JP2008223621A - Compressor and refrigeration cycle apparatus - Google Patents

Compressor and refrigeration cycle apparatus Download PDF

Info

Publication number
JP2008223621A
JP2008223621A JP2007063581A JP2007063581A JP2008223621A JP 2008223621 A JP2008223621 A JP 2008223621A JP 2007063581 A JP2007063581 A JP 2007063581A JP 2007063581 A JP2007063581 A JP 2007063581A JP 2008223621 A JP2008223621 A JP 2008223621A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
winding
electric motor
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007063581A
Other languages
Japanese (ja)
Other versions
JP5004620B2 (en
Inventor
Koji Masumoto
浩二 増本
Takashi Ishigaki
隆士 石垣
Junya Kanzaki
淳也 神▲崎▼
Akio Murata
明生 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007063581A priority Critical patent/JP5004620B2/en
Publication of JP2008223621A publication Critical patent/JP2008223621A/en
Application granted granted Critical
Publication of JP5004620B2 publication Critical patent/JP5004620B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor unit and refrigeration cycle apparatus that reduces costs associated with insulation, and possesses high reliability. <P>SOLUTION: A electric motor 10 includes windings 3 wound on a split laminated iron core 1 via an insulation member 2, a stator formed by connecting a specified number of the laminated iron cores 1 annularly, a connection portion insulating member 6 for insulating connection portions when terminals 3a, 3b of the windings 3 wound around the laminated iron cores 1 are all connected to a three-phase power supply to form a delta-connection of a parallel circuit, a rotor 8 rotated by a rotating magnetic field generated by supplying power from the three-phase power supply. The motor 10 and a compression mechanism portion 12 for compressing the object to be compressed by a drive resulting from a rotation of the rotor 8 are accommodated in a sealed container 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は各種産業機械に用いられる電動機に関するものである。特に空気調和装置、冷凍冷蔵装置等の冷凍サイクル装置に使用される圧縮機に適したものである。   The present invention relates to an electric motor used for various industrial machines. In particular, it is suitable for a compressor used in a refrigeration cycle apparatus such as an air conditioner or a refrigeration apparatus.

近年省エネルギー、環境保全を目的に各種、電動機は高効率化や省資源化(小型、軽量化)が求められている。その実現方法として高密度整列巻線化が必要とされている。そのため巻線を直接鉄心に巻きつける集中巻(直巻)化が小型電動機を中心に進んでいる。さらに整列性をあげるため鉄心を分割する場合もある。(例えば、特許文献1参照)。   In recent years, various types of electric motors for the purpose of energy saving and environmental conservation have been required to be highly efficient and resource-saving (smaller and lighter). As a realization method, high density aligned winding is required. For this reason, concentrated winding (direct winding), in which windings are wound directly around an iron core, is progressing mainly in small electric motors. In some cases, the iron core may be divided for better alignment. (For example, refer to Patent Document 1).

特開平9−23600号公報(第3頁、第4図)Japanese Unexamined Patent Publication No. 9-23600 (page 3, FIG. 4)

特許文献1に記載の電動機は固定子の積層鉄心に整列巻線を施した後、積層鉄心を所定数結合して円筒状に形成する。その後、巻線の端末を接続することにより、中性点や入力線(U,V,W相)を形成し、電動機の固定子を成している。ここで、上記のような構成では、少なくとも中性点と入力線を含めて4ヶ所において巻線を接続(結線)する部分(以下、接続部という)が発生する。接続部にはすべて絶縁処理が必要となるため、接続部が多くなると、絶縁処理にかかる加工費用及び絶縁部材の費用がかかる。特に冷媒等の圧縮機内部に電動機に適用する場合、電動機が冷媒(液体)、潤滑油に浸る可能性もあるため、絶縁処理を強固にしないと冷媒、潤滑油を伝って漏電する等の問題点が考えられる。   The electric motor described in Patent Document 1 is formed in a cylindrical shape by applying a predetermined number of laminated iron cores after arranging aligned windings on the laminated iron cores of the stator. After that, by connecting the ends of the windings, neutral points and input lines (U, V, W phase) are formed to form a stator of the motor. Here, in the configuration as described above, there are portions (hereinafter referred to as connection portions) where the windings are connected (connected) at four locations including at least the neutral point and the input line. Since all the connecting portions need to be insulated, if the number of connecting portions is increased, the processing cost for the insulating treatment and the cost of the insulating member are required. In particular, when applied to an electric motor inside a compressor such as a refrigerant, the motor may be immersed in the refrigerant (liquid) or lubricating oil. Therefore, problems such as leakage of electricity through the refrigerant and lubricating oil unless insulation treatment is strengthened. A point is considered.

この発明は、上記のような課題を解決するためになされたもので、絶縁に係るコストを低減し、信頼性の高い圧縮機及び冷凍サイクル装置を得るものである。   The present invention has been made to solve the above-described problems, and is intended to reduce the cost of insulation and obtain a highly reliable compressor and refrigeration cycle apparatus.

この発明に係る圧縮機は、分割された積層鉄心に絶縁部材を介して巻線を巻き付け、積層鉄心を所定数環状に結合して形成した固定子、各積層鉄心に巻き付けられた巻線の各端末をすべて入力電源と接続する、並列回路のデルタ結線としたときの接続部分を絶縁するための絶縁部材、及び入力電源からの通電により発生した回転磁界により回転する回転子を有する電動機と、回転子の回転により駆動して圧縮対象を圧縮する圧縮機構部とを密閉容器に収容するものである。   In the compressor according to the present invention, a winding is wound around a divided laminated core via an insulating member, a stator formed by connecting a predetermined number of laminated cores in a ring shape, and each of the windings wound around each laminated core. An electric motor having a rotor that rotates by a rotating magnetic field generated by energization from an input power source, an insulating member for insulating a connection portion when a terminal is connected to an input power source, and a delta connection of a parallel circuit. A compression mechanism that is driven by the rotation of the child and compresses the object to be compressed is accommodated in an airtight container.

この発明に係る圧縮機は、電動機において、各積層鉄心に巻き付けられた巻線を並列回路のデルタ結線により接続し、このとき、U相、V相、W相に対応する接続部分を絶縁部材によって絶縁を行うだけでよいので、部材コストや取り付け作業を行う加工コストを低減することができる。また、接続部分が少なくなるため、絶縁不良を起こす可能性を低減することもできる。特に、圧縮機内部では潤滑油、冷媒等の雰囲気に晒されるため、接続部分を減らせることで、故障等の発生を少なくし、信頼性の高い圧縮機を低コストで得ることができる。   In the compressor according to the present invention, in the electric motor, the windings wound around each laminated core are connected by the delta connection of the parallel circuit, and at this time, the connection portions corresponding to the U phase, the V phase, and the W phase are formed by the insulating member. Since only the insulation is required, the member cost and the processing cost for performing the attachment work can be reduced. Further, since the number of connected portions is reduced, the possibility of causing an insulation failure can be reduced. In particular, since the interior of the compressor is exposed to an atmosphere of lubricating oil, refrigerant, and the like, the number of connection portions can be reduced, so that the occurrence of failure and the like can be reduced, and a highly reliable compressor can be obtained at low cost.

実施の形態1.
図1は本発明の実施の形態1に係る圧縮機20の縦断面の概略図である。図1のように本実施の形態における圧縮機20の密閉容器11は電動機10と圧縮機機構部12とを少なくとも収容している。
Embodiment 1 FIG.
FIG. 1 is a schematic view of a longitudinal section of a compressor 20 according to Embodiment 1 of the present invention. As shown in FIG. 1, the sealed container 11 of the compressor 20 in the present embodiment accommodates at least the electric motor 10 and the compressor mechanism 12.

図2は実施の形態1に係る電動機10の固定子を上面から見たときの概略図である。図2では模式的に巻線同士の接続部分も表している。図2において、分割された積層鉄心1に絶縁部材2を介し、巻線3が極歯に巻き付けられている。巻線3は分割された積層鉄心1毎に極歯に直接巻きつけることができるため、隣の極歯に邪魔されず、比較的容易に高密度整列巻線が可能となっている。この巻き方はいわゆる集中巻と呼ばれ、巻線3を極歯に直接巻き付けるので、巻線3全体の長さを短くして、巻線3の使用量を減らすことができる。また、巻線の径を大きくして電気抵抗を減らすことができ、高効率化を図ることができる。さらに小型軽量化を図ることもできる。ここで、実際には巻線3は積層鉄心1に複数回巻き付けられているが、図2では見やすくするために簡略化して記載している。巻線3の端末3a、3bは、それぞれ巻線3の巻き始めと巻き終わりの端末となる。本実施の形態では、端末の数は18(=2×9)となる。   FIG. 2 is a schematic view of the stator of the electric motor 10 according to Embodiment 1 as viewed from above. FIG. 2 also schematically shows a connection portion between the windings. In FIG. 2, a winding 3 is wound around a pole tooth via an insulating member 2 around a divided laminated core 1. Since the winding 3 can be wound directly on the pole teeth for each of the divided laminated iron cores 1, it is possible to relatively easily arrange high-density aligned windings without being disturbed by the adjacent pole teeth. This winding method is called so-called concentrated winding, and the winding 3 is directly wound around the pole teeth, so that the entire length of the winding 3 can be shortened and the amount of use of the winding 3 can be reduced. Further, the electrical resistance can be reduced by increasing the diameter of the winding, and the efficiency can be improved. Furthermore, it is possible to reduce the size and weight. Here, the winding 3 is actually wound around the laminated core 1 a plurality of times. However, in FIG. Terminals 3a and 3b of the winding 3 are terminals at the beginning and end of winding of the winding 3, respectively. In the present embodiment, the number of terminals is 18 (= 2 × 9).

この状態の積層鉄心1を所定数環状に溶接等の方法で接合し、固定子全体の鉄心としている。本実施の形態の電動機10の固定子では、9つの積層鉄心1を環状にして接合して構成している。ただし、この数に限定するものではない。そして、接続部4において、それぞれの積層鉄心1の巻線3の端末3a、3bを接続(結線)する。各端末3a、3bはそれぞれU相、V相、W相に分けて接続される。そして、各相の接続部分である接続部4にはリード線5の一方の端部も接続される。リード部5の他端にはコネクタ端子7が接続されている。コネクタ端子7は、後述するように圧縮機20外部における電源入力部13と接続される。これにより、接続部4において接続された各巻線3と外部装置である3相交流電源(入力電源。図示せず)とが、電源入力部13、コネクタ端子7を介して電気的に接続され、電気的入力を得ることができる(通電可能となる)。   A predetermined number of the laminated cores 1 in this state are joined in a ring shape by a method such as welding to form an entire core of the stator. In the stator of the electric motor 10 of the present embodiment, nine laminated iron cores 1 are annularly joined and configured. However, it is not limited to this number. And in the connection part 4, the terminal 3a, 3b of the coil | winding 3 of each laminated iron core 1 is connected (connection). Each terminal 3a, 3b is divided into a U phase, a V phase, and a W phase and connected. One end portion of the lead wire 5 is also connected to the connection portion 4 that is a connection portion of each phase. A connector terminal 7 is connected to the other end of the lead portion 5. The connector terminal 7 is connected to a power input unit 13 outside the compressor 20 as will be described later. Thereby, each winding 3 connected in the connection part 4 and the three-phase alternating current power supply (input power supply, not shown) which is an external device are electrically connected via the power supply input part 13 and the connector terminal 7, Electrical input can be obtained (can be energized).

図3は電動機の電気回路図である。巻線3の接続(結線)の方法は、図3に示すように並列回路でのデルタ結線となっており、スター結線のように中性点は存在しない。そのため、本実施の形態の電動機においては接続部4は3点ですむ。本実施の形態では、集中巻した巻線3をデルタ結線で接続するため、各相の接続部4においては6つの端末(端末3a、3bをそれぞれ3つずつ)を接続することになる。   FIG. 3 is an electric circuit diagram of the electric motor. The connection (connection) of the winding 3 is a delta connection in a parallel circuit as shown in FIG. 3, and there is no neutral point as in the star connection. For this reason, in the electric motor according to the present embodiment, only three connection portions 4 are required. In this embodiment, since the concentrated windings 3 are connected by delta connection, six terminals (three terminals 3a and 3b, respectively) are connected in each phase connection section 4.

各接続部4には電気的絶縁(以下、単に絶縁という)を得るため接続部絶縁部材6が取付けられている。接続部絶縁部材6は、例えば筒状のポリエステルフィルム等から成り、筒口部分を融着等して接続部4の絶縁を行う。固定子の巻線3には3相電源からの電力供給により電圧が印加され、電流が流れるが、積層鉄心1や電動機の周りの部材、雰囲気に対して電流漏れ等を防ぐために絶縁が必要である。本実施の形態の電動機10では、接続部4が3ヶ所あるが、すべてに接続部絶縁部材6による絶縁処理を施す。回転子8は、3相電源からの電力供給により固定子に発生した回転磁界による力を受けて回転する。回転子8の回転と共に主軸9も回転する。ここで、回転子8の形態としては、インダクションモータ、ブラシレスDCモータ等に対応するものがあるが、特に限定するものではなく、どのような形態でもよい。   A connecting portion insulating member 6 is attached to each connecting portion 4 in order to obtain electrical insulation (hereinafter simply referred to as insulation). The connection part insulating member 6 is made of, for example, a cylindrical polyester film or the like, and insulates the connection part 4 by, for example, fusing the tube opening part. A voltage is applied to the winding 3 of the stator by supplying power from a three-phase power source, and current flows. However, insulation is necessary to prevent current leakage from the laminated iron core 1 and members around the motor and atmosphere. is there. In the electric motor 10 of the present embodiment, there are three connection portions 4, all of which are insulated by the connection portion insulating member 6. The rotor 8 rotates by receiving a force due to a rotating magnetic field generated in the stator by supplying power from a three-phase power source. As the rotor 8 rotates, the main shaft 9 also rotates. Here, as a form of the rotor 8, there is one corresponding to an induction motor, a brushless DC motor, or the like, but there is no particular limitation, and any form may be used.

圧縮機機構部12は電動機10の主軸9(回転子8)の回転により駆動力が伝達される。これにより、取り込んだ圧縮対象を体積変化(縮小)させて圧縮できる機構を有している。機構の方式としては例えばレシプロ式、スクロール式、ロータリ式等があるが方式については特に限定しない。また、特に限定するものではないが、本実施の形態においては、冷凍、空気調和装置等に用いる冷媒(特に気体)を圧縮対象とする。冷媒としては、例えばHFC系冷媒である、R410A、R404A、また、CO2 、アンモニア等が利用される。 A driving force is transmitted to the compressor mechanism 12 by the rotation of the main shaft 9 (rotor 8) of the electric motor 10. Thereby, it has a mechanism that can compress the captured compression object by changing (reducing) the volume. Examples of the mechanism type include a reciprocal type, a scroll type, and a rotary type, but the type is not particularly limited. Although not particularly limited, in the present embodiment, a refrigerant (particularly gas) used for refrigeration, an air conditioner, or the like is a compression target. As the refrigerant, for example, H410 refrigerants R410A, R404A, CO 2 , ammonia, and the like are used.

電源入力部13は、密閉容器11内にある電動機10のコネクタ端子7と圧縮機20外の装置である3相電源とのインターフェースとなる。吸入管14は吸入口を有し、圧縮機機構部12により圧縮する冷媒を密閉容器11に導入するために設けられている。一方、吐出管15は吐出口を有し、圧縮機機構部12が圧縮した冷媒を密閉容器11外に送り出すために設けられている。潤滑油16は、密閉容器11内部(特に下部)に貯留されており、圧縮機機構部12の軸受けの潤滑や気密性を保つようにポンプ等により循環されている。以上のように冷媒圧縮機20が構成されており、電動機10の主軸9の回転が動力となって圧縮機機構部12による冷媒圧縮を行うことができる。   The power input unit 13 serves as an interface between the connector terminal 7 of the electric motor 10 in the sealed container 11 and a three-phase power source that is a device outside the compressor 20. The suction pipe 14 has a suction port and is provided for introducing the refrigerant compressed by the compressor mechanism 12 into the sealed container 11. On the other hand, the discharge pipe 15 has a discharge port, and is provided to send out the refrigerant compressed by the compressor mechanism 12 to the outside of the sealed container 11. The lubricating oil 16 is stored in the inside of the closed container 11 (particularly in the lower part) and is circulated by a pump or the like so as to maintain the lubrication and airtightness of the bearing of the compressor mechanism 12. The refrigerant compressor 20 is configured as described above, and the rotation of the main shaft 9 of the electric motor 10 can be used as power to perform refrigerant compression by the compressor mechanism unit 12.

次に本実施の形態における圧縮機20の動作について説明する。上記のように構成された電動機10では、図2及び図3に示すような接続が成されている。そして、コネクタ端子7に接続された3相電源からの電力供給を受けた(通電された)電動機10には、固定子内側に回転磁界が発生する。固定子の内径側に配置された回転子8には回転磁界による力が働き、これにより回転子8及び主軸9が回転する。主軸9が回転することで、例えば圧縮機20がスクロール式の場合、圧縮機機構部12に設けられた揺動スクロールが揺動して、固定スクロールとの間で冷媒の容積を変化させて圧縮する。   Next, the operation of the compressor 20 in the present embodiment will be described. In the electric motor 10 configured as described above, connections as shown in FIGS. 2 and 3 are made. A rotating magnetic field is generated inside the stator of the motor 10 that is supplied (energized) with the power from the three-phase power source connected to the connector terminal 7. A force due to a rotating magnetic field acts on the rotor 8 disposed on the inner diameter side of the stator, whereby the rotor 8 and the main shaft 9 rotate. When the main shaft 9 is rotated, for example, when the compressor 20 is of a scroll type, the swing scroll provided in the compressor mechanism unit 12 swings, and the volume of the refrigerant is changed between the fixed scroll and the compression. To do.

以上のように実施の形態1の圧縮機20の電動機10においては、各積層鉄心1に巻き付けられた巻線3をデルタ結線により接続し、各巻線3の同相の端末3a、3bについては接続部4において接続するようにしたので、U相、V相、W相に対応する必要最低限となる3ヶ所の接続部4のみに接続部絶縁部材6を設けて絶縁処理を行えばよく、接続部絶縁部材6に要する部材のコストや取り付け作業を行う加工コストを低減することができる。また、絶縁処理すべき接続部4が少なくなるため、絶縁不良を起こす可能性を低減することもできる。特に、潤滑油16、冷媒等の雰囲気に晒される密閉容器11の内部において接続部分を減らすことができるため、故障等の発生を少なくし、信頼性の高い圧縮機20を低コストで得ることができる。   As described above, in the electric motor 10 of the compressor 20 according to the first embodiment, the windings 3 wound around the laminated cores 1 are connected by delta connection, and the in-phase terminals 3a and 3b of the windings 3 are connected to each other. 4, the connection portion insulating members 6 are provided only at the three minimum connection portions 4 corresponding to the U-phase, V-phase, and W-phase, and insulation treatment is performed. The cost of the member required for the insulating member 6 and the processing cost for performing the attachment work can be reduced. Further, since the number of connection portions 4 to be insulated is reduced, the possibility of causing an insulation failure can be reduced. In particular, since the number of connection parts can be reduced inside the sealed container 11 exposed to the atmosphere of the lubricating oil 16 and the refrigerant, it is possible to reduce the occurrence of failure and the like and to obtain the highly reliable compressor 20 at a low cost. it can.

実施の形態2.
図4は実施の形態2に係る電動機10の固定子を上面から見たときの概略図である。模式的に1つの相に係る巻線同士の接続部分も表している。図4において、図1と同じ符号を付しているものは実施の形態1で説明したことと同様の役割を果たすものであるため、説明を省略する。
Embodiment 2. FIG.
FIG. 4 is a schematic view of the stator of the electric motor 10 according to Embodiment 2 as viewed from above. A connection portion of windings related to one phase is also schematically shown. In FIG. 4, those denoted by the same reference numerals as those in FIG. 1 play the same role as described in the first embodiment, and thus description thereof is omitted.

上述の実施の形態では、同相の6つの端末を接続部4において接続し、リード線5を介してコネクタ端子7に接続した。本実施の形態では、各相のコネクタ端子7を接続部4として、巻線3の端末3a、3bを直接、コネクタ端子7に接続する。ここで、本実施の形態においても、巻線3の接続の方法は図2に示すような並列回路でのデルタ結線となっており、中性点は存在しないため、3つのコネクタ端子7において接続するだけでよい。   In the above-described embodiment, six terminals having the same phase are connected at the connection portion 4 and connected to the connector terminal 7 via the lead wire 5. In the present embodiment, the terminal 3a, 3b of the winding 3 is directly connected to the connector terminal 7 using the connector terminal 7 of each phase as the connection portion 4. Here, also in the present embodiment, the connection method of the winding 3 is a delta connection in a parallel circuit as shown in FIG. 2, and there is no neutral point. Just do it.

上記のように構成された電動機10では、図2及び図3に示すような接続が成されている。そして、実施の形態1と同様に、コネクタ端子7に接続された3相電源からの電力供給を受けた(通電された)電動機10には、固定子内側に回転磁界が発生し、回転子8及び主軸9が回転する。主軸9の回転により、圧縮機機構部12が冷媒の圧縮動作を行う。   In the electric motor 10 configured as described above, connections as shown in FIGS. 2 and 3 are made. In the same manner as in the first embodiment, a rotating magnetic field is generated inside the stator in the motor 10 that is supplied with power from the three-phase power source connected to the connector terminal 7 (energized), and the rotor 8 And the main shaft 9 rotates. As the main shaft 9 rotates, the compressor mechanism 12 performs a refrigerant compression operation.

以上のように実施の形態2によれば、各端末3a、3bを直接コネクタ端子7に接続するようにしたので、コネクタ端子7以外の接続部分を設ける必要がなく、絶縁不良が起きないので、その部分における絶縁処理を行う必要がなくなる。   As described above, according to the second embodiment, since each terminal 3a, 3b is directly connected to the connector terminal 7, there is no need to provide a connection portion other than the connector terminal 7, and no insulation failure occurs. It is not necessary to perform insulation treatment at that portion.

実施の形態3.
上述の実施の形態では、集中巻により積層鉄心1に巻線3が巻き付けられている。そのため、実施の形態1で説明した接続部4のように、端末3a、3bを接続するための接続部分を設ける必要がある。本実施の形態では、密閉容器11内の接続部分を設ける位置について検討する。
Embodiment 3 FIG.
In the above-described embodiment, the winding 3 is wound around the laminated core 1 by concentrated winding. Therefore, it is necessary to provide a connection part for connecting the terminals 3a and 3b as in the connection part 4 described in the first embodiment. In the present embodiment, the position where the connection portion in the sealed container 11 is provided will be examined.

例えば、圧縮機20が圧縮動作を行っていないときには、密閉容器11の下部には、液体の潤滑油16が溜まっている。そして、圧縮動作時には、その潤滑油16が汲み上げられたり、巻き上げられたりしながら、回転部分や摺動部分を潤滑させ、余分な潤滑油16はまた下部に溜まる。また、潤滑油16だけでなく、液化した冷媒等も下部に溜まる。例えば液化した冷媒等は気化した状態よりも電気を通しやすい。そのため、例えば接続部絶縁部材6が絶縁不良をしていた場合、冷媒や潤滑油を介して密閉容器11へと漏電する恐れがある。また、接続部絶縁部材6による絶縁がされていても、これらの液体の影響をできる限り受けない位置において、接続部分を設けることが望ましい。   For example, when the compressor 20 is not performing a compression operation, liquid lubricating oil 16 is accumulated in the lower portion of the sealed container 11. Then, during the compression operation, the lubricating oil 16 is pumped up or wound up, and the rotating portion and the sliding portion are lubricated, and the excess lubricating oil 16 is also accumulated in the lower part. Further, not only the lubricating oil 16 but also a liquefied refrigerant or the like collects in the lower part. For example, a liquefied refrigerant or the like is more likely to conduct electricity than a vaporized state. Therefore, for example, when the connection part insulating member 6 has poor insulation, there is a risk of electric leakage to the sealed container 11 through the refrigerant or the lubricating oil. Further, it is desirable to provide a connection portion at a position where the influence of these liquids is not affected as much as possible even if the connection portion insulating member 6 is insulated.

そこで、圧縮機20の電動機10において、各端末3a、3bの接続部分(接続部4、コネクタ端子7)は、圧縮機20の密閉容器11収容時に、電動機10本体よりも上側(本体上又はそれ以上の位置)に設けるようにし、接続部分が潤滑油16に浸かる頻度を下げるようにする。   Therefore, in the electric motor 10 of the compressor 20, the connection portions (the connection portions 4 and the connector terminals 7) of the terminals 3 a and 3 b are above the main body of the electric motor 10 (on the main body or on the main body 10 or higher) when the sealed container 11 is accommodated in the compressor 20. The frequency at which the connecting portion is immersed in the lubricating oil 16 is lowered.

さらに、圧縮機20の圧縮動作時には、吸入管14の吸入口から冷媒が吸入される。このとき、例えば冷媒以外に、冷媒が通過する装置に付着した異物、これらの装置と圧縮機20との間で冷媒を循環させる冷媒配管において、配管接続持に発生したスケール等が冷媒の循環に伴って、冷媒と共に密閉容器11内に入り込む可能性がある。例えば集中巻のように極歯間に隙間があると、その異物等が極歯間に入り込む可能性がある。また接続部分に付着したり堆積したりすると悪い影響を与えることになる。   Further, during the compression operation of the compressor 20, the refrigerant is sucked from the suction port of the suction pipe 14. At this time, for example, in addition to the refrigerant, foreign matter adhering to the device through which the refrigerant passes, refrigerant piping that circulates the refrigerant between these devices and the compressor 20, scales generated in the pipe connection are circulated in the refrigerant. Along with this, there is a possibility of entering the sealed container 11 together with the refrigerant. For example, if there is a gap between the pole teeth as in the case of concentrated winding, the foreign matter may enter between the pole teeth. Moreover, if it adheres or accumulates on a connection part, it will have a bad influence.

そこで、図1等に示すように、吸入管14の吸入口から異物等が入り込んでも付着等しない位置に接続部分を設けるようにする。ここでは、例えば吸入管14の吸入口の位置に対し、主軸9を中心とし、略線対称となる位置において端末3a、3bを接続し、接続部分を設けるようにしている。   Therefore, as shown in FIG. 1 and the like, a connecting portion is provided at a position where foreign matter or the like enters from the suction port of the suction pipe 14 and does not adhere. Here, for example, the terminals 3a and 3b are connected to the position of the suction port of the suction pipe 14 with the main shaft 9 as the center and at a substantially line-symmetrical position to provide a connection portion.

以上のように、本実施の形態の圧縮機20において、巻線3の端末3a、3bを接続する接続部分(接続部4、コネクタ端子7)を電動機10本体上側の位置又はそれ以上の位置に設けるようにしたので、圧縮機20の下部に溜まった潤滑油16等の液体に浸かせることがない。そのため、密閉容器11への漏電等を防ぐことができ、信頼性の高い圧縮機20を得ることができる。また、保守管理等を効率よく行うことができる。   As described above, in the compressor 20 of the present embodiment, the connecting portions (connecting portions 4 and connector terminals 7) for connecting the terminals 3a and 3b of the winding 3 are positioned at the upper side of the main body of the motor 10 or higher. Since it is provided, it is not immersed in a liquid such as the lubricating oil 16 accumulated in the lower part of the compressor 20. For this reason, it is possible to prevent a leakage of electric current to the sealed container 11 and to obtain a highly reliable compressor 20. In addition, maintenance management and the like can be performed efficiently.

実施の形態4.
図5は本発明の実施の形態4に係る冷凍サイクル装置の構成図である。本実施の形態では、冷凍サイクル装置の例として空気調和装置について説明する。図5の空気調和装置は、熱源側ユニット(室外機)100と負荷側ユニット(室内機)200とを備え、これらが冷媒配管で連結され、主となる冷媒回路(以下、主冷媒回路という)を構成して冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とし、液体の冷媒(液冷媒。気液二相冷媒の場合もある)が流れる配管を液配管400とする。
Embodiment 4 FIG.
FIG. 5 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention. In the present embodiment, an air conditioner will be described as an example of a refrigeration cycle apparatus. The air conditioner of FIG. 5 includes a heat source side unit (outdoor unit) 100 and a load side unit (indoor unit) 200, which are connected by a refrigerant pipe, and are a main refrigerant circuit (hereinafter referred to as a main refrigerant circuit). And the refrigerant is circulated. Among the refrigerant pipes, a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300, and a pipe through which a liquid refrigerant (liquid refrigerant, which may be a gas-liquid two-phase refrigerant) flows is referred to as a liquid pipe 400.

熱源側ユニット100は、本実施の形態においては、圧縮機101、油分離器102、四方弁103、熱源側熱交換機104、熱源側ファン105、アキュムレータ(気液分離器)106、熱源側絞り装置(膨張弁)107、冷媒間熱交換器108、バイパス絞り装置109及び熱源側制御装置111の各装置(手段)で構成する。   In the present embodiment, the heat source side unit 100 includes a compressor 101, an oil separator 102, a four-way valve 103, a heat source side heat exchanger 104, a heat source side fan 105, an accumulator (gas-liquid separator) 106, and a heat source side expansion device. (Expansion valve) 107, the inter-refrigerant heat exchanger 108, the bypass expansion device 109, and the heat source side control device 111.

圧縮機101は、構造については、上述した実施の形態1〜3に記載した圧縮機20を用いている。一方、運転制御については、例えばインバータ回路(図示せず)を備え、電源入力部13を介した3相電源の電力供給に係る運転周波数を任意に変化させることにより、回転子8及び主軸9の回転を制御でき、それに伴って圧縮機101の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができるものとする。   The compressor 101 uses the compressor 20 described in the first to third embodiments for the structure. On the other hand, for operation control, for example, an inverter circuit (not shown) is provided, and the operation frequency relating to the power supply of the three-phase power supply via the power input unit 13 is arbitrarily changed, whereby the rotor 8 and the spindle 9 are It is assumed that the rotation can be controlled and the capacity of the compressor 101 (amount of refrigerant sent out per unit time) can be finely changed accordingly.

また、油分離器102は、冷媒に混じって圧縮機101から吐出された潤滑油16を分離させるものである。分離された潤滑油16は圧縮機101に戻される。四方弁103は、熱源側制御装置111からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り換える。また、熱源側熱交換器104は、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、熱源側絞り装置107を介して流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、四方弁103側から流入した圧縮機101において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。熱源側熱交換器104には、冷媒と空気との熱交換を効率よく行うため、熱源側ファン105が設けられている。熱源側ファン105もインバータ回路を有してファンモータの運転周波数を任意に変化させてファンの回転速度を細かく変化させるようにしてもよい。   The oil separator 102 separates the lubricating oil 16 discharged from the compressor 101 mixed with the refrigerant. The separated lubricating oil 16 is returned to the compressor 101. The four-way valve 103 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from the heat source side control device 111. The heat source side heat exchanger 104 performs heat exchange between the refrigerant and air (outdoor air). For example, during the heating operation, it functions as an evaporator, performs heat exchange between the low-pressure refrigerant that has flowed in through the heat source side expansion device 107 and air, and evaporates and vaporizes the refrigerant. Further, during the cooling operation, it functions as a condenser and performs heat exchange between the refrigerant compressed in the compressor 101 flowing in from the four-way valve 103 side and air, thereby condensing and liquefying the refrigerant. The heat source side heat exchanger 104 is provided with a heat source side fan 105 in order to efficiently exchange heat between the refrigerant and the air. The heat source side fan 105 may also have an inverter circuit so that the operation frequency of the fan motor is arbitrarily changed to finely change the rotation speed of the fan.

冷媒間熱交換器108は、冷媒回路の主となる流路を流れる冷媒と、その流路から分岐してバイパス絞り装置109(膨張弁)により流量調整された冷媒との間で熱交換を行う。特に冷房運転時において冷媒を過冷却する必要がある場合に、冷媒を過冷却して負荷側ユニット200に供給するものである。バイパス絞り装置109を介して流れる液体は、バイパス配管107を介してアキュムレータ106に戻される。アキュムレータ106は例えば液体の余剰冷媒を溜めておく手段である。 熱源側制御装置111は、例えばマイクロコンピュータ等からなる。負荷側制御装置204と有線又は無線通信することができ、例えば、空気調和装置内の各種検知手段(センサ)の検知に係るデータに基づいて、インバータ回路制御による圧縮機101の運転周波数制御等、空気調和装置に係る各手段を制御して空気調和装置全体の動作制御を行う。   The inter-refrigerant heat exchanger 108 exchanges heat between the refrigerant flowing in the main flow path of the refrigerant circuit and the refrigerant branched from the flow path and adjusted in flow rate by the bypass expansion device 109 (expansion valve). . In particular, when it is necessary to supercool the refrigerant during the cooling operation, the refrigerant is supercooled and supplied to the load side unit 200. The liquid flowing through the bypass throttle device 109 is returned to the accumulator 106 via the bypass pipe 107. The accumulator 106 is means for storing, for example, liquid excess refrigerant. The heat source side control device 111 is composed of, for example, a microcomputer. It can be wired or wirelessly communicated with the load-side control device 204, for example, based on data relating to detection by various detection means (sensors) in the air conditioner, operation frequency control of the compressor 101 by inverter circuit control, etc. The respective units related to the air conditioner are controlled to control the operation of the entire air conditioner.

一方、負荷側ユニット200は、負荷側熱交換器201、負荷側絞り装置(膨張弁)202、負荷側ファン203及び負荷側制御装置204で構成される。負荷側熱交換器201は冷媒と空気との熱交換を行う。例えば、暖房運転時においては凝縮器として機能し、ガス配管300から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(又は気液二相化)させ、液配管400側に流出させる。一方、冷房運転時においては蒸発器として機能し、負荷側絞り装置202により低圧状態にされた冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管300側に流出させる。また、負荷側ユニット200には、熱交換を行う空気の流れを調整するための負荷側ファン203が設けられている。この負荷側ファン203の運転速度は、例えば利用者の設定により決定される。負荷側絞り装置202は、開度を変化させることで、負荷側熱交換器201内における冷媒の圧力を調整するために設ける。   On the other hand, the load side unit 200 includes a load side heat exchanger 201, a load side expansion device (expansion valve) 202, a load side fan 203, and a load side control device 204. The load side heat exchanger 201 performs heat exchange between the refrigerant and air. For example, it functions as a condenser during heating operation, performs heat exchange between the refrigerant flowing in from the gas pipe 300 and air, condenses and liquefies the refrigerant (or gas-liquid two-phase), and moves to the liquid pipe 400 side. Spill. On the other hand, during the cooling operation, it functions as an evaporator, performs heat exchange between the refrigerant and the air whose pressure is reduced by the load-side throttle device 202, causes the refrigerant to take heat of the air, evaporates it, and vaporizes it. It flows out to the piping 300 side. In addition, the load side unit 200 is provided with a load side fan 203 for adjusting the flow of air for heat exchange. The operating speed of the load-side fan 203 is determined by, for example, user settings. The load side expansion device 202 is provided to adjust the pressure of the refrigerant in the load side heat exchanger 201 by changing the opening degree.

また、負荷側制御装置204もマイクロコンピュータ等からなり、例えば熱源側制御装置111と有線又は無線通信することができる。熱源側制御装置111からの指示、居住者等からの指示に基づいて、例えば室内が所定の温度となるように、負荷側ユニット200の各装置(手段)を制御する。また、負荷側ユニット200に設けられた検知手段の検知に係るデータを含む信号を送信する。   Further, the load side control device 204 is also composed of a microcomputer or the like, and can communicate with the heat source side control device 111 by wire or wireless, for example. Based on an instruction from the heat source side control device 111 and an instruction from a resident or the like, for example, each device (means) of the load side unit 200 is controlled so that the room has a predetermined temperature. Further, a signal including data related to detection by the detection means provided in the load side unit 200 is transmitted.

次に空気調和装置の動作について説明する。まず、冷房運転時の主となる冷媒回路における基本的な冷媒循環について説明する。3相電源からの電力供給により、圧縮機101の電動機10の回転子8及び主軸9が回転する。これにより、圧縮機機構部12が冷媒を圧縮する。吐出管16から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103から熱源側熱交換器104内を通過することで凝縮し、液冷媒となって熱源側ユニット100を流出する。液配管400を通って負荷側ユニット200に流入した冷媒は、負荷側絞り装置202の開度調整により圧力調整された低温低圧の液冷媒が負荷側熱交換器201内を通過して蒸発して流出する。そして、ガス配管300を通って熱源側ユニット100に流入し、四方弁103、アキュムレータ106を介して圧縮機101の吸入管15から吸入され、再度加圧され吐出することで循環する。   Next, the operation of the air conditioner will be described. First, basic refrigerant circulation in the main refrigerant circuit during cooling operation will be described. The rotor 8 and the main shaft 9 of the electric motor 10 of the compressor 101 are rotated by the power supply from the three-phase power source. Thereby, the compressor mechanism part 12 compresses the refrigerant. The high-temperature, high-pressure gas (gas) refrigerant discharged from the discharge pipe 16 is condensed by passing through the heat source side heat exchanger 104 from the four-way valve 103 and flows out of the heat source side unit 100 as a liquid refrigerant. The refrigerant flowing into the load side unit 200 through the liquid pipe 400 evaporates as the low temperature and low pressure liquid refrigerant whose pressure is adjusted by adjusting the opening degree of the load side expansion device 202 passes through the load side heat exchanger 201. leak. Then, the gas flows into the heat source side unit 100 through the gas pipe 300, is sucked from the suction pipe 15 of the compressor 101 through the four-way valve 103 and the accumulator 106, and is circulated by being pressurized again and discharged.

また、暖房運転時の主となる冷媒回路における基本的な冷媒循環について説明する。3相電源からの電力供給により、圧縮機101の電動機10の回転子8及び主軸9が回転する。これにより、圧縮機機構部12が冷媒を圧縮する。吐出管16から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103からガス配管300を通って負荷側ユニット200に流入する。負荷側ユニット200においては、負荷側絞り装置202の開度調整により圧力調整され、負荷側熱交換器201内を通過することにより凝縮し、中間圧力の液体又は気液二相状態の冷媒となって負荷側ユニット200を流出する。液配管400を通って熱源側ユニット100に流入した冷媒は、熱源側絞り装置107の開度調整により圧力調整され、熱源側熱交換器104内を通過することで蒸発し、ガスの冷媒となって四方弁103、アキュムレータ106を介して圧縮機101の吸入管15から吸入され、前述したように加圧され吐出することで循環する。   Further, basic refrigerant circulation in the main refrigerant circuit during heating operation will be described. The rotor 8 and the main shaft 9 of the electric motor 10 of the compressor 101 are rotated by the power supply from the three-phase power source. Thereby, the compressor mechanism part 12 compresses the refrigerant. The high-temperature, high-pressure gas (gas) refrigerant discharged from the discharge pipe 16 flows from the four-way valve 103 through the gas pipe 300 into the load side unit 200. In the load-side unit 200, the pressure is adjusted by adjusting the opening degree of the load-side expansion device 202, and condensed by passing through the load-side heat exchanger 201 to become an intermediate pressure liquid or a gas-liquid two-phase refrigerant. And flows out of the load side unit 200. The refrigerant flowing into the heat source side unit 100 through the liquid pipe 400 is pressure-adjusted by adjusting the opening degree of the heat source side expansion device 107, evaporates by passing through the heat source side heat exchanger 104, and becomes a gas refrigerant. Then, the refrigerant is sucked from the suction pipe 15 of the compressor 101 through the four-way valve 103 and the accumulator 106, and circulated by being pressurized and discharged as described above.

以上のように実施の形態5では、上述した実施の形態に係る巻線3の接続部分が少ない圧縮機101を用いて冷凍サイクル装置である空気調和装置を構成するようにしたので、空気調和装置の中で特に重要な圧縮機101において、信頼性が高く、加工コストの低減を図ることができるため、空気調和装置全体としても信頼性が高く、コスト低減を図ることができる。   As described above, in the fifth embodiment, the air conditioner that is a refrigeration cycle apparatus is configured using the compressor 101 having a small number of connecting portions of the winding 3 according to the above-described embodiment. Among them, the compressor 101, which is particularly important, has high reliability and can reduce the processing cost. Therefore, the air conditioner as a whole has high reliability and can reduce the cost.

実施の形態5.
上述の実施の形態4では冷凍サイクル装置として空気調和装置について説明したが、之に限るものではない。例えば、冷凍、冷蔵倉庫等に利用する冷却装置、ヒートポンプ装置等にも利用することができる。
Embodiment 5. FIG.
In the above-described fourth embodiment, the air conditioner has been described as the refrigeration cycle apparatus, but is not limited thereto. For example, the present invention can also be used for a cooling device, a heat pump device, and the like used for freezing and refrigerated warehouses.

この発明の実施の形態1に係る圧縮機20を示す縦断面図である。It is a longitudinal cross-sectional view which shows the compressor 20 which concerns on Embodiment 1 of this invention. 実施の形態1に係る固定子を上面から見たときの概略図である。It is the schematic when the stator which concerns on Embodiment 1 is seen from the upper surface. この発明の電動機10の電気回路図である。It is an electric circuit diagram of the electric motor 10 of this invention. 実施の形態1に係る固定子を上面から見たときの概略図である。It is the schematic when the stator which concerns on Embodiment 1 is seen from the upper surface. 実施の形態4に係る冷凍サイクル装置の構成図である。6 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4. FIG.

符号の説明Explanation of symbols

1 積層鉄心、2 絶縁部材、3 巻線、3a端末(巻き始め)、3b端末(巻き終わり)、4 接続部、5 リード線、6 接続部絶縁部材、7 コネクタ端子、8 固定子、9 主軸、10 電動機、11 密閉容器、12 圧縮機機構部、13 電源入力部、14 吸入管、15 吐出管、16 潤滑油、100 熱源側ユニット、20,101 圧縮機、102 油分離器、103 四方弁、104 熱源側熱交換機、105 熱源側ファン、106 アキュムレータ、107 熱源側絞り装置、108 冷媒間熱交換器、109 バイパス絞り装置、110 熱源側制御装置、200 負荷側ユニット、201 負荷側熱交換器、202 負荷側絞り装置、203 負荷側ファン、204 負荷側制御装置、300 ガス配管、400 液配管。   DESCRIPTION OF SYMBOLS 1 Laminated iron core, 2 Insulation member, 3 Winding, 3a terminal (winding start), 3b terminal (winding end), 4 Connection part, 5 Lead wire, 6 Connection part insulation member, 7 Connector terminal, 8 Stator, 9 Spindle DESCRIPTION OF SYMBOLS 10 Electric motor, 11 Airtight container, 12 Compressor mechanism part, 13 Power supply input part, 14 Intake pipe, 15 Discharge pipe, 16 Lubricating oil, 100 Heat source side unit, 20, 101 Compressor, 102 Oil separator, 103 Four way valve 104 heat source side heat exchanger, 105 heat source side fan, 106 accumulator, 107 heat source side expansion device, 108 heat exchanger between refrigerants, 109 bypass expansion device, 110 heat source side control device, 200 load side unit, 201 load side heat exchanger 202 load side throttle device, 203 load side fan, 204 load side control device, 300 gas piping, 400 liquid piping.

Claims (5)

分割された積層鉄心に絶縁部材を介して巻線を巻き付け、所定数の前記積層鉄心を環状に結合して形成した固定子、各積層鉄心に巻き付けられた巻線の各端末をすべて入力電源と接続して並列回路のデルタ結線としたときの接続部分を絶縁するための絶縁部材、及び前記入力電源からの通電により発生した回転磁界により回転子と共に回転する主軸を有する電動機と、
前記主軸の回転により駆動して圧縮対象を圧縮する圧縮機構部と
を密閉容器に収容することを特徴とする圧縮機。
A winding is wound around the divided laminated core through an insulating member, a stator formed by annularly connecting a predetermined number of the laminated cores, and each terminal of the winding wound around each laminated core is used as an input power source. An insulating member for insulating a connecting portion when connected to form a delta connection of a parallel circuit, and an electric motor having a main shaft that rotates with a rotor by a rotating magnetic field generated by energization from the input power source,
A compressor characterized in that a compression mechanism that is driven by the rotation of the main shaft to compress the object to be compressed is housed in a sealed container.
分割された積層鉄心に絶縁部材を介して巻線を巻き付け、所定数の前記積層鉄心を環状に結合して形成した固定子、各積層鉄心に巻き付けられた巻線の各端末をすべて入力電源と接続して並列回路のデルタ結線としたときに、前記各端末が直接接続され、前記各端末と前記入力電源との接続を図るコネクタ端子、及び入力電源からの通電により発生した回転磁界により回転子と共に回転する主軸を有する電動機と、
前記主軸の回転により駆動して圧縮対象を圧縮する圧縮機構部と
を密閉容器に収容することを特徴とする圧縮機。
A winding is wound around the divided laminated core through an insulating member, a stator formed by annularly connecting a predetermined number of the laminated cores, and each terminal of the winding wound around each laminated core is used as an input power source. When connected to form a delta connection in a parallel circuit, each terminal is directly connected, a connector terminal for connecting each terminal to the input power supply, and a rotor by a rotating magnetic field generated by energization from the input power supply An electric motor having a spindle that rotates with
A compressor characterized in that a compression mechanism that is driven by the rotation of the main shaft to compress the object to be compressed is housed in a sealed container.
容器に前記電動機が収容された位置よりも上側の位置で、前記巻線の各端末の接続がなされていることを特徴とする請求項1又は2記載の圧縮機。   3. The compressor according to claim 1, wherein each end of the winding is connected at a position above the position where the electric motor is housed in a container. 前記電動機が収容された位置よりも上側で、かつ圧縮対象を取り入れるために前記容器に設けられた吸入口の位置に対し、前記主軸を中心として略線対称となる位置において、前記巻線の各端末の接続がなされていることを特徴とする請求項1又は2記載の圧縮機。   Each of the windings is positioned above the position where the electric motor is housed and is substantially line symmetric about the main axis with respect to the position of the suction port provided in the container for taking in the object to be compressed. 3. The compressor according to claim 1, wherein a terminal is connected. 請求項1〜4記載のいずれかに記載され、冷媒を圧縮する圧縮機と、
熱交換により前記冷媒を凝縮する凝縮器と、
凝縮された冷媒を減圧させるための絞り装置と、
減圧した前記冷媒と空気とを熱交換して前記冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成することを特徴とする冷凍サイクル装置。
A compressor according to any one of claims 1 to 4, which compresses a refrigerant;
A condenser that condenses the refrigerant by heat exchange;
A throttle device for reducing the pressure of the condensed refrigerant;
A refrigeration cycle device comprising a refrigerant circuit configured by pipe-connecting an evaporator for evaporating the refrigerant by exchanging heat between the decompressed refrigerant and air.
JP2007063581A 2007-03-13 2007-03-13 Compressor and refrigeration cycle apparatus Expired - Fee Related JP5004620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063581A JP5004620B2 (en) 2007-03-13 2007-03-13 Compressor and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063581A JP5004620B2 (en) 2007-03-13 2007-03-13 Compressor and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2008223621A true JP2008223621A (en) 2008-09-25
JP5004620B2 JP5004620B2 (en) 2012-08-22

Family

ID=39842522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063581A Expired - Fee Related JP5004620B2 (en) 2007-03-13 2007-03-13 Compressor and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP5004620B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207997A (en) * 2012-03-29 2013-10-07 Aichi Elec Co Stator and electric motor
WO2014102950A1 (en) * 2012-12-27 2014-07-03 株式会社 日立製作所 Rotating electrical machine
WO2016181445A1 (en) * 2015-05-08 2016-11-17 三菱電機株式会社 Compressor
WO2016194840A1 (en) * 2015-05-29 2016-12-08 デンソートリム株式会社 Rotating electrical machine
CN106787345A (en) * 2017-01-24 2017-05-31 广东美芝制冷设备有限公司 Stator module and the compressor with it
JP2020522225A (en) * 2017-05-31 2020-07-27 広東美芝制冷設備有限公司 Motor stator for compressor, permanent magnet motor and compressor
US10873240B2 (en) 2017-06-15 2020-12-22 Samsung Electronics Co., Ltd. Motor
JPWO2019244259A1 (en) * 2018-06-19 2021-04-22 東芝キヤリア株式会社 Compressor and refrigeration cycle equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232746A (en) * 1999-02-10 2000-08-22 Toshiba Corp Stator for compressor motor and motor-driven compressor
JP2002044892A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Electric motor and electric compressor mounted with this electric motor
JP2002153003A (en) * 2000-11-13 2002-05-24 Nippon Densan Corp Stator for motor
JP2002300745A (en) * 2001-03-30 2002-10-11 Fuji Electric Co Ltd Wire connection device for stator coil of rotary electric machine
JP2003097439A (en) * 2001-09-27 2003-04-03 Hitachi Ltd Hermetic electric compressor
JP2005237110A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Stator of motor and method for manufacturing same
JP2006033950A (en) * 2004-07-14 2006-02-02 Mitsubishi Electric Corp Armature of dynamo-electric machine
JP2006180698A (en) * 2006-03-17 2006-07-06 Mitsubishi Electric Corp Electric motor, freezing/air-conditioning apparatus, manufacturing method of the electric motor, and metallic mold apparatus of the electric motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232746A (en) * 1999-02-10 2000-08-22 Toshiba Corp Stator for compressor motor and motor-driven compressor
JP2002044892A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Electric motor and electric compressor mounted with this electric motor
JP2002153003A (en) * 2000-11-13 2002-05-24 Nippon Densan Corp Stator for motor
JP2002300745A (en) * 2001-03-30 2002-10-11 Fuji Electric Co Ltd Wire connection device for stator coil of rotary electric machine
JP2003097439A (en) * 2001-09-27 2003-04-03 Hitachi Ltd Hermetic electric compressor
JP2005237110A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Stator of motor and method for manufacturing same
JP2006033950A (en) * 2004-07-14 2006-02-02 Mitsubishi Electric Corp Armature of dynamo-electric machine
JP2006180698A (en) * 2006-03-17 2006-07-06 Mitsubishi Electric Corp Electric motor, freezing/air-conditioning apparatus, manufacturing method of the electric motor, and metallic mold apparatus of the electric motor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207997A (en) * 2012-03-29 2013-10-07 Aichi Elec Co Stator and electric motor
JPWO2014102950A1 (en) * 2012-12-27 2017-01-12 株式会社日立製作所 Rotating electric machine
WO2014102950A1 (en) * 2012-12-27 2014-07-03 株式会社 日立製作所 Rotating electrical machine
CN104782032A (en) * 2012-12-27 2015-07-15 株式会社日立制作所 Rotating electrical machine
WO2016181445A1 (en) * 2015-05-08 2016-11-17 三菱電機株式会社 Compressor
JP6087038B1 (en) * 2015-05-29 2017-03-01 デンソートリム株式会社 Rotating electric machine
WO2016194840A1 (en) * 2015-05-29 2016-12-08 デンソートリム株式会社 Rotating electrical machine
CN106787345A (en) * 2017-01-24 2017-05-31 广东美芝制冷设备有限公司 Stator module and the compressor with it
CN106787345B (en) * 2017-01-24 2024-04-12 广东美芝制冷设备有限公司 Stator assembly and compressor with same
JP2020522225A (en) * 2017-05-31 2020-07-27 広東美芝制冷設備有限公司 Motor stator for compressor, permanent magnet motor and compressor
US11418081B2 (en) 2017-05-31 2022-08-16 Guangdong Meizhi Compressor Co., Ltd. Motor stator for compressor, permanent magnet motor, and compressor
US10873240B2 (en) 2017-06-15 2020-12-22 Samsung Electronics Co., Ltd. Motor
JPWO2019244259A1 (en) * 2018-06-19 2021-04-22 東芝キヤリア株式会社 Compressor and refrigeration cycle equipment
JP7087076B2 (en) 2018-06-19 2022-06-20 東芝キヤリア株式会社 Compressor and refrigeration cycle equipment

Also Published As

Publication number Publication date
JP5004620B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5004620B2 (en) Compressor and refrigeration cycle apparatus
CN109863691A (en) The control method of air conditioner and air conditioner
CN109863690A (en) The driving method of driving device, air conditioner and motor
CN109863686A (en) The driving method of driving device, air conditioner and motor
CN107532825A (en) Refrigerating circulatory device
EP2207254A2 (en) Hermetic compressor and refrigerating cycle apparatus
US20170045268A1 (en) Electric motor, hermetic compressor, and refrigeration cycle apparatus
CN102278294B (en) Displacement compressor
JP2016085005A (en) Refrigeration cycle device
US10027191B2 (en) Compressor, heat pump device, air conditioner, and freezing machine
CN109863688B (en) Drive device, air conditioner, and compressor control method
CN106797146B (en) Motor, compressor and refrigerating circulatory device
CN109155544B (en) Stator, motor, compressor, and refrigeration and air-conditioning apparatus
US10110101B2 (en) Single-phase induction motor, hermetic compressor, and refrigeration cycle device
WO2020170390A1 (en) Motor, compressor, and air conditioning device
CN110651158B (en) Air conditioner and operation control method for air conditioner
JP5117218B2 (en) Hermetic compressor and refrigeration cycle apparatus
CN113785165B (en) Heating, ventilation, air conditioning, and/or refrigeration system with compressor motor cooling system
US20230231456A1 (en) Electric motor, driving device, compressor, and air conditioner
JP5558204B2 (en) Electric motor and compressor equipped with the same
JP4134899B2 (en) Refrigeration air conditioner
CN204578237U (en) Motor, hermetic type compressor and refrigerating circulatory device
CN108475955A (en) The manufacturing method of motor, compressor, refrigerating circulatory device and motor
JP6906138B2 (en) Refrigeration cycle equipment
JP2010053786A (en) Hermetic compressor and refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees