes gradually thinner. Can do.

このように、ガス濃度が高いことで反応が促進され易いガス導入孔側に電解質の厚い単セルを配置してセル抵抗を意図的に上げて反応量を小さくし、一方、ガス濃度が低いことで反応が促進され難いガス排出孔側に電解質の薄い単セルを配置してセル抵抗を下げて反応量を高めているので、温度分布の均一化が図られることとなり、その結果、製造の容易化及び低コスト化を図ったうえで、歪みやクラックや剥離などの機械的不具合の発生頻度を少なく抑え得ると共に、単セルの劣化をも防ぎ得ることとなる。   In this way, a single cell with a thick electrolyte is arranged on the gas introduction hole side where the reaction is likely to be promoted because the gas concentration is high, and the cell resistance is intentionally increased to reduce the reaction amount, while the gas concentration is low. Because a single cell with a thin electrolyte is placed on the gas discharge hole side where the reaction is difficult to promote in order to lower the cell resistance and increase the reaction amount, the temperature distribution can be made uniform, resulting in easy manufacturing. In addition, the frequency of occurrence of mechanical problems such as distortion, cracks, and peeling can be suppressed and deterioration of the single cell can be prevented.

さらにまた、本発明の固体電解質型燃料電池セルユニットにおいて、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定する構成として、ガス導入孔側に配置した単セルよりもイオン伝導率が高い電解質を有する単セルをガス排出孔側に配置する構成、具体的には、ガス流れ方向に沿って配置した複数の単セルの各イオン伝導率が漸次高くなるようにする構成を採用することができる。   Furthermore, in the solid oxide fuel cell unit of the present invention, the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate is set higher on the gas introduction hole side than the power generation efficiency on the gas introduction hole side. A configuration in which a single cell having an electrolyte having higher ion conductivity than that of the single cell is arranged on the gas discharge hole side, specifically, each ion conductivity of a plurality of single cells arranged along the gas flow direction is gradually increased. The structure which makes it can be employ | adopted.

このように、ガス濃度が高いことで反応が促進され易いガス導入孔側にイオン伝導率が低い電解質を有する単セルを配置して意図的に反応量を小さくし、一方、ガス濃度が低いことで反応が促進され難いガス排出孔側にイオン伝導率が高い電解質を有する単セルを配置して反応量を高めているので、温度分布の均一化が図られることとなり、その結果、製造の容易化及び低コスト化を図ったうえで、歪みやクラックや剥離などの機械的不具合の発生頻度を少なく抑え得ると共に、単セルの劣化をも防ぎ得ることとなる。   In this way, a single cell having an electrolyte with low ionic conductivity is arranged on the gas introduction hole side where the reaction is likely to be promoted because the gas concentration is high, so that the reaction amount is intentionally reduced, while the gas concentration is low. The reaction volume is increased by placing a single cell with an electrolyte with high ionic conductivity on the side of the gas discharge hole where the reaction is difficult to promote, so that the temperature distribution can be made uniform, resulting in easy manufacturing. In addition, the frequency of occurrence of mechanical problems such as distortion, cracks, and peeling can be suppressed and deterioration of the single cell can be prevented.

さらにまた、本発明の固体電解質型燃料電池セルユニットにおいて、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定する構成として、ガス導入孔側に配置した単セルよりも発電面積率が大きい単セルをガス排出孔側に配置する構成を採用することができる。ここで、発電面積率とは、固体電解質型燃料電池セルユニット及び単セル基板の面積に基づく発電要素の面積の割合である。   Furthermore, in the solid oxide fuel cell unit of the present invention, the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate is set higher on the gas introduction hole side than the power generation efficiency on the gas introduction hole side. A configuration in which a single cell having a larger power generation area ratio than the single cell is disposed on the gas discharge hole side can be employed. Here, the power generation area ratio is a ratio of the area of the power generation element based on the area of the solid oxide fuel cell unit and the single cell substrate.

具体的には、ガス流れ方向に沿って配置した複数の単セルの各発電面積率を漸次大きくなるようにする、すなわち、図3に示すように、固体電解質型燃料電池セルユニット1の整流板4で仕切られる復路Bの電極面積を往路Aの電極面積よりも大きくする構成を採用することができる。   Specifically, each power generation area ratio of the plurality of single cells arranged along the gas flow direction is gradually increased, that is, as shown in FIG. 3, the rectifying plate of the solid oxide fuel cell unit 1 A configuration in which the electrode area of the return path B partitioned by 4 is larger than the electrode area of the forward path A can be employed.

このように、ガス濃度が高いことで反応が促進され易いガス導入孔側において発電面積率を小さくして意図的に反応量を小さくし、一方、ガス濃度が低いことで反応が促進され難いガス排出孔側において発電面積率を大きくして反応量を高めているので、温度分布の均一化が図られることとなり、その結果、製造の容易化及び低コスト化を図ったうえで、歪みやクラックや剥離などの機械的不具合の発生頻度を少なく抑え得ると共に、単セルの劣化をも防ぎ得ることとなる。   In this way, the gas introduction hole side on which the reaction is likely to be promoted because the gas concentration is high reduces the power generation area ratio to intentionally reduce the reaction amount, while the gas concentration is low and the reaction is difficult to promote. Since the power generation area ratio is increased on the discharge hole side to increase the reaction amount, the temperature distribution can be made uniform. As a result, the manufacturing process is simplified and the cost is reduced. As a result, the frequency of occurrence of mechanical problems such as peeling and peeling can be reduced, and deterioration of the single cell can also be prevented.

さらにまた、本発明の固体電解質型燃料電池セルユニットにおいて、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定する構成として、ガス導入孔側に配置した単セルよりも導電率が高い電極を有する単セルをガス排出孔側に配置する構成、具体的には、ガス流れ方向に沿って配置した複数の単セルの各導電率が漸次高くなるようにする構成を採用することができる。   Furthermore, in the solid oxide fuel cell unit of the present invention, the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate is set higher on the gas introduction hole side than the power generation efficiency on the gas introduction hole side. A configuration in which a single cell having an electrode having a higher conductivity than that of the single cell is arranged on the gas discharge hole side, specifically, the conductivity of each of the plurality of single cells arranged along the gas flow direction is gradually increased. It is possible to adopt a configuration to

このように、ガス濃度が高いことで反応が促進され易いガス導入孔側に導電率が低い電極を有する単セルを配置して意図的に反応量を小さくし、一方、ガス濃度が低いことで反応が促進され難いガス排出孔側に導電率が高い電極を有する単セルを配置して反応量を高めているので、温度分布の均一化が図られることとなり、その結果、製造の容易化及び低コスト化を図ったうえで、歪みやクラックや剥離などの機械的不具合の発生頻度を少なく抑え得ると共に、単セルの劣化をも防ぎ得ることとなる。   In this way, a single cell having an electrode with low conductivity is arranged on the gas introduction hole side where the reaction is likely to be promoted because the gas concentration is high, so that the reaction amount is intentionally reduced, while the gas concentration is low. Since a single cell having an electrode with high conductivity is arranged on the gas discharge hole side where the reaction is difficult to promote, the reaction amount is increased, so that the temperature distribution can be made uniform. In addition to cost reduction, the frequency of occurrence of mechanical problems such as distortion, cracks, and peeling can be suppressed, and deterioration of the single cell can be prevented.

一般的に、単セルの電極の気孔率を低くすると、電気伝導性を高め得る反面、電極にガスが供給され難くなって濃度過電圧を起こし易く、一方、単セルの電極の気孔率を低くすると、電気伝導性は低くなるものの、電極にガスが供給され易くなって濃度過電圧を起こし難くなる。   In general, if the porosity of the single cell electrode is lowered, the electrical conductivity can be increased, but it is difficult to supply gas to the electrode and it is easy to cause concentration overvoltage. On the other hand, if the porosity of the single cell electrode is lowered. Although the electrical conductivity is lowered, gas is easily supplied to the electrode, and it is difficult to cause concentration overvoltage.

そこで、本発明の固体電解質型燃料電池セルユニットにおいて、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定する構成として、ガス導入孔側に配置した単セルよりも気孔率が大きい電極を有する単セルをガス排出孔側に配置する構成、例えば、ガス流れ方向に沿って配置した複数の単セルの各燃料極(NiO−YSZ)に入れる増孔剤の量を漸次増やしたり、ガス流れの上流側において1400℃で焼成した燃料極基板セルを使用し且つ下流側において1350℃で焼成した燃料極基板セルを使用したりして、気孔率が次第に大きくなるようにする構成と成すことが望ましい。   Therefore, in the solid oxide fuel cell unit of the present invention, the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate is set higher than the power generation efficiency on the gas introduction hole side. A structure in which a single cell having an electrode having a higher porosity than that of the cell is arranged on the gas discharge hole side, for example, a pore-extinguishing agent put into each fuel electrode (NiO-YSZ) of a plurality of single cells arranged along the gas flow direction The porosity is gradually increased by using a fuel electrode substrate cell fired at 1400 ° C. on the upstream side of the gas flow and using a fuel electrode substrate cell fired at 1350 ° C. on the downstream side of the gas flow. It is desirable that the configuration be such that

この構成を採用した場合において、ガス導入孔の近傍では、ガス濃度が高いので濃度過電圧が起こり難くそしてガスの消費を少なく抑え得るうえ、オーム抵抗分だけ過電圧が小さくなり、一方、ガス排出孔の近傍では、ガス濃度が低下するものの、単セルの電極の気孔率が大きいので濃度過電圧が起こり難くなり、したがって、反応ガス利用率が高い運転時の性能をより向上させ得ることとなる。   In the case of adopting this configuration, in the vicinity of the gas introduction hole, since the gas concentration is high, the concentration overvoltage hardly occurs and the gas consumption can be suppressed to a low level, and the overvoltage is reduced by the ohmic resistance. In the vicinity, although the gas concentration decreases, the porosity of the single-cell electrode is large, so that concentration overvoltage is unlikely to occur. Therefore, the performance during operation with a high reaction gas utilization rate can be further improved.

さらにまた、本発明の固体電解質型燃料電池セルユニットにおいて、セル板及びセパレータ板間に形成される空間内に配置される集電体を備え、ガス導入孔側に配置した単セルの電極及び集電体の抵抗値よりもガス排出孔側に配置した単セルの電極及び集電体の抵抗値を低くすることで、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定してある構成を採用することができる。   Furthermore, the solid oxide fuel cell unit of the present invention comprises a current collector disposed in a space formed between the cell plate and the separator plate, and a single cell electrode and collector disposed on the gas introduction hole side. By lowering the resistance value of the electrode of the single cell and the current collector arranged on the gas discharge hole side than the resistance value of the electric body, the power generation efficiency on the gas introduction hole side is closer to the gas discharge hole side partitioned by the rectifying plate. A configuration in which the power generation efficiency is set high can be employed.

具体的には、ガス流れ方向に沿って配置した複数の単セルの各電極及び集電体の抵抗値(表面接触抵抗値及び集電体自体の抵抗値の計)が漸次低くなるようにする構成を採用することができる。例えば、ガス上流側に位置する単セルの電極と接触する集電体にはPtを使用すると共に、下流側に位置する単セルの電極と接触する集電体にはNiを使用し、ガス上流側に位置する単セルの電極と集電体との接触面積を1〜2%とし且つ下流側に位置する単セルの電極と集電体との接触面積を5〜10%にする。   Specifically, the resistance values of the electrodes and current collectors of the plurality of single cells arranged along the gas flow direction (the sum of the surface contact resistance value and the current collector resistance value) are gradually lowered. A configuration can be employed. For example, Pt is used for the current collector that contacts the electrode of the single cell located on the upstream side of the gas, and Ni is used for the current collector that contacts the electrode of the single cell located on the downstream side. The contact area between the electrode of the single cell located on the side and the current collector is 1-2%, and the contact area between the electrode of the single cell located on the downstream side and the current collector is 5-10%.

このように、集電体の機能を分割して、ガス濃度が高いことで反応が促進され易いガス導入孔側において単セルの電極及び集電体の抵抗値を高くして反応量を小さくし、一方、ガス濃度が低いことで反応が促進され難いガス排出孔側において単セルの電極及び集電体の抵抗値を低くして反応量を高めているので、一枚板状の単セルを反応場別に機能分割させることなく温度分布の均一化が図られることとなり、その結果、製造の容易化及び低コスト化を図ったうえで、歪みやクラックや剥離などの機械的不具合の発生頻度を少なく抑え得ると共に、単セルの劣化をも防ぎ得ることとなる。   In this way, the current collector function is divided to increase the resistance of the single cell electrode and the current collector on the gas introduction hole side where the reaction is likely to be promoted due to the high gas concentration, thereby reducing the reaction amount. On the other hand, since the reaction amount is increased by lowering the resistance value of the electrode and current collector of the single cell on the gas discharge hole side where the reaction is difficult to be promoted due to the low gas concentration, a single plate-shaped single cell is formed. The temperature distribution can be made uniform without dividing the function for each reaction field. As a result, the frequency of occurrence of mechanical problems such as distortion, cracks and delamination can be reduced while facilitating manufacturing and reducing costs. It can be suppressed to a small extent, and deterioration of the single cell can be prevented.

一方、固体電解質型燃料電池セルユニットを積層してなるスタック構造体において、ガス濃度が高いことで反応が促進され易いガス導入孔部分では反応量が大きくて発熱量が多く、ガス濃度が低いことで反応が促進され難いガス排出孔部分では反応量が小さくて発熱量が少ない。   On the other hand, in a stack structure formed by stacking solid oxide fuel cell units, the gas introduction hole portion where the reaction is likely to be promoted due to the high gas concentration has a large reaction amount, a large calorific value, and a low gas concentration. The reaction amount is small and the calorific value is small in the gas discharge hole portion where the reaction is difficult to be accelerated.

そこで、上記固体電解質型燃料電池セルユニットを複数積層して成る本発明のスタック構造体において、図4に示すように、隣接する一方の固体電解質型燃料電池セルユニット1における発電効率が高いガス導入孔部分(往路)Aと、他方の固体電解質型燃料電池セルユニット1における発電効率が低いガス排出孔部分(復路)Bとを互いに重ね合わせてある構成を採用することが望ましい。   Therefore, in the stack structure of the present invention in which a plurality of the solid oxide fuel cell units are stacked, as shown in FIG. 4, gas introduction with high power generation efficiency in one adjacent solid oxide fuel cell unit 1 is performed. It is desirable to adopt a configuration in which a hole portion (outward path) A and a gas discharge hole portion (return path) B having low power generation efficiency in the other solid oxide fuel cell unit 1 are overlapped with each other.

この構成を採用すると、固体電解質型燃料電池セルユニットの積層方向における温度分布の均一化が図られることとなって、全体的な機械的不具合の発生頻度を少なく抑え得ることとなり、その結果、固体電解質型燃料電池セルユニット間において電気的な接続不良が生じる懸念が払拭され、セルユニット間のガス流路が確保されることとなる。   By adopting this configuration, the temperature distribution in the stacking direction of the solid oxide fuel cell unit can be made uniform, and the overall frequency of occurrence of mechanical problems can be reduced. The fear of an electrical connection failure between the electrolyte fuel cell units is eliminated, and a gas flow path between the cell units is secured.

以下、本発明を実施例により更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example.

[実施例1]
図1及び図2は、本発明の一実施例を示しており、図1及び図2に示すように、この実施例において、固体電解質型燃料電池セルユニット1の単セル6の燃料極をニッケル+イットリア安定化ジルコニアのサーメットとし、電解質を10モルパーセントイットリア安定化ジルコニアとし、空気極をランタンストロンチュウムマンガナイトとして、燃料極に、電解質及び空気極をスパッタ法により成膜して燃料極支持型の単セル6を得た。
[Example 1]
1 and 2 show an embodiment of the present invention. As shown in FIGS. 1 and 2, in this embodiment, the fuel electrode of the single cell 6 of the solid oxide fuel cell unit 1 is made of nickel. + Yttria stabilized zirconia cermet, 10 mol percent yttria stabilized zirconia electrolyte, air electrode lanthanum strontium manganite, fuel electrode, electrolyte and air electrode formed by sputtering, and fuel electrode support A single cell 6 of the type was obtained.

上記単セル6を保持する円形状のセル板2はSUS系材料からなり、単セル6の支持部とこのセル板2とをロウ付けにより接合した。また、セパレータ板3にもSUS系材料を用いた。   The circular cell plate 2 holding the single cell 6 is made of a SUS material, and the support portion of the single cell 6 and the cell plate 2 are joined by brazing. The separator plate 3 was also made of SUS material.

上記セル板2(セパレータ板3)には、一個のガス導入孔21(31)及び四個のガス排出孔22(32)が設けてあり、ガス導入孔21(31)を中心にして八枚の整流板4を放射状に延出させて、四つの往路A及び四つの復路Bを交互に配置した。   The cell plate 2 (separator plate 3) is provided with one gas introduction hole 21 (31) and four gas discharge holes 22 (32), and eight sheets centering on the gas introduction hole 21 (31). The rectifying plates 4 were extended radially, and four forward paths A and four return paths B were alternately arranged.

この場合、往路Aに配置した単セル6において、すなわち、ガス濃度が高いことで反応が促進され易いガス導入孔21(31)側に配置した単セル6おいて、電解質に厚さ20μmのイオン伝導率が低い3YSZを用いると共に燃料極であるNiO−YSZの体積比を30vol%とし、一方、復路Bに配置した単セル6において、すなわち、ガス濃度が低いことで反応が促進され難いガス排出孔22(32)側に配置した単セル6において、電解質層に厚さ10μmのイオン伝導率が高い8YSZを用いると共に燃料極であるNiO−YSZの体積比を40vol%とした。   In this case, in the single cell 6 arranged in the forward path A, that is, in the single cell 6 arranged on the gas introduction hole 21 (31) side where the reaction is easily promoted due to the high gas concentration, an ion having a thickness of 20 μm is formed in the electrolyte. Using 3YSZ with low conductivity and the volume ratio of NiO-YSZ as the fuel electrode to 30 vol%, on the other hand, in the single cell 6 arranged in the return path B, that is, gas discharge that is difficult to promote reaction due to low gas concentration In the single cell 6 arranged on the hole 22 (32) side, 8YSZ having a high ion conductivity of 10 μm in thickness was used for the electrolyte layer, and the volume ratio of NiO—YSZ as the fuel electrode was set to 40 vol%.

そして、セル板2及びセパレータ板3の各外周縁部分同士を接合して成る固体電解質型燃料電池セルユニット1を複数積層してスタック構造体11を得た。   Then, a plurality of solid oxide fuel cell units 1 formed by joining the outer peripheral edge portions of the cell plate 2 and the separator plate 3 were stacked to obtain a stack structure 11.

上記したように、この固体電解質型燃料電池セルユニット1では、ガス濃度が高いガス導入孔21(31)付近での反応量を小さくする一方で、ガス濃度が低くなるガス排出孔22(32)付近での反応量を大きくするようにしているので、温度分布の均一性が向上した。   As described above, in the solid oxide fuel cell unit 1, the gas discharge hole 22 (32) in which the gas concentration decreases while the reaction amount in the vicinity of the gas introduction hole 21 (31) in which the gas concentration is high is reduced. Since the reaction amount in the vicinity is increased, the uniformity of the temperature distribution is improved.

[実施例2]
図3は、本発明の他の実施例を示しており、図3に示すように、この実施例において、固体電解質型燃料電池セルユニット1の単セル6の燃料極,電解質及び空気極には、実施例1の単セル6と同じ材料を用いており、セル支持部としての多孔質金属体(SUS430)に、燃料極をスクリーン印刷した後、電解質及び空気極をスパッタ法により成膜してこの実施例の単セル6を得た。
[Example 2]
FIG. 3 shows another embodiment of the present invention. As shown in FIG. 3, the fuel electrode, electrolyte, and air electrode of the single cell 6 of the solid oxide fuel cell unit 1 are used in this embodiment. The same material as that of the single cell 6 of Example 1 is used. After the fuel electrode is screen-printed on the porous metal body (SUS430) as the cell support portion, the electrolyte and the air electrode are formed by sputtering. A single cell 6 of this example was obtained.

この実施例においても、上記単セル6を保持する円形状のセル板2にSUS系材料を用い、単セル6のセル支持部としての多孔質金属体とこのセル板2とをロウ付けにより接合した。また、セパレータ板3にもSUS系材料を用いた。   Also in this embodiment, a SUS-based material is used for the circular cell plate 2 holding the single cell 6, and the porous metal body as the cell support portion of the single cell 6 and the cell plate 2 are joined by brazing. did. The separator plate 3 was also made of SUS material.

この実施例において、八枚の整流板4で形成される扇状を成す往路Aの広がり角度を約30°とし、この往路Aに配置した単セル6において、空気極のLal−xSrxMnO3をx=0でスパッタ成膜し、同じく扇状を成す復路Bの広がり角度を約60°とし、この復路Bに配置した単セル6において、空気極のLal−xSrxMnO3をx=0.5でスパッタ成膜した。   In this embodiment, the fan A-shaped forward path A formed by the eight rectifying plates 4 has an expansion angle of about 30 °, and in the single cell 6 arranged in the forward path A, the air electrode Lal-xSrxMnO3 is set to x = 0. Sputter film formation was performed, and the fan B-shaped return path B was spread at an angle of about 60 °. In the single cell 6 arranged in the return path B, the air electrode Lal-xSrxMnO3 was sputtered at x = 0.5.

上記したように、この固体電解質型燃料電池セルユニット1では、往路A及び復路Bの電極の面積比を1:2としているので、反応ガスの濃度が高いガス導入孔21(31)に近い往路Aでの反応ガスの消費量が少なく抑えられ、これとは逆に、反応ガスの濃度が低いガス排出孔22(32)に近い復路Bでの反応が促進されることとなって、固体電解質型燃料電池セルユニット1全体の温度分布の均一性が向上した。   As described above, in the solid oxide fuel cell unit 1, the area ratio of the electrodes of the forward path A and the backward path B is 1: 2, so the outbound path close to the gas introduction hole 21 (31) where the concentration of the reaction gas is high. The reaction gas consumption at A is reduced, and conversely, the reaction in the return path B close to the gas discharge hole 22 (32) where the concentration of the reaction gas is low is promoted, so that the solid electrolyte The uniformity of the temperature distribution of the entire fuel cell unit 1 is improved.

[実施例3]
この実施例において、単セル6の構成材料及びセル板2(セパレータ板3)構成材料は、いずれも実施例1の固体電解質型燃料電池セルユニット1と同じとし、単セル6をセル板2に実施例1と同じ要領で接合した。そして、八枚の整流板4により、四つの往路A及び四つの復路Bを形成した。
[Example 3]
In this embodiment, the constituent material of the single cell 6 and the constituent material of the cell plate 2 (separator plate 3) are the same as those of the solid oxide fuel cell unit 1 of the first embodiment. Bonding was performed in the same manner as in Example 1. Then, four forward paths A and four return paths B were formed by the eight rectifying plates 4.

この実施例における固体電解質型燃料電池セルユニット1では、往路Aに配置した単セル6において、すなわち、ガス濃度が高いことで反応が促進され易いガス導入孔21(31)側に配置した単セル6おいて、燃料極に入れる増孔剤の量を全体の5%とし、一方、復路Bに配置した単セル6において、すなわち、ガス濃度が低いことで反応が促進され難いガス排出孔22(32)側に配置した単セル6において、燃料極に入れる増孔剤の量を全体の20%とした。   In the solid oxide fuel cell unit 1 in this embodiment, in the single cell 6 arranged in the forward path A, that is, the single cell arranged on the gas introduction hole 21 (31) side where the reaction is easily promoted due to the high gas concentration. 6, the amount of the pore-increasing agent to be put into the fuel electrode is 5% of the total, while in the single cell 6 arranged in the return path B, that is, the gas discharge holes 22 ( In the single cell 6 arranged on the 32) side, the amount of the pore-increasing agent put into the fuel electrode was 20% of the whole.

上記したように、この固体電解質型燃料電池セルユニット1では、ガス導入孔21(31)の近傍からガス排出孔22(32)の近傍にかけて、燃料極の気孔率が漸次大きくなるようにしているので、ガス導入孔の近傍では、ガス濃度が高いので濃度過電圧が起こり難くそしてガスの消費を少なく抑え得るうえ、オーム抵抗分だけ過電圧が小さくなり、一方、ガス排出孔の近傍では、ガス濃度が低下するものの、単セルの電極の気孔率が大きい分だけ濃度過電圧が起こり難くなり、その結果、反応ガス利用率が高い運転時の性能がより向上した。   As described above, in the solid oxide fuel cell unit 1, the porosity of the fuel electrode gradually increases from the vicinity of the gas introduction hole 21 (31) to the vicinity of the gas discharge hole 22 (32). Therefore, in the vicinity of the gas introduction hole, the gas concentration is high, so that the concentration overvoltage hardly occurs and the consumption of gas can be reduced, and the overvoltage is reduced by the ohmic resistance. On the other hand, the gas concentration is near the gas discharge hole. Although it decreases, concentration overvoltage is less likely to occur as much as the porosity of the single cell electrode increases, and as a result, the performance during operation with a high reaction gas utilization rate is further improved.

[実施例4]
この実施例において、単セル6の構成材料及びセル板2(セパレータ板3)構成材料は、いずれも実施例1の固体電解質型燃料電池セルユニット1と同じとし、単セル6をセル板2に実施例1と同じ要領で接合した。
[Example 4]
In this embodiment, the constituent material of the single cell 6 and the constituent material of the cell plate 2 (separator plate 3) are the same as those of the solid oxide fuel cell unit 1 of the first embodiment. Bonding was performed in the same manner as in Example 1.

この実施例における固体電解質型燃料電池セルユニット1では、ガス濃度が高いことで反応が促進され易いガス導入孔21(31)側に配置した単セル6、すなわち、ガス上流側に位置する単セル6の電極と集電体との接触面積を1〜2%とし、ガス濃度が低いことで反応が促進され難いガス排出孔22(32)側に配置した単セル6、すなわち、ガス下流側に位置する単セル6の電極と集電体との接触面積を5〜10%とした。   In the solid oxide fuel cell unit 1 in this embodiment, the single cell 6 arranged on the gas introduction hole 21 (31) side where the reaction is easily promoted due to the high gas concentration, that is, the single cell located on the gas upstream side. The contact area between the electrode 6 and the current collector is 1 to 2%, and the gas concentration is low, and the reaction is difficult to be promoted by the single cell 6 arranged on the gas discharge hole 22 (32) side, that is, on the gas downstream side. The contact area between the electrode of the single cell 6 positioned and the current collector was 5 to 10%.

上記したように、この固体電解質型燃料電池セルユニット1では、ガス濃度が高いガス導入孔21(31)付近での反応量を小さくする一方で、ガス濃度が低くなるガス排出孔22(32)付近での反応量を大きくするようにしているので、温度分布の均一性が向上した。加えて、複数の単セルに同じ仕様のもの用いることができるので、管理製造が容易なものとなる。   As described above, in the solid oxide fuel cell unit 1, the gas discharge hole 22 (32) in which the gas concentration decreases while the reaction amount in the vicinity of the gas introduction hole 21 (31) in which the gas concentration is high is reduced. Since the reaction amount in the vicinity is increased, the uniformity of the temperature distribution is improved. In addition, since the same specification can be used for a plurality of single cells, management and manufacture are easy.

[実施例5]
図4は、実施例1の固体電解質型燃料電池セルユニット1を複数積層して成る本発明のスタック構造体の他の実施例を示している。図4に示すように、この実施例におけるスタック構造体11では、隣接する一方の固体電解質型燃料電池セルユニット1における発電効率が高いガス導入孔部分(往路)Aと、他方の固体電解質型燃料電池セルユニット1における発電効率が低いガス排出孔部分(復路)Bとを互いに重ね合わせている。
[Example 5]
FIG. 4 shows another embodiment of the stack structure of the present invention in which a plurality of solid oxide fuel cell units 1 of Embodiment 1 are stacked. As shown in FIG. 4, in the stack structure 11 in this embodiment, a gas introduction hole portion (outward path) A with high power generation efficiency in one adjacent solid oxide fuel cell unit 1 and the other solid electrolyte fuel A gas discharge hole portion (return path) B having low power generation efficiency in the battery cell unit 1 is overlapped with each other.

上記したように、このスタック構造体11では、固体電解質型燃料電池セルユニット1内で生じる若干の温度分布のばらつきを上下方向の熱交換で緩和するようにしているので、固体電解質型燃料電池セルユニット1の積層方向における温度分布の均一化が図られることとなって、全体的な機械的不具合の発生頻度を少なく抑え得ることとなり、その結果、固体電解質型燃料電池セルユニット1,1間において電気的な接続不良が生じる懸念が払拭され、セルユニット1,1間のガス流路が確保されることとなる。   As described above, in the stack structure 11, the slight variation in temperature distribution generated in the solid oxide fuel cell unit 1 is alleviated by heat exchange in the vertical direction. Since the temperature distribution in the stacking direction of the units 1 is made uniform, the occurrence frequency of overall mechanical problems can be reduced, and as a result, between the solid oxide fuel cell units 1 and 1 The concern about the occurrence of poor electrical connection is eliminated, and the gas flow path between the cell units 1 and 1 is secured.

本発明の一実施例による固体電解質型燃料電池セルユニットをセパレータ板を省略して示す平面説明図である。(実施例1)FIG. 3 is an explanatory plan view showing a solid oxide fuel cell unit according to an embodiment of the present invention with a separator plate omitted. (Example 1) 図1の固体電解質型燃料電池セルユニットを複数積層して成るスタック構造体の簡略断面説明図である。(実施例1)FIG. 2 is a simplified cross-sectional explanatory view of a stack structure formed by stacking a plurality of solid oxide fuel cell units of FIG. 1. (Example 1) 本発明の他の実施例による固体電解質型燃料電池セルユニットをセパレータ板を省略して示す平面説明図である。(実施例2)FIG. 6 is an explanatory plan view showing a solid oxide fuel cell unit according to another embodiment of the present invention with a separator plate omitted. (Example 2) 図1の固体電解質型燃料電池セルユニットを複数積層して成るスタック構造体の他の実施例を示す簡略断面説明図である。(実施例5)FIG. 5 is a simplified cross-sectional explanatory view showing another embodiment of a stack structure formed by stacking a plurality of solid oxide fuel cell units of FIG. 1. (Example 5) 本発明の他の構成例による固体電解質型燃料電池セルユニットをセパレータ板を省略して示す平面説明図である。It is a plane explanatory view showing a solid oxide fuel cell unit according to another configuration example of the present invention, omitting a separator plate. 本発明のさらに他の構成例による固体電解質型燃料電池セルユニットをセパレータ板を省略して示す平面説明図である。It is a plane explanatory view which omits a separator plate and shows a solid oxide fuel cell unit according to still another configuration example of the present invention. 本発明のさらに他の構成例による固体電解質型燃料電池セルユニットをセパレータ板を省略して示す平面説明図である。It is a plane explanatory view which omits a separator plate and shows a solid oxide fuel cell unit according to still another configuration example of the present invention. 本発明のさらに他の構成例による固体電解質型燃料電池セルユニットをセパレータ板を省略して示す平面説明図(a)〜(c)である。It is plane explanatory drawing (a)-(c) which abbreviate | omits a separator plate and shows the solid oxide fuel cell unit by the further another structural example of this invention.

符号の説明Explanation of symbols

1 固体電解質型燃料電池セルユニット
2 セル板
3 セパレータ板
4 整流板
6 単セル
21,31 ガス導入孔
22,32 ガス排出孔
11 スタック構造体
S 空間
DESCRIPTION OF SYMBOLS 1 Solid oxide fuel cell unit 2 Cell plate 3 Separator plate 4 Rectification plate 6 Single cell 21, 31 Gas introduction hole 22, 32 Gas discharge hole 11 Stack structure S Space

Claims (9)

単セルを複数保持し且つ中心部分にガス導入孔及びガス排出孔を有するセル板と、中心部分にガス導入孔及びガス排出孔を有し且つ周縁部分をセル板の周縁部分に接合させたセパレータ板と、セル板及びセパレータ板間に形成される空間内にガス導入孔を通して供給される燃料ガス及び空気のうちの一方のガスを両板の周縁部分を経由して中心部分のガス排出孔まで到達させる整流板を備え、ガス導入孔側の単セルによる発電効率よりも整流板で仕切られるガス排出孔側の単セルによる発電効率を高く設定してあることを特徴とする固体電解質型燃料電池セルユニット。 A cell plate having a plurality of single cells and having a gas introduction hole and a gas discharge hole in the central portion, and a separator having a gas introduction hole and a gas discharge hole in the central portion and having a peripheral portion joined to the peripheral portion of the cell plate One gas out of the fuel gas and air supplied through the gas introduction hole into the space formed between the plate and the cell plate and the separator plate passes through the peripheral portion of both plates to the gas discharge hole in the central portion. A solid oxide fuel cell comprising a rectifying plate to be reached, wherein power generation efficiency by a single cell on the gas discharge hole side partitioned by the rectification plate is set higher than power generation efficiency by a single cell on the gas introduction hole side Cell unit. ガス導入孔側に配置した単セルよりも高い発電効率の単セルをガス排出孔側に配置することで、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定してある請求項1に記載の固体電解質型燃料電池セルユニット。 By placing a single cell with higher power generation efficiency on the gas discharge hole side than the single cell placed on the gas introduction hole side, the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate is higher than the power generation efficiency on the gas introduction hole side. The solid oxide fuel cell unit according to claim 1, which is set high. ガス導入孔側に配置した単セルよりも薄い電解質の単セルをガス排出孔側に配置することで、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定してある請求項1に記載の固体電解質型燃料電池セルユニット。 By disposing a single cell of electrolyte thinner than the single cell disposed on the gas introduction hole side on the gas discharge hole side, the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate is higher than the power generation efficiency on the gas introduction hole side. The solid oxide fuel cell unit according to claim 1, which is set. ガス導入孔側に配置した単セルよりもイオン伝導率が高い電解質を有する単セルをガス排出孔側に配置することで、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定してある請求項1に記載の固体電解質型燃料電池セルユニット。 The gas discharge hole side partitioned by a rectifying plate rather than the power generation efficiency on the gas introduction hole side by disposing a single cell having an electrolyte having higher ion conductivity on the gas discharge hole side than the single cell arranged on the gas introduction hole side The solid oxide fuel cell unit according to claim 1, wherein the power generation efficiency is set high. ガス導入孔側に配置した単セルよりも発電面積率が大きい単セルをガス排出孔側に配置することで、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定してある請求項1に記載の固体電解質型燃料電池セルユニット。 By arranging a single cell with a larger power generation area ratio on the gas discharge hole side than the single cell arranged on the gas introduction hole side, the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate rather than the power generation efficiency on the gas introduction hole side The solid oxide fuel cell unit according to claim 1, wherein is set high. ガス導入孔側に配置した単セルよりも導電率が高い電極を有する単セルをガス排出孔側に配置することで、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定してある請求項1に記載の固体電解質型燃料電池セルユニット。 By disposing a single cell having an electrode with higher conductivity than the single cell disposed on the gas introduction hole side on the gas discharge hole side, the gas discharge hole side partitioned by the rectifying plate is separated from the power generation efficiency on the gas introduction hole side. 2. The solid oxide fuel cell unit according to claim 1, wherein power generation efficiency is set high. ガス導入孔側に配置した単セルよりも気孔率が大きい電極を有する単セルをガス排出孔側に配置することで、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定してある請求項1に記載の固体電解質型燃料電池セルユニット。 By disposing a single cell having an electrode having a higher porosity than that of the single cell disposed on the gas introduction hole side on the gas discharge hole side, the gas discharge hole side partitioned by the rectifying plate is separated from the power generation efficiency on the gas introduction hole side. 2. The solid oxide fuel cell unit according to claim 1, wherein power generation efficiency is set high. セル板及びセパレータ板間に形成される空間内に配置される集電体を備え、ガス導入孔側に配置した単セルの電極及び集電体の抵抗値よりもガス排出孔側に配置した単セルの電極及び集電体の抵抗値を低くすることで、ガス導入孔側の発電効率よりも整流板で仕切られるガス排出孔側の発電効率を高く設定してある請求項1に記載の固体電解質型燃料電池セルユニット。 A current collector disposed in a space formed between the cell plate and the separator plate, and a single cell disposed on the gas discharge hole side than the resistance value of the electrode and current collector disposed on the gas introduction hole side; 2. The solid according to claim 1, wherein the power generation efficiency on the gas discharge hole side partitioned by the rectifying plate is set higher than the power generation efficiency on the gas introduction hole side by lowering the resistance value of the electrode of the cell and the current collector. Electrolytic fuel cell unit. 請求項1〜8のいずれかの固体電解質型燃料電池セルユニットを複数積層して成り、隣接する一方の固体電解質型燃料電池セルユニットにおける発電効率が高いガス導入孔部分と、他方の固体電解質型燃料電池セルユニットにおける発電効率が低いガス排出孔部分とを互いに重ね合わせてあることを特徴とするスタック構造体。 A gas introduction hole portion having a high power generation efficiency in one of the adjacent solid electrolyte fuel cell units, the other solid electrolyte fuel cell unit being formed by laminating a plurality of the solid oxide fuel cell units according to any one of claims 1 to 8 A stack structure characterized in that gas discharge hole portions having low power generation efficiency in a fuel cell unit are overlapped with each other.
JP2007064702A 2007-03-14 2007-03-14 Solid oxide fuel cell unit and stack structure Expired - Fee Related JP5168954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064702A JP5168954B2 (en) 2007-03-14 2007-03-14 Solid oxide fuel cell unit and stack structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064702A JP5168954B2 (en) 2007-03-14 2007-03-14 Solid oxide fuel cell unit and stack structure

Publications (2)

Publication Number Publication Date
JP2008226690A true JP2008226690A (en) 2008-09-25
JP5168954B2 JP5168954B2 (en) 2013-03-27

Family

ID=39845054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064702A Expired - Fee Related JP5168954B2 (en) 2007-03-14 2007-03-14 Solid oxide fuel cell unit and stack structure

Country Status (1)

Country Link
JP (1) JP5168954B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113829A (en) * 2009-11-27 2011-06-09 Kyocera Corp Fuel cell module and fuel cell device
JP2012248523A (en) * 2011-05-31 2012-12-13 Nissan Motor Co Ltd Fuel cell
JP2019220368A (en) * 2018-06-21 2019-12-26 本田技研工業株式会社 Fuel cell module and fuel cell system

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689727A (en) * 1992-09-07 1994-03-29 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte type fuel cell
JPH06150944A (en) * 1992-11-12 1994-05-31 Toshiba Corp Fuel cell electrode
JPH10255811A (en) * 1997-03-06 1998-09-25 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell with dispersed characteristic electrode
JPH1186886A (en) * 1997-09-12 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell
JP2003282103A (en) * 2002-03-25 2003-10-03 Toto Ltd Fuel cell unit and fuel cell system
JP2004207028A (en) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd Fuel cell
JP2005085524A (en) * 2003-09-05 2005-03-31 Mitsubishi Materials Corp Solid oxide fuel cell
JP2005228580A (en) * 2004-02-12 2005-08-25 Nippon Soken Inc Electrolytic material for fuel cell and fuel cell
JP2005317418A (en) * 2004-04-30 2005-11-10 Nissan Motor Co Ltd Fuel cell
JP2005346989A (en) * 2004-05-31 2005-12-15 Kyocera Corp Current-collecting member, fuel battery cell stack, and fuel battery
JP2005353421A (en) * 2004-06-10 2005-12-22 Nissan Motor Co Ltd Fuel cell
WO2006019419A2 (en) * 2004-03-31 2006-02-23 Corning Incorporated Fuel cell device with varied active area sizes
JP2006140097A (en) * 2004-11-15 2006-06-01 Kyocera Corp Fuel battery cell, and fuel cell
JP2006147532A (en) * 2004-10-22 2006-06-08 Nissan Motor Co Ltd Solid electrolyte fuel cell and stack structure
JP2006173056A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Solid electrolyte fuel cell and stack structure
JP2006172964A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Stack structure of solid electrolyte fuel cell
JP2007018821A (en) * 2005-07-06 2007-01-25 Toyota Motor Corp Electrolyte membrane used in polymer electrolyte fuel cell, its manufacturing method and membrane-electrode assembly

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689727A (en) * 1992-09-07 1994-03-29 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte type fuel cell
JPH06150944A (en) * 1992-11-12 1994-05-31 Toshiba Corp Fuel cell electrode
JPH10255811A (en) * 1997-03-06 1998-09-25 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell with dispersed characteristic electrode
JPH1186886A (en) * 1997-09-12 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell
JP2003282103A (en) * 2002-03-25 2003-10-03 Toto Ltd Fuel cell unit and fuel cell system
JP2004207028A (en) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd Fuel cell
JP2005085524A (en) * 2003-09-05 2005-03-31 Mitsubishi Materials Corp Solid oxide fuel cell
JP2005228580A (en) * 2004-02-12 2005-08-25 Nippon Soken Inc Electrolytic material for fuel cell and fuel cell
WO2006019419A2 (en) * 2004-03-31 2006-02-23 Corning Incorporated Fuel cell device with varied active area sizes
JP2007531240A (en) * 2004-03-31 2007-11-01 コーニング インコーポレイテッド Fuel cell device with unequal active area
JP2005317418A (en) * 2004-04-30 2005-11-10 Nissan Motor Co Ltd Fuel cell
JP2005346989A (en) * 2004-05-31 2005-12-15 Kyocera Corp Current-collecting member, fuel battery cell stack, and fuel battery
JP2005353421A (en) * 2004-06-10 2005-12-22 Nissan Motor Co Ltd Fuel cell
JP2006147532A (en) * 2004-10-22 2006-06-08 Nissan Motor Co Ltd Solid electrolyte fuel cell and stack structure
JP2006140097A (en) * 2004-11-15 2006-06-01 Kyocera Corp Fuel battery cell, and fuel cell
JP2006172964A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Stack structure of solid electrolyte fuel cell
JP2006173056A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Solid electrolyte fuel cell and stack structure
JP2007018821A (en) * 2005-07-06 2007-01-25 Toyota Motor Corp Electrolyte membrane used in polymer electrolyte fuel cell, its manufacturing method and membrane-electrode assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113829A (en) * 2009-11-27 2011-06-09 Kyocera Corp Fuel cell module and fuel cell device
JP2012248523A (en) * 2011-05-31 2012-12-13 Nissan Motor Co Ltd Fuel cell
JP2019220368A (en) * 2018-06-21 2019-12-26 本田技研工業株式会社 Fuel cell module and fuel cell system

Also Published As

Publication number Publication date
JP5168954B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US10665870B2 (en) Electrochemical reaction unit and fuel cell stack
US8735020B2 (en) Fuel cell
US20190036146A1 (en) Flat plate type fuel cell
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
JP4404331B2 (en) Fuel cell
JP5168954B2 (en) Solid oxide fuel cell unit and stack structure
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP6378337B2 (en) Stack structure of flat solid oxide fuel cell and solid oxide fuel cell system
JP2008251236A (en) Flat lamination type fuel cell
JP3244308B2 (en) Solid oxide fuel cell system
JP2009245633A (en) Fuel cell stack, and flat-plate solid oxide fuel cell using the same
JP2010238437A (en) Solid electrolyte for flat-plate solid oxide fuel cell, and flat-plate solid oxide fuel cell
JP6563279B2 (en) Method for producing a single fuel cell
JP2022112590A (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP5846936B2 (en) Fuel cell
JP2020113503A (en) Electrochemical reaction cell stack
JP2005235550A (en) Fuel cell
JP6350358B2 (en) Fuel cell stack
JP2013257973A (en) Solid oxide fuel cell stack
JP2019053926A (en) Fuel cell stack
JP2018181405A (en) Fuel cell power generation module
JP5650019B2 (en) Solid oxide fuel cell
JP6983017B2 (en) Fuel cell stack
JP6797153B2 (en) Electrochemical reaction cell stack
JP2018181568A (en) Current collecting member-electrochemical reaction single cell composite, and electrochemical reaction cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5168954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees