JP2008223926A - Magnetic power transmission device and its using method - Google Patents

Magnetic power transmission device and its using method Download PDF

Info

Publication number
JP2008223926A
JP2008223926A JP2007064616A JP2007064616A JP2008223926A JP 2008223926 A JP2008223926 A JP 2008223926A JP 2007064616 A JP2007064616 A JP 2007064616A JP 2007064616 A JP2007064616 A JP 2007064616A JP 2008223926 A JP2008223926 A JP 2008223926A
Authority
JP
Japan
Prior art keywords
driven
magnetic
drive
drive shaft
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007064616A
Other languages
Japanese (ja)
Inventor
Shingo Koyama
晋吾 小山
Makoto Uehira
眞 植平
Hiroteru Morimoto
浩輝 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP2007064616A priority Critical patent/JP2008223926A/en
Publication of JP2008223926A publication Critical patent/JP2008223926A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic power transmission device in which a gap between a driven side disc magnet and a driving side cylindrical magnet is stable, there is no torque ripple, and the freedom in layout of the device is high. <P>SOLUTION: In this deice, the driving side cylindrical magnet 142 fixed to a drive shaft 140 and the driven side disc magnet fixed to a bearing-supported part 131 formed integrally with a driven shaft fastening element 130 disposed in the direction orthogonal to the drive shaft 140 are disposed so that the magnetic pole of the driving side cylindrical magnet 142 and the magnetic pole of the driven side disc magnet oppose each other via a predetermined gap; the drive shaft 140 is pivotally supported by a pair of box body side plates 110 disposed oppossingly and separated, and penetrating the box body side plates 110; the driving side cylindrical magnet 142 is fixed to the drive shaft 140 between the box body side plates 110; and the bearing-supported part 131 is pivotally supported by a box body connecting plate 120 connected orthogonally between end sides of the box body side plates 110. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、駆動軸と従動軸の間で磁力により動力を伝達する磁気式動力伝達装置に関し、さらに詳しくは、磁気歯車を利用して回転動力を直交している駆動軸から従動軸へと伝達する磁気式動力伝達装置に関する。   The present invention relates to a magnetic power transmission device that transmits power by a magnetic force between a drive shaft and a driven shaft, and more specifically, uses a magnetic gear to transmit rotational power from an orthogonal drive shaft to a driven shaft. The present invention relates to a magnetic power transmission device.

例えば、モータで昇降装置、搬送用コンベヤ、シュレッダー等を駆動する場合、歯車やウォームギヤ等を用いた動力伝達装置が広く用いられている。このような、従来の動力伝達装置は、歯車同士を噛み合わせて動力を伝達させるため、歯車が摩耗して摩耗粉が飛散したり、歯車の噛み合いによる騒音が発生するという課題があった。   For example, when driving a lifting device, a conveyor for conveyance, a shredder or the like with a motor, a power transmission device using a gear, a worm gear, or the like is widely used. Since such a conventional power transmission device meshes gears to transmit power, there is a problem in that gears wear and wear powder scatters or noise due to gear meshing occurs.

このような問題を解決するものとして、円筒表面上に磁極を軸方向にN極、S極交互に固着した磁気歯車を駆動軸側に用い、円盤表面上に磁極を円周方向にN極、S極交互に固着した磁気歯車を従動軸側に用いて、非接触で動力の伝達を行う磁気式動力伝達装置が知られている。この磁気式動力伝達装置は、摩耗粉等の塵埃の発生がきわめて少ないため、半導体製造工場や食品製造工場など、クリーンな環境が要求される場所での使用が期待されている(例えば、特許文献1、2参照)。
特開2003−139213号公報(第1図) 特許2648565号公報(第9図、第11図)
In order to solve such a problem, a magnetic gear having an N pole in the axial direction and an S pole alternately fixed on the cylindrical surface is used on the drive shaft side, and the magnetic pole is arranged in the circumferential direction on the disk surface. 2. Description of the Related Art A magnetic power transmission device that transmits power in a non-contact manner by using magnetic gears that are alternately fixed to S poles on the driven shaft side is known. Since this magnetic power transmission device generates very little dust such as wear powder, it is expected to be used in places where a clean environment is required such as a semiconductor manufacturing factory or a food manufacturing factory (for example, patent documents) 1 and 2).
Japanese Patent Laying-Open No. 2003-139213 (FIG. 1) Japanese Patent No. 2648565 (FIGS. 9 and 11)

ところが、特許文献1や特許文献2に開示された磁気式動力伝達装置では、従動側円盤磁石が直接従動軸によって軸支されているので、磁石の吸引力で従動側円盤磁石に偏荷重が掛かり、従動側円盤磁石が傾き、駆動側円筒磁石に接触する恐れがあった。   However, in the magnetic power transmission devices disclosed in Patent Document 1 and Patent Document 2, since the driven disk magnet is directly supported by the driven shaft, an offset load is applied to the driven disk magnet by the attractive force of the magnet. There was a possibility that the driven disk magnet would tilt and contact the driving cylindrical magnet.

また、従動側円盤磁石と駆動側円筒磁石との間の空隙が安定せず、動力伝達効率の変動、すなわち、トルクリップルが大きいという問題があった。さらに一つの駆動源で複数の従動軸を回転させようとすると、駆動軸が長くなるため、真円度、真直度等の精度の高い軸が必要となり、製造コスト上昇の原因となっていた。   In addition, there is a problem that the gap between the driven-side disk magnet and the drive-side cylindrical magnet is not stable, and the power transmission efficiency fluctuates, that is, the torque ripple is large. Further, if a plurality of driven shafts are rotated by one drive source, the drive shaft becomes long, so that a shaft with high accuracy such as roundness and straightness is required, which causes an increase in manufacturing cost.

また、従動軸と被駆動装置とを連結するための締結手段を備えていないので、磁気式動力伝達装置と被駆動装置とを連結するカップリング等の締結手段が別途必要となり、磁気式動力伝達装置が従動軸方向に長くなり、装置レイアウトの自由度が低下するという課題があった。   In addition, since there is no fastening means for connecting the driven shaft and the driven device, a separate fastening means such as a coupling for connecting the magnetic power transmission device and the driven device is required. There is a problem that the apparatus becomes longer in the driven axis direction and the degree of freedom of the apparatus layout is reduced.

そこで、本発明の目的は、従動側円盤磁石が偏荷重により傾くことがなく、従動側円盤磁石と駆動側円筒磁石との間の空隙が安定しており、トルクリップルが少なく、複数の従動軸の回転に対して、駆動軸を長くすることなく対応でき、装置レイアウトの自由度が高い磁気式動力伝達装置を提供することにある。   Therefore, an object of the present invention is that the driven disk magnet does not tilt due to an offset load, the air gap between the driven disk magnet and the driving cylindrical magnet is stable, torque ripple is small, and a plurality of driven shafts are provided. An object of the present invention is to provide a magnetic power transmission device that can cope with the rotation of the motor without extending the drive shaft and has a high degree of freedom in device layout.

そこで、請求項1に係る発明は、駆動軸に固着されており、磁極を軸方向にN極、S極交互に配置した駆動側円筒磁石と、前記駆動軸に直交する向きに配置された従動軸締結要素と一体に形成された被軸受部に固着されており、磁極を円周方向にN極、S極交互に配置した従動側円盤磁石とを所定の空隙を介して前記駆動側円筒磁石の磁極と前記従動側円盤磁石との磁極同士が対向するように配置し、対向する前記磁極間に作用する磁気的吸引
力及び磁気的反発力を利用して前記駆動軸の回転トルクを従動軸に伝達する磁気式動力伝達装置であって、前記駆動軸が、対向して離間配置された一対の筐体側板に軸承されて貫通していると共に、前記駆動側円筒磁石が、前記筐体側板間で前記駆動軸に固設されており、前記被軸受部が、前記離間配置された一対の筐体側板の端辺間に直交して連接されている筐体連結板に軸承されているとともに、内側に従動軸が挿入される従動側ガイド部を有している磁気式動力伝達装置により、前記の課題を解決するものである。
Therefore, the invention according to claim 1 is fixed to the drive shaft, and the drive side cylindrical magnet in which the magnetic poles are alternately arranged in the N-pole and S-pole in the axial direction, and the follower arranged in a direction orthogonal to the drive shaft. The drive-side cylindrical magnet is fixed to a bearing portion integrally formed with the shaft fastening element, and a driven-side disc magnet in which magnetic poles are alternately arranged in N and S poles in the circumferential direction via a predetermined gap. And the driven disk magnet are arranged so that the magnetic poles of the driven-side disk magnets face each other, and the rotational torque of the drive shaft is driven by using the magnetic attractive force and the magnetic repulsive force acting between the opposed magnetic poles. The drive shaft is supported by and penetrates a pair of housing side plates that are spaced apart from each other, and the drive side cylindrical magnet is connected to the housing side plate. Fixed to the drive shaft in between, and A magnetic type having a driven side guide portion into which a driven shaft is inserted inside while being supported by a case connecting plate connected orthogonally between the edges of a pair of case side plates placed The power transmission device solves the above problems.

また、請求項2に係る発明は、請求項1に係る発明の構成に加えて、駆動側円筒磁石が、該駆動側円筒磁石のヨーク部と駆動軸の軸芯とを一致させる駆動側ガイド部を兼ねる取付ベースと一体に構成されたクランプ機構により、前記駆動軸に固設されていることにより、前記の課題をさらに解決するものである。   According to a second aspect of the present invention, in addition to the configuration of the first aspect of the invention, the driving side cylindrical magnet has a driving side guide portion that aligns the yoke portion of the driving side cylindrical magnet with the axis of the driving shaft. The above-mentioned problem is further solved by being fixed to the drive shaft by a clamp mechanism that is configured integrally with the mounting base that also serves as the above.

さらに、請求項3に係る発明は、請求項1又は請求項2に係る磁気式動力伝達装置の駆動軸同士をカップリング手段を介して複数連結することにより、前記の課題をさらに解決するものである。   Furthermore, the invention according to claim 3 further solves the above problem by connecting a plurality of drive shafts of the magnetic power transmission device according to claim 1 or claim 2 via coupling means. is there.

なお、本発明において、「軸承」されるとは、物を内周側で軸受けすることを、すなわち、軸受(ベアリング)で支持することを意味しており、また、「ヨーク」とは、磁力線を通すための磁気構造であり、磁性材料で構成されたものを意味している。さらに、「従動側円盤磁石」は、円周方向にN極、S極交互に配置した磁極とそれを支持するヨークを兼ねる支持部材の両方を含んだ広義の意味で使用している。   In the present invention, “bearing” means that an object is supported on the inner peripheral side, that is, supported by a bearing, and “yoke” is a line of magnetic force. It is a magnetic structure for passing through and means a magnetic material. Furthermore, the “driven disk magnet” is used in a broad sense including both magnetic poles alternately arranged in the circumferential direction with N and S poles and a support member that also serves as a yoke that supports the magnetic poles.

また、「所定の空隙」の記載における「所定」とは、特定の値に限定されるわけではなく、例えば、最も結合力を強くするための狭い間隔を意味しており、例えば、0.5〜1.5mm程度である。   In addition, “predetermined” in the description of “predetermined gap” is not limited to a specific value, and means, for example, a narrow interval for strengthening the binding force most. About 1.5 mm.

請求項1に係る発明によれば、従動軸締結要素と被軸受部を一体化したことにより、磁気式動力伝達装置を機器に設置する際に、機器側の従動軸と本装置とを直接連結することができ、装置が小型化される。また、従動側円盤磁石が少なくとも従動軸の直径よりも大きい直径を有する被軸受部によって、筐体連結板に軸承されているので、大口径軸受となり、従動側円盤磁石が偏荷重によって傾くことが抑制され、駆動側円筒磁石に接触することが防止される。
さらに、被軸受部の内側に従動軸が挿入される従動側ガイド部を設けたことにより、被軸受部の従動側ガイド部で従動軸がガイドされるため、従動軸と従動側円盤磁石との軸芯のずれを抑制することができると共に、更なる装置の小型化を図ることができる。
According to the first aspect of the present invention, the driven shaft fastening element and the bearing portion are integrated, so that when the magnetic power transmission device is installed in the device, the device-side driven shaft and the device are directly connected. And the device is miniaturized. Further, since the driven-side disk magnet is supported by the housing connecting plate by a bearing portion having a diameter larger than at least the diameter of the driven shaft, it becomes a large-diameter bearing, and the driven-side disk magnet can be tilted by an eccentric load. It is suppressed and contact with the drive side cylindrical magnet is prevented.
Furthermore, since the driven shaft is guided by the driven side guide portion of the bearing portion by providing the driven side guide portion into which the driven shaft is inserted inside the driven portion, the driven shaft and the driven disk magnet The shift of the shaft core can be suppressed, and further downsizing of the device can be achieved.

また、駆動軸が、対向して配置された一対の筐体側板間に軸承され貫通していると共に、駆動側円筒磁石が、筐体側板間で駆動軸に固設されていることによって、従動側円盤磁石と駆動側円筒磁石との空隙を安定させることができるので、トルクリップルを小さくすることができる。   In addition, the drive shaft is supported and passed between a pair of opposite housing side plates, and the drive side cylindrical magnet is fixed to the drive shaft between the case side plates, so that the driven shaft is driven. Since the gap between the side disk magnet and the drive side cylindrical magnet can be stabilized, torque ripple can be reduced.

さらに、駆動側、従動側の磁気歯車が、一対の筐体側板とそれらの端辺間に直交して連接されている筐体連結板によって構成される一つの筐体内に軸支されモジュール化されているので、一つの駆動源で複数の従動軸に動力を伝達する際に、各モジュールの駆動軸をカップリング手段を用いて連結させるだけでよく、真円度、真直度など高い精度が要求される長い駆動軸を必要としない。
また、筐体を構成する筐体側板と筐体連結板の材質を、例えば、ステンレスやアルミニウム等の非磁性体を使用することによって、外部への磁束の漏れを小さくできる。
Furthermore, the drive-side and driven-side magnetic gears are pivotally supported and modularized in a single casing constituted by a pair of casing side plates and a casing connecting plate connected orthogonally between their side edges. Therefore, when transmitting power to multiple driven shafts with one drive source, it is only necessary to connect the drive shafts of each module using coupling means, and high accuracy such as roundness and straightness is required. No need for long drive shafts.
Further, the leakage of magnetic flux to the outside can be reduced by using, for example, a non-magnetic material such as stainless steel or aluminum as the material of the case side plate and the case connecting plate constituting the case.

請求項2に係る発明によれば、請求項1に係る発明が奏する効果に相乗して、駆動側円筒磁石が、該駆動側円筒磁石のヨーク部と駆動軸の軸芯とを一致させる駆動側ガイド部を兼ねる取付ベースと一体に構成されたクランプ機構により、前記駆動軸に固設されているので、駆動側円筒磁石と駆動軸との軸芯が一致し、偏芯が小さく駆動側円筒磁石と従動側円盤磁石との空隙が安定すると共に、ヨークの作用により、駆動側円筒磁石の磁力を強めることができる。さらに、クランプ機構のねじを締めるという簡単な操作で駆動側円筒磁石を従動側円盤磁石に最も効率よく動力の伝達ができる位置に固定することができる。   According to the second aspect of the invention, in synergy with the effect of the first aspect of the invention, the drive-side cylindrical magnet is configured so that the yoke portion of the drive-side cylindrical magnet and the axis of the drive shaft coincide with each other. The clamp mechanism that is integrated with the mounting base that also serves as a guide portion is fixed to the drive shaft. Therefore, the drive-side cylindrical magnet and the drive shaft have the same axial center, and the drive-side cylindrical magnet has a small eccentricity. And the driven disk magnet are stabilized, and the magnetic force of the drive side cylindrical magnet can be increased by the action of the yoke. Furthermore, the drive side cylindrical magnet can be fixed to the position where the power can be transmitted most efficiently to the driven side disk magnet by a simple operation of tightening the screw of the clamp mechanism.

請求項3に係る発明は、請求項1又は請求項2に係る磁気式動力伝達装置の駆動軸同士をカップリングを介して複数連結することにより、真円度、真直度等の精度の高い長い駆動軸を必要とすることなく、ローラコンベヤやホイールコンベヤのような搬送装置等を簡単に構成することができる。   According to a third aspect of the present invention, a plurality of drive shafts of the magnetic power transmission device according to the first or second aspect are coupled to each other via a coupling, so that the longness with high accuracy such as roundness and straightness is long. A conveying device such as a roller conveyor or a wheel conveyor can be easily configured without requiring a drive shaft.

本発明の一実施の形態を実施例1に基づき、図1乃至図5を参照して説明する。   One embodiment of the present invention will be described based on Example 1 with reference to FIGS.

図1は、実施例1の磁気式動力伝達装置100の一例を示す斜視図であり、磁気式動力伝達装置100の内部の構造が分かるように、従動軸締結要素130の軸心を中心に、筐体連結板120及び筐体側板110Rの一部を切断して示している。図2は、図1に示した磁気式動力伝達装置100を上部から見たときの上面図である。図3は、図1に示した磁気式動力伝達装置100を従動軸締結要素130の側からみた正面図である。図4は、
図3のIV−IV線で切断した時の断面図を示している。図5は、駆動側円筒磁石142と従動側円盤磁石150の着磁パターンを示しており、(a)が、螺旋状パターンであり、(b)が、扇状パターンである。
FIG. 1 is a perspective view showing an example of the magnetic power transmission device 100 according to the first embodiment. As can be seen from the internal structure of the magnetic power transmission device 100, the axial center of the driven shaft fastening element 130 is mainly shown. A part of the case connecting plate 120 and the case side plate 110R are cut away. FIG. 2 is a top view of the magnetic power transmission device 100 shown in FIG. 1 as viewed from above. FIG. 3 is a front view of the magnetic power transmission device 100 shown in FIG. 1 as viewed from the driven shaft fastening element 130 side. Figure 4
FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. FIG. 5 shows the magnetization pattern of the drive side cylindrical magnet 142 and the driven side disk magnet 150, where (a) is a spiral pattern and (b) is a fan pattern.

実施例1の磁気動力伝達装置100は、図2に示すように軸方向に所定のピッチで螺旋状にN極とS極が交互に着磁された駆動側円筒磁石142が、図4に示すように駆動側円筒磁石142のヨーク部147と駆動軸の軸芯とを一致させる駆動側ガイド部145を兼ねる取付ベース144と一体に構成されたクランプ機構146により、駆動軸140に固設されている。この駆動軸140は、対向して離間配置された一対の筐体側板110L、110Rに埋設された軸受148、148によって軸承されている。ここで使用される軸受の種類は、特に限定されるわけではないが、低騒音で摩擦が少ないころがり軸受を用いることが好ましい。
また、駆動側円筒磁石142のヨーク部147を兼ねる取付ベース144と一体に構成されたクランプ機構146が従動側円盤磁石150の磁石が存在していない中央部に近接するため、従動側円盤磁石150からクランプ機構146に及ぼされる磁気的吸引力の影響が低減されている。ここで、クランプ機構146の形式は、特に限定されるわけではないが、本実施例1においては、後述する従動軸締結要素130と同様な、スリ割式クランプを用いている。
As shown in FIG. 2, the magnetic power transmission apparatus 100 according to the first embodiment includes a drive-side cylindrical magnet 142 in which N poles and S poles are alternately magnetized in a spiral shape at a predetermined pitch in the axial direction. In this way, the drive shaft 140 is fixed to the drive shaft 140 by a clamp mechanism 146 that is integrally formed with a mounting base 144 that also serves as a drive-side guide portion 145 that matches the yoke portion 147 of the drive-side cylindrical magnet 142 and the axis of the drive shaft. Yes. The drive shaft 140 is supported by bearings 148 and 148 embedded in a pair of housing side plates 110L and 110R that are spaced apart from each other. The type of bearing used here is not particularly limited, but it is preferable to use a rolling bearing with low noise and low friction.
In addition, since the clamp mechanism 146 configured integrally with the mounting base 144 that also serves as the yoke portion 147 of the driving side cylindrical magnet 142 is close to the central portion where the magnet of the driven side disk magnet 150 does not exist, the driven side disk magnet 150 The influence of the magnetic attractive force exerted on the clamping mechanism 146 is reduced. Here, the type of the clamp mechanism 146 is not particularly limited, but in the first embodiment, a slit-type clamp similar to a driven shaft fastening element 130 described later is used.

この駆動軸140は、筐体側板110からの抜けや軸方向のがたつきを防止するため、一対の筐体側板110L、110Rの間隔と略等しい距離を残し、両端に切削加工等を施し、細くしている。   This drive shaft 140 leaves a distance substantially equal to the distance between the pair of housing side plates 110L and 110R in order to prevent disconnection from the housing side plate 110 and shakiness in the axial direction, and performs cutting and the like on both ends. It is thin.

一方、駆動軸140に直交する向きに従動側円盤磁石150が配置されている。この従動側円盤磁石150は、ヨークを兼ねる支持部材152上に駆動側円筒磁石142と同ピッチで円周方向にN極とS極の磁極が交互に配置されている。図5に従動側円盤磁石150と駆動側円筒磁石142の着磁パターンの例を示す。(a)が螺旋状パターンであり、(b)が扇状パターンである。いずれも、円周方向にN極とS極が交互に8個の磁石が並
ぶ45度ピッチを示しているが、着磁ピッチはこれに限られることなく、例えば、円周方向に12個の磁石が並ぶ30度ピッチとすることも可能である。
On the other hand, a driven disk magnet 150 is arranged in a direction orthogonal to the drive shaft 140. In this driven-side disk magnet 150, N-pole and S-pole magnetic poles are alternately arranged in the circumferential direction at the same pitch as the drive-side cylindrical magnet 142 on a support member 152 that also serves as a yoke. FIG. 5 shows examples of magnetization patterns of the driven disk magnet 150 and the drive side cylindrical magnet 142. (A) is a spiral pattern and (b) is a fan-shaped pattern. Each shows a 45 degree pitch in which eight magnets are alternately arranged in the circumferential direction with N and S poles. However, the magnetization pitch is not limited to this, for example, 12 pieces in the circumferential direction. It is also possible to set the pitch at 30 degrees where the magnets are arranged.

従動側円盤磁石150のヨークを兼ねる支持部材152は、従動軸締結要素130と一体に形成された被軸受部131に固着されており、この被軸受部131が、筐体連結板120に埋設された軸受134によって、軸承されている。被軸受部131は、従動軸が挿入される有底のホローシャフト形状の従動側ガイド部132をその内部に有しているとともに、従動軸締結要素130側に、鍔部位131aを有している。   The support member 152 that also serves as the yoke of the driven-side disk magnet 150 is fixed to a supported bearing portion 131 that is formed integrally with the driven shaft fastening element 130, and this supported bearing portion 131 is embedded in the housing connecting plate 120. It is supported by a bearing 134. The bearing portion 131 has a bottomed hollow shaft-shaped driven side guide portion 132 into which the driven shaft is inserted, and has a flange portion 131a on the driven shaft fastening element 130 side. .

従動軸締結要素130は、図1に示したように環状部材の一部にスリットを入れて、螺子で締めることによって、スリットの幅を狭めることにより、従動軸を固定する、いわゆるスリ割式クランプを用いている。このような従動軸締結要素130では、軸芯がずれるため、本発明では、スリットがなく、従動軸が嵌合する従動側ガイド部132が内設された被軸受部131を従動軸締結要素130と一体に設けることによって、軸芯のずれを防止している。しかも、その被軸受部131を筐体連結板120に埋設された軸受134によって軸承させたことで、筐体連結板120から突出する従動軸締結要素130の長さを短くしている。   The driven shaft fastening element 130 is a so-called slit clamp that fixes the driven shaft by narrowing the width of the slit by inserting a slit in a part of the annular member and tightening with a screw as shown in FIG. Is used. In such a driven shaft fastening element 130, the shaft center is displaced, and in the present invention, the driven shaft fastening element 130 is provided with a bearing 131 having a slit and no driven side guide portion 132 into which the driven shaft is fitted. The shaft core is prevented from shifting. In addition, the length of the driven shaft fastening element 130 projecting from the housing connecting plate 120 is shortened by bearing the supported portion 131 by a bearing 134 embedded in the housing connecting plate 120.

また、図4に示したように、被軸受部131は、従動軸の太さよりも大きな外径を有しているとともに、支持部材152の中央に切削加工等により設けた被軸受部固設用の凹部に嵌合させているので、被軸受部131と支持部材152の接合がきわめて安定する。しかも、鍔部131aが、軸受134の外側面と摺接しているので、駆動側円筒磁石142と従動側円盤磁石150との磁気的吸引力により従動側円盤磁石150に偏荷重が掛かったとしても、従動側円盤磁石150が傾いて駆動側円筒磁石142と接触することが防止される。   Further, as shown in FIG. 4, the bearing portion 131 has an outer diameter larger than the thickness of the driven shaft, and is used for fixing the bearing portion provided in the center of the support member 152 by cutting or the like. Therefore, the joint between the supported portion 131 and the support member 152 is extremely stable. In addition, since the collar 131a is in sliding contact with the outer surface of the bearing 134, even if a biased load is applied to the driven disk magnet 150 due to the magnetic attractive force between the driving cylindrical magnet 142 and the driven disk magnet 150, The driven-side disc magnet 150 is prevented from tilting and coming into contact with the drive-side cylindrical magnet 142.

さらに、軸受134を筐体連結板120に埋設し、固定するために筐体連結板120に設けられた肩止め部位120aを薄くすることによって、支持部材152の背面から軸受134までの距離を短くすることができる。その結果、磁気的吸引力によって偏荷重が掛かったとしても従動側円盤磁石150と駆動側円筒磁石142との空隙がより安定に支持されている。   Furthermore, the distance from the back surface of the support member 152 to the bearing 134 is shortened by thinning the shoulder portion 120a provided in the housing connecting plate 120 for embedding and fixing the bearing 134 in the housing connecting plate 120. can do. As a result, the gap between the driven-side disc magnet 150 and the drive-side cylindrical magnet 142 is more stably supported even when an offset load is applied due to the magnetic attractive force.

上述した実施例1では、従動軸締結要素としてスリ割式クランプを用いているが、図6に示すように筐体連結板220より突出した従動軸締結要素230の円筒状部分の半分を切り欠いて、環状半円部材232と従動軸締結要素230の間に従動軸260を挟持して環状半円部材232をねじで締めていくことにより従動軸260を固定する、いわゆる2分割式クランプを用いている。2分割式クランプを用いることにより、従動側ガイド部を用いることなく、従動側円盤磁石250と従動軸260の軸芯を合わせることができる。その他の点については、実施例1と同じであるので、対応する部材の参照符号の3桁目を2として、下二桁を一致させて示すに留め、詳しい説明は、割愛する。   In the first embodiment described above, a slit-type clamp is used as the driven shaft fastening element, but half of the cylindrical portion of the driven shaft fastening element 230 protruding from the housing connecting plate 220 is cut out as shown in FIG. Thus, a so-called two-part clamp is used in which the driven shaft 260 is fixed by clamping the driven shaft 260 between the annular semicircular member 232 and the driven shaft fastening element 230 and tightening the annular semicircular member 232 with a screw. ing. By using the two-part clamp, the axis of the driven disk magnet 250 and the driven shaft 260 can be aligned without using the driven guide portion. Since the other points are the same as those in the first embodiment, the third digit of the reference number of the corresponding member is set to 2, and the lower two digits are shown in a matching manner, and the detailed description is omitted.

次に、実施例1又は実施例2に示した磁気式動力伝達装置が奏する効果を活用した使用方法について図7に基づき説明する。図7は、上述した磁気式動力伝達装置300の駆動軸340同士をカップリング380と継ぎ手370を介して複数連結するとともに、従動軸締結要素には、ホイール362が離間配置された従動軸360を連結したホイールコンベヤの一部を示している。参照符号Mは、搬送物を示している。このように本願発明の磁気式動力伝達装置300は、駆動軸340と従動軸締結要素がモジュール化されているので、単に駆動軸340をカップリング380によって締結していくだけで各従動軸に等し
い回転動力を伝達する装置を構成することができる。そのため、真円度、真直度等の精度の高い長い駆動軸を必要とすることなく、ローラコンベヤやホイールコンベヤのような搬送装置等を簡単に構成することができる。さらに、従動軸と磁気式動力伝達装置300とを連結するカップリング手段を別途設ける必要がないため、例えば、搬送装置のような被駆動装置と磁気式動力伝達装置300との距離を短縮することができ、装置レイアウトの自由度が高くなる。
Next, a usage method utilizing the effect produced by the magnetic power transmission device shown in the first or second embodiment will be described with reference to FIG. FIG. 7 shows a case where a plurality of drive shafts 340 of the magnetic power transmission device 300 described above are connected via a coupling 380 and a joint 370, and a driven shaft 360 having a wheel 362 spaced apart is provided as a driven shaft fastening element. A part of the connected wheel conveyor is shown. Reference symbol M indicates a conveyed product. As described above, in the magnetic power transmission device 300 according to the present invention, the drive shaft 340 and the driven shaft fastening element are modularized. Therefore, the drive shaft 340 is simply rotated by the coupling 380 and the rotation is equal to each driven shaft. A device for transmitting power can be configured. Therefore, a conveying device such as a roller conveyor or a wheel conveyor can be easily configured without requiring a long drive shaft with high accuracy such as roundness and straightness. Further, since it is not necessary to separately provide coupling means for connecting the driven shaft and the magnetic power transmission device 300, for example, the distance between the driven device such as a transport device and the magnetic power transmission device 300 is shortened. This increases the degree of freedom in device layout.

図7に示した例では、搬送物Mの大きさに合わせて、2つのカップリング380の間に継ぎ手370を介して隣接する磁気式動力伝達装置300の間隔を大きくして連結しているが、各磁気式動力伝達装置300の駆動軸同士を直接カップリング380で連結することによって、ホイール362間の距離を短縮することも可能である。   In the example shown in FIG. 7, according to the size of the conveyed product M, the adjacent magnetic power transmission device 300 is connected between the two couplings 380 via the joint 370 with a large interval. It is also possible to shorten the distance between the wheels 362 by directly connecting the drive shafts of the magnetic power transmission devices 300 with the coupling 380.

実施例1の磁気式動力伝達装置の一部を切り欠いた状態を示す斜視図。The perspective view which shows the state which notched some magnetic power transmission devices of Example 1. FIG. 図1に示した磁気式動力伝達装置の上面図。FIG. 2 is a top view of the magnetic power transmission device shown in FIG. 1. 図1に示した磁気式動力伝達装置の正面図。The front view of the magnetic type power transmission device shown in FIG. 図3のIV−IV線で切断したときの断面図。Sectional drawing when cut | disconnecting by the IV-IV line of FIG. 図1に示した磁気式動力伝達装置の磁気歯車の着磁パターンを示した正面図。The front view which showed the magnetization pattern of the magnetic gearwheel of the magnetic type power transmission device shown in FIG. 実施例2の磁気式動力伝達装置を示す斜視図。FIG. 6 is a perspective view showing a magnetic power transmission device according to a second embodiment. 実施例3の磁気式動力伝達装置を用いたホイールコンベヤの一部を示した斜視図。The perspective view which showed a part of wheel conveyor using the magnetic type power transmission device of Example 3. FIG.

符号の説明Explanation of symbols

100、200、300 ・・・ 磁気式動力伝達装置
110(110L、110R)、210(210L、210R) ・・・ 筐体側板
120、220 ・・・ 筐体連結板
120a ・・・ 肩止め部位
130、230 ・・・ 従動軸連結要素
131 ・・・ 被軸受部
131a ・・・(被軸受部の)鍔部位
132 ・・・ 従動側ガイド部
134 ・・・ (従動軸側の)軸受
140、240、340 ・・・ 駆動軸
142、242 ・・・ 駆動側円筒磁石
144 ・・・ 取付ベース
145 ・・・ 駆動側ガイド部
146、246 ・・・ クランプ機構
147 ・・・ ヨーク部
148 ・・・ (駆動軸側の)軸受
150、250 ・・・ 従動側円盤磁石
152、252 ・・・ 支持部材
260、360 ・・・ 従動軸
370 ・・・ 継ぎ手
380 ・・・ カップリング
100, 200, 300 ... Magnetic power transmission device 110 (110L, 110R), 210 (210L, 210R) ... Case side plate 120, 220 ... Case connection plate 120a ... Shoulder stop portion 130 , 230, driven shaft coupling element 131, bearing portion 131 a, flange portion 132 (of the bearing portion), driven side guide portion 134, bearings 140, 240 (on the driven shaft side) 340 ... drive shaft 142, 242 ... drive side cylindrical magnet 144 ... mounting base 145 ... drive side guide part 146, 246 ... clamp mechanism 147 ... yoke part 148 ... ( Bearings 150, 250 on the drive shaft side ... Driven disk magnets 152, 252 ... Support members 260, 360 ... Driven shaft 370 ... Joint 380 ... Cup Packaging

Claims (3)

駆動軸に固着されており、磁極を軸方向にN極、S極交互に配置した駆動側円筒磁石と、前記駆動軸に直交する向きに配置された従動軸締結要素と一体に形成された被軸受部に固着されており、磁極を円周方向にN極、S極交互に配置した従動側円盤磁石とを所定の空隙を介して前記駆動側円筒磁石の磁極と前記従動側円盤磁石との磁極同士が対向するように配置し、対向する前記磁極間に作用する磁気的吸引力及び磁気的反発力を利用して前記駆動軸の回転トルクを従動軸に伝達する磁気式動力伝達装置であって、
前記駆動軸が、対向して離間配置された一対の筐体側板に軸承されて貫通していると共に、前記駆動側円筒磁石が、前記筐体側板間で前記駆動軸に固設されており、
前記被軸受部が、前記離間配置された一対の筐体側板の端辺間に直交して連接されている筐体連結板に軸承されているとともに、内側に従動軸が挿入される従動側ガイド部を有していることを特徴とする磁気式動力伝達装置。
A drive-side cylindrical magnet fixed to the drive shaft and having magnetic poles arranged alternately in the N and S poles in the axial direction and a driven shaft fastening element arranged in a direction perpendicular to the drive shaft are integrally formed. A driven-side disk magnet fixed to the bearing portion and having magnetic poles arranged alternately in the circumferential direction in the N and S poles is connected to the magnetic pole of the driving-side cylindrical magnet and the driven-side disk magnet via a predetermined gap. The magnetic power transmission device is arranged so that the magnetic poles are opposed to each other, and transmits the rotational torque of the drive shaft to the driven shaft using a magnetic attractive force and a magnetic repulsive force acting between the opposed magnetic poles. And
The drive shaft is supported by and penetrates a pair of housing side plates that are spaced apart from each other, and the drive side cylindrical magnet is fixed to the drive shaft between the housing side plates.
The driven-side guide in which the bearing portion is supported by a casing connecting plate that is orthogonally connected between the edges of the pair of spaced-apart casing side plates and into which the driven shaft is inserted. A magnetic power transmission device comprising a portion.
前記駆動側円筒磁石が、該駆動側円筒磁石のヨーク部と駆動軸の軸芯とを一致させる駆動側ガイド部を兼ねる取付ベースと一体に構成されたクランプ機構により、前記駆動軸に固設されていることを特徴とする請求項1に記載の磁気式動力伝達装置。   The drive-side cylindrical magnet is fixed to the drive shaft by a clamp mechanism that is integrally formed with a mounting base that also serves as a drive-side guide portion that aligns the yoke portion of the drive-side cylindrical magnet and the axis of the drive shaft. The magnetic power transmission device according to claim 1, wherein: 請求項1又は請求項2に記載された磁気式動力伝達装置の駆動軸同士をカップリング手段を介して複数連結したことを特徴とする磁気式動力伝達装置の使用方法。
A method of using a magnetic power transmission device, wherein a plurality of drive shafts of the magnetic power transmission device according to claim 1 or 2 are connected via a coupling means.
JP2007064616A 2007-03-14 2007-03-14 Magnetic power transmission device and its using method Pending JP2008223926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064616A JP2008223926A (en) 2007-03-14 2007-03-14 Magnetic power transmission device and its using method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064616A JP2008223926A (en) 2007-03-14 2007-03-14 Magnetic power transmission device and its using method

Publications (1)

Publication Number Publication Date
JP2008223926A true JP2008223926A (en) 2008-09-25

Family

ID=39842787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064616A Pending JP2008223926A (en) 2007-03-14 2007-03-14 Magnetic power transmission device and its using method

Country Status (1)

Country Link
JP (1) JP2008223926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270855A (en) * 2009-05-22 2010-12-02 Tsubakimoto Chain Co Magnetic type power transmitting means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270855A (en) * 2009-05-22 2010-12-02 Tsubakimoto Chain Co Magnetic type power transmitting means

Similar Documents

Publication Publication Date Title
JP5215387B2 (en) Magnetic coupling device
WO2009028266A1 (en) Axial gap type motor
TW200812195A (en) Traction drive for elevator
JP2010252419A (en) Motor, rotor, and method for manufacturing the motor
RU2008108535A (en) COUPLING USING MAGNETIC KNOWLEDGE FOR TRANSFER OF ROTARY MOTION FROM A LEADING PART TO A SLAVE PART
WO2013137252A1 (en) Magnetic gear device
JP4850773B2 (en) Cylindrical magnetic gear
JP5032777B2 (en) Torque transmission device
JP4850772B2 (en) Disc-shaped magnetic gear
CN110062742B (en) Axial flux motor for conveyor
JP2008223926A (en) Magnetic power transmission device and its using method
JP2008232349A (en) Magnetic power transmission device and its use
JP2008232350A (en) Magnetic power transmission device and its use
JP2008302992A (en) Belt conveyer
JP7015534B2 (en) Magnetic gear
JP2010241557A (en) Roller conveyor device
KR101047272B1 (en) Conveyor for Large Area Object Transfer Using Magnetic Gears
US7622839B2 (en) Magnetic belt and roller system
JP2005350171A (en) Roller conveyor
JP4666341B2 (en) Roller conveyor
JP4582575B2 (en) Roller device
JP2010270855A (en) Magnetic type power transmitting means
WO2023249056A1 (en) Motive power transmission device
JP2005233326A (en) Transmission mechanism
JP4605583B2 (en) Roller conveyor