JP2008224259A - System for estimating acoustic source location - Google Patents

System for estimating acoustic source location Download PDF

Info

Publication number
JP2008224259A
JP2008224259A JP2007059382A JP2007059382A JP2008224259A JP 2008224259 A JP2008224259 A JP 2008224259A JP 2007059382 A JP2007059382 A JP 2007059382A JP 2007059382 A JP2007059382 A JP 2007059382A JP 2008224259 A JP2008224259 A JP 2008224259A
Authority
JP
Japan
Prior art keywords
sound source
sound
microphone
sound pressure
microphones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059382A
Other languages
Japanese (ja)
Other versions
JP5089198B2 (en
Inventor
Takeshi Sugiyama
武 杉山
Yasuo Sugimoto
靖夫 杉本
Hiroyuki Wada
浩之 和田
Masanao Owaki
雅直 大脇
Takeshi Zaima
健史 財満
Takahiro Yamashita
恭弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Kumagai Gumi Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Kumagai Gumi Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2007059382A priority Critical patent/JP5089198B2/en
Publication of JP2008224259A publication Critical patent/JP2008224259A/en
Application granted granted Critical
Publication of JP5089198B2 publication Critical patent/JP5089198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for estimating acoustic source location capable of accurately estimating the locations of acoustic sources, even when an acoustic source moves and when an acoustic source makes apparent moves due to wind, and the like. <P>SOLUTION: Sound pressure signals are inputted to two pairs of microphones, arranged in a plane and a microphone M5 arranged at the location of a vertex of quadrangular pyramid having a square formed by the pairs of microphones as a bottom surface and converted from analog to digital form. Then a sound pressure signal extraction means 14 extracts sound pressure signals of an amount of an preset elapsed period as one data unit and transmits them to an acoustic source direction estimating means 15. On the basis of the difference D among arrival times of sound pressure signals inputted to the microphones M1-M5, a horizontal angle θ and an angle of elevation ϕ, formed by a point of measurement and the location of an acoustic source, are estimated; and images in the vicinity of the location of the acoustic source is continuously photographed by a CCD camera 11 and acquire an image in which an acoustic source estimated area, indicating the estimated location of the acoustic source, is displayed on the photographed images and this is displayed on a display. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数のマイクロフォンと撮影装置とを用いて音源の位置を推定するシステムに関するもので、特に、推定する音源の位置が時間的に変化する場合に、その音源位置の変化をリアルタイムで把握するための音源位置推定システムに関する。   The present invention relates to a system for estimating the position of a sound source using a plurality of microphones and an imaging device, and in particular, when the estimated sound source position changes with time, grasps the change of the sound source position in real time. The present invention relates to a sound source position estimation system.

従来、音の到来方向を推定する方法としては、多数のマイクロフォンを等間隔に配置したマイクロフォンアレーを構築し、基準となるマイクロフォンに対する各マイクロフォンの位相差から音波の到来方向を推定する、いわゆる音響学的手法が考案されている(例えば、非特許文献1参照)。
一方、計測点に配置された複数のマイクロフォンの出力信号の位相差からではなく、複数のマイクロフォンから互いに交わる直線状に配置された複数のマイクロフォン対を構成し、対となる2つのマイクロフォン間の位相差に相当する到達時間差と、他の対となる2つのマイクロフォンMc,Md間の到達時間差との比から音源の方向を推定する方法が提案されている。具体的には、図3に示すように、4個のマイクロフォンM1〜M4を、互いに直交する2直線上にそれぞれ所定の間隔で配置された2組のマイクロフォン対(M1,M3)及びマイクロフォン対(M2,M4)を構成するように配置し、上記マイクロフォン対(M1,M3)を構成するマイクロフォンM1,M3に入力する音圧信号の位相差と、上記マイクロフォン対(M2,M4)を構成するマイクロフォンM2,M4に入力する音圧信号の到達時間差との比から、計測点と音源位置との水平角θを推定するとともに、第5のマイクロフォンM5を上記マイクロフォンM1〜M4の作る平面上にない位置に配置して、更に4組のマイクロフォン対(M5, M1),(M5, M2),(M5, M3),(M5, M4)を構成し、上記各マイクロフォン対を構成するマイクロフォン間の到達時間差から、計測点と音源位置との成す仰角φを推定する。
これにより、上記マイクロフォンアレーを用いて音源の方向を推定する場合に比較して、少ないマイクロフォン数で音源の方向を正確に推定することができる。また、このとき、CCDカメラ等の映像採取手段を設けて上記推定された音源方向の映像を撮影し、この映像中に上記推定した音源位置推定エリアと音圧レベルとを表示するようにすれば、騒音源を視覚的に把握することができる(例えば、特許文献1参照)。
大賀寿郎,山崎芳男,金田豊;音響システムとディジタル処理,コロナ社,1995 特開2003−111183号公報
Conventionally, as a method of estimating the direction of arrival of sound, a so-called acoustics is used in which a microphone array in which a large number of microphones are arranged at equal intervals is constructed and the direction of arrival of sound waves is estimated from the phase difference of each microphone relative to a reference microphone. A technical method has been devised (for example, see Non-Patent Document 1).
On the other hand, not a phase difference between output signals of a plurality of microphones arranged at a measurement point, but a plurality of microphone pairs arranged in a straight line intersecting each other from the plurality of microphones, and the position between the two microphones constituting the pair There has been proposed a method for estimating the direction of a sound source from the ratio of the arrival time difference corresponding to the phase difference and the arrival time difference between the two microphones Mc and Md as another pair. Specifically, as shown in FIG. 3, two microphone pairs (M1, M3) and microphone pairs (four microphones M1 to M4) are arranged at predetermined intervals on two straight lines orthogonal to each other. M2, M4) are arranged so as to constitute the microphone pair (M1, M3), and the microphones constituting the microphone pair (M2, M4). The horizontal angle θ between the measurement point and the sound source position is estimated from the ratio with the arrival time difference between the sound pressure signals input to M2 and M4, and the fifth microphone M5 is not located on the plane formed by the microphones M1 to M4. The four microphone pairs (M5, M1), (M5, M2), (M5, M3), (M5, M4) are further configured, The elevation angle φ formed by the measurement point and the sound source position is estimated from the arrival time difference between the microphones constituting the ion pair.
As a result, the direction of the sound source can be accurately estimated with a smaller number of microphones than in the case where the direction of the sound source is estimated using the microphone array. At this time, if a video sampling means such as a CCD camera is provided to capture a video of the estimated sound source direction, the estimated sound source position estimation area and sound pressure level are displayed in this video. The noise source can be visually grasped (see, for example, Patent Document 1).
Toshiro Oga, Yoshio Yamazaki, Yutaka Kaneda; Acoustic system and digital processing, Corona, 1995 JP 2003-111183 A

しかしながら、上記従来の方法では、図4に示すように、マイクロフォンM1〜M5で採取した所定時間内の音圧データ(アナログデータ)をA/D変換し、これをFFTで周波数分析して、特定の周波数の音について上記マイクロフォンM1〜M5間の到達時間差を求めて音源位置を推定した後、上記推定された音源位置が最もよく映っている映像画像を選び出し、その画像中に音源位置の推定エリアを表示した音源位置推定画像を表示するようにしているため、音源の位置をリアルタイムで把握することは困難であった。
なお、上記従来の方法でも、所定間隔毎に所定時間内の音圧データを採取すれば、音源位置の移動状況を把握することも可能であるが、音圧データを間欠的に採取していることから、風などの影響で推定した音源位置が実際の音源位置とずれてしまう場合があり、測定精度が十分とはいえなかった。
However, in the above conventional method, as shown in FIG. 4, sound pressure data (analog data) within a predetermined time taken by the microphones M1 to M5 is A / D converted, and this is subjected to frequency analysis by FFT to specify. The sound source position is estimated by obtaining the arrival time difference between the microphones M1 to M5 with respect to the sound of the frequency, and then a video image in which the estimated sound source position is best reflected is selected, and the sound source position estimation area is included in the image. Since the sound source position estimation image displaying is displayed, it is difficult to grasp the position of the sound source in real time.
Even in the above conventional method, if the sound pressure data within a predetermined time is collected at predetermined intervals, it is possible to grasp the movement state of the sound source position, but the sound pressure data is intermittently collected. Therefore, the sound source position estimated due to the influence of wind or the like may deviate from the actual sound source position, and the measurement accuracy is not sufficient.

本発明は、従来の問題点に鑑みてなされたもので、音源が移動する場合や、風などにより音源が見かけ上移動する場合でも、音源位置を精度よく推定することのできる音源位置推定システムを提供することを目的とする。   The present invention has been made in view of conventional problems, and a sound source position estimation system capable of accurately estimating a sound source position even when the sound source moves or when the sound source apparently moves due to wind or the like. The purpose is to provide.

本願の請求項1に記載の発明は、互いに交わる2つの直線上にそれぞれ所定の間隔で配置された2組のマイクロフォン対を有するマイクロフォン群と音源方向の映像を撮影する撮像手段とを備え、上記マイクロフォン群で採取した音源から伝播する音の音圧信号と音源の方向を撮影した映像とから、所定時間毎の音源位置のデータが表示された映像を表示する音源位置推定システムであって、上記各マイクロフォンで採取した音圧信号をデジタル信号に変換するA/D変換器と、上記A/D変換された音圧波形データを時系列的に並べるとともに、上記時系列的に並べられた音圧波形データから、所定時間毎に所定量の音圧波形データを取出す音圧データ取出手段と、上記取出された音圧波形データを周波数解析して上記2組のマイクロフォン対を構成するマイクロフォン間のそれぞれの位相差を求め、この求められた2組のマイクロフォン対の位相差の比から音源の方向を推定する音源方向推定手段と、上記推定された音源方向のデータと上記撮影された映像の画像データとを合成するデータ合成手段と、上記推定された音源位置が表示された映像を表示する表示手段とを備えたことを特徴とするものである。
請求項2に記載の発明は、請求項1に記載の音源位置推定システムにおいて、上記撮影手段により音源方向の映像を連続して撮影するとともに、上記撮影手段から入力した画像信号を画像データに変換し、上記音圧波形データの取出し時間に同期して上記画像データをデータ合成手段に出力する映像信号入出力手段を設けたものである。
請求項3に記載の発明は、請求項1または請求項2に記載の音源位置推定システムにおいて、上記音圧データ取出手段が所定時間毎に取出す音圧波形データは、前後の音圧波形データが時間的に連続しているか、もしくは、その一部が時間的に重複している音圧波形データであることを特徴とするものである。
The invention according to claim 1 of the present application includes a microphone group having two pairs of microphones arranged at predetermined intervals on two straight lines that intersect with each other, and an imaging unit that captures an image of a sound source direction. A sound source position estimation system that displays an image in which sound source position data for each predetermined time is displayed from a sound pressure signal of a sound propagated from a sound source collected by a microphone group and an image of the direction of the sound source. An A / D converter that converts a sound pressure signal collected by each microphone into a digital signal, and the A / D converted sound pressure waveform data are arranged in time series, and the sound pressure arranged in time series Sound pressure data extraction means for extracting a predetermined amount of sound pressure waveform data at predetermined time intervals from the waveform data, and frequency analysis of the extracted sound pressure waveform data to analyze the two sets of microphones. Sound source direction estimating means for obtaining respective phase differences between the microphones constituting the pair and estimating the direction of the sound source from the obtained phase difference ratio of the two pairs of microphone pairs; and the estimated sound source direction data; The image processing apparatus includes a data combining unit that combines the image data of the photographed video and a display unit that displays the video on which the estimated sound source position is displayed.
According to a second aspect of the present invention, in the sound source position estimation system according to the first aspect, the image capturing unit continuously captures images in the direction of the sound source and converts the image signal input from the image capturing unit into image data. In addition, video signal input / output means for outputting the image data to the data synthesizing means in synchronism with the extraction time of the sound pressure waveform data is provided.
According to a third aspect of the present invention, in the sound source position estimation system according to the first or second aspect, the sound pressure waveform data taken out by the sound pressure data taking-out means at every predetermined time is the sound pressure waveform data before and after the sound pressure data. The present invention is characterized in that the sound pressure waveform data is temporally continuous or partly overlapped in time.

請求項4に記載の発明は、請求項1〜請求項3のいずれかに記載の音源位置推定システムにおいて、上記マイクロフォン群に、上記2組のマイクロフォン対の作る平面上にない第5のマイクロフォンを追加するとともに、音源方向推定手段では、上記2組のマイクロフォン対を構成するマイクロフォン間の位相差と、上記第5のマイクロフォンと上記2組のマイクロフォン対を構成する4個のマイクロフォンのそれぞれとで構成される4組のマイクロフォン対を構成するマイクロフォン間の位相差とを用いて音源の方向を推定するようにしたものである。
請求項5に記載の発明は、請求項1〜請求項4のいずれかに記載の音源位置推定システムにおいて、上記各マイクロフォンで観測した音圧信号と各マイクロフォンのうちの特定のマイクロフォンで観測した音圧信号との位相差と、上記推定された音源方向から音が伝達されると仮定して逆算した上記各マイクロフォンに入力する音圧信号と上記特定のマイクロフォンに入力する音圧信号との位相差とを比較し、上記位相差の差から音源位置の推定結果の良否を判定する判定手段を設けたものである。
According to a fourth aspect of the present invention, in the sound source position estimation system according to any one of the first to third aspects, a fifth microphone that is not on a plane formed by the two microphone pairs is added to the microphone group. In addition, the sound source direction estimation means includes a phase difference between the microphones constituting the two microphone pairs and each of the fifth microphone and the four microphones constituting the two microphone pairs. The direction of the sound source is estimated using the phase difference between the microphones constituting the four microphone pairs.
According to a fifth aspect of the present invention, in the sound source position estimation system according to any one of the first to fourth aspects, the sound pressure signal observed by each microphone and the sound observed by a specific microphone among the microphones. The phase difference between the sound pressure signal input to each of the microphones and the sound pressure signal input to the specific microphone calculated backward assuming that sound is transmitted from the estimated sound source direction. And determining means for determining the quality of the estimation result of the sound source position from the difference in the phase difference.

本発明によれば、互いに交わる2つの直線上にそれぞれ所定の間隔で配置された2組のマイクロフォン対を有するマイクロフォン群に入力する音圧信号をデジタル信号(音圧波形データ)に変換し、この変換された音圧波形データを時系列的に並べるとともに、上記時系列的に並べられた音圧波形データから所定時間毎に所定量の音圧波形データを取出して音源の方向を推定するようにしたので、音源の位置をリアルタイムで推定することができる。したがって、音源が移動する場合や、風などにより音源位置が変化した場合でも音源位置を精度よく推定することができる。このとき、上記所定時間毎に音源方向の映像を採取して、所定時間毎の音源位置のデータが表示された映像を表示するようにすれば、音源の位置の変化を確実に把握することができる。
上記マイクロフォン群としては、音源位置が、計測点と音源位置間の水平角θのみで十分に推定可能である場合には、互いに交わる2つの直線上にそれぞれ所定の間隔で配置された2組のマイクロフォン対を有するマイクロフォン群を準備し、水平角θと仰角φとが必要な場合には、上記2組のマイクロフォン対に、上記2組のマイクロフォン対の作る平面上にない第5のマイクロフォンとから成るマイクロフォン群を準備して、上記各マイクロフォン間の位相差を用いて音源の方向を推定するようにすれば、少ないマイクロフォン数で、効率よくかつ正確に音源の方向を推定することができる。
また、各マイクロフォンで観測した音圧信号と上記推定された音源方向から音が伝達されると仮定して逆算した音圧信号とを比較して推定された音源位置が妥当であるかどうかを判定する判定手段を設けるようにすれば、振幅が小さい場合などに生じ易い誤判定を避けることができる。
According to the present invention, a sound pressure signal input to a microphone group having two microphone pairs arranged at predetermined intervals on two straight lines intersecting each other is converted into a digital signal (sound pressure waveform data). The converted sound pressure waveform data is arranged in a time series, and a predetermined amount of sound pressure waveform data is taken out from the sound pressure waveform data arranged in the time series every predetermined time so as to estimate the direction of the sound source. Therefore, the position of the sound source can be estimated in real time. Therefore, the sound source position can be accurately estimated even when the sound source moves or when the sound source position changes due to wind or the like. At this time, if the video in the direction of the sound source is sampled at the predetermined time and the video on which the data of the sound source position at the predetermined time is displayed, the change in the position of the sound source can be surely grasped. it can.
As the microphone group, when the sound source position can be sufficiently estimated only by the horizontal angle θ between the measurement point and the sound source position, two sets of two microphones arranged at predetermined intervals on two intersecting straight lines, respectively. When a microphone group having a microphone pair is prepared and the horizontal angle θ and the elevation angle φ are required, the two microphone pairs are separated from the fifth microphone that is not on the plane formed by the two microphone pairs. If the microphone group is prepared and the direction of the sound source is estimated using the phase difference between the microphones, the direction of the sound source can be estimated efficiently and accurately with a small number of microphones.
Also, it is determined whether the estimated sound source position is valid by comparing the sound pressure signal observed by each microphone with the sound pressure signal calculated backward assuming that sound is transmitted from the estimated sound source direction. Providing a determination means that performs this makes it possible to avoid erroneous determination that is likely to occur when the amplitude is small.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は本発明の最良の形態に係る音源探査システムの概要を示す図で、M1〜M5は図示しない音源からの雑音の音圧レベルを測定するための測定用のマイクロフォン、11は音源位置近傍の映像を採取するためのCCDカメラ(以下、カメラという)、12はローパスフィルタを備えた増幅器、13はA/D変換器、14は上記A/D変換された音圧信号のデータ(以下、音圧波形データという)から、所定時間毎に所定量の音圧波形データを取出す音圧信号取出手段、15は上記取出された音圧波形データから各マイクロフォン間の位相差を求め、この求められた位相差から音源の方向を推定する音源方向推定手段、16は上記推定された音源位置の推定結果の妥当性を判定する判定手段、17は上記カメラ11で連続的に撮影された映像信号を入力し、所定時間毎に撮影方向の画像データを出力する映像入出力手段、18は上記判定手段16の推定結果が妥当であると判断された推定音源位置のデータと上記映像入出力手段17から出力される画像データとを合成するデータ合成手段、19はこのデータ合成手段18で合成された、画像中に音源位置の推定エリアが表示された音源位置推定画像を表示する音源位置表示手段である。
また、20は上記各マイクロフォンM1〜M5を所定の位置に配列するためのマイクロフォンフレーム、30は三脚から成る支持部材31と、この支持部材31の上部に配設された回転台32とから成る測定用基台で、上記カメラ11は上記回転台32上に設置される。上記マイクロフォンフレーム20を回転させることにより、上記マイクロフォンM1〜M5とカメラ11とを水平面内で同時に回転させることができる。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an outline of a sound source search system according to the best mode of the present invention. M1 to M5 are measurement microphones for measuring the sound pressure level of noise from a sound source (not shown), and 11 is the vicinity of the sound source position. A CCD camera (hereinafter referred to as a camera), 12 an amplifier having a low-pass filter, 13 an A / D converter, and 14 A / D converted sound pressure signal data (hereinafter referred to as an A / D converter). The sound pressure signal extracting means 15 for extracting a predetermined amount of sound pressure waveform data every predetermined time from the sound pressure waveform data, and obtaining the phase difference between the microphones from the extracted sound pressure waveform data. Sound source direction estimation means for estimating the direction of the sound source from the phase difference, 16 is a determination means for determining the validity of the estimated result of the estimated sound source position, and 17 is a video continuously captured by the camera 11. A video input / output means for inputting a signal and outputting image data in the photographing direction every predetermined time, 18 is the estimated sound source position data for which the estimation result of the determination means 16 is determined to be valid and the video input / output means Data synthesizing means for synthesizing the image data output from 17, 19 is a sound source position display means for displaying a sound source position estimated image synthesized by the data synthesizing means 18 and displaying an estimation area of the sound source position in the image. It is.
Reference numeral 20 denotes a microphone frame for arranging the microphones M1 to M5 at predetermined positions. Reference numeral 30 denotes a support member 31 composed of a tripod and a turntable 32 provided on the support member 31. The camera 11 is installed on the turntable 32. By rotating the microphone frame 20, the microphones M1 to M5 and the camera 11 can be simultaneously rotated in a horizontal plane.

次に、本例の音源位置推定システムを用いて音源の位置を推定して表示する方法について、図1及び図2を参照して説明する。
マイクロフォンフレーム20に搭載されるマイクロフォンM1〜M5の配置は、上記図3に示したものと同様で、4個のマイクロフォンM1〜M4を、互いに直交する2直線上にそれぞれ所定の間隔で配置された2組のマイクロフォン対(M1,M3)及びマイクロフォン対(M2,M4)を構成するように配置するとともに、第5のマイクロフォンM5を上記マイクロフォンM1〜M4の作る平面上にない位置、詳細には、マイクロフォンM1〜M4の作る正方形を底面とする四角錐の頂点の位置に配置する。これにより、更に4組のマイクロフォン対(M5, M1)〜(M5, M4)が構成される。
上記マイクロフォンM1〜M5の向きの初期設定としては、上記直交する2直線の交点を通り上記2直線とほぼ45°をなす方向を予想される音源位置に向けることが好ましく、CCDカメラ11の撮影方向もこれと同じ方向に設定する。
各マイクロフォンM1〜M5に入力した音は音圧信号として増幅器12に送られ、ノイズが取り除れた後増幅されてA/D変換器13に送られる。
A/D変換器13では、上記増幅された音圧信号(アナログ信号)をデジタル信号(音圧波形データ)に変換して音圧信号取出手段14に送る。
音圧信号取出手段14では、時間的に連続して送られてくる各マイクロフォンM1〜M5のA/Dデータ(音圧波形データ)から、所定時間(例えば、1/30秒)毎に、予め設定された通過期間(例えば、1/20秒)分の音圧波形データを1つのデータユニット(以下、FFTユニットという)として、音源方向推定手段15に送る。
なお、音圧波形データの取出し間隔である所定時間とデータ量に相当する通過時間とを上記のように設定すると、時間順に取出すFFTデータが前後で一部同じデータを含むことになる。これに対して、同じデータを含まないように所定時間と通過期間とを設定することも可能であるが、本例のように、一部同じデータを含むようにした方が、同じデータ数でも音源位置の推定間隔を短くすることができるので、音源の位置をより連続的に推定することができる。
Next, a method for estimating and displaying the position of a sound source using the sound source position estimation system of this example will be described with reference to FIGS.
The arrangement of the microphones M1 to M5 mounted on the microphone frame 20 is the same as that shown in FIG. 3, and four microphones M1 to M4 are arranged at predetermined intervals on two straight lines orthogonal to each other. The two microphone pairs (M1, M3) and the microphone pair (M2, M4) are arranged so as to constitute the microphone pair, and the fifth microphone M5 is not on a plane formed by the microphones M1 to M4. It arrange | positions in the position of the vertex of the quadrangular pyramid which makes the square which the microphones M1-M4 make into a bottom face. Thereby, four pairs of microphones (M5, M1) to (M5, M4) are further configured.
As an initial setting of the directions of the microphones M1 to M5, it is preferable that a direction that passes through the intersection of the two orthogonal lines and forms approximately 45 ° with the two lines is directed to an expected sound source position. Is also set in the same direction.
The sound input to each of the microphones M1 to M5 is sent to the amplifier 12 as a sound pressure signal. After the noise is removed, the sound is amplified and sent to the A / D converter 13.
The A / D converter 13 converts the amplified sound pressure signal (analog signal) into a digital signal (sound pressure waveform data) and sends it to the sound pressure signal extraction means 14.
In the sound pressure signal extracting means 14, the A / D data (sound pressure waveform data) of the microphones M1 to M5 sent continuously in time is previously stored every predetermined time (for example, 1/30 second). Sound pressure waveform data for a set passage period (for example, 1/20 second) is sent to the sound source direction estimating means 15 as one data unit (hereinafter referred to as FFT unit).
If the predetermined time, which is the sound pressure waveform data take-out interval, and the passage time corresponding to the data amount are set as described above, the FFT data taken out in time order partially includes the same data. On the other hand, it is possible to set the predetermined time and passage period so as not to include the same data, but it is better to include the same data partly as in this example, even if the number of data is the same. Since the estimation interval of the sound source position can be shortened, the position of the sound source can be estimated more continuously.

音源方向推定手段15では、上記FFTユニットのデータであるA/D変換された音圧波形データをFFTにて周波数解析し、各周波数毎にマイクロフォンM1〜M5間のそれぞれの位相差を求め、この求められた位相差から各周波数毎に音源の方向を推定する。
なお、本例では、位相差に代えて、位相差に比例する物理量である到達時間差を用いて上記水平角θ及び仰角φを求めている。
各マイクロフォン対(Mi, Mj)のマイクロフォンMiとマイクロフォンMjとの間の到達時間差をDijとすると、音の入射方向である水平角θと仰角φとは以下の式(1),(2)で表わせるので、各マイクロフォンM1〜M5の出力信号をFFTを用いて周波数分析し、対象となる周波数fにおける各マイクロフォンM,M間の到達時間差Dijを算出することにより、上記水平角θ及び仰角φを求めることができる。

Figure 2008224259
すなわち、互いに直交する2直線上にそれぞれ所定の間隔で配置された2組のマイクロフォン対(M1,M3)及びマイクロフォン対(M2,M4)を構成するマイクロフォンM1,M3に入力する音圧信号の到達時間差D13と、上記マイクロフォン対(M2,M4)を構成するマイクロフォンM2,M4に入力する音圧信号の到達時間差D24との比から、計測点と音源位置との水平角θを推定し、上記到達時間差D13,D24と、上記第5のマイクロフォンM5と他のマイクロフォンM1〜M4との到達時間差D5j(j=1〜4)とから計測点と音源位置との成す仰角φを推定する。
なお、上記到達時間差Dijは、2つのマイクロフォン対(M,M)に入力される信号のクロススペクトルPij(f)を求め、更に、対象とする上記周波数fの位相角情報Ψ(rad)を用いて、以下の式(3)を用いて算出される。
Figure 2008224259
The sound source direction estimating means 15 performs frequency analysis on the A / D converted sound pressure waveform data, which is the data of the FFT unit, to obtain respective phase differences between the microphones M1 to M5 for each frequency. The direction of the sound source is estimated for each frequency from the obtained phase difference.
In this example, instead of the phase difference, the horizontal angle θ and the elevation angle φ are obtained using an arrival time difference which is a physical quantity proportional to the phase difference.
When the arrival time difference between the microphone Mi and the microphone Mj of each microphone pair (Mi, Mj) is D ij , the horizontal angle θ and the elevation angle φ, which are the sound incident directions, are expressed by the following equations (1) and (2). Therefore, by analyzing the frequency of the output signals of the microphones M1 to M5 using FFT and calculating the arrival time difference D ij between the microphones M i and M j at the target frequency f, the horizontal angle is calculated. θ and elevation angle φ can be obtained.
Figure 2008224259
That is, arrival of sound pressure signals input to the microphones M1 and M3 constituting the two microphone pairs (M1, M3) and the microphone pairs (M2, M4) arranged at predetermined intervals on two orthogonal lines. The horizontal angle θ between the measurement point and the sound source position is estimated from the ratio between the time difference D 13 and the arrival time difference D 24 of the sound pressure signals input to the microphones M2 and M4 constituting the microphone pair (M2, M4). The elevation angle φ formed by the measurement point and the sound source position is estimated from the arrival time differences D 13 and D 24 and the arrival time differences D 5j (j = 1 to 4) between the fifth microphone M5 and the other microphones M1 to M4. To do.
The arrival time difference D ij is obtained as a cross spectrum P ij (f) of signals input to the two microphone pairs (M i , M j ), and the phase angle information ψ ( rad) and is calculated using the following equation (3).
Figure 2008224259

本例では、更に、判定手段16を設けて、上記推定した音源方向(水平角θ及び仰角φ)が妥当な値がどうかを判定する。具体的には、判定手段16は、例えば、特定マイクロフォンをマイクロフォンM5とした場合、上記各マイクロフォンM1〜M4で観測した音圧信号と特定マイクロフォンM5の音圧信号との位相差と、上記推定された音源方向から音が伝達されると仮定して逆算した上記各マイクロフォンM1〜M4に入力する音圧信号と上記特定マイクロフォンM5の音圧信号との位相差とを比較し、上記位相差の差が所定の角度を超えた場合には、上記推定された音源方向が妥当でないと判断し、上記推定音源方向のデータを破棄する。上記位相差の差が所定の角度以内である場合には、上記推定音源方向のデータをデータ合成手段18に送る。
一方、CCDカメラ11は音源位置近傍の映像を連続的に撮影し、その映像データを映像入力手段17に送る。この映像入出力手段17では、上記送られてきた映像信号をデジタル信号(画像データ)に変換するとともに、上記所定時間と同じ間隔で、上記画像データをデータ合成手段18に出力する。
上記推定結果が妥当であると判断された場合には、データ合成手段18にて、推定音源位置のデータと上記カメラ11で撮影した音源方向の映像とを合成し、上記推定音源位置を音源位置推定エリアとして映像上に表示した音源位置推定画像を音源位置表示手段19のディスプレイ上に表示する。
上記映像音源位置推定画像は、図2に示すように、上記所定時間(1/30秒)毎にディスプレイ上に表示されるので、映像としては連続した映像となる。このように、本発明の音源探査システムでは、音源の位置をリアルタイムで推定して表示することができるので、音源が移動する場合や、風などにより音源が見かけ上移動する場合でも、音源の位置を間欠的に推定していた従来例に比較して、音源位置を精度よく推定することができる。
また、上記判定は到達時間差Dijを用いても可能であるが、位相差を用いた方が、妥当かどうかを「角度ずれ」として把握できるので、本例では、位相差を用いて判定した。
また、CCDカメラ11と上記推定した音源方向との角度差が所定の角度以上ずれた場合には、上記マイクロフォンフレーム20の回転台32を回転させて、上記CCDカメラ11とマイクロフォンM1〜M5とを、前回推定した音源方向に回転させるようにすれば、音源位置が移動した場合でも、推定音源位置を映像上に確実に表示することができるので、音源の状態を更に的確に把握することができる。
In this example, a determination unit 16 is further provided to determine whether the estimated sound source direction (horizontal angle θ and elevation angle φ) is an appropriate value. Specifically, for example, when the specific microphone is the microphone M5, the determining unit 16 estimates the phase difference between the sound pressure signal observed by each of the microphones M1 to M4 and the sound pressure signal of the specific microphone M5. The phase difference between the sound pressure signal input to each of the microphones M1 to M4 and the sound pressure signal of the specific microphone M5 calculated by assuming that sound is transmitted from the sound source direction is compared. If the angle exceeds a predetermined angle, it is determined that the estimated sound source direction is not valid, and the data of the estimated sound source direction is discarded. If the phase difference is within a predetermined angle, the estimated sound source direction data is sent to the data synthesizing means 18.
On the other hand, the CCD camera 11 continuously captures images near the sound source position and sends the image data to the image input means 17. The video input / output unit 17 converts the transmitted video signal into a digital signal (image data) and outputs the image data to the data synthesis unit 18 at the same interval as the predetermined time.
If it is determined that the estimation result is valid, the data synthesis unit 18 synthesizes the estimated sound source position data and the sound source direction image captured by the camera 11, and uses the estimated sound source position as the sound source position. The sound source position estimation image displayed on the video as the estimation area is displayed on the display of the sound source position display means 19.
As shown in FIG. 2, the video sound source position estimation image is displayed on the display every predetermined time (1/30 second), so that the video is a continuous video. As described above, the sound source search system of the present invention can estimate and display the position of the sound source in real time, so even if the sound source moves or the sound source apparently moves due to wind or the like, the position of the sound source The sound source position can be estimated with higher accuracy than in the conventional example in which is estimated intermittently.
In addition, although the above determination can be performed using the arrival time difference D ij , it can be grasped as “angle shift” whether the use of the phase difference is appropriate. In this example, the determination is made using the phase difference. .
Further, when the angle difference between the CCD camera 11 and the estimated sound source direction deviates by a predetermined angle or more, the rotating base 32 of the microphone frame 20 is rotated to connect the CCD camera 11 and the microphones M1 to M5. If the sound source is rotated in the previously estimated sound source direction, the estimated sound source position can be reliably displayed on the video even when the sound source position is moved, so that the state of the sound source can be grasped more accurately. .

このように、本実施の形態では、互いに直交する2直線上にそれぞれ所定の間隔で配置された2組のマイクロフォン対(M1,M3),(M2,M4)と上記マイクロフォンM1〜M4の作る正方形を底面とする四角錐の頂点の位置に配置したマイクロフォンM5に入力した音圧信号をA/D変換した後、音圧信号取出手段14を用いて、所定時間毎に、予め設定された通過期間分の音圧信号を1つのデータユニット(FFTユニット)として取出して音源方向推定手段15に送り、マイクロフォンM1〜M5に入力する音圧信号の到達時間差Dから、計測点と音源位置とのなす水平角θと仰角φを推定するとともに、CCDカメラ11により音源位置近傍の映像を連続的に撮影し、この映像に上記推定された音源位置を示す音源推定エリアを表示した映像をディスプレイ上に表示するようにしたので、音源の位置をリアルタイムで推定することができる。また、音源が移動する場合や、風などにより音源が見かけ上移動する場合でも、音源の位置をリアルタイムで推定すれば、音源位置変化についても精度よく推定することができる。
また、判定手段16を設けて、マイクロフォンM1〜M5で観測した音圧信号と上記推定された音源方向から音が伝達されると仮定して逆算した音圧データとを比較して、上記推定された音源方向が妥当であるかどうかを判定したので、反射面がある場合や振幅が小さい場合などに発生し易い誤判定を避けることができ、音源位置の推定精度を更に向上させることができる。
Thus, in the present embodiment, two pairs of microphones (M1, M3), (M2, M4) arranged at predetermined intervals on two straight lines orthogonal to each other and a square formed by the microphones M1 to M4 A / D conversion is performed on the sound pressure signal input to the microphone M5 disposed at the apex of the quadrangular pyramid with the bottom as the bottom surface, and then a preset passage period is set every predetermined time using the sound pressure signal extracting means 14. The sound pressure signal of the minute is taken out as one data unit (FFT unit), sent to the sound source direction estimating means 15, and from the arrival time difference D of the sound pressure signals input to the microphones M1 to M5, the horizontal between the measurement point and the sound source position In addition to estimating the angle θ and the elevation angle φ, the CCD camera 11 continuously shoots images near the sound source position, and a sound source estimation area indicating the estimated sound source position is displayed on the video. Since the displayed video is displayed on the display, the position of the sound source can be estimated in real time. Even when the sound source moves or when the sound source apparently moves due to wind or the like, if the position of the sound source is estimated in real time, the change in the sound source position can be estimated with high accuracy.
In addition, a determination unit 16 is provided to compare the sound pressure signal observed by the microphones M1 to M5 with the sound pressure data calculated backward assuming that the sound is transmitted from the estimated sound source direction. Since it is determined whether or not the sound source direction is appropriate, it is possible to avoid erroneous determination that easily occurs when there is a reflecting surface or when the amplitude is small, and the accuracy of estimating the sound source position can be further improved.

なお、上記最良の形態では、マイクロフォンM1〜M5を用いて、計測点と音源位置とのなす水平角θと仰角φとを推定したが、音源位置が水平角θだけで十分な場合には、マイクロフォンM5を省略して、互いに交わる2つの直線上にそれぞれ所定の間隔で配置された2組のマイクロフォン対(M1,M3),(M2,M4)のみを用いればよい。
また、上記例では、CCDカメラ11の撮影方向と推定した音源方向との角度差が所定の角度以上ずれた場合には、上記マイクロフォンフレーム20の回転台32を回転させて、上記CCDカメラ11とマイクロフォンM1〜M5とをともに推定した音源方向へ回転させたが、CCDカメラ11のみを回転させるようにしてもよい。
このようにマイクロフォンM1〜M5のみは最初に設定した位置とし、カメラのみを移動させる構成は、風などにより音源が見かけ上移動した場合や、仮想壁の角度を変えてその反射の状態をシミュレーションする防音壁のシミュレーションなどに特に有効である。
なお、上記例では、音源位置の撮影間隔である所定時間を1/30秒とし、取出す音圧波形データの量を表わす通過期間を1/20秒としたが、これに限るものではなく、音源の種類や必要測定精度等により適宜決定すればよい。また、ディスプレイ上に表示される映像としては必ずしも連続した映像である必要はなく、音源位置の測定直後に音源位置表示画面が表示される構成であればよい。
In the best mode, the horizontal angle θ and the elevation angle φ between the measurement point and the sound source position are estimated using the microphones M1 to M5. However, when the sound source position is sufficient only by the horizontal angle θ, The microphone M5 may be omitted, and only two microphone pairs (M1, M3) and (M2, M4) arranged at predetermined intervals on two straight lines that intersect with each other may be used.
In the above example, when the angle difference between the photographing direction of the CCD camera 11 and the estimated sound source direction is shifted by a predetermined angle or more, the rotating base 32 of the microphone frame 20 is rotated to The microphones M1 to M5 are rotated together in the estimated sound source direction, but only the CCD camera 11 may be rotated.
As described above, only the microphones M1 to M5 are set at the initial positions, and the configuration in which only the camera is moved simulates the reflection state when the sound source apparently moves due to wind or the like, or by changing the angle of the virtual wall. This is particularly effective for soundproof wall simulation.
In the above example, the predetermined time that is the shooting interval of the sound source position is set to 1/30 seconds and the passage period representing the amount of sound pressure waveform data to be taken out is set to 1/20 seconds. However, the present invention is not limited to this. What is necessary is just to determine suitably by the kind of measurement, required measurement precision, etc. Further, the video displayed on the display does not necessarily have to be a continuous video, as long as the sound source position display screen is displayed immediately after the measurement of the sound source position.

以上説明したように、本発明によれば、音源が移動する場合や、風などにより音源が見かけ上移動する場合でも、音源位置を精度よく推定することができるので、騒音源の推定だけでなく、防音壁の評価や防音壁を構築するためのシミュレーションなどに適用すれば、防音対策を効率よく行うことができる。   As described above, according to the present invention, the sound source position can be accurately estimated even when the sound source moves or the sound source apparently moves due to wind or the like. If applied to a noise barrier evaluation or a simulation for constructing a sound barrier, soundproof measures can be efficiently taken.

本発明の最良の形態に係わる音源位置推定システムを示す図である。It is a figure which shows the sound source position estimation system concerning the best form of this invention. 本発明による音源位置の推定方法を説明するための図である。It is a figure for demonstrating the estimation method of the sound source position by this invention. 従来マイクロフォン対を用いた音源探査方法におけるマイクロフォンの配列を示す図である。It is a figure which shows the arrangement | sequence of the microphone in the sound source search method using the conventional microphone pair. 従来の音源位置の推定方法を説明するための図である。It is a figure for demonstrating the estimation method of the conventional sound source position.

符号の説明Explanation of symbols

M1〜M5 マイクロフォン、11 CCDカメラ、12 増幅器、
13 A/D変換器、14 音圧信号取出手段、15 音源方向推定手段、
16 判定手段、17 映像入出力手段、18 データ合成手段、
19 音源位置表示手段、20 マイクロフォンフレーム、30 測定用基台、
31 支持部材、32 回転台。
M1-M5 microphone, 11 CCD camera, 12 amplifier,
13 A / D converter, 14 Sound pressure signal extraction means, 15 Sound source direction estimation means,
16 determination means, 17 video input / output means, 18 data composition means,
19 sound source position display means, 20 microphone frame, 30 measurement base,
31 Support member, 32 turntable.

Claims (5)

互いに交わる2つの直線上にそれぞれ所定の間隔で配置された2組のマイクロフォン対を有するマイクロフォン群と音源方向の映像を撮影する撮像手段とを備え、上記マイクロフォン群で採取した音源から伝播する音の音圧信号と音源の方向を撮影した映像とから、所定時間毎の音源位置のデータが表示された映像を表示する音源位置推定システムであって、上記各マイクロフォンで採取した音圧信号をデジタル信号に変換するA/D変換器と、上記A/D変換された音圧波形データを時系列的に並べるとともに、上記時系列的に並べられた音圧波形データから、所定時間毎に所定量の音圧波形データを取出す音圧データ取出手段と、上記取出された音圧波形データを周波数解析して上記2組のマイクロフォン対を構成するマイクロフォン間のそれぞれの位相差を求め、この求められた2組のマイクロフォン対の位相差の比から音源の方向を推定する音源方向推定手段と、上記推定された音源方向のデータと上記撮影された映像の画像データとを合成するデータ合成手段と、上記推定された音源位置が表示された映像を表示する表示手段とを備えたことを特徴とする音源位置推定システム。   A microphone group having two pairs of microphones arranged at predetermined intervals on two straight lines intersecting each other and an image pickup means for capturing an image in the direction of the sound source, and the sound propagated from the sound source collected by the microphone group A sound source position estimation system for displaying a sound position signal and a sound source position data for each predetermined time from a sound image and a sound source direction image, wherein the sound pressure signal collected by each microphone is a digital signal. The A / D converter for converting to A and D and the A / D converted sound pressure waveform data are arranged in a time series, and a predetermined amount of the sound pressure waveform data arranged in the time series is obtained every predetermined time. Sound pressure data extraction means for extracting sound pressure waveform data, and between the microphones constituting the two microphone pairs by frequency analysis of the extracted sound pressure waveform data Sound source direction estimating means for obtaining each phase difference and estimating the direction of the sound source from the obtained phase difference ratio of the two pairs of microphone pairs, the data of the estimated sound source direction, and the image of the captured video A sound source position estimation system comprising: data combining means for combining data; and display means for displaying a video on which the estimated sound source position is displayed. 上記撮影手段により音源方向の映像を連続して撮影するとともに、上記撮影手段から入力した画像信号を画像データに変換し、上記音圧波形データの取出し時間に同期して上記画像データをデータ合成手段に出力する映像信号入出力手段を設けたことを特徴とする請求項1に記載の音源位置推定システム。   The image capturing unit continuously captures images in the direction of the sound source, converts the image signal input from the image capturing unit into image data, and synthesizes the image data in synchronism with the extraction time of the sound pressure waveform data. The sound source position estimating system according to claim 1, further comprising a video signal input / output means for outputting to the sound source. 上記音圧データ取出手段が所定時間毎に取出す音圧波形データは、前後の音圧波形データが時間的に連続しているか、もしくは、その一部が時間的に重複している音圧波形データであることを特徴とする請求項1または請求項2に記載の音源位置推定システム。   The sound pressure waveform data taken out by the sound pressure data take-out means at predetermined time intervals is the sound pressure waveform data in which the preceding and following sound pressure waveform data are temporally continuous or partly overlapping in time. The sound source position estimation system according to claim 1, wherein the sound source position estimation system is a sound source position estimation system. 上記マイクロフォン群に、上記2組のマイクロフォン対の作る平面上にない第5のマイクロフォンを追加するとともに、音源方向推定手段では、上記2組のマイクロフォン対を構成するマイクロフォン間の位相差と、上記第5のマイクロフォンと上記2組のマイクロフォン対を構成する4個のマイクロフォンのそれぞれとで構成される4組のマイクロフォン対を構成するマイクロフォン間の位相差とを用いて音源の方向を推定することを特徴とする請求項1〜請求項3に記載の音源位置推定システム。   A fifth microphone that is not on the plane formed by the two sets of microphone pairs is added to the microphone group, and the sound source direction estimation means includes a phase difference between the microphones constituting the two sets of microphone pairs, and the first set of microphones. The direction of the sound source is estimated using the phase difference between the microphones constituting the four microphone pairs, each comprising five microphones and each of the four microphones constituting the two microphone pairs. The sound source position estimation system according to claim 1. 上記各マイクロフォンで観測した音圧信号と各マイクロフォンのうちの特定のマイクロフォンで観測した音圧信号との位相差と、上記推定された音源方向から音が伝達されると仮定して逆算した上記各マイクロフォンに入力する音圧信号と上記特定のマイクロフォンに入力する音圧信号との位相差とを比較し、上記位相差の差から音源位置の推定結果の良否を判定する判定手段を設けたことを特徴とする請求項1〜請求項4に記載の音源位置推定システム。   The phase difference between the sound pressure signal observed by each of the microphones and the sound pressure signal observed by a specific microphone among the microphones and each of the above calculated backwards on the assumption that sound is transmitted from the estimated sound source direction. Comparing the phase difference between the sound pressure signal input to the microphone and the sound pressure signal input to the specific microphone, and determining means for determining the quality of the sound source position estimation result from the difference in the phase difference The sound source position estimation system according to claim 1, wherein the sound source position is estimated.
JP2007059382A 2007-03-09 2007-03-09 Sound source position estimation system Active JP5089198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059382A JP5089198B2 (en) 2007-03-09 2007-03-09 Sound source position estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059382A JP5089198B2 (en) 2007-03-09 2007-03-09 Sound source position estimation system

Publications (2)

Publication Number Publication Date
JP2008224259A true JP2008224259A (en) 2008-09-25
JP5089198B2 JP5089198B2 (en) 2012-12-05

Family

ID=39843080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059382A Active JP5089198B2 (en) 2007-03-09 2007-03-09 Sound source position estimation system

Country Status (1)

Country Link
JP (1) JP5089198B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820565A (en) * 2009-02-27 2010-09-01 本田技研工业株式会社 The deduction method and the device thereof of source of sound
JP2010203785A (en) * 2009-02-27 2010-09-16 Kumagai Gumi Co Ltd Sound source estimation method
JP2010203800A (en) * 2009-02-27 2010-09-16 Kumagai Gumi Co Ltd Method and apparatus for estimating sound source
JP2010206419A (en) * 2009-03-02 2010-09-16 Kumagai Gumi Co Ltd Method and device for estimating sound source
JP2010206415A (en) * 2009-03-02 2010-09-16 Kumagai Gumi Co Ltd Fixing device
JP2010236939A (en) * 2009-03-30 2010-10-21 Chubu Electric Power Co Inc Method and apparatus for estimating sound source
JP2010236944A (en) * 2009-03-30 2010-10-21 Chubu Electric Power Co Inc Method and system for searching for sound source and vibration source
JP2011188025A (en) * 2010-03-04 2011-09-22 Chubu Electric Power Co Inc Sound source estimating method
JP2011188016A (en) * 2010-03-04 2011-09-22 Chubu Electric Power Co Inc Monitoring camera device with sound source direction estimating function
JP2011238985A (en) * 2010-04-30 2011-11-24 Kumagai Gumi Co Ltd Method and device for displaying sound source estimation image
JP2012018066A (en) * 2010-07-07 2012-01-26 Panasonic Electric Works Sunx Co Ltd Device for inspecting abnormality
KR101212317B1 (en) 2010-09-29 2012-12-13 주식회사 에스원 Apparatus for marker having beacon and method for displaying sound source location
JP2013088141A (en) * 2011-10-13 2013-05-13 Kumagai Gumi Co Ltd Sound source direction estimation method, sound source direction estimation device and creation device for image for sound source estimation
JP2014192546A (en) * 2013-03-26 2014-10-06 Fuji Xerox Co Ltd Sound analyzer, sound acquisition device, sound analysis system and program
CN107167227A (en) * 2017-05-31 2017-09-15 合肥工业大学 A kind of Doppler effect restoration methods
CN107218996A (en) * 2017-05-31 2017-09-29 合肥工业大学 A kind of Doppler effect removing method
CN109917338A (en) * 2019-01-21 2019-06-21 柳州市展虹科技有限公司 A kind of small-sized acoustical holography measurement of free found field and inverting device intelligence control system
FR3077886A1 (en) * 2018-02-13 2019-08-16 Observatoire Regional Du Bruit En Idf SYSTEM FOR REPORTING EXCEEDING A SOUND INTENSITY THRESHOLD
CN112858999A (en) * 2020-12-25 2021-05-28 清华大学 Multi-sound-source positioning method and device, electronic equipment and storage medium
CN113366549A (en) * 2019-01-28 2021-09-07 金永彦 Sound source identification method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111183A (en) * 2001-09-27 2003-04-11 Chubu Electric Power Co Inc Sound source search system
JP2006267444A (en) * 2005-03-23 2006-10-05 Toshiba Corp Acoustic signal processor, acoustic signal processing method, acoustic signal processing program, and recording medium on which the acoustic signal processing program is recored

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111183A (en) * 2001-09-27 2003-04-11 Chubu Electric Power Co Inc Sound source search system
JP2006267444A (en) * 2005-03-23 2006-10-05 Toshiba Corp Acoustic signal processor, acoustic signal processing method, acoustic signal processing program, and recording medium on which the acoustic signal processing program is recored

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8363512B2 (en) 2009-02-27 2013-01-29 Honda Motors Method and apparatus for estimating sound source
JP2010203785A (en) * 2009-02-27 2010-09-16 Kumagai Gumi Co Ltd Sound source estimation method
JP2010203800A (en) * 2009-02-27 2010-09-16 Kumagai Gumi Co Ltd Method and apparatus for estimating sound source
CN101820565A (en) * 2009-02-27 2010-09-01 本田技研工业株式会社 The deduction method and the device thereof of source of sound
JP2010206419A (en) * 2009-03-02 2010-09-16 Kumagai Gumi Co Ltd Method and device for estimating sound source
JP2010206415A (en) * 2009-03-02 2010-09-16 Kumagai Gumi Co Ltd Fixing device
JP2010236939A (en) * 2009-03-30 2010-10-21 Chubu Electric Power Co Inc Method and apparatus for estimating sound source
JP2010236944A (en) * 2009-03-30 2010-10-21 Chubu Electric Power Co Inc Method and system for searching for sound source and vibration source
JP2011188025A (en) * 2010-03-04 2011-09-22 Chubu Electric Power Co Inc Sound source estimating method
JP2011188016A (en) * 2010-03-04 2011-09-22 Chubu Electric Power Co Inc Monitoring camera device with sound source direction estimating function
JP2011238985A (en) * 2010-04-30 2011-11-24 Kumagai Gumi Co Ltd Method and device for displaying sound source estimation image
JP2012018066A (en) * 2010-07-07 2012-01-26 Panasonic Electric Works Sunx Co Ltd Device for inspecting abnormality
KR101212317B1 (en) 2010-09-29 2012-12-13 주식회사 에스원 Apparatus for marker having beacon and method for displaying sound source location
JP2013088141A (en) * 2011-10-13 2013-05-13 Kumagai Gumi Co Ltd Sound source direction estimation method, sound source direction estimation device and creation device for image for sound source estimation
JP2014192546A (en) * 2013-03-26 2014-10-06 Fuji Xerox Co Ltd Sound analyzer, sound acquisition device, sound analysis system and program
CN107167227A (en) * 2017-05-31 2017-09-15 合肥工业大学 A kind of Doppler effect restoration methods
CN107218996A (en) * 2017-05-31 2017-09-29 合肥工业大学 A kind of Doppler effect removing method
FR3077886A1 (en) * 2018-02-13 2019-08-16 Observatoire Regional Du Bruit En Idf SYSTEM FOR REPORTING EXCEEDING A SOUND INTENSITY THRESHOLD
WO2019158839A1 (en) * 2018-02-13 2019-08-22 Observatoire Regional Du Bruit En Idf System for indicating the crossing of a loudness threshold
CN109917338A (en) * 2019-01-21 2019-06-21 柳州市展虹科技有限公司 A kind of small-sized acoustical holography measurement of free found field and inverting device intelligence control system
CN113366549A (en) * 2019-01-28 2021-09-07 金永彦 Sound source identification method and device
CN112858999A (en) * 2020-12-25 2021-05-28 清华大学 Multi-sound-source positioning method and device, electronic equipment and storage medium
CN112858999B (en) * 2020-12-25 2023-04-07 清华大学 Multi-sound-source positioning method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP5089198B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5089198B2 (en) Sound source position estimation system
US8363512B2 (en) Method and apparatus for estimating sound source
JP5702160B2 (en) Sound source estimation method and sound source estimation apparatus
JP5253268B2 (en) Sound source / vibration source search system
JP2012129873A (en) Reproduction method of propagated sound from specified area and device therefor
JP5294925B2 (en) Sound source estimation method and apparatus
JP5456563B2 (en) Method and apparatus for displaying sound source estimation image
JP2016057063A (en) Non-contact detecting method for measurement objects, and apparatus for the same
Durand-Texte et al. Vibration measurement using a pseudo-stereo system, target tracking and vision methods
WO2019189417A1 (en) Acoustic analysis device and acoustic analysis method
Ngeljaratan et al. System identification of large-scale bridges using target-tracking digital image correlation
JP4652191B2 (en) Multiple sound source separation method
JP6813025B2 (en) Status determination device, status determination method, and program
JP2008309680A (en) Track displacement measuring system
JP2004085201A (en) Vibration source probing system
JP2010236939A (en) Method and apparatus for estimating sound source
JP5242452B2 (en) Sound source estimation method and apparatus
JP5826582B2 (en) Sound source direction estimation method, sound source direction estimation device, and sound source estimation image creation device
JP5462667B2 (en) Surveillance camera device with sound source direction estimation function
KR101155610B1 (en) Apparatus for displaying sound source location and method thereof
JP2011122854A (en) System and program for determining incoming direction of sound
JP5534870B2 (en) Sound source estimation image creation device
JP4629544B2 (en) Noise suppression simulation method
JP2015161659A (en) Sound source direction estimation device and display device of image for sound source estimation
KR101212317B1 (en) Apparatus for marker having beacon and method for displaying sound source location

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350