JP2008224305A - Electronic device - Google Patents
Electronic device Download PDFInfo
- Publication number
- JP2008224305A JP2008224305A JP2007060308A JP2007060308A JP2008224305A JP 2008224305 A JP2008224305 A JP 2008224305A JP 2007060308 A JP2007060308 A JP 2007060308A JP 2007060308 A JP2007060308 A JP 2007060308A JP 2008224305 A JP2008224305 A JP 2008224305A
- Authority
- JP
- Japan
- Prior art keywords
- oxalate
- humidity
- electronic device
- proton conductor
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本発明は、電子デバイスに関し、たとえば湿度センサに関する。 The present invention relates to an electronic device, for example, a humidity sensor.
従来から、プロトン伝導体のプロトン伝導性を利用した電子デバイスが提案されてきた。そのような電子デバイスの代表的なものとしては、燃料電池や水素ガスセンサもしくは湿度センサが挙げられる。 Conventionally, electronic devices utilizing the proton conductivity of proton conductors have been proposed. Typical examples of such electronic devices include fuel cells, hydrogen gas sensors, and humidity sensors.
従来の湿度センサのプロトン伝導体としては、強酸基を有する有機高分子膜などが提案されてきた(たとえば特許文献1)。
しかし、強酸基を有する有機高分子膜は、周囲の金属等を腐食させる恐れがある。また、一般的に、有機高分子膜は、耐熱性が充分ではないという問題を有する。このように、従来用いられてきた有機高分子からなるプロトン伝導体は、更なる特性向上が求められていた。 However, an organic polymer film having a strong acid group may corrode surrounding metals and the like. In general, the organic polymer film has a problem that the heat resistance is not sufficient. Thus, the proton conductor made of an organic polymer that has been conventionally used has been required to further improve the characteristics.
このような状況において、本発明の目的の1つは、プロトン伝導体として従来用いられていなかった材料をプロトン伝導体として用いた、新規な電子デバイスを提供することである。 Under such circumstances, one of the objects of the present invention is to provide a novel electronic device using a material that has not been conventionally used as a proton conductor as a proton conductor.
本発明者らは、従来まったく考えられてこなかった材料(シュウ酸ニッケルおよびシュウ酸マグネシウム)にプロトン伝導性が発現することを見出し、その伝導機構を解明してきた。このプロトン伝導体は従来のものと異なり、強酸残基を持たず、金属の腐食など、従来のプロトン伝導体に見られた様々な問題点を解決することがわかった。本発明は、この新たな知見に基づくものである。 The present inventors have found that proton conductivity is manifested in materials (nickel oxalate and magnesium oxalate) that have never been considered before, and have clarified the conduction mechanism. Unlike the conventional proton conductor, this proton conductor has no strong acid residue and has been found to solve various problems found in conventional proton conductors such as metal corrosion. The present invention is based on this new knowledge.
すなわち、本発明の電子デバイスは、プロトン伝導体を含み、前記プロトン伝導体のプロトン伝導性を利用する電子デバイスであって、前記プロトン伝導体が、シュウ酸ニッケルおよびシュウ酸マグネシウムからなる群より選ばれる少なくとも1つである。 That is, the electronic device of the present invention is an electronic device that includes a proton conductor and utilizes the proton conductivity of the proton conductor, and the proton conductor is selected from the group consisting of nickel oxalate and magnesium oxalate. At least one.
なお、この明細書において、「シュウ酸ニッケル」はシュウ酸ニッケル二水和物を含み、「シュウ酸マグネシウム」は、シュウ酸マグネシウム二水和物を含む。 In this specification, “nickel oxalate” includes nickel oxalate dihydrate, and “magnesium oxalate” includes magnesium oxalate dihydrate.
また、本発明の湿度センサは、湿度によって電気的特性が変化する感湿部を含み、前記感湿部の前記電気的特性の変化を利用して湿度を測定する湿度センサであって、前記感湿部が、シュウ酸ニッケルおよびシュウ酸マグネシウムからなる群より選ばれる少なくとも1つを含む。 The humidity sensor of the present invention is a humidity sensor that includes a moisture-sensitive part whose electrical characteristics change depending on humidity, and measures humidity using the change in the electrical characteristics of the moisture-sensitive part. The wet portion includes at least one selected from the group consisting of nickel oxalate and magnesium oxalate.
本発明の電子デバイスでは、熱に強く、周囲の金属を腐食させることがないプロトン伝導体が用いられる。そのため、本発明によれば、従来とは異なる特性を有する電子デバイスが得られる。 In the electronic device of the present invention, a proton conductor that is resistant to heat and does not corrode surrounding metals is used. Therefore, according to the present invention, an electronic device having characteristics different from the conventional one can be obtained.
以下、本発明の実施の形態について例を挙げて説明する。なお、本発明は、以下の実施形態および実施例に限定されない。以下の説明では、特定の数値や特定の材料を例示する場合があるが、本発明の効果が得られる限り、他の数値や他の材料を適用してもよい。 Hereinafter, embodiments of the present invention will be described with examples. Note that the present invention is not limited to the following embodiments and examples. In the following description, specific numerical values and specific materials may be exemplified, but other numerical values and other materials may be applied as long as the effect of the present invention is obtained.
[電子デバイス]
本発明の電子デバイスは、プロトン伝導体を含み、プロトン伝導体のプロトン伝導性を利用するデバイスである。そのプロトン伝導体は、シュウ酸ニッケルおよびシュウ酸マグネシウムからなる群より選ばれる少なくとも1つである。
[Electronic device]
The electronic device of the present invention is a device including a proton conductor and utilizing the proton conductivity of the proton conductor. The proton conductor is at least one selected from the group consisting of nickel oxalate and magnesium oxalate.
通常、プロトン伝導体としては、シュウ酸ニッケルおよびシュウ酸マグネシウムのいずれか一方が用いられる。プロトン伝導体は、シュウ酸ニッケルおよび/またはシュウ酸マグネシウムのみで構成されていてもよいが、必要に応じて、他の材料(たとえば有機高分子材料)を含んでもよい。プロトン伝導体に占めるシュウ酸ニッケルおよび/またはシュウ酸マグネシウムの割合は、たとえば30重量%以上であり、50重量%以上や、80重量%以上や、90重量%以上であってもよい。 Usually, one of nickel oxalate and magnesium oxalate is used as the proton conductor. The proton conductor may be composed of only nickel oxalate and / or magnesium oxalate, but may include other materials (for example, organic polymer materials) as necessary. The proportion of nickel oxalate and / or magnesium oxalate in the proton conductor is, for example, 30% by weight or more, and may be 50% by weight or more, 80% by weight or more, or 90% by weight or more.
シュウ酸ニッケルおよびシュウ酸マグネシウムは、配位高分子またはシュウ酸金属錯体として知られている。シュウ酸ニッケルおよびシュウ酸マグネシウムは、それぞれ、プロトン伝導性を示す。 Nickel oxalate and magnesium oxalate are known as coordination polymers or metal oxalate complexes. Nickel oxalate and magnesium oxalate each show proton conductivity.
シュウ酸ニッケルの組成式は、Ni(C2O4)・2H2Oで表される。シュウ酸マグネシウムの組成式は、Mg(C2O4)・2H2Oで表される。 The composition formula of nickel oxalate is represented by Ni (C 2 O 4 ) · 2H 2 O. The composition formula of magnesium oxalate is represented by Mg (C 2 O 4 ) · 2H 2 O.
シュウ酸ニッケルの結晶は、図1に示す金属イオンと配位子とが互い違いに複数個(無数に)結合した鎖状構造を含む。結晶全体では鎖状構造が、互いに平行になるように集積された構造を有する。鎖状構造同士は、ディスオーダーを含めたいくつかの集積様式があり、例えば単斜晶系や斜方晶系があり得るが、いずれの形態もプロトン伝導性を示す。シュウ酸マグネシウムの結晶も、同様の構造を有する。 The crystal of nickel oxalate includes a chain structure in which a plurality of metal ions and ligands shown in FIG. 1 are alternately (numerically) bonded. The entire crystal has a structure in which chain structures are integrated so as to be parallel to each other. The chain structures have several accumulation modes including disorder, for example, monoclinic system and orthorhombic system, but both forms exhibit proton conductivity. Magnesium oxalate crystals also have a similar structure.
シュウ酸ニッケルおよびシュウ酸マグネシウムの製造方法には水溶液中で合成する方法や、固相反応による合成法などがあるが、特に限定はない。それらの製造方法の一例について、実施例で説明する。 The method for producing nickel oxalate and magnesium oxalate includes a method of synthesizing in an aqueous solution and a method of synthesis by solid phase reaction, but is not particularly limited. An example of those manufacturing methods will be described in Examples.
本発明の電子デバイスは、湿度センサであってもよい。その場合、プロトン伝導体(シュウ酸ニッケルおよび/またはシュウ酸マグネシウム)の抵抗値が湿度によって変化することを利用して、湿度を測定する。 The electronic device of the present invention may be a humidity sensor. In that case, the humidity is measured by utilizing the fact that the resistance value of the proton conductor (nickel oxalate and / or magnesium oxalate) varies with humidity.
本発明の電子デバイスは、湿度センサ以外のデバイスであってもよい。たとえば、燃料電池や、ガスセンサであってもよい。本発明の電子デバイスが燃料電池である場合、プロトン伝導体は固体電解質、電極触媒もしくは電極触媒の助剤として用いられる。 The electronic device of the present invention may be a device other than a humidity sensor. For example, a fuel cell or a gas sensor may be used. When the electronic device of the present invention is a fuel cell, the proton conductor is used as a solid electrolyte, an electrode catalyst, or an auxiliary for the electrode catalyst.
[湿度センサ]
別の観点では、本発明の湿度センサは、湿度によって電気的特性が変化する感湿部を含み、その感湿部の電気的特性の変化を利用して湿度を測定する。その感湿部は、シュウ酸ニッケルおよびシュウ酸マグネシウムからなる群より選ばれる少なくとも1つを含む。シュウ酸ニッケルおよびシュウ酸マグネシウムについては、上述したため、重複する説明を省略する。
[Humidity sensor]
In another aspect, the humidity sensor of the present invention includes a moisture sensitive portion whose electrical characteristics change depending on the humidity, and measures the humidity using the change in electrical characteristics of the moisture sensitive portion. The moisture sensitive part includes at least one selected from the group consisting of nickel oxalate and magnesium oxalate. About nickel oxalate and magnesium oxalate, since it mentioned above, the overlapping description is abbreviate | omitted.
感湿部は、シュウ酸ニッケルおよびシュウ酸マグネシウムのいずれか一方のみを含んでもよい。また、感湿部は、シュウ酸ニッケルおよび/またはシュウ酸マグネシウムに加えて、それらを結着するための高分子や、多孔質材料などを含んでもよい。感湿部に占めるシュウ酸ニッケルおよび/またはシュウ酸マグネシウムの割合は、たとえば30重量%以上であり、50重量%以上や、80重量%以上や、90重量%以上であってもよい。 The moisture sensitive part may contain only one of nickel oxalate and magnesium oxalate. In addition to the nickel oxalate and / or magnesium oxalate, the moisture sensitive part may include a polymer for binding them, a porous material, and the like. The proportion of nickel oxalate and / or magnesium oxalate in the moisture sensitive part is, for example, 30% by weight or more, and may be 50% by weight or more, 80% by weight or more, or 90% by weight or more.
感湿部には、2つ以上(たとえば2つ)の電極が接続される。そして、電極間の直流抵抗もしくは交流インピーダンスを測定し、その測定値に基づいて湿度が推測される。たとえば、湿度と抵抗値との関係を予め求めておけば、その関係を利用して、抵抗値から湿度を推測できる。 Two or more (for example, two) electrodes are connected to the moisture sensitive portion. And the direct current resistance or alternating current impedance between electrodes is measured, and humidity is estimated based on the measured value. For example, if the relationship between the humidity and the resistance value is obtained in advance, the humidity can be estimated from the resistance value using the relationship.
本発明の湿度センサは、感湿部の材料として、シュウ酸ニッケルおよび/またはシュウ酸マグネシウムを用いている。そのため、応答速度が速く、耐熱性および安定性が高い湿度センサが得られる。 The humidity sensor of the present invention uses nickel oxalate and / or magnesium oxalate as the material of the moisture sensitive portion. Therefore, a humidity sensor having a high response speed and high heat resistance and stability can be obtained.
[シュウ酸ニッケルの作製]
以下、シュウ酸ニッケルを作製した一例について説明する。
[Production of nickel oxalate]
Hereinafter, an example of producing nickel oxalate will be described.
まず、1764mg(15mmol)のK2(C2O4)・H2Oを、水70mlに溶かして、シュウ酸カリウム水溶液を作製した。また、2763mg(10mmol)のNiSO4・6H2Oを水70mlに溶かして、硫酸ニッケル水溶液を作製した。 First, 1764 mg (15 mmol) of K 2 (C 2 O 4 ) · H 2 O was dissolved in 70 ml of water to prepare a potassium oxalate aqueous solution. In addition, 2763 mg (10 mmol) of NiSO 4 .6H 2 O was dissolved in 70 ml of water to prepare an aqueous nickel sulfate solution.
次に、シュウ酸カリウム水溶液に硫酸ニッケル水溶液を加え、室温で4時間攪拌した。これによって、溶液中に、緑白色の沈殿が生成した。この沈殿を濾別し、真空乾燥を行った。このようにして、緑白色のシュウ酸ニッケル粉末を得た。収量は1671mgで収率は91%であった。 Next, an aqueous nickel sulfate solution was added to the aqueous potassium oxalate solution, and the mixture was stirred at room temperature for 4 hours. This produced a greenish white precipitate in the solution. This precipitate was separated by filtration and vacuum-dried. Thus, a greenish white nickel oxalate powder was obtained. The yield was 1671 mg and the yield was 91%.
[シュウ酸マグネシウムの作製]
以下、シュウ酸マグネシウムを作製した一例について説明する。
[Production of magnesium oxalate]
Hereinafter, an example of producing magnesium oxalate will be described.
まず、1764mg(15mmol)のK2(C2O4)・H2Oを、水30mlに溶かして、シュウ酸カリウム水溶液を作製した。また、2465mg(10mmol)のMgSO4・7H2Oを水10mlに溶かして、硫酸マグネシウム水溶液を作製した。 First, 1764 mg (15 mmol) of K 2 (C 2 O 4 ) · H 2 O was dissolved in 30 ml of water to prepare a potassium oxalate aqueous solution. 2465 mg (10 mmol) of MgSO 4 .7H 2 O was dissolved in 10 ml of water to prepare an aqueous magnesium sulfate solution.
次に、シュウ酸カリウム水溶液に硫酸マグネシウム水溶液を加え、室温で3時間攪拌した。これによって、溶液中に、白色の沈殿が生成した。この沈殿を濾別し、真空乾燥を行った。このようにして、白色のシュウ酸マグネシウム粉末を得た。収量は1470mgで収率は99%以上であった。 Next, a magnesium sulfate aqueous solution was added to the potassium oxalate aqueous solution, and the mixture was stirred at room temperature for 3 hours. This produced a white precipitate in the solution. This precipitate was separated by filtration and vacuum-dried. In this way, white magnesium oxalate powder was obtained. The yield was 1470 mg and the yield was 99% or more.
[構造解析]
上述の方法によって得られたシュウ酸ニッケル粉末およびシュウ酸マグネシウム粉末について、粉末X線回折スペクトルを測定した。測定結果を図2に示す。
[Structural analysis]
The powder X-ray diffraction spectrum was measured about the nickel oxalate powder and the magnesium oxalate powder obtained by the above-mentioned method. The measurement results are shown in FIG.
また、それぞれの粉末について、赤外線吸収スペクトルを測定した。測定結果を図3に示す。 Moreover, the infrared absorption spectrum was measured about each powder. The measurement results are shown in FIG.
[元素分析]
上述の方法によって得られたシュウ酸ニッケル粉末およびシュウ酸マグネシウム粉末について、元素分析を行った。測定結果を以下の表に示す。
[Elemental analysis]
Elemental analysis was performed on the nickel oxalate powder and the magnesium oxalate powder obtained by the above-described method. The measurement results are shown in the following table.
表に示すように、炭素および水素の分析結果は、予想とよい一致を示した。 As shown in the table, the analysis results for carbon and hydrogen were in good agreement with expectations.
[電気伝導率の湿度依存性]
上述の方法によって得られた2種類の粉末について、それぞれ、メノウ乳鉢ですりつぶし、加圧成形してペレット(直径2.5mm、厚さ約0.5mm)を作製した。ペレットの厚さはシックネスゲージを用いて測定した。このペレットの両面に金ペーストを塗り、金ペーストに、直径50μmの金線を接続した。そして、擬似4端子法によって、交流インピーダンスを測定した。測定から求められた、湿度と電気伝導率の対数値との関係を図4に示す。
[Humidity dependence of electrical conductivity]
Each of the two types of powders obtained by the above-described method was ground in an agate mortar and pressure-molded to produce pellets (diameter 2.5 mm, thickness about 0.5 mm). The thickness of the pellet was measured using a thickness gauge. A gold paste was applied to both sides of the pellet, and a gold wire having a diameter of 50 μm was connected to the gold paste. Then, AC impedance was measured by a pseudo four-terminal method. FIG. 4 shows the relationship between the humidity and the logarithmic value of electric conductivity obtained from the measurement.
図4に示すように、シュウ酸ニッケル粉末の電気伝導率は、湿度の変化に応じて2桁以上変化した。また、シュウ酸マグネシウム粉末の電気伝導率は、湿度の変化に応じて4桁以上変化した。どちらの場合も、湿度と電気伝導率の対数値とは、比較的よい比例関係を示した。 As shown in FIG. 4, the electrical conductivity of the nickel oxalate powder changed by two digits or more according to the change in humidity. Moreover, the electrical conductivity of the magnesium oxalate powder changed by 4 digits or more according to the change of humidity. In both cases, the humidity and the logarithm of electrical conductivity showed a relatively good proportional relationship.
なお、シュウ酸鉄粉末およびシュウ酸コバルト粉末についても同様の実験を行ったが、それらの粉末は、シュウ酸ニッケル粉末およびシュウ酸マグネシウム粉末に比べて電気伝導率が低かった。シュウ酸金属化合物を固体電解質として用いる場合、電気伝導率が高いことは重要である。また、シュウ酸金属化合物を用いて湿度センサの感湿部を形成する場合も、シュウ酸金属化合物の電気伝導率が高いほど感湿部を薄く形成でき、その結果、センサの応答速度を速くすること、および、伝導率の再現性をよくすることが可能である。そのため、シュウ酸金属化合物の電気伝導率が高いことは重要である。 In addition, although the same experiment was done about the iron oxalate powder and the cobalt oxalate powder, those powders had low electrical conductivity compared with the nickel oxalate powder and the magnesium oxalate powder. When using a metal oxalate compound as a solid electrolyte, it is important that the electrical conductivity is high. In addition, when forming a moisture sensitive part of a humidity sensor using a metal oxalate compound, the higher the electrical conductivity of the metal oxalate compound, the thinner the moisture sensitive part can be formed. As a result, the response speed of the sensor is increased. It is possible to improve the reproducibility of the conductivity. Therefore, it is important that the electrical conductivity of the metal oxalate compound is high.
以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用できる。 The embodiments of the present invention have been described above by way of examples. However, the present invention is not limited to the above-described embodiments, and can be applied to other embodiments based on the technical idea of the present invention.
なお、別の観点では、本発明は、シュウ酸ニッケルおよび/またはシュウ酸マグネシウムの、プロトン伝導体としての使用に関する。なお、シュウ酸亜鉛粉末およびシュウ酸マンガン粉末も、シュウ酸ニッケルおよびシュウ酸マグネシウムと同様に、プロトン伝導性を示し、そのプロトン伝導性は、湿度の増加に伴って高くなった。 In another aspect, the present invention relates to the use of nickel oxalate and / or magnesium oxalate as a proton conductor. In addition, the zinc oxalate powder and the manganese oxalate powder also showed proton conductivity like the nickel oxalate and magnesium oxalate, and the proton conductivity increased as the humidity increased.
本発明は、電子デバイスに適用できる。 The present invention can be applied to electronic devices.
Claims (3)
前記プロトン伝導体が、シュウ酸ニッケルおよびシュウ酸マグネシウムからなる群より選ばれる少なくとも1つである電子デバイス。 An electronic device comprising a proton conductor and utilizing the proton conductivity of the proton conductor,
An electronic device in which the proton conductor is at least one selected from the group consisting of nickel oxalate and magnesium oxalate.
前記感湿部が、シュウ酸ニッケルおよびシュウ酸マグネシウムからなる群より選ばれる少なくとも1つを含む湿度センサ。 A humidity sensor that includes a moisture-sensitive part whose electrical characteristics change depending on humidity, and that measures humidity using the change in the electrical characteristics of the moisture-sensitive part,
The humidity sensor in which the moisture sensitive part includes at least one selected from the group consisting of nickel oxalate and magnesium oxalate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007060308A JP2008224305A (en) | 2007-03-09 | 2007-03-09 | Electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007060308A JP2008224305A (en) | 2007-03-09 | 2007-03-09 | Electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008224305A true JP2008224305A (en) | 2008-09-25 |
Family
ID=39843124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007060308A Pending JP2008224305A (en) | 2007-03-09 | 2007-03-09 | Electronic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008224305A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009028965A (en) * | 2007-07-25 | 2009-02-12 | Kyushu Univ | Metal complex thin film and manufacturing method thereof |
CN107207738A (en) * | 2015-02-17 | 2017-09-26 | 株式会社Lg化学 | Metal complex, metal Nano structure and the carbon monoxide-olefin polymeric comprising the metal Nano structure |
-
2007
- 2007-03-09 JP JP2007060308A patent/JP2008224305A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009028965A (en) * | 2007-07-25 | 2009-02-12 | Kyushu Univ | Metal complex thin film and manufacturing method thereof |
CN107207738A (en) * | 2015-02-17 | 2017-09-26 | 株式会社Lg化学 | Metal complex, metal Nano structure and the carbon monoxide-olefin polymeric comprising the metal Nano structure |
JP2018504489A (en) * | 2015-02-17 | 2018-02-15 | エルジー・ケム・リミテッド | Metal complex, metal nanostructure containing the same, and catalyst composition |
US10406515B2 (en) | 2015-02-17 | 2019-09-10 | Lg Chem, Ltd. | Metal complex compound, and metal nanostructure and catalyst composition comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Energy storing bricks for stationary PEDOT supercapacitors | |
Polonský et al. | Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers | |
JP7074911B2 (en) | Membrane electrode assembly of electrochemical devices, fuel cells, electrochemical hydrogen pumps, and hydrogen sensors | |
Miller et al. | B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes | |
Subbiah et al. | Fabrication of a cerium-doped nickel ferrite solid-state reference electrode and its performance evaluation in concrete environment | |
JP4904457B2 (en) | Alkaline battery positive electrode material, method for producing the same, and alkaline battery positive electrode material | |
CN104483365A (en) | Electrochemical gas sensing device with noble metal and graphene composite material as sensing electrode and manufacturing method thereof | |
Zhu et al. | Increasing the electrolyte capacity of alkaline Zn–air fuel cells by scavenging zincate with Ca (OH) 2 | |
Wang et al. | Enhanced ammonia sensitivity electrochemical sensors based on PtCu alloy nanoparticles in-situ synthesized on carbon cloth electrode | |
Amu-Darko et al. | Exploring the gas-sensing properties of MOF-derived TiN@ CuO as a hydrogen sulfide sensor | |
Liu et al. | Mesoporous Ni 0.3 Co 2.7 O 4 hierarchical structures for effective non-enzymatic glucose detection | |
Yu et al. | Ionic liquid combined with NiCo2O4/rGO enhances electrochemical oxygen sensing | |
JP2008224305A (en) | Electronic device | |
Dong et al. | Enhancement of oxygen reduction performance of biomass-derived carbon through co-doping with early transition metal | |
JP2005235688A (en) | Carrying catalyst for fuel cell, its manufacturing method and fuel cell | |
Mao et al. | Room-temperature mechanochemical preparation and electrochemistry properties of polyoxometalate-based inorganic-organic hybrid | |
Bessekhouad et al. | The physical and photo electrochemical characterization of the crednerite CuMnO 2 | |
Alyousef et al. | Sol–gel synthesis of Pt-Ru-Os-Ir based anode electro-catalysts for direct methanol fuel cells | |
Xue et al. | Surpassing electrocatalytic limit of earth-abundant Fe4+ embedded in N-doped graphene for (photo) electrocatalytic water oxidation | |
JP4904456B2 (en) | Battery cathode material | |
Lu et al. | Proton conduction and electrochemical glucose sensing property of a newly constructed Cu (II) coordination polymer | |
Ayaz et al. | Structure correlated optoelectronic and electrochemical properties of Al/Li modified ZnO | |
Raj et al. | Simple and cost-effective sonochemical preparation of ternary NZnO–Mn 2 O 3@ rGO nanohybrid: a potential electrode material for supercapacitor and ammonia sensing | |
Parvin et al. | Inverse ‘intra-lattice’charge transfer in nickel–molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center | |
Tian et al. | Use of symmetrical and pendant pyrazole derivatives for the construction of two polyoxometalate-based complexes as electrochemical sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20080813 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Effective date: 20080813 Free format text: JAPANESE INTERMEDIATE CODE: A871 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20080901 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080905 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20090108 Free format text: JAPANESE INTERMEDIATE CODE: A02 |