JP2008223092A - Mold-press-forming die, manufacturing method therefor, and method for manufacturing optical glass element - Google Patents

Mold-press-forming die, manufacturing method therefor, and method for manufacturing optical glass element Download PDF

Info

Publication number
JP2008223092A
JP2008223092A JP2007063483A JP2007063483A JP2008223092A JP 2008223092 A JP2008223092 A JP 2008223092A JP 2007063483 A JP2007063483 A JP 2007063483A JP 2007063483 A JP2007063483 A JP 2007063483A JP 2008223092 A JP2008223092 A JP 2008223092A
Authority
JP
Japan
Prior art keywords
mold
carbon
press
lower molds
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007063483A
Other languages
Japanese (ja)
Other versions
JP5155579B2 (en
Inventor
Masaru Uno
賢 宇野
Shinichiro Inamura
信一郎 稲村
Hiroyuki Sawada
浩之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2007063483A priority Critical patent/JP5155579B2/en
Publication of JP2008223092A publication Critical patent/JP2008223092A/en
Application granted granted Critical
Publication of JP5155579B2 publication Critical patent/JP5155579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold-press-forming die which has a pair of upper and lower dies and a trunk die for accommodating the pair therein, extremely adequately releases a glass material from the die even when the glass material contacts the internal circumferential surface of the trunk die in a press forming operation, does not cause such problems as the poor extraction, cracks and inadequate shape of a formed body, and as the damage and fracture of the inner surface of the trunk die, even when the article to be formed is continuously press-formed, and is superior in durability; a manufacturing method therefor; and a method for manufacturing an optical glass element by using the mold-press-forming die. <P>SOLUTION: The method for manufacturing the mold-press-forming die comprises the steps of: arranging a cylindrical trunk die 30 in a state of inserting a bar-type electrode 113 through a hollow center in the internal circumferential surface side of the trunk die, in a reaction vessel 110 having plasma-generating sources 114 and 115 therein; exhausting an atmospheric gas in the reaction vessel 110; introducing a gaseous film-forming material containing carbon into the reaction vessel 110; converting the material into plasma to produce charged particles of carbon; simultaneously applying negative bias voltage to the bar-type electrode 113 to introduce the charged particles of carbon to the internal circumferential surface of the trunk die 30 and form a carbon-containing film on the internal circumferential surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、研磨などの機械加工を必要とせずに、ガラスプリフォームなどのガラス素材、又はガラスを含む複合素材をプレス成形して、ガラスレンズに代表されるようなガラス光学素子を製造するためのモールドプレス成形型、及びその製造方法、並びにガラス光学素子の製造方法に関する。   The present invention is to produce a glass optical element represented by a glass lens by press-molding a glass material such as a glass preform or a composite material containing glass without requiring machining such as polishing. The present invention relates to a mold press mold, a manufacturing method thereof, and a manufacturing method of a glass optical element.

ガラスプリフォームなどのガラス素材、又はガラスを含む複合素材を、精密加工を施した成形型によってプレス成形してガラスレンズを製造するモールドプレス成形によれば、研磨などの機械加工を必要とせずに、複雑な作業工程を簡略化して、簡易、かつ、安価にガラスレンズを製造することができる。
そして、近年にあっては、ガラスレンズに限らず、プリズム、ミラー、グレーティングなどのような、その他のガラス光学素子の製造にも、モールドプレス成形が広く利用されるようになってきている。
According to mold press molding in which glass materials such as glass preforms or composite materials containing glass are press-molded with a precision-molded mold to produce glass lenses, no mechanical processing such as polishing is required. A complicated working process can be simplified, and a glass lens can be manufactured easily and inexpensively.
In recent years, mold press molding has been widely used not only for manufacturing glass lenses but also for manufacturing other glass optical elements such as prisms, mirrors, and gratings.

このようなモールドプレス成形にあっては、対向する成形面を備えた一対の上下型の間でガラス素材をプレスし、上下型の成形面形状を転写することによってガラス光学素子を製造するが、この際、一般には、上下型の軸ずれを防止して、プレス軸に直交する方向の相互位置を規制する胴型が併せて用いられている。また、このような胴型は、プレス成形後のガラス光学素子の芯取り加工を不要とするために、その内周面がガラス光学素子の外周形状を規制するように用いられることもある。   In such a mold press molding, a glass optical element is manufactured by pressing a glass material between a pair of upper and lower molds having opposed molding surfaces and transferring the molding surface shape of the upper and lower molds, In this case, generally, a cylinder die that prevents the vertical axis from being displaced and restricts the mutual position in the direction orthogonal to the press axis is also used. Moreover, in order to eliminate the need for centering the glass optical element after press molding, such a barrel mold may be used so that the inner peripheral surface thereof regulates the outer peripheral shape of the glass optical element.

しかしながら、プレス成形中に、胴型の内周面にガラス素材が接触すると、ガラス素材が融着して、ガラス成形品の取り出し不良や、割れ、形状不良などの欠陥、さらには、胴型内面の損傷や破壊などの問題が発生するおそれがある。
この対策として、特許文献1〜3などにおいて、少なくともガラス素材が接触する胴型内周面に、ガラス素材の融着を防止するための処理を施すことが提案されている。
However, when the glass material comes into contact with the inner peripheral surface of the body mold during press molding, the glass material is fused, and defects such as defective take-out of glass molded products, cracks and shape defects, and the inner surface of the body mold May cause problems such as damage or destruction.
As a countermeasure against this, Patent Documents 1 to 3 and the like propose that at least the body inner peripheral surface with which the glass material is in contact be subjected to a process for preventing the glass material from being fused.

特開平6−144849公報Japanese Patent Laid-Open No. 6-1444849 特開平9−235127公報JP 9-235127 A 特開平9−31655公報JP-A-9-31655

ここで、特許文献1には、胴型内面の少なくとも、成形時に光学素子材料と接触する部分に炭素質薄膜を設けた光学素子の成形装置が開示されている。そして、炭素質薄膜の形成方法としては、1)カーボンブラック、黒鉛、木炭などを押し当てこすりつける、2)蒸着による、3)油、その他の有機物を塗布し、これを高温処理して煤化する、4)ろうそく、木材など、燃焼により煤を発生する材料を燃焼させる方法が例示されている。   Here, Patent Document 1 discloses an optical element molding apparatus in which a carbonaceous thin film is provided on at least a part of the inner surface of the body mold that contacts the optical element material during molding. And, as a method for forming the carbonaceous thin film, 1) press and rub carbon black, graphite, charcoal, etc., 2) by vapor deposition, 3) apply oil and other organic substances, and heat this to hatch. 4) The method of burning the material which produces soot by combustion, such as a candle and wood, is illustrated.

しかしながら、これらの形成方法では、炭素質薄膜の膜厚が不均一になったり、未成膜の箇所が発生したりするおそれがある。さらに、形成された炭素質薄膜と胴型内面との密着性に劣り、光学素子の成形時に炭素質薄膜が剥離してしまうおそれがあり、十分な耐久性が得られない。   However, in these forming methods, there is a possibility that the film thickness of the carbonaceous thin film becomes non-uniform or an unfilmed portion is generated. Further, the adhesion between the formed carbon thin film and the inner surface of the body mold is inferior, and the carbon thin film may be peeled off when the optical element is molded, so that sufficient durability cannot be obtained.

また、特許文献2には、少なくとも加熱軟化したガラス素材と接触する面に対して、イオン注入により炭素、あるいは窒化ホウ素の離型膜が形成された胴型が開示されている。   Patent Document 2 discloses a body mold in which a release film of carbon or boron nitride is formed by ion implantation on at least a surface in contact with a heat-softened glass material.

しかしながら、このようなイオン注入による成膜法にあっては、その蒸着方向が胴型内面の円筒面に対してほぼ平行となるため、離型膜を内周面に成膜し難く、所望の膜厚の離型膜を形成することができない。   However, in such a film formation method by ion implantation, since the deposition direction is substantially parallel to the cylindrical surface of the inner surface of the body mold, it is difficult to form a release film on the inner peripheral surface. A release film having a film thickness cannot be formed.

また、特許文献3には、円筒状の試料の内周面に硬質カーボン膜を成膜するにあたり、試料の開口内面に直流正電位に接続する補助電極を挿入するように試料を真空槽内に配置し、真空槽内を排気後、炭素を含むガスを真空槽内に導入し、試料に直流電圧、又は高周波を印加し、アノードに直流電圧を印加し、フィラメントに交流電圧を印加してプラズマを発生させて試料に硬質カーボン膜を形成する硬質カーボン膜の形成方法が開示されている。   Further, in Patent Document 3, when forming a hard carbon film on the inner peripheral surface of a cylindrical sample, the sample is placed in a vacuum chamber so that an auxiliary electrode connected to a DC positive potential is inserted into the inner surface of the opening of the sample. After placing and evacuating the vacuum chamber, a gas containing carbon is introduced into the vacuum chamber, a DC voltage or a high frequency is applied to the sample, a DC voltage is applied to the anode, and an AC voltage is applied to the filament. A method for forming a hard carbon film is disclosed in which a hard carbon film is formed on a sample by generating the above.

しかしながら、このような方法にあっては、同電位の電極どうしが対向している試料の開口内面に、直流正電位に接続する補助電極を設けることにより、同電位どうしが対向しないようにして、ホーロー放電など異常放電を防止するものである。したがって、特許文献3に開示された方法は、試料に電圧が印加されるのを前提とするものであるから、セラミック材などの非導電性の試料に対しては、そのまま適用することができない。さらに、試料の開口内面に直流正電位に接続する補助電極を挿入すると、正電荷を帯びてプラズマ化した炭素荷電粒子が補助電極の周囲に集まり難くなってしまうため、試料の開口内面への硬質カーボン膜の形成が著しく阻害されてしまう。   However, in such a method, by providing an auxiliary electrode connected to a DC positive potential on the inner surface of the opening of the sample where the electrodes having the same potential are opposed to each other, This is to prevent abnormal discharge such as enamel discharge. Therefore, since the method disclosed in Patent Document 3 is based on the premise that a voltage is applied to the sample, it cannot be applied as it is to a non-conductive sample such as a ceramic material. Furthermore, if an auxiliary electrode connected to a DC positive potential is inserted into the inner surface of the sample opening, the carbon charged particles that are positively charged and turned into plasma will not easily collect around the auxiliary electrode. The formation of the carbon film is significantly inhibited.

本発明は、上記の事情に鑑みなされたものであり、一対の上下型と、これらを収容して同軸性を確保する胴型とを備えた成形型において、ガラス素材が接触する胴型の内周面、特に、SiCなどの非導電性材料からなる胴型の内周面に離型膜を良好に形成することによって、プレス成形中にガラス素材が胴型内周面に接触しても、胴型の内周面からのガラス素材の離型が極めてよく、連続プレス成形を行っても成形体の取り出し不良、ワレや形状不良などの欠陥、さらには、胴型内周面の損傷や破壊などの問題が生じない耐久性に優れたモールドプレス成形型、及びそのようなモールドプレス成形型の製造方法、並びにそのようなモールドプレス成形型を用いたガラス光学素子の製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and is a molding die that includes a pair of upper and lower molds and a trunk mold that accommodates these to ensure coaxiality. Even if the glass material comes into contact with the inner peripheral surface of the barrel mold during press molding by forming the release film well on the peripheral surface, particularly the inner peripheral surface of the barrel mold made of a non-conductive material such as SiC, The release of the glass material from the inner peripheral surface of the body mold is extremely good, and even if continuous press molding is performed, defects such as defective removal of the molded body, cracks and shape defects, as well as damage or destruction of the inner surface of the body mold The purpose of the present invention is to provide a mold press mold excellent in durability that does not cause such problems, a method for producing such a mold press mold, and a method for producing a glass optical element using such a mold press mold To do.

上記目的を達成するため本発明のモールドプレス成形型の製造方法は、互いに対向する成形面を有する一対の上下型と、前記上下型を収容するとともに、前記上下型のプレス軸に直交する方向の相互位置を規制する胴型とを備えたモールドプレス成形型を製造するにあたり、プラズマ発生源を備えた反応容器内に、筒状に形成された前記胴型の内周面側の中空部に棒状電極が挿通された状態で前記胴型を配置し、次いで、前記反応容器内の雰囲気ガスを排気した後、前記反応容器内に炭素を含むガス状の成膜材料を導入してプラズマ化することによって炭素荷電粒子を生成するとともに、前記棒状電極にバイアス電圧を印加して、前記炭素荷電粒子を前記胴型の内周面に誘導して炭素含有膜を形成する方法としてある。
こうような方法とした本発明に係るモールドプレス成形型の製造方法によれば、筒状に形成された胴型の内周面に、炭素含有膜を良好に形成することができる。
In order to achieve the above object, a method for manufacturing a mold press mold according to the present invention includes a pair of upper and lower molds having molding surfaces facing each other, and the upper and lower molds, and a direction perpendicular to the press axis of the upper and lower molds. In manufacturing a mold press mold having a barrel mold that regulates the mutual position, a cylindrical shape is formed in a hollow portion on the inner peripheral surface side of the barrel mold in a reaction vessel equipped with a plasma generation source. The cylinder mold is arranged with the electrodes inserted, and then the atmospheric gas in the reaction vessel is exhausted, and then a gaseous film-forming material containing carbon is introduced into the reaction vessel to form plasma. In this method, carbon charged particles are generated by applying a bias voltage to the rod-shaped electrode, and the carbon charged particles are guided to the inner peripheral surface of the body mold to form a carbon-containing film.
According to the method of manufacturing a mold press mold according to the present invention as described above, a carbon-containing film can be satisfactorily formed on the inner peripheral surface of a cylindrical mold.

また、本発明のモールドプレス成形型の製造方法は、前記胴型の内周面のうち、前記上下型がガラス素材をプレスしたときに前記ガラス素材が接触する面に、前記炭素含有膜を形成する方法とすることができる。
このような方法とすれば、プレス成形中にガラス素材が胴型内周面に接触しても、胴型内周面からのガラス素材の離型が極めてよく、連続プレス成形を行っても成形体の取り出し不良、ワレや形状不良などの欠陥、さらには、胴型内面の損傷や破壊などの問題が生じない耐久性に優れたモールドプレス成形型を製造することができる。
Further, in the method for producing a mold press mold of the present invention, the carbon-containing film is formed on a surface of the inner peripheral surface of the body mold that comes into contact with the glass material when the upper and lower molds press the glass material. It can be a method to do.
With such a method, even if the glass material comes into contact with the inner peripheral surface of the body mold during press molding, the glass material is very well released from the inner peripheral surface of the body mold. It is possible to manufacture a mold press mold excellent in durability that does not cause defects such as defective body takeout, cracks and shape defects, and damage and destruction of the inner surface of the body mold.

また、上下型と胴型内周面との摺動性を向上させるために、前記胴型の内側面のうち、前記上下型の両方、又はいずれか一方が摺動する面に、前記炭素含有膜を形成するようにしてもよい。   Further, in order to improve the slidability between the upper and lower molds and the inner peripheral surface of the trunk mold, among the inner surfaces of the trunk mold, both the upper and lower molds, or the surface on which either one slides, the carbon-containing A film may be formed.

また、本発明のモールドプレス成形型は、互いに対向する成形面を有する一対の上下型と、前記上下型を収容するとともに、前記上下型のプレス軸に直交する方向の相互位置を規制する筒状の胴型とを備えたモールドプレス成形型であって、プラズマ発生源を備えた反応容器内に、筒状に形成された前記胴型の内周面側の中空部に棒状電極が挿通された状態で前記胴型を配置し、次いで、前記反応容器内の雰囲気ガスを排気した後、前記反応容器内に炭素を含むガス状の成膜材料を導入してプラズマ化することによって炭素荷電粒子を生成するとともに、前記棒状電極にバイアス電圧を印加して、前記炭素荷電粒子を前記胴型の内周面に誘導して炭素含有膜を形成してなる構成としてある。
こうような構成とした本発明に係るモールドプレス成形型は、筒状に形成された胴型の内周面に、炭素含有膜が良好に形成されたものとすることができる。
The mold press mold of the present invention is a cylindrical shape that accommodates a pair of upper and lower molds having molding surfaces facing each other and the upper and lower molds, and restricts the mutual position in a direction perpendicular to the press axis of the upper and lower molds. A rod-shaped electrode was inserted into a hollow portion on the inner peripheral surface side of the cylindrical mold formed in a reaction vessel equipped with a plasma generation source. The barrel mold is placed in a state, and then the atmospheric gas in the reaction vessel is exhausted, and then the carbon charged particles are converted into plasma by introducing a gaseous film-forming material containing carbon into the reaction vessel. In addition, the carbon-containing film is formed by applying a bias voltage to the rod-shaped electrode to induce the carbon charged particles to the inner peripheral surface of the body shape.
In the mold press mold according to the present invention having such a configuration, the carbon-containing film can be satisfactorily formed on the inner peripheral surface of the cylindrical mold.

また、本発明のモールドプレス成形型は、前記胴型の内周面のうち、前記上下型がガラス素材をプレスしたときに前記ガラス素材が接触する面に、前記炭素含有膜が形成された構成とすることができる。
このような構成とすれば、プレス成形中にガラス素材が胴型内周面に接触しても、胴型内周面からのガラス素材の離型が極めてよく、連続プレス成形を行っても成形体の取り出し不良、ワレや形状不良などの欠陥、さらには、胴型内面の損傷や破壊などの問題が生じない耐久性に優れたモールドプレス成形型とすることができる。
Further, the mold press mold of the present invention has a configuration in which the carbon-containing film is formed on the surface of the inner peripheral surface of the barrel mold that comes into contact with the glass material when the upper and lower molds press the glass material. It can be.
With such a configuration, even if the glass material comes into contact with the inner peripheral surface of the barrel mold during press molding, the release of the glass material from the inner peripheral surface of the barrel mold is extremely good, and molding is performed even if continuous press molding is performed. It is possible to provide a mold press mold having excellent durability that does not cause defects such as defective body takeout, cracks and shape defects, and damage and destruction of the inner surface of the body mold.

また、本発明のモールドプレス成形型は、前記胴型の内側面のうち、前記上下型の両方、又はいずれか一方が摺動する面に、前記炭素含有膜が形成された構成とすることができる。
このような構成とすれば、上下型と胴型内周面との摺動性を向上させることができる。
Further, the mold press mold of the present invention may be configured such that the carbon-containing film is formed on a surface on which either one or both of the upper and lower molds slide, among the inner surface of the body mold. it can.
With such a configuration, the slidability between the upper and lower molds and the inner periphery of the trunk mold can be improved.

また、本発明のモールドプレス成形型は、前記胴型が、炭化珪素のような非導電性材料からなるものである場合、胴型内周面に炭素含有膜をきわめて良好に形成することができる。   The mold press mold of the present invention can form a carbon-containing film very well on the inner peripheral surface of the body mold when the body mold is made of a nonconductive material such as silicon carbide. .

また、本発明のガラス光学素子の製造方法は、互いに対向する成形面を有する一対の上下型と、前記上下型を収容するとともに、前記上下型のプレス軸に直交する方向の相互位置を規制する筒状の胴型とを備えたモールドプレス成形型であって、プラズマ発生源を備えた反応容器内に、前記胴型を内周面側の中空部に棒状電極が挿通された状態で配置し、次いで、前記反応容器内の雰囲気ガスを排気した後に、前記反応容器内に炭素を含むガス状の成膜材料を導入してプラズマ化することによって炭素荷電粒子を生成するとともに、前記棒状電極にバイアス電圧を印加して、前記炭素荷電粒子を前記胴型の内周面に誘導して炭素含有膜を形成してなるモールドプレス成形型を用いて、前記上下型の間にガラス素材を供給してプレス成形することにより、所定形状のガラス光学素子を得る方法としてある。
このような方法とすれば、プレス成形中にガラス素材が胴型内周面に接触しても、胴型内周面からのガラス素材の離型が極めてよく、連続プレス成形を行っても成形体の取り出し不良、ワレや形状不良などの欠陥、さらには、胴型内面の損傷や破壊などの問題が生じることなく、ガラス光学素子を良好に製造することができる。
Further, the glass optical element manufacturing method of the present invention accommodates a pair of upper and lower molds having molding surfaces facing each other and the upper and lower molds, and regulates the mutual position in a direction perpendicular to the press axis of the upper and lower molds. A mold press mold having a cylindrical body mold, wherein the body mold is disposed in a reaction vessel equipped with a plasma generation source in a state where a rod-shaped electrode is inserted into a hollow portion on the inner peripheral surface side. Then, after exhausting the atmospheric gas in the reaction vessel, a gaseous film-forming material containing carbon is introduced into the reaction vessel to generate plasma, thereby generating carbon charged particles, and the rod-like electrode. A glass material is supplied between the upper and lower molds by applying a bias voltage and using a mold press mold in which the carbon charged particles are guided to the inner peripheral surface of the barrel mold to form a carbon-containing film. Press molding Accordingly, there is a method to obtain a glass optical element having a predetermined shape.
With such a method, even if the glass material comes into contact with the inner peripheral surface of the body mold during press molding, the glass material is very well released from the inner peripheral surface of the body mold. A glass optical element can be produced satisfactorily without causing defects such as defective body removal, cracks and defective shapes, and problems such as damage and destruction of the inner surface of the body mold.

以上のように、本発明によれば、筒状に形成された胴型の内周面に、耐久性に優れた炭素含有膜を良好に形成することができ、プレス成形中にガラス素材が胴型内周面に接触しても、胴型内周面からのガラス素材の離型が極めてよく、連続プレス成形を行っても成形体の取り出し不良、ワレや形状不良などの欠陥、さらには、胴型内面の損傷や破壊などの問題が生じることなく、ガラス光学素子を良好に製造することができる。   As described above, according to the present invention, it is possible to satisfactorily form a carbon-containing film having excellent durability on the inner peripheral surface of a cylindrical mold, and the glass material is formed into a cylinder during press molding. Even if it comes into contact with the inner peripheral surface of the mold, the release of the glass material from the inner peripheral surface of the body mold is very good, and even if continuous press molding is performed, defects such as defective take-out of molded products, cracks and defective shapes, A glass optical element can be manufactured satisfactorily without causing problems such as damage or destruction of the inner surface of the body mold.

以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。
なお、図1は、本実施形態に係るモールドプレス成形型(以下、「成形型」という)を示す概略断面図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a mold press mold (hereinafter referred to as a “mold”) according to the present embodiment.

図1に示す成形型は、上型10、下型20、及び胴型30を備えている。これらの型部材は、SiC,WC,TiC,TaC,BN,TiN,AlN,Si,Al,ZrOなどのセラミック材を用いて形成することができるが、高温時の耐酸化性や耐熱性、プレス成形時の耐衝撃性(機械的強度)の観点から炭化珪素(SiC)を用いて形成されたものであるのが特に好ましい。 The mold shown in FIG. 1 includes an upper mold 10, a lower mold 20, and a body mold 30. These mold members can be formed using ceramic materials such as SiC, WC, TiC, TaC, BN, TiN, AlN, Si 3 N 4 , Al 2 O 3 , and ZrO 2 , but are resistant to acid at high temperatures. It is particularly preferable that it is formed using silicon carbide (SiC) from the viewpoints of heat resistance, heat resistance, and impact resistance (mechanical strength) during press molding.

図示する例において、上型10は、成形面11が形成された小径部12と、成形面11より径の大きい大径部13とが同軸に配されている。そして、胴型30の内周形状をこれに対応させることによって、小径部12と大径部13のそれぞれの側面が、胴型30の内周面に接触するようになっている。   In the example shown in the drawing, the upper mold 10 has a small-diameter portion 12 on which a molding surface 11 is formed and a large-diameter portion 13 having a larger diameter than the molding surface 11 arranged coaxially. And by making the inner peripheral shape of the trunk mold 30 correspond to this, the respective side surfaces of the small diameter part 12 and the large diameter part 13 come into contact with the inner peripheral surface of the trunk mold 30.

下型20も同様に、成形面21が形成された小径部22と、成形面21より大きな径の大径部23とを同軸に配した形状となっており、胴型30の内周形状を対応させて、小径部22と大径部23のそれぞれの側面が、胴型30の内周面に接触するようにしてあるとともに、大径部23の下方には、フランジ部24が同軸に配されている。   Similarly, the lower die 20 has a shape in which a small-diameter portion 22 formed with a molding surface 21 and a large-diameter portion 23 having a larger diameter than the molding surface 21 are arranged coaxially. Correspondingly, the side surfaces of the small-diameter portion 22 and the large-diameter portion 23 are in contact with the inner peripheral surface of the body mold 30, and the flange portion 24 is coaxially arranged below the large-diameter portion 23. Has been.

なお、上下型10,20のそれぞれに形成される成形面11,21は、成形しようとするガラスレンズ、プリズム、ミラー、グレーティングなどの光学素子の形状をもとに、精密な形状加工を施すことによって形成することができ、図示する形状には限られない。   The molding surfaces 11 and 21 formed on the upper and lower molds 10 and 20 are subjected to precise shape processing based on the shapes of optical elements such as glass lenses, prisms, mirrors, and gratings to be molded. The shape is not limited to the illustrated shape.

上下型10,20は、それぞれに形成された成形面11,21が互いに向き合うように胴型30内に収容され、上下型10,20が相互に近接することによって、これらの間に供給されたガラス素材50をプレス成形する。また、胴型30は、プレス成形に際して、上下型10,20のプレス軸に直交する方向の相互位置を規制して、上下型10,20の同軸性を確保するとともに、図1(b)に示すように、上下型10,20にプレスされて変形したガラス素材50を胴型30の内周面に接触させて、ガラス素材50を成形してなる成形体(ガラス光学素子)の外周形状を規制する。   The upper and lower molds 10 and 20 are accommodated in the body mold 30 so that the molding surfaces 11 and 21 formed on the upper and lower molds 10 and 21 face each other, and the upper and lower molds 10 and 20 are supplied to each other by being close to each other. The glass material 50 is press-molded. In addition, the body mold 30 regulates the mutual position of the upper and lower molds 10 and 20 in the direction orthogonal to the press axis during press molding to ensure the coaxiality of the upper and lower molds 10 and 20, and as shown in FIG. As shown, the outer peripheral shape of the molded body (glass optical element) formed by molding the glass material 50 by bringing the glass material 50 pressed and deformed by the upper and lower molds 10 and 20 into contact with the inner peripheral surface of the body mold 30. regulate.

このように、図示する例では、胴型30の内周面で成形体の外周形状を規制することにより、プレス成形後の成形品の芯取り加工を省略し、成形型から取り出した成形体の形状を最終形状として、そのままガラス光学素子とすることができる。
なお、芯取り加工とは、一般には、成形体の外周など(多くの場合、プレス成形によって形成された自由表面部)を研磨などして、不要な部位を除去するとともに、得ようとする光学素子の外径中心軸と光軸とを一致させることをいう。
Thus, in the example shown in the figure, by regulating the outer peripheral shape of the molded body on the inner peripheral surface of the body mold 30, the centering process of the molded product after press molding is omitted, and the molded body taken out from the mold is removed. The glass optical element can be used as it is as the final shape.
In addition, the centering process generally removes unnecessary parts by polishing the outer periphery of the molded body (in many cases, a free surface portion formed by press molding), and the optical to be obtained. This means that the outer diameter central axis of the element coincides with the optical axis.

したがって、図示するような成形型にあっては、上下型10,20の成形面11,21のみならず、胴型30の内周面にもガラス素材50との融着を防止するための離型膜を形成することが求められるところ、一般には、筒状に形成された胴型30の内周面に離型膜を形成するのは困難である。そして、胴型30の内周面に離型膜が良好に形成されないと、プレス成形の際にガラス素材50が融着して、成形体の取り出し不良や、割れ、形状不良などの欠陥、さらには、胴型30の内周面の損傷や破壊などの問題が生じてしまう。   Therefore, in the mold as shown in the figure, not only the molding surfaces 11 and 21 of the upper and lower molds 10 and 20 but also the inner peripheral surface of the barrel mold 30 is separated to prevent the glass material 50 from being fused. Where it is required to form a mold film, it is generally difficult to form a release film on the inner peripheral surface of the barrel mold 30 formed in a cylindrical shape. If the release film is not formed well on the inner peripheral surface of the body mold 30, the glass material 50 is fused at the time of press molding, and defects such as defective takeout, cracks, and shape defects of the molded body, Will cause problems such as damage and destruction of the inner peripheral surface of the body mold 30.

本実施形態では、このような問題を有効に回避するために、次のようにして胴型30の内周面に離型膜としての炭素含有膜を形成している。
なお、図2は、本実施形態において、胴型30の内周面に炭素含有膜を形成するのに用いる成膜装置の一例の概略構成を示す説明図である。
In the present embodiment, in order to effectively avoid such a problem, a carbon-containing film as a release film is formed on the inner peripheral surface of the trunk mold 30 as follows.
FIG. 2 is an explanatory view showing a schematic configuration of an example of a film forming apparatus used for forming a carbon-containing film on the inner peripheral surface of the body mold 30 in the present embodiment.

図2に示す成膜装置100は、反応容器110内に導入された炭素を含むガス状の成膜材料に電圧を印加してプラズマを発生させ、プラズマ内で起こる化学反応により胴型30の内周面に炭素含有膜を形成するものである。
このような装置としては、例えば、イオンプレーティング法に基づく真空中でのプラズマプロセスによる装置を利用することができるが、これ以外にも、プラズマを発生させて被成膜体である胴型30に炭素含有膜を形成することができるものであれば、プラズマCVD(Chemical Vapor Deposition)法、FCVA(Filtered Cathodic Vacuum Arc;フィルタ処理陰極真空アーク)法などに基づいた種々の装置が利用できる。
A film forming apparatus 100 shown in FIG. 2 generates a plasma by applying a voltage to a gaseous film forming material containing carbon introduced into a reaction vessel 110, and the inside of the barrel mold 30 by a chemical reaction occurring in the plasma. A carbon-containing film is formed on the peripheral surface.
As such an apparatus, for example, an apparatus based on a plasma process in a vacuum based on an ion plating method can be used. In addition to this, a cylinder 30 which is a film formation target by generating plasma. Various apparatuses based on a plasma CVD (Chemical Vapor Deposition) method, an FCVA (Filtered Cathodic Vacuum Arc) method, or the like can be used as long as a carbon-containing film can be formed.

また、プラズマは、正負の荷電粒子が共存している全体として電気的に中性な状態をいい、反応容器110中に導入されたガス状の成膜材料に、真空条件下で電圧を印加して、熱電子との衝突によりガス分子を電離させることにより発生させることができるが、印加する電圧によって、直流(DC)プラズマ、高周波(RF)プラズマ、マイクロ波プラズマがある。図2に示す成膜装置100は、カソード電極(負電極)114とアノード電極(正電極)115とに、反応容器110の外部に備えた電源から直流電圧を印加することにより、両電極間に直流プラズマを発生させるようになっている。   Plasma is an electrically neutral state as a whole in which positive and negative charged particles coexist, and a voltage is applied to the gaseous film forming material introduced into the reaction vessel 110 under vacuum conditions. The gas molecules can be generated by ionizing by collision with thermionic electrons, but there are direct current (DC) plasma, high frequency (RF) plasma, and microwave plasma depending on the applied voltage. The film forming apparatus 100 shown in FIG. 2 applies a DC voltage to a cathode electrode (negative electrode) 114 and an anode electrode (positive electrode) 115 from a power source provided outside the reaction vessel 110, thereby Direct current plasma is generated.

本実施形態で用いる炭素を含むガス状の成膜材料としては、炭化水素が好ましく、炭素原子数と水素原子数の比率(C/H)が1/3以上の炭化水素が特に好ましい。このような成膜材料としては、ベンゼン(C/H=6/6)、トルエン(C/H=7/8)、キシレン(C/H=8/10)等の芳香族炭化水素、アセチレン(C/H=2/2)、メチルアセチレン(C/H=3/4)、ブチン類(C/H=4/6)等の三重結合含有不飽和炭化水素、エチレン(C/H=2/4)、プロピレン(C/H=3/7)、ブテン(C/H=4/8)等の二重結合含有不飽和炭化水素、エタン(C/H=2/6)、プロパン(C/H=3/8)、ブタン(C/H=4/10)、ペンタン(C/H=5/12)等の飽和炭化水素を挙げることができる。これらの炭化水素は、単独で用いても良く、2種以上を混合して用いても良い。   The gaseous film-forming material containing carbon used in this embodiment is preferably a hydrocarbon, and particularly preferably a hydrocarbon having a ratio of carbon atoms to hydrogen atoms (C / H) of 1/3 or more. Examples of such a film forming material include aromatic hydrocarbons such as benzene (C / H = 6/6), toluene (C / H = 7/8), xylene (C / H = 8/10), and acetylene ( Triple bond-containing unsaturated hydrocarbons such as C / H = 2/2), methylacetylene (C / H = 3/4), butynes (C / H = 4/6), ethylene (C / H = 2 / 4) Double bond-containing unsaturated hydrocarbons such as propylene (C / H = 3/7), butene (C / H = 4/8), ethane (C / H = 2/6), propane (C / H = 3/8), butane (C / H = 4/10), pentane (C / H = 5/12) and other saturated hydrocarbons. These hydrocarbons may be used alone or in combination of two or more.

また、図2に示す成膜装置100は、反応容器110内の真空槽111の下部に、プラズマ発生源として、タンタル(Ta)フィラメントからなるカソード電極114と、タングステン(W)ワイヤーが格子状に張られたグリッドとしてのアノード電極115が設置されている。さらに、これらの電極に対向した上部には、ヒーター119を内蔵したホルダー112が設けられており、このホルダー112に胴型30を保持した状態で、胴型30の内周面側の中空部に棒状電極113が挿通されるようになっている。そして、これらを取り囲むように、図示するような円筒状のリフレクター116が設けられており、リフレクター116をカソード電極114と同電位とすることで、真空槽111の側壁にプラズマが流れて行かずに胴型30に集中するようにしてある。
なお、図2では図示を省略するが、胴型30は、図3に示すように、保持具120によりホルダー112に保持されるようにしてある。
Further, in the film forming apparatus 100 shown in FIG. 2, a cathode electrode 114 made of a tantalum (Ta) filament and a tungsten (W) wire are formed in a lattice shape as a plasma generation source in a lower part of a vacuum chamber 111 in a reaction vessel 110. An anode electrode 115 is installed as a stretched grid. Further, a holder 112 containing a heater 119 is provided on the upper part facing these electrodes, and in a state where the body mold 30 is held by the holder 112, a hollow part on the inner peripheral surface side of the body mold 30 is provided. A rod-shaped electrode 113 is inserted. Then, a cylindrical reflector 116 as shown in the figure is provided so as to surround them. By making the reflector 116 the same potential as the cathode electrode 114, plasma does not flow to the side wall of the vacuum chamber 111. It concentrates on the trunk mold 30.
Although not shown in FIG. 2, the body mold 30 is held by the holder 112 by a holder 120 as shown in FIG.

ここで、胴型30の内周面側の中空部に挿通される棒状電極113は、ステンレスのような金属材料や、タングステン、タンタル、モリブデン、ニオブのような高融点の金属材料で形成することができる。
このような棒状電極113は、胴型30の開口側(図示下側)の一端が、胴型30から突出しないような寸法にすることが好ましい。また、棒状電極113の太さは、炭素含有膜を成形すべき胴型内周面の内径に対して、1/2〜1/5程度の直径を有することが好ましい。棒状電極113の直径が、胴型30の内径の1/2を超える太さの場合、成膜中にプラズマが棒状電極30の表面に集中し易くなってしまい、逆に、胴型30の内周面への成膜効率が低下してしまう。また、棒状電極113の直径が、胴型30の内径の1/5未満の太さの場合、プラズマを棒状電極113に引き寄せ難くなり、十分な膜厚を確保できなくなってしまう。
Here, the rod-shaped electrode 113 inserted into the hollow portion on the inner peripheral surface side of the body mold 30 is formed of a metal material such as stainless steel or a metal material having a high melting point such as tungsten, tantalum, molybdenum, or niobium. Can do.
Such a rod-shaped electrode 113 is preferably dimensioned so that one end on the opening side (the lower side in the drawing) of the body mold 30 does not protrude from the body mold 30. Moreover, it is preferable that the thickness of the rod-shaped electrode 113 has a diameter of about 1/2 to 1/5 with respect to the inner diameter of the inner peripheral surface of the body mold on which the carbon-containing film is to be formed. When the diameter of the rod-shaped electrode 113 is more than 1/2 of the inner diameter of the body mold 30, the plasma tends to concentrate on the surface of the rod-shaped electrode 30 during film formation. The film formation efficiency on the peripheral surface is reduced. Moreover, when the diameter of the rod-shaped electrode 113 is less than 1/5 of the inner diameter of the body mold 30, it becomes difficult to attract plasma to the rod-shaped electrode 113, and a sufficient film thickness cannot be secured.

図2に示す成膜装置100において、胴型30の内周面に炭素含有膜を形成するには、まず、内周面側の中空部に棒状電極113が挿通されるように胴型30を配置し、反応容器110内の雰囲気ガスを排気する。次いで、必要に応じてアルゴンガスなどによりイオンボンバード処理を施して胴型30の内周面を清浄化した後に、反応容器110内の真空槽111に炭素を含むガス状の成膜材料を導入する。
なお、図中、117は、例えば、ベンゼンなどの成膜材料や、アルゴンガスを導入するためのガス導入ロであり、118は真空排気のための排気口である。
In the film forming apparatus 100 shown in FIG. 2, in order to form a carbon-containing film on the inner peripheral surface of the barrel mold 30, first, the barrel mold 30 is placed so that the rod-shaped electrode 113 is inserted into the hollow portion on the inner peripheral surface side. And the atmospheric gas in the reaction vessel 110 is exhausted. Next, after ion bombarding with argon gas or the like as necessary to clean the inner peripheral surface of the barrel mold 30, a gaseous film-forming material containing carbon is introduced into the vacuum chamber 111 in the reaction vessel 110. .
In the figure, reference numeral 117 denotes a gas introduction material for introducing a film forming material such as benzene or argon gas, and 118 is an exhaust port for evacuation.

その後、真空槽111内の真空度を制御しつつ、カソード電極114に交流電流を印加して熱電子を発生させるとともに、カソード電極114と、アノード電極115との間に直流電圧を印加してガス状の成膜材料をプラズマ化し、炭素荷電粒子を生成させる。
このとき、真空槽111内の真空度としては、1×10−2Pa以下が好ましい。また、カソード電極114に印加する交流電圧としては、30〜300Vが好ましく、この条件を満たすことにより、成膜の安定性を確保することができる。さらに、カソード電極114とアノード電極115との間に印加される負の直流電圧としては、50〜500Vが好ましい。50V未満ではイオン化率が低く非能率であり、500Vを越えるとプラズマが不安定になる。
Thereafter, while controlling the degree of vacuum in the vacuum chamber 111, an alternating current is applied to the cathode electrode 114 to generate thermoelectrons, and a direct current voltage is applied between the cathode electrode 114 and the anode electrode 115 to form a gas. The film-shaped film-forming material is turned into plasma to generate carbon charged particles.
At this time, the degree of vacuum in the vacuum chamber 111 is preferably 1 × 10 −2 Pa or less. Further, the AC voltage applied to the cathode electrode 114 is preferably 30 to 300 V. By satisfying this condition, the stability of film formation can be ensured. Further, the negative DC voltage applied between the cathode electrode 114 and the anode electrode 115 is preferably 50 to 500V. Below 50V, the ionization rate is low and inefficient, and above 500V, the plasma becomes unstable.

そして、本実施形態では、胴型30の内周側の中空部に挿通され、ホルダー112と同電位とされた棒状電極113に0.5〜2.5kVのバイアス電圧(図示する例にあっては、相対的に負のバイアス電圧)を印加して、炭素荷電粒子を加速する。このとき、棒状電極10に印加するバイアス電圧が0.5kV未満では、炭素荷電粒子の加速が不十分で、胴型30の内周面に形成される炭素含有膜の密着性が弱くなり、このときに得られた胴型30を備える成形型を用いてプレス成形すると、少ないプレス成形回数でガラス素材50との融着を生じてしまう傾向にある。一方、2.5kVを超えると、異常放電が生じやすく、得られた成形型の型表面が荒れやすくなる傾向にある。   In this embodiment, a bias voltage of 0.5 to 2.5 kV (in the example shown in the figure) is applied to the rod-shaped electrode 113 that is inserted into the hollow portion on the inner peripheral side of the body mold 30 and has the same potential as the holder 112. Applies a relatively negative bias voltage) to accelerate the carbon charged particles. At this time, if the bias voltage applied to the rod-shaped electrode 10 is less than 0.5 kV, the acceleration of the carbon charged particles is insufficient, and the adhesion of the carbon-containing film formed on the inner peripheral surface of the body mold 30 becomes weak. When press molding is performed using a mold provided with the body mold 30 obtained at times, the glass material 50 tends to be fused with a small number of press moldings. On the other hand, if it exceeds 2.5 kV, abnormal discharge tends to occur, and the mold surface of the obtained mold tends to be rough.

棒状電極113にバイアス電圧を印加することで、炭素荷電粒子は棒状電極113に引き寄せられ、胴型30の内周面に誘導される。これによって、胴型30の内周側の中空部におけるプラズマの密度が高まり、胴型30の内周面側の中空部内でプラズマの衝突が活発化して、棒状電極113の外周面、及び胴型30の内周面に炭素が堆積することにより、胴型30の内周面に炭素含有膜を良好に形成することができる。
なお、このようにして胴型30の内周面に炭素含有膜を形成するに際し、胴型30の温度は、200〜400℃とするのが好ましい。
By applying a bias voltage to the rod-shaped electrode 113, the carbon charged particles are attracted to the rod-shaped electrode 113 and guided to the inner peripheral surface of the body mold 30. As a result, the plasma density in the hollow portion on the inner peripheral side of the body mold 30 is increased, and plasma collision is activated in the hollow portion on the inner peripheral surface side of the body mold 30, and the outer peripheral surface of the rod-shaped electrode 113 and the body mold By depositing carbon on the inner peripheral surface of 30, a carbon-containing film can be favorably formed on the inner peripheral surface of the trunk mold 30.
Note that when the carbon-containing film is formed on the inner peripheral surface of the trunk mold 30 in this manner, the temperature of the trunk mold 30 is preferably 200 to 400 ° C.

このように、本実施形態にあっては、筒状に形成された胴型30の内周面側の中空部に挿通された棒状電極113にバイアス電圧を印加して炭素荷電粒子を誘導しているため、被成膜体である胴型30に電圧を印加する必要がない。したがって、胴型30が、炭化珪素のような非導電性材料からなるものであっても、筒状の胴型30の内周面に炭素含有膜を良好に形成することができる。   Thus, in this embodiment, a bias voltage is applied to the rod-shaped electrode 113 inserted into the hollow portion on the inner peripheral surface side of the cylindrical mold 30 formed in a cylindrical shape to induce carbon charged particles. Therefore, it is not necessary to apply a voltage to the body mold 30 that is the film formation target. Therefore, even if the trunk mold 30 is made of a nonconductive material such as silicon carbide, a carbon-containing film can be satisfactorily formed on the inner peripheral surface of the cylindrical trunk mold 30.

また、本実施形態にあっては、上記のようにして製造された成形型を用いるとともに、光学ガラスなどからなるガラス素材50を用いてプレス成形を行うことによりガラス光学素子を製造する。
ガラス素材50は、例えば、所望の性質を有する光学ガラスを平板状、柱状、球状、平凸形状、平凹形状、又は両凸形状などの形状に予備成形したものとすることができる。このようなガラス素材50は、溶融ガラスを受け型上に滴下、又は流下したり、冷間で切断したり、あるいは研磨などの加工によって得ることができる。
Moreover, in this embodiment, while using the shaping | molding die manufactured as mentioned above, a glass optical element is manufactured by performing press molding using the glass raw material 50 which consists of optical glass etc.
For example, the glass material 50 can be formed by preforming optical glass having desired properties into a shape such as a flat plate shape, a column shape, a spherical shape, a plano-convex shape, a plano-concave shape, or a biconvex shape. Such a glass material 50 can be obtained by dropping or flowing down molten glass on a receiving mold, cutting it cold, or processing such as polishing.

また、予備成形されたガラス素材50を成形型に供給して、プレス成形するに際しては、プレス成形開始時のガラス素材50の温度が、10dPa・s以下の粘度相当となる温度であるのが好ましく、105.5〜10dPa・sの粘度相当の温度であるのがより好ましい。一方、成形型の温度は、ガラス素材50の粘度で10dPa・s以上となる温度とするのが好ましい。 Further, when the preformed glass material 50 is supplied to the mold and press-molded, the temperature of the glass material 50 at the start of press molding is a temperature corresponding to a viscosity of 10 9 dPa · s or less. Is preferable, and a temperature corresponding to a viscosity of 10 5.5 to 10 9 dPa · s is more preferable. On the other hand, the temperature of the mold is preferably a temperature at which the viscosity of the glass material 50 is 10 7 dPa · s or more.

このとき、ガラス素材50は室温で成形型に供給し、成形型とともに加熱するようにしてもよく、成形型に供給する前に型外で予熱されたガラス素材50を、予熱された成形型に供給するようにしてもよい。また、いずれの場合も、ガラス素材50を成形型に供給した後に、さらに、成形型とガラス素材50とを加熱するようにしてもよい。   At this time, the glass material 50 may be supplied to the mold at room temperature and heated together with the mold. The glass material 50 preheated outside the mold before being supplied to the mold is converted into a preheated mold. You may make it supply. In any case, after the glass material 50 is supplied to the mold, the mold and the glass material 50 may be further heated.

型外で予熱されたガラス素材50を、予熱された成形型に供給する場合には、ガラス素材50の予熱温度を成形型の予熱温度より高くして、成形型に供給した後に、ただちにプレス成形を開始するのが好ましい。このようにすれば、成形サイクルタイムの短縮を図ることができ、このときの成形型の予熱温度は、ガラス素材50の粘度が10〜1012dPa・sとなる温度、ガラス素材50の予熱温度は、その粘度が105.5〜108.5dPa・sとなる温度とするのが好ましい。
なお、上型10と下型20の温度は同一でもよく、温度差を設けてもよく、プレス成形しようとするレンズ形状や、ガラス素材50に用いる硝材に応じて決定することができる。
When the glass material 50 preheated outside the mold is supplied to the preheated mold, the glass material 50 is heated to a temperature higher than the preheat temperature of the mold and supplied to the mold. It is preferable to start. In this way, the molding cycle time can be shortened, and the preheating temperature of the mold at this time is the temperature at which the viscosity of the glass material 50 becomes 10 7 to 10 12 dPa · s, and the preheating temperature of the glass material 50 The temperature is preferably a temperature at which the viscosity is 10 5.5 to 10 8.5 dPa · s.
The temperature of the upper mold 10 and the lower mold 20 may be the same, or a temperature difference may be provided, and can be determined according to the lens shape to be press-molded and the glass material used for the glass material 50.

また、ガラス素材50を型外で予熱する場合には、特に図示しないが、噴出する不活性ガスによりガラス素材50を浮上させながら保持する浮上治具により、ガラス素材50を浮上させた状態で加熱炉に所定時間配置し、加熱することが好ましい。ガラス素材50が所定の温度に加熱された後は、浮上治具に保持したままガラス素材50を下型上に移送し、浮上治具からガラス素材を落下させて、下型上に供給することができる。   In addition, when the glass material 50 is preheated outside the mold, the glass material 50 is heated in a state of being floated by a floating jig that is held while the glass material 50 is floated by the ejected inert gas, although not illustrated. It is preferable to arrange and heat in a furnace for a predetermined time. After the glass material 50 is heated to a predetermined temperature, the glass material 50 is transferred onto the lower mold while being held by the floating jig, and the glass material is dropped from the floating jig and supplied onto the lower mold. Can do.

このようにして成形型に供給されたガラス素材50は、上下型10,20が近接することによりプレス荷重が印加され、この過程でガラス素材50は、所望のガラス光学素子に近似する形状となるように大きく変形し、所定肉厚(最終肉厚より大きい)をもつ成形体となる。   In this way, the glass material 50 supplied to the mold is applied with a press load when the upper and lower molds 10 and 20 come close to each other. In this process, the glass material 50 has a shape that approximates a desired glass optical element. Thus, a molded body having a predetermined thickness (larger than the final thickness) is obtained.

このとき、ガラス素材50の外周縁部は、胴型30の内周面に接触するように押圧されるが、本実施形態では、胴型30の内周面(ガラス素材50の外周を規制する部位)に、前述したように炭素含有膜を形成してあるため、胴型30の内周面とガラス素材50との融着を防止することができる。
また、プレス成形の際、上下型10,20の外周面と胴型30の内周面とが摺動するが、胴型30の内周面に炭素含有膜を形成しておくことで、その摺動性を向上させることができる。しかも、胴型30の内周面の炭素含有膜は耐久性に優れているため、同一の胴型30を用いて長時間にわたり繰り返しプレス成形を行うことができる。
At this time, the outer peripheral edge portion of the glass material 50 is pressed so as to come into contact with the inner peripheral surface of the body mold 30, but in this embodiment, the inner peripheral surface of the body mold 30 (the outer periphery of the glass material 50 is regulated). Since the carbon-containing film is formed on the part) as described above, it is possible to prevent the inner peripheral surface of the body mold 30 and the glass material 50 from being fused.
Further, during press molding, the outer peripheral surfaces of the upper and lower molds 10 and 20 and the inner peripheral surface of the barrel mold 30 slide, but by forming a carbon-containing film on the inner peripheral surface of the barrel mold 30, Slidability can be improved. Moreover, since the carbon-containing film on the inner peripheral surface of the body mold 30 is excellent in durability, the same body mold 30 can be used for repeated press molding over a long period of time.

そして、プレス荷重の印加と同時、又はその後の所定時点で冷却を開始し、ガラス粘度で1012dPa・s以上となったときに、上下型を離間し、成形体を成形型から取り出すことにより、ガラス光学素子を製造することができる。 Then, cooling starts at the same time as the application of the press load, or at a predetermined time thereafter, and when the glass viscosity becomes 10 12 dPa · s or more, the upper and lower molds are separated and the molded body is taken out of the mold. A glass optical element can be manufactured.

次に、具体的な実施例を挙げて本発明を詳細に説明する。   Next, the present invention will be described in detail with specific examples.

[前準備]
まず、図1に示すような一対の上下型10,20と、胴型30とを備えた成形型を用意した。そして、図2、及び図3に示すようにして、ホルダー112と保持具120とに胴型30を支持、固定して、成膜装置100の反応容器110内に胴型30をセットした後に、アルゴンガスによるイオンボンバード処理を行い、胴型30の表面を清浄化した。
なお、上下型10,20、及び胴型30は、いずれもSiCを基材とし、上下型10,20の成形面には、DLC膜を別途被覆形成しておいた。
[Preparation]
First, a mold having a pair of upper and lower molds 10 and 20 and a body mold 30 as shown in FIG. 1 was prepared. Then, as shown in FIGS. 2 and 3, after the barrel mold 30 is supported and fixed to the holder 112 and the holder 120, and the barrel mold 30 is set in the reaction container 110 of the film forming apparatus 100, Ion bombardment treatment with argon gas was performed to clean the surface of the barrel die 30.
Each of the upper and lower molds 10 and 20 and the body mold 30 was made of SiC as a base material, and a DLC film was separately formed on the molding surfaces of the upper and lower molds 10 and 20.

[イオンボンバード処理]
真空槽111内の真空度が5.0×10Torrとなるように、真空槽111内の雰囲気ガスを排気口18より排気した。次いで、ガス導入ロ17よりアルゴンガスを導入し、真空槽111内の真空度が0.8×10Torrとなるように制御した。
そして、カソード電極114に50Vの交流電圧を印加するとともに、カソード電極114とアノード電極15間に70Vの電位差が生じるように直流電圧を印加してプラズマを発生させ、カソード電極114からの熱電子によりアルゴンガスをイオン化した。
さらに、棒状電極113とアノード電極15間に1.0kVの電位差が生じるように、棒状電極に負のバイアス電圧を印加してアルゴンイオンの加速を促進し、胴型30の表面をイオンボンバードすることにより清浄化した。
なお、イオンボンバード処理において、胴型30の加熱は必ずしも必要ではないが、胴型30の内周面の清浄効果の促進、及び次に続く成膜処理における加熱のことを考えれば、ここで加熱しておくことが好ましい。
[Ion Bombarding]
The atmospheric gas in the vacuum chamber 111 was exhausted from the exhaust port 18 so that the degree of vacuum in the vacuum chamber 111 was 5.0 × 10 6 Torr. Next, argon gas was introduced from the gas introduction chamber 17 and the degree of vacuum in the vacuum chamber 111 was controlled to be 0.8 × 10 4 Torr.
Then, while applying an AC voltage of 50 V to the cathode electrode 114 and applying a DC voltage so that a potential difference of 70 V is generated between the cathode electrode 114 and the anode electrode 15, plasma is generated, and thermoelectrons from the cathode electrode 114 Argon gas was ionized.
Further, a negative bias voltage is applied to the rod-like electrode so as to cause a potential difference of 1.0 kV between the rod-like electrode 113 and the anode electrode 15 to accelerate the acceleration of argon ions, and the surface of the body mold 30 is ion bombarded. It was cleaned by.
In the ion bombardment process, the body mold 30 is not necessarily heated. However, in consideration of the promotion of the cleaning effect of the inner peripheral surface of the body mold 30 and the heating in the subsequent film formation process, the heating is performed here. It is preferable to keep it.

[成膜処理]
次に、再び真空槽11の真空排気を行ない、ガス導入ロ17よりベンゼンガスを導入することによって真空度を9.0×10−4Torrに保持し、基本的にはイオンボンバード処理と同様の操作により成膜処理を行った。
すなわち、カソード電極114に100Vの交流電圧を印加するとともに、カソード電極114とアノード電極115間に80Vの電位差が生じるように直流電圧を印加してベンゼンイオンのプラズマを発生させ、さらに、棒状電極113とアノード電極115との間に1.0kVの電位差が生じるように、棒状電極113に負バイアス電圧を印加するとともに、リフレクター116をカソード電極114と同電位に保持することにより、ベンゼンイオンを胴型30の方向に集中的に加速し、胴型30の内周面(プレス成形時にガラス素材50が接する小径の内周面、及び上下型10,20が摺動する大径の内周面)に、膜厚600Åの炭素含有膜を成形した。
なお、胴型30の内周面に炭素含有膜を形成するに際し、胴型30は300℃に加熱しておいた。
[Film formation]
Next, the vacuum chamber 11 is evacuated again, and the degree of vacuum is maintained at 9.0 × 10 −4 Torr by introducing benzene gas from the gas introduction chamber 17, which is basically the same as the ion bombardment process. The film formation process was performed by operation.
That is, an AC voltage of 100 V is applied to the cathode electrode 114, a DC voltage is applied so that a potential difference of 80 V is generated between the cathode electrode 114 and the anode electrode 115, and benzene ion plasma is generated. A negative bias voltage is applied to the rod-shaped electrode 113 so that a potential difference of 1.0 kV is generated between the cathode electrode 114 and the anode electrode 115, and the reflector 116 is held at the same potential as the cathode electrode 114, whereby benzene ions are Accelerating intensively in the direction of 30 to the inner peripheral surface of the barrel die 30 (small inner peripheral surface with which the glass material 50 contacts during press molding, and large inner peripheral surface with which the upper and lower molds 10 and 20 slide) A carbon-containing film having a thickness of 600 mm was formed.
In forming the carbon-containing film on the inner peripheral surface of the trunk mold 30, the trunk mold 30 was heated to 300 ° C.

[ガラス光学素子の製造]
次に、ガラス素材として、nd=1.80610、νd=40.73、屈伏点温度600℃、転移点温度560℃の直径1.6mmの球形のプリフォーム50を用いて、このプリフォーム50を下型20の成形面12上に供給した。その後、図1(a)に示すように上下型10,20を胴型30に収容するとともに、成形型の周囲に配置した図示しない抵抗加熱ヒーターにより成形型を加熱した。そして、プリフォーム50が645℃となった時点で、下型20を支持する下主軸を所定速度で上昇させてプレスを開始した。
[Manufacture of glass optical elements]
Next, as a glass material, a spherical preform 50 having a diameter of 1.6 mm and having a nd = 1.86010, νd = 0.73, a yield point temperature of 600 ° C., and a transition point temperature of 560 ° C. is used. It was supplied onto the molding surface 12 of the lower mold 20. Thereafter, as shown in FIG. 1A, the upper and lower molds 10 and 20 were accommodated in the body mold 30 and the mold was heated by a resistance heater (not shown) arranged around the mold. Then, when the preform 50 reached 645 ° C., the lower spindle supporting the lower mold 20 was raised at a predetermined speed to start pressing.

加熱軟化されたプリフォーム50を上下型10,20で押圧することにより、図1(b)に示すようにプリフォーム50が変形し、上下型10,20の成形面11,21の形状が転写されるとともに、プリフォーム50の外周側は胴型30の内周面に接触し、これによって成形されるガラス光学素子の外径を規制した。プレス開始から所定時間経過後、上型10の上端面と胴型30の上端面の高さが一致し、プリフォーム50の押圧は終了した。   By pressing the heat-softened preform 50 with the upper and lower molds 10 and 20, the preform 50 is deformed as shown in FIG. 1B, and the shapes of the molding surfaces 11 and 21 of the upper and lower molds 10 and 20 are transferred. At the same time, the outer peripheral side of the preform 50 was in contact with the inner peripheral surface of the body mold 30, thereby regulating the outer diameter of the glass optical element to be molded. After the elapse of a predetermined time from the start of pressing, the height of the upper end surface of the upper mold 10 and the upper end surface of the body mold 30 coincided, and the pressing of the preform 50 was finished.

その後、60℃/minの冷却速度で転移温度以下の530℃まで徐冷し、プレス圧力を開放した。さらに、取り出し可能な温度である65℃まで冷却し、成形型を分解して成形された凸メニスカスレンズ(ガラス光学素子)を取り出した。   Then, it was gradually cooled to 530 ° C. below the transition temperature at a cooling rate of 60 ° C./min, and the press pressure was released. Furthermore, it cooled to 65 degreeC which is the temperature which can be taken out, the mold was disassembled, and the convex meniscus lens (glass optical element) shape | molded was taken out.

本実施例では、以上のようなプレス成形を同様な工程で300回繰り返して、300個のレンズを成形した。
成形型を分解する際、及び成形されたレンズを取り出す際、成形されたレンズと、上下型10,20、及び胴型30とが融着することなく、スムーズな成形型の分解、及びレンズの取り出しができた。また、300個のレンズは何れも欠けや割れも無く、品質基準を満たすものであった。さらに、レンズの外径に接触した胴型30の小径部分の内周面を観察したところ、炭素含有膜の剥離や型の部分的な欠けは一切確認されなかった。
In this example, the above press molding was repeated 300 times in the same process, and 300 lenses were molded.
When disassembling the mold and taking out the molded lens, the molded lens, the upper and lower molds 10 and 20, and the body mold 30 are not fused, and the mold can be smoothly disassembled. I was able to remove it. In addition, all 300 lenses did not have any chipping or cracking and met the quality standards. Furthermore, when the inner peripheral surface of the small diameter portion of the body mold 30 in contact with the outer diameter of the lens was observed, no peeling of the carbon-containing film or partial chipping of the mold was confirmed.

[比較例]
胴型の内周面に炭素含有膜を成膜する際、棒状電極113を胴型の内周側の中空部に挿入せずに成膜を行った胴型を使用した以外は、上記実施例と同様にプレス成形を行った。
その結果、113回目のプレス成形時に、レンズの取り出し不良が発生したため、プレス成形を中断した。そして、胴型の内周面を観察したところ、レンズの外径を規制する胴型小径部における炭素含有膜の一部に剥離が確認された。
その後、当該胴型を用いてプレス成形を数回繰り返したが、同様の取り出し不良が多発した為、以降のプレス成形を中止した。
[Comparative example]
When the carbon-containing film is formed on the inner peripheral surface of the trunk mold, the above embodiment is used except that the barrel mold is used without forming the rod-shaped electrode 113 in the hollow portion on the inner peripheral side of the trunk mold. In the same manner as described above, press molding was performed.
As a result, during the 113th press molding, a lens take-out failure occurred, and the press molding was interrupted. Then, when the inner peripheral surface of the body mold was observed, peeling was confirmed on a part of the carbon-containing film in the body mold small diameter part that regulates the outer diameter of the lens.
Thereafter, press molding was repeated several times using the barrel mold, but the same press failure occurred frequently, so the subsequent press molding was stopped.

以上、本発明について、好ましい実施形態を示して説明したが、本発明は、上記した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。   While the present invention has been described with reference to the preferred embodiment, it is needless to say that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. .

本発明は、互いに対向する成形面を有する一対の上下型と、前記上下型を収容するとともに、前記上下型のプレス軸に直交する方向の相互位置を規制する胴型とを備えたモールドプレス成形型を製造するにあたり、筒状に形成された胴型の内周面に、炭素含有膜を良好に形成することができる。   The present invention is a mold press molding comprising a pair of upper and lower molds having molding surfaces facing each other, and a body mold that accommodates the upper and lower molds and regulates the mutual position in a direction perpendicular to the press axis of the upper and lower molds. In manufacturing the mold, the carbon-containing film can be satisfactorily formed on the inner peripheral surface of the cylindrical mold formed in a cylindrical shape.

本発明に係るモールドプレス成形型の実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of a mold press mold according to the present invention. 本発明に係る成膜装置の概略構成を示す分解説明図である。1 is an exploded explanatory view showing a schematic configuration of a film forming apparatus according to the present invention. 本発明に係る成膜装置において、胴型をホルダーに保持した状態を示す説明図である。In the film-forming apparatus which concerns on this invention, it is explanatory drawing which shows the state which hold | maintained the trunk | drum type | mold to the holder.

符号の説明Explanation of symbols

10 上型
11 成形面
12 小径部
13 大径部
20 下型
21 成形面
22 小径部
23 大径部
30 胴型
50 ガラス素材
100 成膜装置
110 反応容器
113 棒状電極
114 カソード電極
115 アノード電極
DESCRIPTION OF SYMBOLS 10 Upper mold | type 11 Molding surface 12 Small diameter part 13 Large diameter part 20 Lower mold | type 21 Molding surface 22 Small diameter part 23 Large diameter part 30 Body mold | type 50 Glass material 100 Film-forming apparatus 110 Reaction vessel 113 Rod electrode 114 Cathode electrode 115 Anode electrode

Claims (9)

互いに対向する成形面を有する一対の上下型と、前記上下型を収容するとともに、前記上下型のプレス軸に直交する方向の相互位置を規制する胴型とを備えたモールドプレス成形型を製造するにあたり、
プラズマ発生源を備えた反応容器内に、筒状に形成された前記胴型の内周面側の中空部に棒状電極が挿通された状態で前記胴型を配置し、
次いで、前記反応容器内の雰囲気ガスを排気した後、前記反応容器内に炭素を含むガス状の成膜材料を導入してプラズマ化することによって炭素荷電粒子を生成するとともに、
前記棒状電極にバイアス電圧を印加して、前記炭素荷電粒子を前記胴型の内周面に誘導して炭素含有膜を形成することを特徴とするモールドプレス成形型の製造方法。
A mold press mold comprising a pair of upper and lower molds having molding surfaces facing each other and a barrel mold that accommodates the upper and lower molds and regulates the mutual position in a direction perpendicular to the press axis of the upper and lower molds is manufactured. Hits the,
In the reaction vessel equipped with the plasma generation source, the cylinder mold is arranged in a state where the rod-shaped electrode is inserted into the hollow part on the inner peripheral surface side of the cylinder mold formed in a cylindrical shape,
Next, after evacuating the atmospheric gas in the reaction vessel, a gaseous film forming material containing carbon is introduced into the reaction vessel to generate plasma, thereby generating carbon charged particles,
A method for producing a mold press mold, comprising applying a bias voltage to the rod-shaped electrode to induce the carbon charged particles to an inner peripheral surface of the body mold to form a carbon-containing film.
前記胴型の内周面のうち、前記上下型がガラス素材をプレスしたときに前記ガラス素材が接触する面に、前記炭素含有膜を形成することを特徴とする請求項1に記載のモールドプレス成形型の製造方法。   2. The mold press according to claim 1, wherein the carbon-containing film is formed on a surface of the inner peripheral surface of the body mold that comes into contact with the glass material when the upper and lower molds press the glass material. A method for manufacturing a mold. 前記胴型の内側面のうち、前記上下型の両方、又はいずれか一方が摺動する面に、前記炭素含有膜を形成することを特徴とする請求項1〜2のいずれか1項に記載のモールドプレス成形型の製造方法。   3. The carbon-containing film according to claim 1, wherein the carbon-containing film is formed on a surface on which both or one of the upper and lower molds slides among the inner side surfaces of the body mold. Method of manufacturing a mold press mold. 互いに対向する成形面を有する一対の上下型と、前記上下型を収容するとともに、前記上下型のプレス軸に直交する方向の相互位置を規制する筒状の胴型とを備えたモールドプレス成形型であって、
プラズマ発生源を備えた反応容器内に、筒状に形成された前記胴型の内周面側の中空部に棒状電極が挿通された状態で前記胴型を配置し、
次いで、前記反応容器内の雰囲気ガスを排気した後、前記反応容器内に炭素を含むガス状の成膜材料を導入してプラズマ化することによって炭素荷電粒子を生成するとともに、
前記棒状電極にバイアス電圧を印加して、前記炭素荷電粒子を前記胴型の内周面に誘導して炭素含有膜を形成してなることを特徴とするモールドプレス成形型。
A mold press mold comprising a pair of upper and lower molds having molding surfaces facing each other, and a cylindrical body mold that accommodates the upper and lower molds and regulates the mutual position in a direction orthogonal to the press axis of the upper and lower molds Because
In the reaction vessel equipped with the plasma generation source, the cylinder mold is arranged in a state where the rod-shaped electrode is inserted into the hollow part on the inner peripheral surface side of the cylinder mold formed in a cylindrical shape,
Next, after evacuating the atmospheric gas in the reaction vessel, a gaseous film forming material containing carbon is introduced into the reaction vessel to generate plasma, thereby generating carbon charged particles,
A mold press mold comprising: forming a carbon-containing film by applying a bias voltage to the rod-shaped electrode to induce the carbon charged particles to an inner peripheral surface of the body mold.
前記胴型の内周面のうち、前記上下型がガラス素材をプレスしたときに前記ガラス素材が接触する面に、前記炭素含有膜が形成されたことを特徴とする請求項4に記載のモールドプレス成形型。   The mold according to claim 4, wherein the carbon-containing film is formed on a surface of the inner peripheral surface of the body mold that comes into contact with the glass material when the upper and lower molds press the glass material. Press mold. 前記胴型の内側面のうち、前記上下型の両方、又はいずれか一方が摺動する面に、前記炭素含有膜が形成されたことを特徴とする請求項4〜5のいずれか1項に記載のモールドプレス成形型。   6. The carbon-containing film according to claim 4, wherein the carbon-containing film is formed on a surface on which both of the upper and lower molds or one of the upper and lower molds slides among the inner side surfaces of the barrel mold. The mold press mold according to the description. 前記胴型が、非導電性材料からなることを特徴とする請求項4〜6のいずれか1項に記載のモールドプレス成形型。   The mold press mold according to any one of claims 4 to 6, wherein the body mold is made of a non-conductive material. 前記胴型が、炭化珪素からなることを特徴とする請求項4〜7のいずれか1項に記載のモールドプレス成形型。   The mold press mold according to any one of claims 4 to 7, wherein the body mold is made of silicon carbide. 互いに対向する成形面を有する一対の上下型と、前記上下型を収容するとともに、前記上下型のプレス軸に直交する方向の相互位置を規制する筒状の胴型とを備えたモールドプレス成形型であって、
プラズマ発生源を備えた反応容器内に、前記胴型を内周面側の中空部に棒状電極が挿通された状態で配置し、
次いで、前記反応容器内の雰囲気ガスを排気した後に、前記反応容器内に炭素を含むガス状の成膜材料を導入してプラズマ化することによって炭素荷電粒子を生成するとともに、
前記棒状電極にバイアス電圧を印加して、前記炭素荷電粒子を前記胴型の内周面に誘導して炭素含有膜を形成してなるモールドプレス成形型を用いて、
前記上下型の間にガラス素材を供給してプレス成形することにより、所定形状のガラス光学素子を得ることを特徴とするガラス光学素子の製造方法。
A mold press mold comprising a pair of upper and lower molds having molding surfaces facing each other, and a cylindrical body mold that accommodates the upper and lower molds and regulates the mutual position in a direction orthogonal to the press axis of the upper and lower molds Because
In a reaction vessel equipped with a plasma generation source, the barrel mold is disposed in a state where a rod-shaped electrode is inserted into a hollow portion on the inner peripheral surface side,
Next, after evacuating the atmospheric gas in the reaction vessel, a gaseous film forming material containing carbon is introduced into the reaction vessel to generate plasma, thereby generating carbon charged particles,
Using a mold press mold formed by applying a bias voltage to the rod-shaped electrode and guiding the carbon charged particles to the inner peripheral surface of the body mold to form a carbon-containing film,
A glass optical element manufacturing method, wherein a glass material is supplied between the upper and lower molds and press-molded to obtain a glass optical element having a predetermined shape.
JP2007063483A 2007-03-13 2007-03-13 Method for manufacturing mold press mold and method for manufacturing glass optical element Active JP5155579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063483A JP5155579B2 (en) 2007-03-13 2007-03-13 Method for manufacturing mold press mold and method for manufacturing glass optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063483A JP5155579B2 (en) 2007-03-13 2007-03-13 Method for manufacturing mold press mold and method for manufacturing glass optical element

Publications (2)

Publication Number Publication Date
JP2008223092A true JP2008223092A (en) 2008-09-25
JP5155579B2 JP5155579B2 (en) 2013-03-06

Family

ID=39842047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063483A Active JP5155579B2 (en) 2007-03-13 2007-03-13 Method for manufacturing mold press mold and method for manufacturing glass optical element

Country Status (1)

Country Link
JP (1) JP5155579B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010055763A1 (en) * 2008-11-13 2012-04-12 住友電気工業株式会社 Element forming member, element manufacturing method, and element
JP2019529104A (en) * 2016-08-22 2019-10-17 インナノ アクティーゼルスカブ Method and system for processing a surface

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144849A (en) * 1992-10-30 1994-05-24 Asahi Optical Co Ltd Apparatus for forming optical element, its production and method for forming optical element
JPH072534A (en) * 1993-06-15 1995-01-06 Canon Inc Mold for molding optical element
JPH08269718A (en) * 1995-03-28 1996-10-15 Citizen Watch Co Ltd Formation of hard carbon film
JPH0931655A (en) * 1995-07-14 1997-02-04 Citizen Watch Co Ltd Formation of rigid carbon film
JPH1081969A (en) * 1995-10-17 1998-03-31 Citizen Watch Co Ltd Formation of film on inner peripheral surface of cylindrical member
JPH10280155A (en) * 1997-04-02 1998-10-20 Citizen Watch Co Ltd Formation of hard carbon coating film onto inner peripheral face of cylindrical member
JPH11131234A (en) * 1997-10-24 1999-05-18 Citizen Watch Co Ltd Formation of hard carbon coating film onto inner circumferential face of cylindrical member
JPH11152568A (en) * 1997-11-20 1999-06-08 Citizen Watch Co Ltd Formation of hard carbon coating onto inner circumferential face of cylindrical member
JP2000064053A (en) * 1998-08-14 2000-02-29 Seiko Instruments Inc Formation of hydrogenated amorphous thin film, device used therefor, gas dynamic pressure bearing in which the thin film is formed, spindle motor and rotor device
JP2003313046A (en) * 2002-02-19 2003-11-06 Hoya Corp Method for manufacturing glass optical element
JP2005158601A (en) * 2003-11-27 2005-06-16 Fujita Giken Kk Method of processing inner surface of hollow work

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144849A (en) * 1992-10-30 1994-05-24 Asahi Optical Co Ltd Apparatus for forming optical element, its production and method for forming optical element
JPH072534A (en) * 1993-06-15 1995-01-06 Canon Inc Mold for molding optical element
JPH08269718A (en) * 1995-03-28 1996-10-15 Citizen Watch Co Ltd Formation of hard carbon film
JPH0931655A (en) * 1995-07-14 1997-02-04 Citizen Watch Co Ltd Formation of rigid carbon film
JPH1081969A (en) * 1995-10-17 1998-03-31 Citizen Watch Co Ltd Formation of film on inner peripheral surface of cylindrical member
JPH10280155A (en) * 1997-04-02 1998-10-20 Citizen Watch Co Ltd Formation of hard carbon coating film onto inner peripheral face of cylindrical member
JPH11131234A (en) * 1997-10-24 1999-05-18 Citizen Watch Co Ltd Formation of hard carbon coating film onto inner circumferential face of cylindrical member
JPH11152568A (en) * 1997-11-20 1999-06-08 Citizen Watch Co Ltd Formation of hard carbon coating onto inner circumferential face of cylindrical member
JP2000064053A (en) * 1998-08-14 2000-02-29 Seiko Instruments Inc Formation of hydrogenated amorphous thin film, device used therefor, gas dynamic pressure bearing in which the thin film is formed, spindle motor and rotor device
JP2003313046A (en) * 2002-02-19 2003-11-06 Hoya Corp Method for manufacturing glass optical element
JP2005158601A (en) * 2003-11-27 2005-06-16 Fujita Giken Kk Method of processing inner surface of hollow work

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010055763A1 (en) * 2008-11-13 2012-04-12 住友電気工業株式会社 Element forming member, element manufacturing method, and element
JP2019529104A (en) * 2016-08-22 2019-10-17 インナノ アクティーゼルスカブ Method and system for processing a surface
US11161139B2 (en) 2016-08-22 2021-11-02 Mosshydro As Method and system for treating a surface
JP7001905B2 (en) 2016-08-22 2022-01-20 モスハイドロ アクティーゼルスカブ Methods and systems for processing surfaces

Also Published As

Publication number Publication date
JP5155579B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
MX2009012750A (en) Vacuum treatment unit and vacuum treatment process.
JPH02199036A (en) Production of mold for glass press molding
US20070017804A1 (en) Device for improving plasma activity PVD-reactors
KR20160017662A (en) Method for removing hard carbon layers
JP6630025B1 (en) Semiconductor manufacturing component, semiconductor manufacturing component including composite coating layer, and method of manufacturing the same
JP5155579B2 (en) Method for manufacturing mold press mold and method for manufacturing glass optical element
US20030159467A1 (en) Method of manufacturing glass optical elements
JP3821878B2 (en) Release film forming method
JP2010116295A (en) Mold for molding optical element and method for manufacturing the same
CN107002228B (en) plasma treatment and reactor for thermochemical treatment of the surface of metal pieces
CN115044880B (en) Coating jig and coating method
JP5627214B2 (en) Mold and its manufacturing method
KR20190122601A (en) Equipment and Method for Doped Coating Using Filtered Cathodic Vacuum Arc
JP2017218624A (en) Film deposition method of hard film
US20040211217A1 (en) Method of regenerating pressing molds and method of manufacturing optical elements
JP2742362B2 (en) Glass press mold
JPH06345448A (en) Production of optical element
JP5762101B2 (en) Manufacturing method of optical element molding die and optical element molding die
JP2015098617A (en) Film deposition apparatus
JP5868017B2 (en) Manufacturing method of optical element molding die and optical element molding die
JP2003313046A (en) Method for manufacturing glass optical element
JP2007161497A (en) Method for producing molding die for optical element, and molding die for optical element
JPH08259241A (en) Method for forming optical device
JP2012218989A (en) Method for manufacturing mold for molding optical element, and mold for molding optical element
JP2505893B2 (en) Optical element molding method and optical element molding die manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250