WO2019189417A1 - Acoustic analysis device and acoustic analysis method - Google Patents

Acoustic analysis device and acoustic analysis method Download PDF

Info

Publication number
WO2019189417A1
WO2019189417A1 PCT/JP2019/013284 JP2019013284W WO2019189417A1 WO 2019189417 A1 WO2019189417 A1 WO 2019189417A1 JP 2019013284 W JP2019013284 W JP 2019013284W WO 2019189417 A1 WO2019189417 A1 WO 2019189417A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound source
analysis
point
sound
source surface
Prior art date
Application number
PCT/JP2019/013284
Other languages
French (fr)
Japanese (ja)
Inventor
直穂子 豊嶋
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980022895.XA priority Critical patent/CN111936829B/en
Publication of WO2019189417A1 publication Critical patent/WO2019189417A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers

Definitions

  • the present invention relates to an acoustic analysis apparatus and an acoustic analysis method.
  • An object of the present invention is to provide an acoustic analysis apparatus and an acoustic analysis method capable of appropriately superimposing and displaying a near-field acoustic analysis result on an image of an object to be measured.
  • an acoustic analysis device includes a first acquisition unit that acquires an image of a sound source surface of an object to be measured, and three-dimensional position information of a point on the sound source surface.
  • a second acquisition unit to acquire, a third acquisition unit to acquire three-dimensional position information of points on the measurement surface of the microphone array arranged in the vicinity of the sound source surface, and the sound signal acquired by the microphone array Calculating a three-dimensional distribution of a physical quantity representing a feature of sound from the calculation surface, calculating the physical quantity at an analysis point on a plane parallel to the measurement plane, and the three-dimensional position information of the point on the sound source plane; Based on the three-dimensional position information of the points on the measurement surface, an alignment unit that aligns the sound source surface and the analysis point, and an image of the sound source surface according to the alignment result by the alignment unit Shows the physical quantity at the analysis point And a display unit for displaying superposed images.
  • the acoustic analysis method includes a step of acquiring an image of a sound source surface of a device under test, a step of acquiring three-dimensional position information of a point on the sound source surface, and the vicinity of the sound source surface. Obtaining three-dimensional position information of points on the measurement surface of the microphone array arranged in the microphone array, calculating a three-dimensional distribution of physical quantities representing sound characteristics from the sound signal acquired by the microphone array, and measuring the measurement surface. Calculating the physical quantity at an analysis point on a surface parallel to the sound source surface, and the three-dimensional position information of the point on the sound source surface and the three-dimensional position information of the point on the measurement surface. Performing alignment with the analysis point, and superimposing and displaying an image indicating the physical quantity at the analysis point on the image of the sound source surface according to the alignment result.
  • the present invention it is possible to appropriately superimpose and display the near-field acoustic analysis result on the image of the object to be measured. Therefore, it is possible to intuitively grasp the sound field.
  • FIG. 1 is a diagram illustrating an example of an acoustic analysis system.
  • FIG. 2 is a diagram for explaining an outline of the analysis processing in the analysis processing unit.
  • FIG. 3 is a diagram illustrating a method for imaging the object to be measured.
  • FIG. 4 is a diagram illustrating a microphone array imaging method.
  • FIG. 5 is a diagram for explaining a coordinate conversion method.
  • FIG. 6 is a schematic diagram in which the sound pressure distribution is superimposed on the image of the object to be measured.
  • FIG. 7 is a schematic diagram in which the particle velocity distribution is superimposed on the image of the object to be measured.
  • FIG. 1 is a configuration example of an acoustic analysis system 1000 including a microphone array 1 according to this embodiment.
  • the acoustic analysis system 1000 according to the present embodiment is a system that analyzes a sound to be measured from the object to be measured (sound source) 2 using a near-field acoustic holography method and displays an analysis result.
  • the near-field acoustic holography method it is necessary to measure a sound pressure distribution on a measurement surface that is close to and parallel to the sound source surface 2a, and a microphone array 1 in which a plurality of microphones mc are arranged in a lattice shape is used.
  • the microphone array 1 includes M ⁇ N microphones mc arranged in a lattice pattern.
  • the microphone mc may be a MEMS (Micro-Electrical-Mechanical Systems) microphone, for example.
  • the acoustic analysis system 1000 analyzes a signal (sound signal) input from each of the M ⁇ N microphones mc, and detects a physical quantity representing a sound characteristic.
  • the acoustic analysis system 1000 includes an imaging device 3 that is independent from the microphone array 1 and the DUT 2.
  • the imaging device 3 is a stereo camera
  • the stereo camera 3 is fixed at a position spaced a predetermined distance from the microphone array 1 and the object 2 to be measured.
  • the stereo camera 3 can capture an image of the device under test 2 and acquire an image of the device under test 2. Further, the stereo camera 3 can acquire the three-dimensional position information of the DUT 2 and the three-dimensional position information of the microphone array 1.
  • the acoustic analysis system 1000 includes an acoustic analysis device 100 and a display device 200.
  • the acoustic analysis device 100 includes a signal processing unit 101, an analysis processing unit 102, and a storage unit 103.
  • the acoustic analysis device 100 includes a first acquisition unit, a second acquisition unit, a third acquisition unit, a calculation unit, an alignment unit, and a display unit.
  • the first acquisition unit acquires an image of the sound source surface 2a of the DUT 2.
  • the second acquisition unit acquires three-dimensional position information of points on the sound source surface 2a.
  • the third acquisition unit acquires three-dimensional position information of points on the measurement surface 1b of the microphone array 1 arranged in the vicinity of the sound source surface 2a.
  • the alignment unit includes a derivation unit and a conversion unit.
  • the signal processing unit 101 performs predetermined signal processing on the signal from each microphone mc of the microphone array 1 to obtain a sound signal used for acoustic analysis.
  • the signal processing may include processing for synchronizing signals of M ⁇ N microphones mc included in the microphone array 1.
  • the analysis processing unit 102 analyzes the sound signal that has been signal-processed by the signal processing unit 101, and detects a three-dimensional distribution of physical quantities representing the characteristics of the sound.
  • the three-dimensional distribution of physical quantities representing the characteristics of sound includes sound pressure distribution, particle velocity distribution, and the like.
  • the analysis processing unit 102 performs display control for generating an image indicating sound pressure, which is a physical quantity representing the characteristics of sound, and displaying the image on the display device 200.
  • the analysis processing unit 102 performs display control for displaying an image indicating sound pressure so as to be superimposed on the image of the DUT 2.
  • the analysis processing in the analysis processing unit 102 will be described later.
  • the storage unit 103 stores the analysis result by the analysis processing unit 102 and the like.
  • the display device 200 includes a monitor such as a liquid crystal display, and displays the image that is the analysis result of the acoustic analysis device 100.
  • the microphone array 1 has a shape smaller than that of the DUT 2.
  • the microphone array 1 measures the sound signal in a plurality of times while moving in the vicinity of the sound source surface 2a of the object 2 to be measured, and the acoustic analyzer 100 uses the sound signal measured by the microphone array 1 in a plurality of times. Each analysis is performed, and a plurality of analysis results are merged and displayed on the display device 200.
  • the acoustic analysis device 100 analyzes the sound field 1a over the entire surface of the device under test 2 using the microphone array 1 that is smaller than the device under test 2 and displays the analysis result on the display device 200. Display.
  • the analysis processing unit 102 of the acoustic analysis apparatus 100 acquires an image of the sound source surface 2a of the DUT 2 captured by the stereo camera 3 fixed by the fixing unit 3a and is measured by the stereo camera 3.
  • the three-dimensional position information of the points on the sound source surface 2a is acquired.
  • the analysis processing unit 102 images the microphone array 1 being picked up arranged in the vicinity of the sound source surface 2 a of the DUT 2 by the stereo camera 3, and the three-dimensional position of the point on the measurement surface of the microphone array 1. Get information.
  • the analysis processing unit 102 analyzes the sound signal acquired by the microphone array 1 and calculates a sound pressure distribution that is an analysis result of the sound field. Then, the analysis processing unit 102 aligns the sound source surface 2a of the DUT 2 and the sound pressure distribution, and superimposes and displays an image indicating the sound pressure distribution on the image of the sound source surface 2a according to the alignment result. To do.
  • the analysis processing unit 102 acquires an image of the DUT 2 captured by the stereo camera 3 fixed by the fixing unit 3a before measuring the sound field by the microphone array 1.
  • the stereo camera 3 is measured in a state where the microphone array 1 is not within the imaging range of the stereo camera 2, that is, in a state where the microphone array 1 is not arranged in the vicinity of the device under test 2.
  • the sound source surface 2a of the object 2 is imaged.
  • the analysis processing unit 102 can acquire an image of the object 2 to be measured in which the microphone array 1 is not reflected.
  • n is an integer of 0 ⁇ n ⁇ No (No ⁇ 2). In this way, the analysis processing unit 102 calculates the position and shape of the DUT 2 in the camera coordinate system ⁇ c.
  • the analysis processing unit 102 starts from the stereo camera 3 fixed by the fixing means 3a when the microphone array 1 collects sound near the sound source surface 2a of the object 2 to be measured.
  • n is an integer of 0 ⁇ n ⁇ Nm (Nm ⁇ 2). In this way, the analysis processing unit 102 calculates the position and orientation of the microphone array 1 in the camera coordinate system ⁇ c.
  • the analysis processing unit 102 sets an object coordinate system ⁇ o having an arbitrary point on the object 2 to be measured, for example, Po (0) as an origin and an xz plane as a sound source surface 2a. Set. Further, as shown in FIG. 5, the analysis processing unit 102 sets a microphone array coordinate system ⁇ m having an arbitrary point on the microphone array 1, for example, Pm (0) as an origin and an xz plane as a measurement surface 1b. Then, the analysis processing unit 102 calculates a transformation matrix R from the microphone array coordinate system ⁇ m to the measured object coordinate system ⁇ o.
  • the analysis processing unit 102 acquires a sound signal from the microphone array 1 that has been signal-processed by the signal processing unit 101, analyzes the sound signal, and analyzes a three-dimensional distribution of sound (in this embodiment, a sound pressure distribution). ) Is calculated. Then, the analysis processing unit 102 calculates the sound pressure distribution Dm (P (m)) on an arbitrary surface (analysis surface) parallel to the measurement surface 1b based on the principle of acoustic holography from the calculated sound pressure distribution. That is, the analysis processing unit 102 calculates physical quantities (sound pressures) at a plurality of analysis points on a surface parallel to the measurement surface 1b. The sound pressure distribution Dm (P (m)) as a result of this analysis is calculated by the microphone array coordinate system ⁇ m.
  • the principle of acoustic holography is to obtain the sound pressure on the analysis surface by convolving the sound pressure on the measurement surface with a transfer function from the measurement surface to an arbitrary surface (analysis surface) parallel to the measurement surface.
  • the analysis surface is a sound source surface
  • the sound pressure of the sound source surface can be obtained.
  • it is generally easy to process by performing a spatial Fourier transform for convenience In other words, sound is recorded (spatial sampling) with a grid-like microphone array, the product of the spatial Fourier transform and the transfer function up to the analysis surface (for example, the sound source surface) is taken, and then the inverse spatial Fourier transform is performed.
  • the sound pressure at for example, the sound source surface
  • the analysis processing unit 102 uses the transformation matrix R to calculate the sound pressure distribution Dm (P (m)) of the analysis result calculated in the microphone array coordinate system ⁇ m, and the sound pressure distribution in the measurement object coordinate system ⁇ o. Convert to Do (P (m)). Thereby, it is possible to align the sound source surface 2a and the analysis point (sound pressure distribution Dm (P (m)) of the analysis result).
  • the analysis processing unit 102 causes the display device 200 to display an image indicating the sound pressure distribution Do (P (m)) on the image of the sound source surface 2a of the DUT 2 in accordance with the alignment result. .
  • An example in which an image showing the sound pressure distribution Do (P (m)) is overlaid on the image of the sound source surface 2a of the DUT 2 is shown in FIG.
  • FIG. 6 is a schematic diagram in which an image showing a sound pressure distribution is overlaid using a motor image 30 a as an image of the sound source surface 2 a of the DUT 2. For convenience, an image of the motor is shown in the figure.
  • the magnitude of the sound pressure is indicated by color shading.
  • FIG. 6 is a schematic diagram in which an image showing a sound pressure distribution is overlaid using a motor image 30 a as an image of the sound source surface 2 a of the DUT 2.
  • a dark color region D1 is a high sound pressure region
  • a light color region D2 is a low sound pressure region.
  • the analysis processing unit 102 calculates the sound pressure level at an arbitrary point P (m) in the measured object coordinate system ⁇ o based on the sound pressure distribution Do (P (m)), and the sound pressure is calculated.
  • An image having a color indicating the size of the sound source may be generated, and the generated image may be displayed superimposed on a corresponding position on the image of the sound source surface 2a.
  • a region having a high sound pressure may be represented by a red image
  • a region having a low sound pressure may be represented by a blue image.
  • the image showing the sound pressure is not limited to the above.
  • the image indicating the sound pressure may be a circular image having a different size depending on the size of the sound pressure.
  • the analysis processing unit 102 can repeat the processing 2 to the processing 6 every time the microphone array 1 is moved, thereby displaying the analysis result of the entire surface of the device under test 2 overlaid on the image of the device under test 2.
  • the calculation unit calculates a three-dimensional distribution of physical quantities representing sound characteristics from the sound signal acquired by the microphone array 1, and performs analysis on a plane parallel to the measurement surface 1b of the microphone array 1.
  • the physical quantity at the point is calculated.
  • the alignment unit is configured so that the sound source surface 2a and the above-described information are based on the three-dimensional position information of the points on the sound source surface 2a of the DUT 2 and the three-dimensional position information of the points on the measurement surface 1b of the microphone array 1. Align with the analysis point.
  • the display unit superimposes an image indicating the physical quantity at the analysis point on the image of the sound source surface 2a and causes the display device 200 to display the image on the sound source surface 2a according to the positioning result.
  • the acoustic analysis system may further include a fourth acquisition unit that acquires 3D model data of the sound source surface of the object to be measured, and an acoustic analysis unit that performs numerical analysis based on the 3D model data.
  • a fourth acquisition unit that acquires 3D model data of the sound source surface of the object to be measured
  • an acoustic analysis unit that performs numerical analysis based on the 3D model data.
  • the acoustic analysis unit performs frequency response analysis based on the three-dimensional model data and outputs an analysis result.
  • the frequency response analysis for example, sound pressure data, sound power, particle velocity in the space of the object to be analyzed, etc. are analyzed for a specific frequency.
  • the display unit displays the alignment result and the analysis result of the three-dimensional model data by the acoustic analysis unit side by side.
  • the display unit can display an image indicating the magnitude of the sound pressure at the analysis point superimposed on the image of the sound source surface 2a. Thereby, sound pressure distribution can be expressed appropriately. Further, when the physical quantity representing the characteristics of the sound is the particle velocity, the display unit may display an image showing at least one of the magnitude and direction of the particle velocity at the analysis point superimposed on the image of the sound source surface 2a. it can. Thereby, particle velocity distribution can be expressed appropriately.
  • the derivation unit uses the microphone array coordinate system ⁇ m having the origin at an arbitrary point Pm (0) on the measurement surface 1b as the sound source.
  • a transformation matrix R to the measured object coordinate system ⁇ o having an arbitrary point Po (0) on the surface 2a as an origin is derived.
  • the conversion unit converts the analysis point in the microphone array coordinate system ⁇ m to a point in the measurement object coordinate system ⁇ o using the conversion matrix R. Therefore, the acoustic analysis device 100 can easily and appropriately derive at which position of the image of the sound source surface 2a the image indicating the physical quantity at the analysis point is superimposed.
  • the calculation unit calculates a three-dimensional distribution of physical quantities from sound signals obtained by moving the microphone array 1 smaller than the device under test 2 to a plurality of different measurement positions. Then, the acoustic analysis device 100 calculates the physical quantity at the analysis point on the plane parallel to the measurement surface 1b from each calculated three-dimensional distribution, and the image indicating the physical quantity at each analysis point in the image of the sound source plane 2a. Are superimposed and displayed on the display device 200. As a result, the measurement results of the device under test 2 divided into several times can be merged and displayed. Therefore, for example, by using the microphone array 1 having 4 ⁇ 4 microphones, it is possible to measure and analyze the entire large object 2 to be measured, such as a refrigerator.
  • the acoustic analysis result of the near field can be appropriately superimposed on the image of the DUT 2 and displayed. Therefore, it is possible to intuitively grasp the sound field.
  • the flow of sound generated when the motor is incorporated into the final product can be displayed overlapping the image of the object 2 to be measured. As a result, for example, it is possible to easily identify the cause of noise and reduce the man-hours required for noise countermeasures.
  • the three-dimensional distribution of the physical quantity representing the characteristics of the sound is the sound pressure distribution
  • the three-dimensional distribution may be a particle velocity distribution.
  • the particle velocity distribution can be appropriately superimposed on the image of the object to be measured 2 and displayed.
  • FIG. 7 is a schematic diagram in which an image showing the particle velocity distribution is overlaid using a motor image 30 b as an image of the sound source surface 2 a of the DUT 2.
  • an image of the motor is shown in the figure.
  • the direction of particle velocity is indicated by color shading.
  • a darkly colored region V1 is a region where the particle velocity direction is forward with respect to the paper surface
  • a lightly colored region V2 is a region where the particle velocity direction is behind the paper surface.
  • the color of the image indicating the particle velocity is darker as the forward amplitude is larger with respect to the paper surface, and is lighter as the backward amplitude is larger with respect to the paper surface.
  • the image indicating the particle velocity superimposed on the image of the DUT 2 may be an arrow image indicating the magnitude and direction of the particle velocity.
  • the sound source of the to-be-measured object 2 is used using the common stereo camera 3 independently fixed to the position away from the sound-source surface 2a of the to-be-processed object 2 and the measurement surface 1b of the microphone array 1.
  • the image of the surface 2a, the three-dimensional position information of the point on the sound source surface 2a, and the three-dimensional position information of the point on the measurement surface 1b of the microphone array 1 arranged in the vicinity of the sound source surface 2a have been described. That is, the first acquisition unit, the second acquisition unit, and the third acquisition unit use a common stereo camera that is independently fixed at a position separated from the sound source surface and the measurement surface.
  • the images and the three-dimensional positional information may be acquired using different stereo cameras.
  • the common stereo camera 3 is used as in the above-described embodiment, it is easy to derive the transformation matrix R from the microphone array coordinate system ⁇ m to the measured object coordinate system ⁇ o using the common camera coordinate system ⁇ c. It is preferable because it can be performed.
  • the means for acquiring the three-dimensional position information is not limited to the stereo camera 3.
  • the means for acquiring three-dimensional position information may be a depth camera, a laser scanner, or an ultrasonic sensor that can detect a three-dimensional position.
  • a marker or the like may be installed on the device under test 2 or the microphone array 1.
  • SYMBOLS 1 Microphone array, 2 ... Measured object (sound source), 2a ... Sound source surface, 3 ... Stereo camera, 100 ... Acoustic analysis apparatus, 101 ... Signal processing part, 102 ... Analysis processing part, 103 ... Memory

Abstract

An acoustic analysis device 100 comprises: a first acquisition unit for acquiring an image of a sound source surface of an object to be measured; a second acquisition unit for acquiring three-dimensional location information of a point on the sound source surface; a third acquisition unit for acquiring three-dimensional location information of a point on a measurement surface of a microphone array arranged in the vicinity of the sound source surface; a calculation unit for calculating, from a sound signal acquired by the microphone array, a three-dimensional distribution of a physical quantity indicating a sound characteristic, and for calculating the physical quantity at an analysis point on a plane parallel to the measurement surface; an alignment unit for performing alignment of the sound source surface and the analysis point on the basis of the three-dimensional location information of the point on the sound source surface and the three-dimensional location information of the point on the measurement surface; and a display unit for displaying, in accordance with the result of alignment by the alignment unit, an image indicating the physical quantity at the analysis point so as to overlap the image of the sound source surface.

Description

音響解析装置および音響解析方法Acoustic analysis apparatus and acoustic analysis method
 本発明は、音響解析装置および音響解析方法に関する。 The present invention relates to an acoustic analysis apparatus and an acoustic analysis method.
 近年、製品の低騒音化の要求の高まりから、音場の空間的分布を測定し解析することが要求されている。特に、音響解析においては、音場を可視化することで直感的に音の伝達を把握できるようにすることが望まれている。
 日本国公開公報特許第5353316号公報には、マイクロホンに装着された位置センサによってマイクロホンの空間内の位置を検出し、マイクロホンから出力される音信号の音圧に対応する画像を、そのマイクロホンの位置に対応する表示位置に表示させる音場可視化装置が開示されている。
In recent years, due to the increasing demand for noise reduction of products, it is required to measure and analyze the spatial distribution of the sound field. In particular, in acoustic analysis, it is desired to be able to intuitively grasp sound transmission by visualizing a sound field.
In Japanese Patent Publication No. 5353316, a position in a microphone is detected by a position sensor attached to a microphone, and an image corresponding to the sound pressure of a sound signal output from the microphone is displayed. A sound field visualization device for displaying at a display position corresponding to is disclosed.
日本国公開公報特許第5353316号公報Japanese Patent Publication No. 5353316
 ところで、被測定物の音響状態をより分かり易く表現するために、音響解析結果を被測定物の画像に重ね合わせて表示することが考えられている。
 音響解析結果を被測定物の画像に重ね合わせて表示する方法としては、マイクロホンアレイにカメラを固定し、当該カメラで被測定物を撮像して音響解析結果と重ねて表示する方法がある。しかしながら、近接場の解析を行う近接場音響ホログラフィ等では、マイクロホンアレイを被測定物に近接させて配置するため、マイクロホンアレイに固定されたカメラでは被測定物の全体像を撮像することができない。また、被測定物の全体像を撮像するために、カメラをマイクロホンアレイの後方に配置すると、被測定物の撮像画像に収音中のマイクロホンアレイが写り込んでしまう。
 そこで、本発明は、被測定物の画像に対して近接場の音響解析結果を適切に重ね合わせて表示することができる音響解析装置および音響解析方法を提供することを目的とする。
By the way, in order to express the acoustic state of the object to be measured more easily, it is considered to display the acoustic analysis result superimposed on the image of the object to be measured.
As a method of displaying the acoustic analysis result superimposed on the image of the object to be measured, there is a method of fixing the camera to the microphone array, imaging the object to be measured with the camera, and displaying it superimposed on the acoustic analysis result. However, in near-field acoustic holography or the like that performs near-field analysis, since the microphone array is disposed close to the object to be measured, the camera fixed to the microphone array cannot capture the entire image of the object to be measured. In addition, if the camera is arranged behind the microphone array in order to capture the entire image of the object to be measured, the microphone array that is collecting sound appears in the captured image of the object to be measured.
SUMMARY OF THE INVENTION An object of the present invention is to provide an acoustic analysis apparatus and an acoustic analysis method capable of appropriately superimposing and displaying a near-field acoustic analysis result on an image of an object to be measured.
 上記課題を解決するために、本発明の一つの態様の音響解析装置は、被測定物の音源面の画像を取得する第一の取得部と、前記音源面上の点の三次元位置情報を取得する第二の取得部と、前記音源面の近傍に配置されたマイクロホンアレイの測定面上の点の三次元位置情報を取得する第三の取得部と、前記マイクロホンアレイにより取得された音信号から音の特徴を表す物理量の三次元分布を算出し、前記測定面に平行な面上の解析点での前記物理量を算出する算出部と、前記音源面上の点の前記三次元位置情報と前記測定面上の点の前記三次元位置情報とに基づいて、前記音源面と前記解析点との位置合わせを行う位置合わせ部と、前記位置合わせ部による位置合わせ結果に従って、前記音源面の画像に前記解析点での前記物理量を示す画像を重畳させて表示させる表示部と、を備える。 In order to solve the above-described problem, an acoustic analysis device according to one aspect of the present invention includes a first acquisition unit that acquires an image of a sound source surface of an object to be measured, and three-dimensional position information of a point on the sound source surface. A second acquisition unit to acquire, a third acquisition unit to acquire three-dimensional position information of points on the measurement surface of the microphone array arranged in the vicinity of the sound source surface, and the sound signal acquired by the microphone array Calculating a three-dimensional distribution of a physical quantity representing a feature of sound from the calculation surface, calculating the physical quantity at an analysis point on a plane parallel to the measurement plane, and the three-dimensional position information of the point on the sound source plane; Based on the three-dimensional position information of the points on the measurement surface, an alignment unit that aligns the sound source surface and the analysis point, and an image of the sound source surface according to the alignment result by the alignment unit Shows the physical quantity at the analysis point And a display unit for displaying superposed images.
 また、本発明の一つの態様の音響解析方法は、被測定物の音源面の画像を取得するステップと、前記音源面上の点の三次元位置情報を取得するステップと、前記音源面の近傍に配置されたマイクロホンアレイの測定面上の点の三次元位置情報を取得するステップと、前記マイクロホンアレイにより取得された音信号から音の特徴を表す物理量の三次元分布を算出し、前記測定面に平行な面上の解析点での前記物理量を算出するステップと、前記音源面上の点の三次元位置情報と前記測定面上の点の三次元位置情報とに基づいて、前記音源面と前記解析点との位置合わせを行うステップと、前記位置合わせ結果に従って、前記音源面の画像に前記解析点での前記物理量を示す画像を重畳させて表示させるステップと、を含む。 The acoustic analysis method according to one aspect of the present invention includes a step of acquiring an image of a sound source surface of a device under test, a step of acquiring three-dimensional position information of a point on the sound source surface, and the vicinity of the sound source surface. Obtaining three-dimensional position information of points on the measurement surface of the microphone array arranged in the microphone array, calculating a three-dimensional distribution of physical quantities representing sound characteristics from the sound signal acquired by the microphone array, and measuring the measurement surface. Calculating the physical quantity at an analysis point on a surface parallel to the sound source surface, and the three-dimensional position information of the point on the sound source surface and the three-dimensional position information of the point on the measurement surface. Performing alignment with the analysis point, and superimposing and displaying an image indicating the physical quantity at the analysis point on the image of the sound source surface according to the alignment result.
 本発明の一つの態様によれば、被測定物の画像に対して、近接場の音響解析結果を適切に重ね合わせて表示することができる。したがって、音場を直感的に把握することが可能となる。 According to one aspect of the present invention, it is possible to appropriately superimpose and display the near-field acoustic analysis result on the image of the object to be measured. Therefore, it is possible to intuitively grasp the sound field.
図1は、音響解析システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of an acoustic analysis system. 図2は、解析処理部における解析処理の概要を説明するための図である。FIG. 2 is a diagram for explaining an outline of the analysis processing in the analysis processing unit. 図3は、被測定物の撮像方法を示す図である。FIG. 3 is a diagram illustrating a method for imaging the object to be measured. 図4は、マイクロホンアレイの撮像方法を示す図である。FIG. 4 is a diagram illustrating a microphone array imaging method. 図5は、座標変換方法を説明する図である。FIG. 5 is a diagram for explaining a coordinate conversion method. 図6は、被測定物の画像に音圧分布を重ね合わせた模式図である。FIG. 6 is a schematic diagram in which the sound pressure distribution is superimposed on the image of the object to be measured. 図7は、被測定物の画像に粒子速度分布を重ね合わせた模式図である。FIG. 7 is a schematic diagram in which the particle velocity distribution is superimposed on the image of the object to be measured.
  以下、図面を用いて本発明の実施の形態について説明する。
 なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The scope of the present invention is not limited to the following embodiment, and can be arbitrarily changed within the scope of the technical idea of the present invention.
 図1は、本実施形態におけるマイクロホンアレイ1を備える音響解析システム1000の構成例である。
 本実施形態における音響解析システム1000は、近接場音響ホログラフィ法を使用して被測定物(音源)2からの被測定音を解析し、解析結果を表示するシステムである。近接場音響ホログラフィ法では、音源面2aに近接し且つ平行な測定面の音圧分布を測定する必要があり、複数のマイクロホンmcを格子状に配置したマイクロホンアレイ1が用いられる。
 本実施形態におけるマイクロホンアレイ1は、格子状に配置されたM×N個のマイクロホンmcを備える。マイクロホンmcは、例えばMEMS(Micro-Electrical-Mechanical Systems)マイクロホンとすることができる。音響解析システム1000は、M×N個のマイクロホンmcの各々から入力された信号(音信号)を解析し、音の特徴を表す物理量を検出する。
FIG. 1 is a configuration example of an acoustic analysis system 1000 including a microphone array 1 according to this embodiment.
The acoustic analysis system 1000 according to the present embodiment is a system that analyzes a sound to be measured from the object to be measured (sound source) 2 using a near-field acoustic holography method and displays an analysis result. In the near-field acoustic holography method, it is necessary to measure a sound pressure distribution on a measurement surface that is close to and parallel to the sound source surface 2a, and a microphone array 1 in which a plurality of microphones mc are arranged in a lattice shape is used.
The microphone array 1 according to the present embodiment includes M × N microphones mc arranged in a lattice pattern. The microphone mc may be a MEMS (Micro-Electrical-Mechanical Systems) microphone, for example. The acoustic analysis system 1000 analyzes a signal (sound signal) input from each of the M × N microphones mc, and detects a physical quantity representing a sound characteristic.
 また、音響解析システム1000は、マイクロホンアレイ1および被測定物2とはそれぞれ独立した撮像装置3を備える。本実施形態では、撮像装置3は、ステレオカメラである場合について説明する。
 ステレオカメラ3は、マイクロホンアレイ1および被測定物2から所定距離離間した位置に固定されている。ステレオカメラ3は、被測定物2を撮像し、被測定物2の画像を取得することができる。また、ステレオカメラ3は、被測定物2の三次元位置情報と、マイクロホンアレイ1の三次元位置情報とを取得することができる。
The acoustic analysis system 1000 includes an imaging device 3 that is independent from the microphone array 1 and the DUT 2. In this embodiment, the case where the imaging device 3 is a stereo camera will be described.
The stereo camera 3 is fixed at a position spaced a predetermined distance from the microphone array 1 and the object 2 to be measured. The stereo camera 3 can capture an image of the device under test 2 and acquire an image of the device under test 2. Further, the stereo camera 3 can acquire the three-dimensional position information of the DUT 2 and the three-dimensional position information of the microphone array 1.
 さらに、音響解析システム1000は、音響解析装置100と、表示装置200と、を備える。
 音響解析装置100は、信号処理部101と、解析処理部102と、記憶部103と、を備える。また、音響解析装置100は、第一の取得部と、第二の取得部と、第三の取得部と、算出部と、位置合わせ部と、表示部と、を備える。第一の取得部は、被測定物2の音源面2aの画像を取得する。第二の取得部は、音源面2a上の点の三次元位置情報を取得する。第三の取得部は、音源面2aの近傍に配置されたマイクロホンアレイ1の測定面1b上の点の三次元位置情報を取得する。位置合わせ部は、導出部と、変換部とを備える。
 信号処理部101は、マイクロホンアレイ1の各マイクロホンmcからの信号に対して所定の信号処理を行い、音響解析に用いる音信号を得る。なお、当該信号処理は、マイクロホンアレイ1が備えるM×N個のマイクロホンmcの信号の同期をとる処理等を含んでいてもよい。
Furthermore, the acoustic analysis system 1000 includes an acoustic analysis device 100 and a display device 200.
The acoustic analysis device 100 includes a signal processing unit 101, an analysis processing unit 102, and a storage unit 103. In addition, the acoustic analysis device 100 includes a first acquisition unit, a second acquisition unit, a third acquisition unit, a calculation unit, an alignment unit, and a display unit. The first acquisition unit acquires an image of the sound source surface 2a of the DUT 2. The second acquisition unit acquires three-dimensional position information of points on the sound source surface 2a. The third acquisition unit acquires three-dimensional position information of points on the measurement surface 1b of the microphone array 1 arranged in the vicinity of the sound source surface 2a. The alignment unit includes a derivation unit and a conversion unit.
The signal processing unit 101 performs predetermined signal processing on the signal from each microphone mc of the microphone array 1 to obtain a sound signal used for acoustic analysis. The signal processing may include processing for synchronizing signals of M × N microphones mc included in the microphone array 1.
 解析処理部102は、信号処理部101により信号処理された音信号を解析し、音の特徴を表す物理量の三次元分布を検出する。ここで、音の特徴を表す物理量の三次元分布は、音圧分布や粒子速度分布等を含む。本実施形態では、上記三次元分布が音圧分布である場合について説明する。
 解析処理部102は、音の特徴を表す物理量である音圧を示す画像を生成し、当該画像を表示装置200に表示させる表示制御を行う。本実施形態では、解析処理部102は、音圧を示す画像を、被測定物2の画像に重ね合わせて表示させる表示制御を行う。解析処理部102における解析処理については後述する。
The analysis processing unit 102 analyzes the sound signal that has been signal-processed by the signal processing unit 101, and detects a three-dimensional distribution of physical quantities representing the characteristics of the sound. Here, the three-dimensional distribution of physical quantities representing the characteristics of sound includes sound pressure distribution, particle velocity distribution, and the like. In the present embodiment, a case where the three-dimensional distribution is a sound pressure distribution will be described.
The analysis processing unit 102 performs display control for generating an image indicating sound pressure, which is a physical quantity representing the characteristics of sound, and displaying the image on the display device 200. In the present embodiment, the analysis processing unit 102 performs display control for displaying an image indicating sound pressure so as to be superimposed on the image of the DUT 2. The analysis processing in the analysis processing unit 102 will be described later.
 記憶部103は、解析処理部102による解析結果等を記憶する。
 表示装置200は、液晶ディスプレイ等のモニタを備え、音響解析装置100の解析結果である上記画像を表示する。
The storage unit 103 stores the analysis result by the analysis processing unit 102 and the like.
The display device 200 includes a monitor such as a liquid crystal display, and displays the image that is the analysis result of the acoustic analysis device 100.
 本実施形態では、図2に示すように、マイクロホンアレイ1は、被測定物2よりも小さい形状を有する。マイクロホンアレイ1は、被測定物2の音源面2aの近傍を移動しながら複数回に分けて音信号を測定し、音響解析装置100は、マイクロホンアレイ1が複数回に分けて測定した音信号をそれぞれ解析し、複数の解析結果をマージして表示装置200に表示させる。このように、本実施形態では、音響解析装置100は、被測定物2よりも小さいマイクロホンアレイ1を用いて被測定物2全面での音場1aを解析し、その解析結果を表示装置200に表示させる。 In this embodiment, as shown in FIG. 2, the microphone array 1 has a shape smaller than that of the DUT 2. The microphone array 1 measures the sound signal in a plurality of times while moving in the vicinity of the sound source surface 2a of the object 2 to be measured, and the acoustic analyzer 100 uses the sound signal measured by the microphone array 1 in a plurality of times. Each analysis is performed, and a plurality of analysis results are merged and displayed on the display device 200. Thus, in this embodiment, the acoustic analysis device 100 analyzes the sound field 1a over the entire surface of the device under test 2 using the microphone array 1 that is smaller than the device under test 2 and displays the analysis result on the display device 200. Display.
 具体的には、音響解析装置100の解析処理部102は、固定手段3aにより固定されたステレオカメラ3が撮像した被測定物2の音源面2aの画像を取得するとともに、ステレオカメラ3により測定された音源面2a上の点の三次元位置情報を取得する。さらに、解析処理部102は、ステレオカメラ3により被測定物2の音源面2aの近傍に配置された収音中のマイクロホンアレイ1を撮像し、マイクロホンアレイ1の測定面上の点の三次元位置情報を取得する。
 また、解析処理部102は、マイクロホンアレイ1により取得された音信号を解析し、音場の解析結果である音圧分布を算出する。そして、解析処理部102は、被測定物2の音源面2aと上記音圧分布との位置合わせを行い、位置合わせ結果に従って、音源面2aの画像に音圧分布を示す画像を重畳させて表示する。
Specifically, the analysis processing unit 102 of the acoustic analysis apparatus 100 acquires an image of the sound source surface 2a of the DUT 2 captured by the stereo camera 3 fixed by the fixing unit 3a and is measured by the stereo camera 3. The three-dimensional position information of the points on the sound source surface 2a is acquired. Further, the analysis processing unit 102 images the microphone array 1 being picked up arranged in the vicinity of the sound source surface 2 a of the DUT 2 by the stereo camera 3, and the three-dimensional position of the point on the measurement surface of the microphone array 1. Get information.
In addition, the analysis processing unit 102 analyzes the sound signal acquired by the microphone array 1 and calculates a sound pressure distribution that is an analysis result of the sound field. Then, the analysis processing unit 102 aligns the sound source surface 2a of the DUT 2 and the sound pressure distribution, and superimposes and displays an image indicating the sound pressure distribution on the image of the sound source surface 2a according to the alignment result. To do.
 以下、解析処理部102における解析処理について、具体的に説明する。
(処理1)
 まず、解析処理部102は、マイクロホンアレイ1にて音場を測定する前に、固定手段3aにより固定されたステレオカメラ3により撮像された被測定物2の画像を取得する。つまり、ステレオカメラ3は、図3に示すように、マイクロホンアレイ1がステレオカメラ2の撮像範囲内にない状態、すなわち、マイクロホンアレイ1が被測定物2の近傍に配置されていない状態で被測定物2の音源面2aを撮像する。このとき解析処理部102は、マイクロホンアレイ1が写り込んでいない被測定物2の画像を取得することができる。
 また、解析処理部102は、固定手段3aにより固定されたステレオカメラ3により測定された音源面2a上の点の三次元位置情報を取得する。具体的には、解析処理部102は、ステレオカメラ3から音源2bの3点以上の点の三次元位置情報Po(n)=(xo(n),yo(n),zo(n))を取得し、音源面2aの形状So(aox+boy+coz+do=0)を算出する。ここで、nは、0≦n≦No(No≧2)の整数である。このように、解析処理部102は、カメラ座標系Σcにおける被測定物2の位置および形状を算出する。
Hereinafter, the analysis processing in the analysis processing unit 102 will be specifically described.
(Process 1)
First, the analysis processing unit 102 acquires an image of the DUT 2 captured by the stereo camera 3 fixed by the fixing unit 3a before measuring the sound field by the microphone array 1. In other words, as shown in FIG. 3, the stereo camera 3 is measured in a state where the microphone array 1 is not within the imaging range of the stereo camera 2, that is, in a state where the microphone array 1 is not arranged in the vicinity of the device under test 2. The sound source surface 2a of the object 2 is imaged. At this time, the analysis processing unit 102 can acquire an image of the object 2 to be measured in which the microphone array 1 is not reflected.
The analysis processing unit 102 acquires the three-dimensional position information of the points on the sound source surface 2a measured by the stereo camera 3 fixed by the fixing unit 3a. Specifically, the analysis processing unit 102 obtains three-dimensional position information Po (n) = (xo (n), yo (n), zo (n)) of three or more points of the sound source 2b from the stereo camera 3. Obtained, and calculates the shape So (aox + boy + coz + do = 0) of the sound source surface 2a. Here, n is an integer of 0 ≦ n ≦ No (No ≧ 2). In this way, the analysis processing unit 102 calculates the position and shape of the DUT 2 in the camera coordinate system Σc.
(処理2)
 次に、解析処理部102は、図4に示すように、マイクロホンアレイ1が被測定物2の音源面2aの近傍で収音しているときに、固定手段3aにより固定されたステレオカメラ3からマイクロホンアレイ1の任意の3点以上の点の三次元位置情報Pm(n)=(xm(n),ym(n),zm(n))を取得し、マイクロホンアレイ1の測定面1bの姿勢Om(amx+bmy+cmz+dm=0)を算出する。ここで、nは、0≦n≦Nm(Nm≧2)の整数である。このように、解析処理部102は、カメラ座標系Σcにおけるマイクロホンアレイ1の位置および姿勢を算出する。
(Process 2)
Next, as shown in FIG. 4, the analysis processing unit 102 starts from the stereo camera 3 fixed by the fixing means 3a when the microphone array 1 collects sound near the sound source surface 2a of the object 2 to be measured. The three-dimensional position information Pm (n) = (xm (n), ym (n), zm (n)) of any three or more points of the microphone array 1 is acquired, and the posture of the measurement surface 1b of the microphone array 1 Om (amx + bmy + cmz + dm = 0) is calculated. Here, n is an integer of 0 ≦ n ≦ Nm (Nm ≧ 2). In this way, the analysis processing unit 102 calculates the position and orientation of the microphone array 1 in the camera coordinate system Σc.
(処理3)
 次に、解析処理部102は、図5に示すように、被測定物2上の任意の点、例えばPo(0)を原点とし、xz平面を音源面2aとする被測定物座標系Σoを設定する。また、解析処理部102は、図5に示すように、マイクロホンアレイ1上の任意の点、例えばPm(0)を原点とし、xz平面を測定面1bとするマイクロホンアレイ座標系Σmを設定する。そして、解析処理部102は、マイクロホンアレイ座標系Σmから被測定物座標系Σoへの変換行列Rを算出する。
(Process 3)
Next, as shown in FIG. 5, the analysis processing unit 102 sets an object coordinate system Σo having an arbitrary point on the object 2 to be measured, for example, Po (0) as an origin and an xz plane as a sound source surface 2a. Set. Further, as shown in FIG. 5, the analysis processing unit 102 sets a microphone array coordinate system Σm having an arbitrary point on the microphone array 1, for example, Pm (0) as an origin and an xz plane as a measurement surface 1b. Then, the analysis processing unit 102 calculates a transformation matrix R from the microphone array coordinate system Σm to the measured object coordinate system Σo.
(処理4)
 次に、解析処理部102は、信号処理部101により信号処理されたマイクロホンアレイ1からの音信号を取得し、当該音信号を解析して音の三次元分布(本実施形態では、音圧分布)を算出する。そして、解析処理部102は、算出した音圧分布から音響ホログラフィの原理に基づき、測定面1bに平行な任意の面(解析面)での音圧分布Dm(P(m))を算出する。つまり、解析処理部102は、測定面1bに平行な面上の複数の解析点での物理量(音圧)を算出する。この解析結果の音圧分布Dm(P(m))は、マイクロホンアレイ座標系Σmで算出される。
(Process 4)
Next, the analysis processing unit 102 acquires a sound signal from the microphone array 1 that has been signal-processed by the signal processing unit 101, analyzes the sound signal, and analyzes a three-dimensional distribution of sound (in this embodiment, a sound pressure distribution). ) Is calculated. Then, the analysis processing unit 102 calculates the sound pressure distribution Dm (P (m)) on an arbitrary surface (analysis surface) parallel to the measurement surface 1b based on the principle of acoustic holography from the calculated sound pressure distribution. That is, the analysis processing unit 102 calculates physical quantities (sound pressures) at a plurality of analysis points on a surface parallel to the measurement surface 1b. The sound pressure distribution Dm (P (m)) as a result of this analysis is calculated by the microphone array coordinate system Σm.
 音響ホログラフィの原理は、測定面の音圧に、測定面から当該測定面に平行な任意の面(解析面)までの伝達関数を畳み込むことによって、解析面での音圧を求めるものである。ここで、解析面を音源面とすれば、音源面の音圧を求めることができる。ただし、測定音圧にそのまま伝達関数を畳み込むのは難しいため、便宜上、空間フーリエ変換をすることにより処理しやすくするのが一般的である。
 つまり、格子状のマイクロホンアレイで音を収録(空間サンプリング)し、空間フーリエ変換した後で解析面(例えば音源面)までの伝達関数との積を取り、さらに逆空間フーリエ変換することにより解析面(例えば音源面)での音圧を求める。
The principle of acoustic holography is to obtain the sound pressure on the analysis surface by convolving the sound pressure on the measurement surface with a transfer function from the measurement surface to an arbitrary surface (analysis surface) parallel to the measurement surface. Here, if the analysis surface is a sound source surface, the sound pressure of the sound source surface can be obtained. However, since it is difficult to convolve the transfer function with the measured sound pressure as it is, it is generally easy to process by performing a spatial Fourier transform for convenience.
In other words, sound is recorded (spatial sampling) with a grid-like microphone array, the product of the spatial Fourier transform and the transfer function up to the analysis surface (for example, the sound source surface) is taken, and then the inverse spatial Fourier transform is performed. The sound pressure at (for example, the sound source surface) is obtained.
(処理5)
 次に、解析処理部102は、マイクロホンアレイ座標系Σmで算出された解析結果の音圧分布Dm(P(m))を、変換行列Rを用いて、被測定物座標系Σoにおける音圧分布Do(P(m))に変換する。
 これにより、音源面2aと解析点(解析結果の音圧分布Dm(P(m)))との位置合わせを行うことができる。
(Process 5)
Next, the analysis processing unit 102 uses the transformation matrix R to calculate the sound pressure distribution Dm (P (m)) of the analysis result calculated in the microphone array coordinate system Σm, and the sound pressure distribution in the measurement object coordinate system Σo. Convert to Do (P (m)).
Thereby, it is possible to align the sound source surface 2a and the analysis point (sound pressure distribution Dm (P (m)) of the analysis result).
(処理6)
 次に、解析処理部102は、上記の位置合わせ結果に従って、音圧分布Do(P(m))を示す画像を被測定物2の音源面2aの画像にオーバーレイして表示装置200に表示させる。音圧分布Do(P(m))を示す画像を被測定物2の音源面2aの画像にオーバーレイした例を図6に示す。
 図6は、被測定物2の音源面2aの画像としてモータの画像30aを用いて、音圧分布を示す画像をオーバーレイした模式図である。便宜上、モータの画像を図で示す。図6では、音圧の大きさを色の濃淡で示している。図6において、色の濃い領域D1は音圧の高い領域、色の薄い領域D2は音圧の低い領域である。
 なお、解析処理部102は、音圧分布Do(P(m))をもとに、被測定物座標系Σoの任意の点P(m)における音圧の大きさを算出し、その音圧の大きさを示す色の画像を生成し、生成した画像を音源面2aの画像上の対応する位置に重畳させて表示させてもよい。この場合、例えば、音圧の高い領域を赤色の画像、音圧の低い領域を青色の画像で表現してもよい。ただし、音圧を示す画像は上記に限定されない。例えば、音圧を示す画像は、音圧の大きさに応じて大きさの異なる円画像であってもよい。
(Process 6)
Next, the analysis processing unit 102 causes the display device 200 to display an image indicating the sound pressure distribution Do (P (m)) on the image of the sound source surface 2a of the DUT 2 in accordance with the alignment result. . An example in which an image showing the sound pressure distribution Do (P (m)) is overlaid on the image of the sound source surface 2a of the DUT 2 is shown in FIG.
FIG. 6 is a schematic diagram in which an image showing a sound pressure distribution is overlaid using a motor image 30 a as an image of the sound source surface 2 a of the DUT 2. For convenience, an image of the motor is shown in the figure. In FIG. 6, the magnitude of the sound pressure is indicated by color shading. In FIG. 6, a dark color region D1 is a high sound pressure region, and a light color region D2 is a low sound pressure region.
The analysis processing unit 102 calculates the sound pressure level at an arbitrary point P (m) in the measured object coordinate system Σo based on the sound pressure distribution Do (P (m)), and the sound pressure is calculated. An image having a color indicating the size of the sound source may be generated, and the generated image may be displayed superimposed on a corresponding position on the image of the sound source surface 2a. In this case, for example, a region having a high sound pressure may be represented by a red image, and a region having a low sound pressure may be represented by a blue image. However, the image showing the sound pressure is not limited to the above. For example, the image indicating the sound pressure may be a circular image having a different size depending on the size of the sound pressure.
 解析処理部102は、マイクロホンアレイ1を移動させる度に処理2から処理6を繰り返すことで、被測定物2全面での解析結果を被測定物2の画像にオーバーレイして表示することができる。 The analysis processing unit 102 can repeat the processing 2 to the processing 6 every time the microphone array 1 is moved, thereby displaying the analysis result of the entire surface of the device under test 2 overlaid on the image of the device under test 2.
 このように、本実施形態における算出部は、マイクロホンアレイ1により取得された音信号から音の特徴を表す物理量の三次元分布を算出し、マイクロホンアレイ1の測定面1bに平行な面上の解析点での上記物理量を算出する。また、位置合わせ部は、被測定物2の音源面2a上の点の三次元位置情報と、マイクロホンアレイ1の測定面1b上の点の三次元位置情報とに基づいて、音源面2aと上記解析点との位置合わせを行う。そして、表示部は、上記の位置合わせ結果に従って、音源面2aの画像に解析点での物理量を示す画像を重畳させて表示装置200に表示させる。 As described above, the calculation unit according to the present embodiment calculates a three-dimensional distribution of physical quantities representing sound characteristics from the sound signal acquired by the microphone array 1, and performs analysis on a plane parallel to the measurement surface 1b of the microphone array 1. The physical quantity at the point is calculated. In addition, the alignment unit is configured so that the sound source surface 2a and the above-described information are based on the three-dimensional position information of the points on the sound source surface 2a of the DUT 2 and the three-dimensional position information of the points on the measurement surface 1b of the microphone array 1. Align with the analysis point. Then, the display unit superimposes an image indicating the physical quantity at the analysis point on the image of the sound source surface 2a and causes the display device 200 to display the image on the sound source surface 2a according to the positioning result.
 これにより、マイクロホンアレイ1が写りこむことなく、被測定物2と解析結果の分布とを重ね合わせて表示させることができる。また、このとき、任意の視点、あるいは断面の解析結果の分布を表示させることができる。また、音響解析システムは、被測定物の音源面の三次元モデルデータを取得する第四の取得部と、三次元モデルデータに基づいて数値解析を行う音響解析部とを備えてもよい。本発明の構成によると、三次元モデルデータにおける数値解析の結果と、被測定物の解析結果を並べて表示させることができる。この場合、ユーザーは、数値解析の結果と実測の結果とを比較できるため、詳細に分析することが可能となる。音響解析部は、例えば、三次元モデルデータに基づいて周波数応答解析を行い、解析結果を出力する。周波数応答解析では、例えば、特定の周波数に対する音圧データ、音響パワー、被解析物の空間の粒子速度等を解析する。表示部は、位置合わせ結果と、音響解析部による三次元モデルデータにおける解析結果と、を並べて表示する。 Thereby, the object to be measured 2 and the distribution of the analysis result can be superimposed and displayed without the microphone array 1 being reflected. At this time, the distribution of analysis results of arbitrary viewpoints or cross sections can be displayed. The acoustic analysis system may further include a fourth acquisition unit that acquires 3D model data of the sound source surface of the object to be measured, and an acoustic analysis unit that performs numerical analysis based on the 3D model data. According to the configuration of the present invention, it is possible to display the numerical analysis result in the three-dimensional model data and the analysis result of the measurement object side by side. In this case, since the user can compare the result of numerical analysis with the result of actual measurement, it is possible to analyze in detail. For example, the acoustic analysis unit performs frequency response analysis based on the three-dimensional model data and outputs an analysis result. In the frequency response analysis, for example, sound pressure data, sound power, particle velocity in the space of the object to be analyzed, etc. are analyzed for a specific frequency. The display unit displays the alignment result and the analysis result of the three-dimensional model data by the acoustic analysis unit side by side.
 音の特徴を表す物理量が音圧である場合、表示部は、音源面2aの画像に解析点での音圧の大きさを示す画像を重畳させて表示させることができる。これにより、音圧分布を適切に表現することができる。
 また、音の特徴を表す物理量が粒子速度である場合、表示部は、音源面2aの画像に解析点での粒子速度の大きさおよび方向の少なくとも一方を示す画像を重畳させて表示させることができる。これにより、粒子速度分布を適切に表現することができる。
When the physical quantity representing the characteristics of the sound is the sound pressure, the display unit can display an image indicating the magnitude of the sound pressure at the analysis point superimposed on the image of the sound source surface 2a. Thereby, sound pressure distribution can be expressed appropriately.
Further, when the physical quantity representing the characteristics of the sound is the particle velocity, the display unit may display an image showing at least one of the magnitude and direction of the particle velocity at the analysis point superimposed on the image of the sound source surface 2a. it can. Thereby, particle velocity distribution can be expressed appropriately.
 また、音響解析装置100が、音源面2aと解析点との位置合わせを行うに際し、導出部は、測定面1b上の任意の点Pm(0)を原点とするマイクロホンアレイ座標系Σmから、音源面2a上の任意の点Po(0)を原点とする被測定物座標系Σoへの変換行列Rを導出する。そして、変換部は、マイクロホンアレイ座標系Σmにおける解析点を、変換行列Rを用いて被測定物座標系Σoにおける点へ変換する。したがって、音響解析装置100は、音源面2aの画像のどの位置に解析点での物理量を示す画像を重畳させるのかを容易かつ適切に導出することができる。 Further, when the acoustic analysis apparatus 100 aligns the sound source surface 2a and the analysis point, the derivation unit uses the microphone array coordinate system Σm having the origin at an arbitrary point Pm (0) on the measurement surface 1b as the sound source. A transformation matrix R to the measured object coordinate system Σo having an arbitrary point Po (0) on the surface 2a as an origin is derived. Then, the conversion unit converts the analysis point in the microphone array coordinate system Σm to a point in the measurement object coordinate system Σo using the conversion matrix R. Therefore, the acoustic analysis device 100 can easily and appropriately derive at which position of the image of the sound source surface 2a the image indicating the physical quantity at the analysis point is superimposed.
 さらに、算出部は、被測定物2よりも小さいマイクロホンアレイ1を異なる複数の測定位置に移動して得られた音信号から、物理量の三次元分布をそれぞれ算出する。そして、音響解析装置100は、算出した各々の三次元分布から測定面1bに平行な面上の解析点での物理量をそれぞれ算出し、音源面2aの画像に各解析点での物理量を示す画像を重畳させて表示装置200に表示させる。
 これにより、被測定物2を数回に分けて測定した結果をマージして表示することが可能となる。したがって、例えば4×4個のマイクロホンを有するマイクロホンアレイ1を使用して、例えば冷蔵庫のような大きな被測定物2全体の測定および解析が可能となる。
Furthermore, the calculation unit calculates a three-dimensional distribution of physical quantities from sound signals obtained by moving the microphone array 1 smaller than the device under test 2 to a plurality of different measurement positions. Then, the acoustic analysis device 100 calculates the physical quantity at the analysis point on the plane parallel to the measurement surface 1b from each calculated three-dimensional distribution, and the image indicating the physical quantity at each analysis point in the image of the sound source plane 2a. Are superimposed and displayed on the display device 200.
As a result, the measurement results of the device under test 2 divided into several times can be merged and displayed. Therefore, for example, by using the microphone array 1 having 4 × 4 microphones, it is possible to measure and analyze the entire large object 2 to be measured, such as a refrigerator.
 このように、本実施形態では、被測定物2の画像に対して、近接場の音響解析結果を適切に重ね合わせて表示することができる。したがって、音場を直感的に把握することが可能である。
 例えば、本実施形態における音響解析装置100によれば、モータを最終製品に組み込んだ際に発生する音の流れを被測定物2の画像にオーバーラップして表示させることができる。その結果、例えば騒音の原因特定を容易にし、騒音対策に要する工数を削減することが可能となる。
Thus, in this embodiment, the acoustic analysis result of the near field can be appropriately superimposed on the image of the DUT 2 and displayed. Therefore, it is possible to intuitively grasp the sound field.
For example, according to the acoustic analysis apparatus 100 in the present embodiment, the flow of sound generated when the motor is incorporated into the final product can be displayed overlapping the image of the object 2 to be measured. As a result, for example, it is possible to easily identify the cause of noise and reduce the man-hours required for noise countermeasures.
(変形例)
 上記実施形態においては、音の特徴を表す物理量の三次元分布が音圧分布である場合について説明したが、上述したように、三次元分布は粒子速度分布であってもよい。この場合にも、音圧分布の場合と同様に、被測定物2の画像に対して粒子速度分布を適切に重ね合わせて表示することが可能である。粒子速度分布を示す画像を被測定物2の音源面2aの画像にオーバーレイした例を図7に示す。
 図7は、被測定物2の音源面2aの画像としてモータの画像30bを用いて、粒子速度分布を示す画像をオーバーレイした模式図である。便宜上、モータの画像を図で示す。図7では、粒子速度の方向を色の濃淡で示している。図7において、色の濃い領域V1は、粒子速度の方向が紙面に対して前方である領域、色の薄い領域V2は、粒子速度の方向が紙面に対して後方である領域である。また、粒子速度を示す画像の色は、紙面に対して前方への振幅が大きいほど濃く、紙面に対して後方への振幅が大きいほど薄くしている。
 なお、被測定物2の画像に重畳させる粒子速度を示す画像は、粒子速度の大きさおよび方向を示す矢印画像としてもよい。
 また、上記実施形態においては、被測定物2の画像に音圧分布を重ね合わせて表示する場合について説明したが、被測定物2の画像に音圧分布と粒子速度分布の両方を重ね合わせて表示させてもよい。
(Modification)
In the above embodiment, the case where the three-dimensional distribution of the physical quantity representing the characteristics of the sound is the sound pressure distribution has been described. However, as described above, the three-dimensional distribution may be a particle velocity distribution. In this case as well, as in the case of the sound pressure distribution, the particle velocity distribution can be appropriately superimposed on the image of the object to be measured 2 and displayed. An example in which an image showing the particle velocity distribution is overlaid on the image of the sound source surface 2a of the DUT 2 is shown in FIG.
FIG. 7 is a schematic diagram in which an image showing the particle velocity distribution is overlaid using a motor image 30 b as an image of the sound source surface 2 a of the DUT 2. For convenience, an image of the motor is shown in the figure. In FIG. 7, the direction of particle velocity is indicated by color shading. In FIG. 7, a darkly colored region V1 is a region where the particle velocity direction is forward with respect to the paper surface, and a lightly colored region V2 is a region where the particle velocity direction is behind the paper surface. Further, the color of the image indicating the particle velocity is darker as the forward amplitude is larger with respect to the paper surface, and is lighter as the backward amplitude is larger with respect to the paper surface.
Note that the image indicating the particle velocity superimposed on the image of the DUT 2 may be an arrow image indicating the magnitude and direction of the particle velocity.
In the above embodiment, the case where the sound pressure distribution is superimposed on the image of the object to be measured 2 has been described. However, both the sound pressure distribution and the particle velocity distribution are superimposed on the image of the object to be measured 2. It may be displayed.
 また、上記実施形態においては、被処理物2の音源面2aおよびマイクロホンアレイ1の測定面1bから離間した位置に独立して固定された共通のステレオカメラ3を用いて、被測定物2の音源面2aの画像、音源面2a上の点の三次元位置情報、および音源面2aの近傍に配置されたマイクロホンアレイ1の測定面1b上の点の三次元位置情報を取得する場合について説明した。すなわち、第一の取得部、第二の取得部および第三の取得部は、音源面および測定面から離間した位置に独立して固定された共通のステレオカメラを用いる。しかしながら、カメラ同士の位置関係(カメラ座標系同士の対応関係)が分かっている場合には、それぞれ異なるステレオカメラを用いて、上記の画像や三次元位置情報を取得してもよい。
 ただし、上述した実施形態のように、共通のステレオカメラ3を用いた場合、共通のカメラ座標系Σcを用いてマイクロホンアレイ座標系Σmから被測定物座標系Σoへの変換行列Rの導出を容易に行うことができるため好ましい。
Moreover, in the said embodiment, the sound source of the to-be-measured object 2 is used using the common stereo camera 3 independently fixed to the position away from the sound-source surface 2a of the to-be-processed object 2 and the measurement surface 1b of the microphone array 1. The case where the image of the surface 2a, the three-dimensional position information of the point on the sound source surface 2a, and the three-dimensional position information of the point on the measurement surface 1b of the microphone array 1 arranged in the vicinity of the sound source surface 2a have been described. That is, the first acquisition unit, the second acquisition unit, and the third acquisition unit use a common stereo camera that is independently fixed at a position separated from the sound source surface and the measurement surface. However, when the positional relationship between the cameras (corresponding relationship between the camera coordinate systems) is known, the images and the three-dimensional positional information may be acquired using different stereo cameras.
However, when the common stereo camera 3 is used as in the above-described embodiment, it is easy to derive the transformation matrix R from the microphone array coordinate system Σm to the measured object coordinate system Σo using the common camera coordinate system Σc. It is preferable because it can be performed.
 さらに、上記実施形態においては、ステレオカメラ3を用いて被測定物2およびマイクロホンアレイ1の三次元位置情報を取得する場合について説明したが、三次元位置情報の取得手段はステレオカメラ3に限定されない。例えば、三次元位置情報の取得手段は、三次元位置を検出可能なデプスカメラやレーザスキャナー、超音波センサであってもよい。
 また、被測定物2およびマイクロホンアレイ1の三次元位置情報の取得精度を向上させるために、被測定物2やマイクロホンアレイ1にマーカーなどを設置してもよい。
Furthermore, in the above embodiment, the case where the stereo camera 3 is used to acquire the three-dimensional position information of the DUT 2 and the microphone array 1 has been described. However, the means for acquiring the three-dimensional position information is not limited to the stereo camera 3. . For example, the means for acquiring three-dimensional position information may be a depth camera, a laser scanner, or an ultrasonic sensor that can detect a three-dimensional position.
Further, in order to improve the acquisition accuracy of the three-dimensional position information of the device under test 2 and the microphone array 1, a marker or the like may be installed on the device under test 2 or the microphone array 1.
 1…マイクロホンアレイ、2…被測定物(音源)、2a…音源面、3…ステレオカメラ、100…音響解析装置、101…信号処理部、102…解析処理部、103…記憶部、200…表示装置、1000…音響解析システム、mc…マイクロホン DESCRIPTION OF SYMBOLS 1 ... Microphone array, 2 ... Measured object (sound source), 2a ... Sound source surface, 3 ... Stereo camera, 100 ... Acoustic analysis apparatus, 101 ... Signal processing part, 102 ... Analysis processing part, 103 ... Memory | storage part, 200 ... Display Apparatus, 1000 ... acoustic analysis system, mc ... microphone

Claims (8)

  1.  被測定物の音源面の画像を取得する第一の取得部と、
     前記音源面上の点の三次元位置情報を取得する第二の取得部と、
     前記音源面の近傍に配置されたマイクロホンアレイの測定面上の点の三次元位置情報を取得する第三の取得部と、
     前記マイクロホンアレイにより取得された音信号から音の特徴を表す物理量の三次元分布を算出し、前記測定面に平行な面上の解析点での前記物理量を算出する算出部と、
     前記音源面上の点の前記三次元位置情報と前記測定面上の点の前記三次元位置情報とに基づいて、前記音源面と前記解析点との位置合わせを行う位置合わせ部と、
     前記位置合わせ部による位置合わせ結果に従って、前記音源面の画像に前記解析点での前記物理量を示す画像を重畳させて表示させる表示部と、
    を備えることを特徴とする音響解析装置。
    A first acquisition unit for acquiring an image of the sound source surface of the device under test;
    A second acquisition unit that acquires three-dimensional position information of a point on the sound source surface;
    A third acquisition unit that acquires three-dimensional position information of a point on the measurement surface of the microphone array disposed in the vicinity of the sound source surface;
    Calculating a three-dimensional distribution of physical quantities representing sound characteristics from sound signals acquired by the microphone array, and calculating the physical quantities at analysis points on a plane parallel to the measurement plane;
    An alignment unit for aligning the sound source surface and the analysis point based on the three-dimensional position information of the point on the sound source surface and the three-dimensional position information of the point on the measurement surface;
    According to the alignment result by the alignment unit, a display unit that superimposes and displays an image indicating the physical quantity at the analysis point on the image of the sound source surface;
    An acoustic analysis device comprising:
  2.  前記物理量は音圧であり、
     前記表示部は、前記音源面の画像に前記解析点での前記音圧の大きさを示す画像を重畳させて表示させることを特徴とする請求項1に記載の音響解析装置。
    The physical quantity is sound pressure,
    The acoustic analysis apparatus according to claim 1, wherein the display unit superimposes and displays an image indicating the magnitude of the sound pressure at the analysis point on an image of the sound source surface.
  3.  前記物理量は粒子速度であり、
     前記表示部は、前記音源面の画像に前記解析点での前記粒子速度の大きさおよび方向の少なくとも一方を示す画像を重畳させて表示させることを特徴とする請求項1または2に記載の音響解析装置。
    The physical quantity is the particle velocity;
    The sound according to claim 1, wherein the display unit superimposes and displays an image indicating at least one of the magnitude and direction of the particle velocity at the analysis point on the image of the sound source surface. Analysis device.
  4.  前記第一の取得部、前記第二の取得部および前記第三の取得部は、
     前記音源面および前記測定面から離間した位置に独立して固定された共通のステレオカメラを用いて取得することを特徴とする請求項1から3のいずれか1項に記載の音響解析装置。
    The first acquisition unit, the second acquisition unit, and the third acquisition unit are:
    The acoustic analysis apparatus according to any one of claims 1 to 3, wherein the acoustic analysis apparatus is obtained by using a common stereo camera that is independently fixed at a position separated from the sound source surface and the measurement surface.
  5.  前記位置合わせ部は、
      前記測定面上の点を原点とするマイクロホンアレイ座標系から、前記音源面上の点を原点とする被測定物座標系への変換行列を導出する導出部と、
      前記マイクロホンアレイ座標系における前記解析点を、前記変換行列を用いて、前記被測定物座標系における点へ変換する変換部と、
    を備えることを特徴とする請求項1から4のいずれか1項に記載の音響解析装置。
    The alignment unit is
    A derivation unit for deriving a transformation matrix from a microphone array coordinate system having a point on the measurement surface as an origin to a measurement object coordinate system having a point on the sound source surface as an origin;
    A conversion unit that converts the analysis points in the microphone array coordinate system into points in the measurement object coordinate system using the conversion matrix;
    The acoustic analysis apparatus according to any one of claims 1 to 4, further comprising:
  6.  前記算出部は、
     前記マイクロホンアレイを異なる複数の測定位置に移動して得られた前記音信号から、前記物理量の三次元分布をそれぞれ算出し、各々の前記三次元分布から前記測定面に平行な面上の解析点での前記物理量をそれぞれ算出することを特徴とする請求項1から5のいずれか1項に記載の音響解析装置。
    The calculation unit includes:
    From the sound signals obtained by moving the microphone array to different measurement positions, a three-dimensional distribution of the physical quantity is calculated, and an analysis point on a plane parallel to the measurement surface is calculated from each of the three-dimensional distributions. The acoustic analysis apparatus according to claim 1, wherein the physical quantity is calculated respectively.
  7.  前記被測定物の音源面の三次元モデルデータを取得する第四の取得部と、
     前記三次元モデルデータに基づいて数値解析を行う音響解析部と、をさらに備え、
     前記表示部は、前記位置合わせ結果と、前記音響解析部の解析結果とを、並べて表示することを特徴とする1から6のいずれか1項に記載の音響解析装置。
    A fourth acquisition unit for acquiring three-dimensional model data of the sound source surface of the object to be measured;
    An acoustic analysis unit that performs numerical analysis based on the three-dimensional model data, and
    The acoustic analysis apparatus according to any one of 1 to 6, wherein the display unit displays the alignment result and the analysis result of the acoustic analysis unit side by side.
  8.  被測定物の音源面の画像を取得するステップと、
     前記音源面上の点の三次元位置情報を取得するステップと、
     前記音源面の近傍に配置されたマイクロホンアレイの測定面上の点の三次元位置情報を取得するステップと、
     前記マイクロホンアレイにより取得された音信号から音の特徴を表す物理量の三次元分布を算出し、前記測定面に平行な面上の解析点での前記物理量を算出するステップと、
     前記音源面上の点の三次元位置情報と前記測定面上の点の三次元位置情報とに基づいて、前記音源面と前記解析点との位置合わせを行うステップと、
     前記位置合わせ結果に従って、前記音源面の画像に前記解析点での前記物理量を示す画像を重畳させて表示させるステップと、を含むことを特徴とする音響解析方法。
    Obtaining an image of the sound source surface of the object to be measured;
    Obtaining three-dimensional position information of a point on the sound source surface;
    Obtaining three-dimensional position information of a point on a measurement surface of a microphone array disposed in the vicinity of the sound source surface;
    Calculating a three-dimensional distribution of physical quantities representing sound characteristics from sound signals acquired by the microphone array, and calculating the physical quantities at analysis points on a plane parallel to the measurement plane;
    Based on the three-dimensional position information of the point on the sound source surface and the three-dimensional position information of the point on the measurement surface, aligning the sound source surface and the analysis point;
    And superimposing an image indicating the physical quantity at the analysis point on the image of the sound source surface in accordance with the alignment result, and displaying the image.
PCT/JP2019/013284 2018-03-28 2019-03-27 Acoustic analysis device and acoustic analysis method WO2019189417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980022895.XA CN111936829B (en) 2018-03-28 2019-03-27 Acoustic analysis device and acoustic analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018062684 2018-03-28
JP2018-062684 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189417A1 true WO2019189417A1 (en) 2019-10-03

Family

ID=68062000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013284 WO2019189417A1 (en) 2018-03-28 2019-03-27 Acoustic analysis device and acoustic analysis method

Country Status (2)

Country Link
CN (1) CN111936829B (en)
WO (1) WO2019189417A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812587A (en) * 2020-07-06 2020-10-23 上海交通大学 Sound field test analysis method and system based on machine vision and holographic method
CN112129836A (en) * 2020-09-30 2020-12-25 广州新静界声学科技股份有限公司 Building functional wall sound insulation measuring method
JP7314086B2 (en) 2020-03-19 2023-07-25 三菱重工業株式会社 Sound pressure estimation system, its sound pressure estimation method, and sound pressure estimation program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763054A (en) * 2020-12-21 2021-05-07 上海工程技术大学 Three-dimensional sound field visualization system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075014A (en) * 1998-09-01 2000-03-14 Isuzu Motors Ltd Method for searching sound source
US20110120222A1 (en) * 2008-04-25 2011-05-26 Rick Scholte Acoustic holography
JP2013528795A (en) * 2010-05-04 2013-07-11 クリアフォーム インコーポレイティッド Target inspection using reference capacitance analysis sensor
JP2016090289A (en) * 2014-10-30 2016-05-23 株式会社小野測器 Distribution figure display device and method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692402B2 (en) * 2002-10-23 2005-09-07 独立行政法人 宇宙航空研究開発機構 Sound source search method and apparatus
DE10304215A1 (en) * 2003-01-30 2004-08-19 Gesellschaft zur Förderung angewandter Informatik eV Method and device for imaging acoustic objects and a corresponding computer program product and a corresponding computer-readable storage medium
JP4115864B2 (en) * 2003-03-20 2008-07-09 東日本旅客鉄道株式会社 Moving object noise measurement apparatus, method and program
CN1553154A (en) * 2003-05-28 2004-12-08 合肥工业大学 Measuring method and probe for three-dimensional vector sound intensity
WO2009090754A1 (en) * 2008-01-18 2009-07-23 Nittobo Acoustic Engineering Co., Ltd. Sound source identifying and measuring apparatus, system and method
CN101290347B (en) * 2008-06-13 2011-04-27 清华大学 Method for obtaining still acoustic source acoustic field image by regular sound array and single video camera
CN101359043B (en) * 2008-09-05 2011-04-27 清华大学 Determining method for sound field rebuilding plane in acoustics video camera system
CN101414000B (en) * 2008-12-04 2011-04-27 清华大学 Method for obtaining motion acoustic field video based on random microphone array and binocular vision
US8363512B2 (en) * 2009-02-27 2013-01-29 Honda Motors Method and apparatus for estimating sound source
CN101556187B (en) * 2009-05-07 2012-06-27 广东美的电器股份有限公司 Statistically optimal near-field acoustical holography used for visual recognition of air-conditioner noise sources and operation method thereof
CN101865789B (en) * 2010-06-30 2012-03-21 上海交通大学 Fault detecting device of near field acoustic holography sound image mode identification and detecting method thereof
JP5826663B2 (en) * 2012-02-16 2015-12-02 株式会社小野測器 Acoustic measuring device
KR101213539B1 (en) * 2012-09-03 2012-12-18 (주)에스엠인스트루먼트 Acoustic senseing device and acoustic camera using mems microphone array
CN102879080B (en) * 2012-09-11 2014-10-15 上海交通大学 Sound field analysis method based on image recognition positioning and acoustic sensor array measurement
JP2015071028A (en) * 2013-09-05 2015-04-16 セイコーエプソン株式会社 Ultrasonic measuring apparatus, ultrasonic image apparatus and ultrasonic measuring method
JP6617613B2 (en) * 2016-03-07 2019-12-11 株式会社大林組 Noise source search system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075014A (en) * 1998-09-01 2000-03-14 Isuzu Motors Ltd Method for searching sound source
US20110120222A1 (en) * 2008-04-25 2011-05-26 Rick Scholte Acoustic holography
JP2013528795A (en) * 2010-05-04 2013-07-11 クリアフォーム インコーポレイティッド Target inspection using reference capacitance analysis sensor
JP2016090289A (en) * 2014-10-30 2016-05-23 株式会社小野測器 Distribution figure display device and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOSEKI, MASAFUMI ET AL.: "Visualization of Sound Pressure Distribution by Combining Microphone Array Processing and Camera Image Processing (Digital Human", THE PROCEEDINGS OF THE 2011 JSME ANNUAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ROBOMEC, 26 May 2011 (2011-05-26) *
NAGATOMO, HIROSHI: "Noise source identification system", THE JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN, vol. 72, no. 7, 2016, pages 416 - 417, XP055640367 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314086B2 (en) 2020-03-19 2023-07-25 三菱重工業株式会社 Sound pressure estimation system, its sound pressure estimation method, and sound pressure estimation program
CN111812587A (en) * 2020-07-06 2020-10-23 上海交通大学 Sound field test analysis method and system based on machine vision and holographic method
CN112129836A (en) * 2020-09-30 2020-12-25 广州新静界声学科技股份有限公司 Building functional wall sound insulation measuring method
CN112129836B (en) * 2020-09-30 2023-11-21 广州新静界声学科技股份有限公司 Sound insulation measuring method for building functional wall surface

Also Published As

Publication number Publication date
CN111936829B (en) 2023-04-25
CN111936829A (en) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2019189417A1 (en) Acoustic analysis device and acoustic analysis method
Poozesh et al. Feasibility of extracting operating shapes using phase-based motion magnification technique and stereo-photogrammetry
CN108476358B (en) Method for generating customized/personalized head-related transfer function
JP4424752B2 (en) Acoustic object imaging apparatus and method, corresponding computer program product, and corresponding computer-readable storage medium
JP5089198B2 (en) Sound source position estimation system
KR101522996B1 (en) Composite video signal output device for nondestructive inspection
US20160187454A1 (en) System and method for separating sound and condition monitoring system and mobile phone using the same
US20110075860A1 (en) Sound source separation and display method, and system thereof
CN104677330A (en) Small binocular stereoscopic vision ranging system
CN107924461A (en) For multifactor characteristics of image registration and method, circuit, equipment, system and the correlation computer executable code of tracking
US9557400B2 (en) 3D soundscaping
KR20100062889A (en) System and method of perform image registration
Durand-Texte et al. Vibration measurement using a pseudo-stereo system, target tracking and vision methods
Shao et al. Target-free 3D tiny structural vibration measurement based on deep learning and motion magnification
WO2019189424A1 (en) Acoustic analysis device and acoustic analysis method
JP2008015573A (en) Image processor, image processing method and image monitoring system
JP2015219138A (en) Sound source survey device, sound source survey method, and sound source survey program
KR101914706B1 (en) Motion independence in acoustic radiation force impulse imaging
US20220130105A1 (en) Image display method, display control device, and recording medium
Rothbucher et al. Measuring anthropometric data for HRTF personalization
JP3862402B2 (en) 3D model generation apparatus and computer-readable recording medium on which 3D model generation program is recorded
Cosco et al. Towards phase-based defect detection: A feasibility study in vibrating panels
KR101155610B1 (en) Apparatus for displaying sound source location and method thereof
EP3203760A1 (en) Method and apparatus for determining the position of a number of loudspeakers in a setup of a surround sound system
JP5314018B2 (en) Factor measurement and display device, factor measurement and display method, factor measurement and display program for causing computer to execute factor measurement and display method, and acoustic scanner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP