JP2008222842A - Coating agent for forming photocatalyst coating film and method for forming photocatalyst coating film - Google Patents

Coating agent for forming photocatalyst coating film and method for forming photocatalyst coating film Download PDF

Info

Publication number
JP2008222842A
JP2008222842A JP2007062172A JP2007062172A JP2008222842A JP 2008222842 A JP2008222842 A JP 2008222842A JP 2007062172 A JP2007062172 A JP 2007062172A JP 2007062172 A JP2007062172 A JP 2007062172A JP 2008222842 A JP2008222842 A JP 2008222842A
Authority
JP
Japan
Prior art keywords
coating film
photocatalyst
titanium oxide
photocatalyst coating
coating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007062172A
Other languages
Japanese (ja)
Other versions
JP5148901B2 (en
Inventor
Kenichi Katsumata
健一 勝又
Hiroshi Uetsuka
洋 上塚
Tetsuya Shichi
哲也 志知
Akira Fujishima
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2007062172A priority Critical patent/JP5148901B2/en
Publication of JP2008222842A publication Critical patent/JP2008222842A/en
Application granted granted Critical
Publication of JP5148901B2 publication Critical patent/JP5148901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst coating film that exhibits photocatalytic activities under visible light and weak ultraviolet rays and is highly durable, a coating agent used for forming the photocatalytic coating film, and a method for forming the photocatalyst coating film. <P>SOLUTION: Firstly, a coating agent comprising a scaly titanium oxide fine particle 5, a sulfur-containing compound and a titanium alkoxide 7 as a binder is prepared. Secondly, the coating agent is applied on the surface of a substrate 3 by a spin-coating method, dried and heated at a temperature of 400-600°C to form the photocatalyst coating film 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、ガラス、プラスチック、金属、セラミックス等から成る部材の表面に光触媒塗膜を形成することができるコーティング剤、光触媒塗膜、及び光触媒塗膜形成方法に関する。   The present invention relates to a coating agent, a photocatalytic coating film, and a photocatalytic coating film forming method capable of forming a photocatalytic coating film on the surface of a member made of glass, plastic, metal, ceramics, or the like.

酸化チタン光触媒は、そのバンドギャップに相当するエネルギー(紫外光)を吸収し、価電子帯の電子が伝導帯に励起され、価電子帯には電子の抜け殻である正孔(ホール:h+)が、伝導帯には電子(e-)が生じる。この電子とホールは酸化チタン表面の水や酸素と反応して極めて強い酸化力を有するラジカルを生成し、そのラジカルは汚れやバクテリアを構成するほとんど全ての有機物を分解することができる。また、酸化チタンの表面は、紫外光照射によって高度に親水化した光誘起超親水性を示すことから、光によって汚れを分解し、且つ水で汚れを洗い流して常に清浄な表面を保つセルフクリーニング材料として実用化されている。
酸化チタン光触媒は、一般的には、基材の表面に塗膜として形成されるが、その形成方法としては、バインダー成分を含む光触媒粒子の懸濁液をコーティングし、乾燥させる方法がある。バインダーは塗装される基材の種類によって選択され、シリカやケイ酸塩などの無機系バインダー、或いはシリコーン樹脂やフッ素樹脂などの酸化チタンの光触媒反応に侵されにくい有機系バインダーが利用されている。
従来の酸化チタン光触媒の課題としては、
(1)強い紫外光の下では光触媒活性が発現するものの、可視光領域の光や、屋内や室内蛍光灯レベルの微弱な紫外光では十分な光触媒活性を示さない。
(2)塗膜と基材との十分な密着強度、および塗膜の十分な硬度が得られず、適用範囲が限られる。例えば、洗車機にかけることが前提となる車両用の窓ガラス等には適用できない。
というものがある。
The titanium oxide photocatalyst absorbs energy (ultraviolet light) corresponding to its band gap, and electrons in the valence band are excited to the conduction band, and holes (holes: h + ) that are shells of electrons in the valence band. There, the electrons in the conduction band (e -) occurs. These electrons and holes react with water and oxygen on the surface of titanium oxide to generate radicals having extremely strong oxidizing power, and the radicals can decompose almost all organic substances constituting dirt and bacteria. In addition, since the surface of titanium oxide exhibits light-induced super-hydrophilicity that has been made highly hydrophilic by ultraviolet light irradiation, it is a self-cleaning material that decomposes dirt by light and keeps the surface clean by washing off dirt with water. Has been put to practical use.
The titanium oxide photocatalyst is generally formed as a coating film on the surface of the substrate. As a method for forming the titanium oxide photocatalyst, there is a method in which a suspension of photocatalyst particles containing a binder component is coated and dried. The binder is selected depending on the type of substrate to be coated, and an inorganic binder such as silica or silicate, or an organic binder that is not easily affected by the photocatalytic reaction of titanium oxide such as silicone resin or fluororesin is used.
As problems of conventional titanium oxide photocatalysts,
(1) Although photocatalytic activity is exhibited under intense ultraviolet light, sufficient photocatalytic activity is not exhibited with light in the visible light region or weak ultraviolet light at the level of indoor or indoor fluorescent lamps.
(2) A sufficient adhesion strength between the coating film and the substrate and a sufficient hardness of the coating film cannot be obtained, and the application range is limited. For example, it cannot be applied to a window glass for a vehicle that is premised on being applied to a car wash.
There is something called.

上記(1)の課題に関し、酸化チタンに窒素を微量ドーピングすることで、可視光領域での吸収が得られるようになり、条件を最適化すれば、可視光のみで親水化反応を進めることができる技術が開示されている(特許文献1参照)。また、上記(2)の課題に関し、酸化チタンゾルと安定化チタンアルコキシドとを含有して成る酸化チタン薄膜形成用組成物をガラスに塗布し、350〜700℃で焼成することで、機械的耐久性を高める技術が開示されている(特許文献2参照)。
特開2004−988号公報 特開平9−248467号公報
Regarding the above problem (1), absorption in the visible light region can be obtained by doping a small amount of nitrogen into titanium oxide, and if the conditions are optimized, the hydrophilization reaction can be promoted only with visible light. The technique which can be performed is disclosed (refer patent document 1). In addition, regarding the above problem (2), mechanical durability is achieved by applying a composition for forming a titanium oxide thin film containing a titanium oxide sol and a stabilized titanium alkoxide to glass and baking at 350 to 700 ° C. Has been disclosed (see Patent Document 2).
Japanese Patent Laid-Open No. 2004-988 Japanese Patent Laid-Open No. 9-248467

しかしながら、特許文献1の技術は、ドーピングにより構造中に歪を導入することが避けられず、結果として可視光領域での反応性を付与できるものの、微弱な紫外光に対する感度は得られなくなる。また、特許文献2の技術で報告されている機械的耐久性は、JIS−K5400で規定される鉛筆引っかき試験において7Hに過ぎず、車両用等の用途に適用できる耐久性を有していない。   However, the technique of Patent Document 1 inevitably introduces strain into the structure by doping, and as a result, it is possible to impart reactivity in the visible light region, but sensitivity to weak ultraviolet light cannot be obtained. Moreover, the mechanical durability reported by the technique of patent document 2 is only 7H in the pencil scratch test prescribed | regulated by JIS-K5400, and does not have the durability applicable to uses, such as a vehicle.

本発明は以上の点に鑑みなされたものであり、可視光及び微弱な紫外光の下で光触媒活性を示し、耐久性が高い光触媒塗膜、光触媒塗膜の形成に用いられるコーティング剤、及び光触媒塗膜形成方法を提供することを目的とする。   The present invention has been made in view of the above points, and exhibits photocatalytic activity under visible light and weak ultraviolet light, and has high durability. Photocatalytic coating film, coating agent used for formation of photocatalytic coating film, and photocatalyst It aims at providing the coating-film formation method.

(1)請求項1の発明は、
鱗片状の酸化チタン微粒子と、
含硫黄化合物と、
を含むコーティング剤を要旨とする。
(1) The invention of claim 1
Scaly titanium oxide particles,
A sulfur-containing compound;
The gist is a coating agent containing

本発明のコーティング剤を塗布することによって形成した塗膜は、可視光及び微弱な紫外光で光触媒活性を有する。
また、本発明のコーティング剤を塗布することによって形成した塗膜は、図1に示すように、塗膜1の中で、鱗片状(シート状)の酸化チタン粒子5が一定の配向性をもって積層した微細構造を有し、平滑性が高い。そのため、高い平滑性と密着性を持つ塗膜を形成できる。そして、塗膜の平滑性が高いことにより、塗膜の表面積が小さくなり、塗膜への汚染物質の付着量が少なくなる。そして、たとえ汚れが塗膜の表面に付着しても酸化チタンの光触媒活性および超親水性により汚れの分解・除去が可能である。更に、塗膜硬度も高い。
The coating film formed by applying the coating agent of the present invention has photocatalytic activity under visible light and weak ultraviolet light.
In addition, as shown in FIG. 1, the coating film formed by applying the coating agent of the present invention is laminated with scale-like (sheet-like) titanium oxide particles 5 in a certain orientation in the coating film 1. It has a fine structure and high smoothness. Therefore, a coating film having high smoothness and adhesion can be formed. And since the smoothness of a coating film is high, the surface area of a coating film becomes small and the adhesion amount of the contaminant to a coating film decreases. Even if dirt adheres to the surface of the coating film, the dirt can be decomposed and removed by the photocatalytic activity and super hydrophilicity of titanium oxide. Furthermore, the coating film hardness is also high.

また、本発明のコーティング剤を塗布することにより形成した塗膜は、鱗片状の酸化チタン粒子が一定の配向性をもって積層した微細構造を有しているので、球状の酸化チタン粒子が分散した構造に比べて、塗膜を超薄膜化することが可能である。   Moreover, since the coating film formed by applying the coating agent of the present invention has a fine structure in which scaly titanium oxide particles are laminated with a certain orientation, a structure in which spherical titanium oxide particles are dispersed Compared to the above, it is possible to make the coating film ultra-thin.

更に、本発明では、酸化チタンが薄く広げられたシート状(鱗片状)であるので、酸化チタンの単位体積あたりの表面積が大きい。そのため、本発明のコーティング剤を用いて形成された塗膜では、基材(コーティング剤を塗布する対象)と酸化チタンとの接触面積が大きく、塗膜の密着性が高い。   Furthermore, in the present invention, the surface area per unit volume of the titanium oxide is large because the titanium oxide is in the form of a thin sheet (scale-like). Therefore, in the coating film formed using the coating agent of this invention, the contact area of a base material (object which apply | coats a coating agent) and titanium oxide is large, and the adhesiveness of a coating film is high.

また、本発明のコーティング剤は、スピンコート法などにより、簡便に広い面積にわたって塗膜を形成することができる。
また、本発明のコーティング剤を用いて形成した塗膜は、超親水性を示すので、その表面に水が付着しても水滴となりにくい。そのため、防曇性において優れている。
In addition, the coating agent of the present invention can easily form a coating film over a wide area by a spin coating method or the like.
Moreover, since the coating film formed using the coating agent of this invention shows super hydrophilicity, even if water adheres to the surface, it is hard to become a water droplet. Therefore, it is excellent in antifogging properties.

前記鱗片状の酸化チタン微粒子の大きさは0.1〜20μmの範囲が好適であり、その厚みは0.3〜3nmの範囲が好適であり、更に望ましくは0.5〜1nmの範囲が好適である。また、鱗片状の酸化チタン微粒子におけるアスペクト比は100〜5000の範囲が好適である。前記鱗片状の酸化チタン微粒子としては、例えば、層状のチタン酸塩が単層まで剥離したシート状の粒子が挙げられる。コーティング剤に占める鱗片状の酸化チタン微粒子の割合は、0.1〜10重量%の範囲が好適である。   The size of the scaly titanium oxide fine particles is preferably in the range of 0.1 to 20 μm, and the thickness is preferably in the range of 0.3 to 3 nm, and more preferably in the range of 0.5 to 1 nm. It is. The aspect ratio of the scale-like titanium oxide fine particles is preferably in the range of 100 to 5000. Examples of the scaly titanium oxide fine particles include sheet-like particles in which a layered titanate is peeled up to a single layer. The ratio of the flaky titanium oxide fine particles in the coating agent is preferably in the range of 0.1 to 10% by weight.

本発明のコーティング剤に含まれる溶媒としては、例えば、エステル類、ケトン類、アルコール類等があり、具体的には、酢酸エチル、酢酸イソブチル、アセトン、メチルエチルケトン、メタノール、エタノール、イソプロパノール等が挙げられ、特にアルコール類が好ましい。   Examples of the solvent contained in the coating agent of the present invention include esters, ketones, alcohols, and the like. Specific examples include ethyl acetate, isobutyl acetate, acetone, methyl ethyl ketone, methanol, ethanol, isopropanol, and the like. In particular, alcohols are preferred.

前記含硫黄化合物は、硫黄を含む化合物が広く該当し、例えば、チオエーテル類、チオ尿素類、チオアミド類、チオアルコール類、チオアルデヒド類、チアジル類、メルカプタール類、チオール類、チオシアン酸塩類等があり、具体的な化合物としては、チオフェノール、チオフェン、ベンゾチオフェン、チオベンゾフェン、ジベンゾチオフェン、ビチオフェン、フェノチアジン、スルホラン、チアジン、チアゾール、チアジアゾール、チアゾ
リン、チアゾリジン、チアントレン、チアン、チオアセトアニリド、チオアセトアミド、チオベンズアミド、チオアニソール、チオニン、メチルチオール、チオエーテル、チオシアン、チオ尿素等が挙げられ、特に、酸素を含まず硫黄、窒素、及び炭素を有する化合物(例えばチオ尿素)が好ましい。
The sulfur-containing compounds widely include compounds containing sulfur, such as thioethers, thioureas, thioamides, thioalcohols, thioaldehydes, thiazyl, mercaptals, thiols, and thiocyanates. Specific compounds include thiophenol, thiophene, benzothiophene, thiobenzophene, dibenzothiophene, bithiophene, phenothiazine, sulfolane, thiazine, thiazole, thiadiazole, thiazoline, thiazolidine, thianthrene, thiane, thioacetanilide, thioacetamide, thio Examples include benzamide, thioanisole, thionine, methylthiol, thioether, thiocyan, thiourea, and the like, and particularly, a compound having no oxygen, sulfur, nitrogen, and carbon (for example, thiourea) is preferable.

本発明のコーティング剤は、バインダーを配合することができる(図1における7参照)。このバインダーとしては、例えば、アセチルアセトンで安定化させたチタンアルコキシド(例えば、チタン(IV)イソブトキシド、チタン(IV)イソプロポキシド、チタン(IV)エトキシド、チタンテトラ(IV)ブトキシド、チタン(IV)t−ブトキシド、チタン(IV)n−プロポキシド、チタン(IV)メトキシド等)、テトラアルコキシシランから調製される酸化ケイ素のゾル、チタンテトラアルコキシドから調製される酸化チタンのゾル等が挙げられる。   The coating agent of this invention can mix | blend a binder (refer 7 in FIG. 1). Examples of the binder include titanium alkoxide stabilized with acetylacetone (for example, titanium (IV) isobutoxide, titanium (IV) isopropoxide, titanium (IV) ethoxide, titanium tetra (IV) butoxide, titanium (IV)). t-butoxide, titanium (IV) n-propoxide, titanium (IV) methoxide, etc.), silicon oxide sol prepared from tetraalkoxysilane, titanium oxide sol prepared from titanium tetraalkoxide, and the like.

これらのバインダーを含有することにより、鱗片状の酸化チタン微粒子と基材との密着性を高めることができ、樹脂バインダーを含有する場合に比べて、化学的安定性や物理的安定性において優れている。また、これらのバインダーを含有する場合は、樹脂バインダーを含む場合とは異なり、低い焼成温度下でも、無機物質を主成分とする(あるいは無機物質の組成のみから成る)塗膜を形成することができる。そのため、熱に弱い樹脂等にも硬い塗膜を形成することができる。   By containing these binders, the adhesion between the scaly titanium oxide fine particles and the substrate can be improved, and in terms of chemical stability and physical stability, compared to the case of containing a resin binder. Yes. Further, when these binders are contained, unlike the case where resin binders are contained, it is possible to form a coating film containing an inorganic substance as a main component (or comprising only the composition of an inorganic substance) even at a low firing temperature. it can. Therefore, a hard coating film can be formed even on a resin that is vulnerable to heat.

コーティング剤全量に対するチタンアルコキシドの重量比は、1〜90(好ましくは5〜90)重量%の範囲が好適である。5重量%以上であることにより、非常に硬い塗膜を形成することができる。また、90重量%以下であることにより光触媒活性と平滑性の点で有利である。コーティング剤全量に対する酸化ケイ素の重量比は、1〜50重量%の範囲が好適である。5重量%以上であることにより、非常に硬い塗膜を形成することができる。また、25重量%以下であることにより光触媒活性と平滑性の点で有利である。コーティング剤全量に対する酸化チタンゾルの重量比は、5〜50重量%の範囲が好適である。20重量%以上であることにより、膜硬度の点で有利である。また、40重量%以下であることにより平滑性の点で有利である。   The weight ratio of the titanium alkoxide with respect to the total amount of the coating agent is preferably in the range of 1 to 90 (preferably 5 to 90)% by weight. By being 5% by weight or more, a very hard coating film can be formed. Moreover, it is advantageous in terms of photocatalytic activity and smoothness by being 90% by weight or less. The weight ratio of silicon oxide to the total amount of the coating agent is preferably in the range of 1 to 50% by weight. By being 5% by weight or more, a very hard coating film can be formed. Further, the content of 25% by weight or less is advantageous in terms of photocatalytic activity and smoothness. The weight ratio of the titanium oxide sol with respect to the total amount of the coating agent is preferably in the range of 5 to 50% by weight. By being 20% by weight or more, it is advantageous in terms of film hardness. Moreover, it is advantageous at the point of smoothness by being 40 weight% or less.

尚、本発明のコーティング剤は、板状のナノシートを用いることにより、球状の酸化チタン微粒子を用いる場合に比べて、バインダーの割合が少なくても硬い塗膜を形成することができる。つまり、従来のコーティング剤では、通常、バインダーを50重量%ほど配合していたが、本発明では、上述した含有量でよいため、非常に硬い塗膜を形成することができる。   In addition, the coating agent of this invention can form a hard coating film by using a plate-shaped nanosheet, even if there are few ratios of a binder compared with the case where spherical titanium oxide microparticles are used. That is, in the conventional coating agent, the binder is usually blended by about 50% by weight. However, in the present invention, since the above-described content is sufficient, a very hard coating film can be formed.

本発明のコーティング剤は、例えば、溶媒に含硫黄化合物、バインダー、ポリエチレングリコールを加えて完全な一液溶液になるまで撹拌し、次に、薄片状の酸化チタン粒子(チタニアナノシート)を分散させた溶液を所定の割合で加えて混合するという方法で製造できる。このとき、必ずしもポリエチレングリコールを加える必要はない。ポリエチレングリコールを加える場合は、コーティング剤に対して20重量%を超えない範囲が好ましく、15〜18重量%の範囲が特に好ましい。加えるチオ尿素のモル量は、薄片状の酸化チタン粒子(チタニアナノシート)とバインダーの総モル量に対して4倍を超えない範囲が好ましい。
(2)請求項2の発明は、
前記含硫黄化合物がチオ尿素であることを特徴とする請求項1記載のコーティング剤を要旨とする。
In the coating agent of the present invention, for example, a sulfur-containing compound, a binder, and polyethylene glycol are added to a solvent and stirred until a complete one-component solution is obtained, and then flaky titanium oxide particles (titania nanosheets) are dispersed. It can be produced by a method in which a solution is added at a predetermined ratio and mixed. At this time, it is not always necessary to add polyethylene glycol. When adding polyethylene glycol, the range which does not exceed 20 weight% with respect to a coating agent is preferable, and the range of 15-18 weight% is especially preferable. The molar amount of thiourea to be added is preferably within a range not exceeding 4 times the total molar amount of flaky titanium oxide particles (titania nanosheets) and binder.
(2) The invention of claim 2
The gist of the coating agent according to claim 1, wherein the sulfur-containing compound is thiourea.

本発明のコーティング剤を塗布することによって形成した塗膜は、可視光及び微弱な紫外光の下で、一層高い光触媒活性を有する。
(3)請求項3の発明は、
請求項1又は2に記載のコーティング剤を塗布する塗布工程と、
塗布された前記コーティング剤を乾燥させる乾燥工程と、を有することを特徴とする光触媒塗膜の形成方法を要旨とする。
The coating film formed by applying the coating agent of the present invention has higher photocatalytic activity under visible light and weak ultraviolet light.
(3) The invention of claim 3
An application step of applying the coating agent according to claim 1 or 2,
And a drying step of drying the applied coating agent. The gist of the method is to form a photocatalyst coating film.

本発明で得られた光触媒塗膜は、可視光及び微弱な紫外光で、一層高い光触媒活性を有する。また、本発明で得られた光触媒塗膜は、球状微粒子の酸化チタンを分散して成るコーティング剤を用いる場合と比べて、高い平滑性と密着性を持つ。そのため、そもそも汚れが付着しにくい防汚性を有しており、たとえ汚れが付着しても酸化チタンの光触媒活性および超親水性により分解・除去が可能である。   The photocatalyst coating film obtained in the present invention has higher photocatalytic activity under visible light and weak ultraviolet light. Moreover, the photocatalyst coating film obtained by the present invention has higher smoothness and adhesion than the case of using a coating agent formed by dispersing spherical fine titanium oxide. Therefore, it originally has antifouling properties that make it difficult for dirt to adhere to it, and even if dirt adheres, it can be decomposed and removed by the photocatalytic activity and superhydrophilicity of titanium oxide.

更に、本発明では、酸化チタンが薄く広げられたシート状であるので、酸化チタンの単位体積あたりの表面積が大きい。そのため、本発明で形成された光触媒塗膜では、基板と酸化チタンとの接触面積が大きく、光触媒塗膜の密着性が高い。   Furthermore, in the present invention, the surface area per unit volume of the titanium oxide is large because the titanium oxide is in the form of a thin sheet. Therefore, in the photocatalyst coating film formed by this invention, the contact area of a board | substrate and a titanium oxide is large, and the adhesiveness of a photocatalyst coating film is high.

前記塗布工程においてコーティング剤を塗布する方法としては、例えば、スピンコート、プレートコート、ディップコート、スプレーコートなど、一般的にウェット法に用いられるコーティング手法が利用できる。そして、コーティングした後、乾燥し、焼成を行う。
(4)請求項4の発明は、
前記乾燥工程において400〜600℃の温度に加熱することを特徴とする請求項3に記載の光触媒塗膜の形成方法を要旨とする。
As a method for applying the coating agent in the application step, for example, a coating method generally used in a wet method such as spin coating, plate coating, dip coating, spray coating, or the like can be used. And after coating, it dries and performs baking.
(4) The invention of claim 4
The gist of the method for forming a photocatalyst coating film according to claim 3, wherein heating is performed at a temperature of 400 to 600 ° C. in the drying step.

本発明では、上記の温度で加熱することにより、形成された光触媒塗膜の、可視光及び微弱な紫外光の下での光触媒活性が一層高くなる。
また、本発明では、乾燥工程において加熱を行うことにより、乾燥に要する時間を短縮でき、形成される塗膜の硬度を向上させることができる。加熱時間は30秒〜4時間の範囲が好適であり、特に30分〜3時間の範囲が好ましい。
(5)請求項5の発明は、
請求項3又は4に記載の光触媒塗膜の形成方法によって形成される光触媒塗膜を要旨とする。
In the present invention, by heating at the above temperature, the photocatalytic activity of the formed photocatalytic coating film under visible light and weak ultraviolet light is further increased.
Moreover, in this invention, the time which drying requires can be shortened by heating in a drying process, and the hardness of the coating film formed can be improved. The heating time is preferably in the range of 30 seconds to 4 hours, particularly preferably in the range of 30 minutes to 3 hours.
(5) The invention of claim 5
The gist is a photocatalyst coating film formed by the method for forming a photocatalyst coating film according to claim 3.

本発明の光触媒塗膜は、可視光及び微弱な紫外光で光触媒活性を有する。また、本発明の光触媒塗膜では、酸化チタンが薄く広げられたシート状(鱗片状)であるので、酸化チタンの単位体積あたりの表面積が大きい。そのため、基材と酸化チタンとの接触面積が大きく、光触媒塗膜の密着性が高い。また、酸化チタンと汚染物質との接触面積も大きくなるので、汚れの分解・除去の能力も高い。また、本発明の光触媒塗膜は、超親水性を示すので、その表面に水が付着しても水滴となりにくい。そのため、防曇性において優れている。
(6)請求項6の発明は、
前記鱗片状の酸化チタン微粒子が一定の配向性をもって積層した微細構造を有することを特徴とする請求項5に記載の光触媒塗膜を要旨とする。
The photocatalyst coating film of the present invention has photocatalytic activity under visible light and weak ultraviolet light. Moreover, in the photocatalyst coating film of this invention, since the titanium oxide is the sheet form (scale shape) which was spread thinly, the surface area per unit volume of a titanium oxide is large. Therefore, the contact area of a base material and a titanium oxide is large, and the adhesiveness of a photocatalyst coating film is high. In addition, since the contact area between the titanium oxide and the contaminant is increased, the ability to decompose and remove dirt is high. Moreover, since the photocatalyst coating film of this invention shows super hydrophilicity, even if water adheres to the surface, it is hard to become a water droplet. Therefore, it is excellent in antifogging properties.
(6) The invention of claim 6
The gist of the photocatalyst coating film according to claim 5, wherein the scaly titanium oxide fine particles have a fine structure in which the fine particles are laminated with a certain orientation.

本発明の光触媒塗膜は、鱗片状の酸化チタン粒子が一定の配向性をもって積層した微細構造を有し、平滑性が高い。そのため、汚れが付着しにくい防汚性を有しており、たとえ汚れが付着しても酸化チタンの光触媒活性および超親水性により分解・除去が可能である。更に、塗膜硬度も高い。   The photocatalytic coating film of the present invention has a fine structure in which scaly titanium oxide particles are laminated with a certain orientation, and has high smoothness. Therefore, it has antifouling properties that prevent dirt from adhering, and even if dirt adheres, it can be decomposed and removed by the photocatalytic activity and superhydrophilicity of titanium oxide. Furthermore, the coating film hardness is also high.

また、本発明の光触媒塗膜は、上記の微細構造を有しているので、球状の酸化チタン粒
子が分散した構造に比べて、膜厚を超薄膜可することが可能である。
(7)請求項7の発明は、
基材と、当該基材の表面に形成された請求項5又は6記載の光触媒塗膜とを有する光触媒塗膜具有製品を要旨とする。
本発明の光触媒塗膜具有製品は、請求項5又は6記載の光触媒塗膜を備えることにより、可視光及び微弱な紫外光で光触媒活性を有する。また、本発明の光触媒塗膜具有製品は、その表面の平滑性、防汚性が高く、たとえ汚れが付着しても酸化チタンの光触媒活性および超親水性により分解・除去が可能である。また、本発明の光触媒塗膜具有製品は、光触媒塗膜と基材との密着性が高く、また、光触媒塗膜が超親水性を示すので、その表面に水が付着しても水滴となりにくく、防曇性において優れている。
本発明において適用できる基材としては、酸化チタンがアナターゼに結晶化するために必要な焼成に耐えられる物質から成るものが好ましく、例えばガラス、金属、セラミックス、耐熱性高分子(例えば、エポキシ樹脂、ポリイミド樹脂、珪素系高分子、フェノール樹脂等)などが挙げられる。また、例えば、光触媒塗膜の形成にディッピングなどの方法を用いれば、基材の形状に関する制約はない。
In addition, since the photocatalyst coating film of the present invention has the above-mentioned fine structure, it can be made ultrathin as compared with a structure in which spherical titanium oxide particles are dispersed.
(7) The invention of claim 7
The gist is a product having a photocatalyst coating film having a base material and the photocatalyst coating film according to claim 5 or 6 formed on the surface of the base material.
The product with a photocatalyst coating film according to the present invention has a photocatalytic activity with visible light and weak ultraviolet light by including the photocatalyst coating film according to claim 5 or 6. Further, the product with a photocatalyst coating film of the present invention has high surface smoothness and antifouling properties, and even if dirt is attached, it can be decomposed and removed by the photocatalytic activity and superhydrophilicity of titanium oxide. In addition, the photocatalyst coating-equipped product of the present invention has high adhesion between the photocatalyst coating film and the substrate, and the photocatalyst coating film exhibits super hydrophilicity, so even if water adheres to the surface, it is difficult to form water droplets. Excellent in antifogging property.
The base material applicable in the present invention is preferably made of a material that can withstand the firing required for crystallization of titanium oxide to anatase. For example, glass, metal, ceramics, heat-resistant polymer (for example, epoxy resin, Polyimide resin, silicon polymer, phenol resin, etc.). For example, if a method such as dipping is used to form the photocatalyst coating film, there is no restriction on the shape of the substrate.

本発明の光触媒塗膜具有製品としては、例えば、基体がガラスであるガラス製品、基体が金属である金属製品、基体がセラミックスであるセラミックス製品、基体が耐熱性プラスチックである耐熱性プラスチック製品等が挙げられる。上記ガラス製品の例としては、例えば、自動車用ガラス、鉄道車両用ガラス、建材用ガラス、光学ガラス、照明用ガラス、鏡面用ガラス、ショーケース、食品保存用ガラス容器、太陽電池カバーガラス、水槽用ガラス等が挙げられる。上記金属製品の例としては、例えば、門扉、鉄柵、鉄道車両無塗装外板、航空機外板、アルミホイール、アルミ建材、ステンレス建材等が挙げられる。上記セラミックス製品の例としては、例えば、碍子、タイル、食器、衛生用品、瓦等が挙げられる。上記耐熱性プラスチック製品の例としては、例えば、自動車部品用プラスチック、加熱調理器具用樹脂部品、高出力モーター用カバー、絶縁用樹脂部品等が挙げられる。   Examples of the product with a photocatalyst coating film of the present invention include a glass product whose base is glass, a metal product whose base is metal, a ceramic product whose base is ceramic, and a heat-resistant plastic product whose base is a heat-resistant plastic. Can be mentioned. Examples of the glass products include, for example, glass for automobiles, glass for railway vehicles, glass for building materials, optical glass, glass for lighting, glass for mirror surfaces, showcases, glass containers for food preservation, solar cell cover glasses, and water tanks. Glass etc. are mentioned. Examples of the metal products include gates, iron fences, railcar unpainted skins, aircraft skins, aluminum wheels, aluminum building materials, and stainless steel building materials. Examples of the ceramic product include insulators, tiles, tableware, sanitary goods, and tiles. Examples of the heat-resistant plastic products include plastics for automobile parts, resin parts for cooking utensils, high-power motor covers, insulating resin parts, and the like.

本発明を実施例に基づいて説明する。   The present invention will be described based on examples.

a)チタニアナノシートの製造
炭酸セシウム、酸化チタンをモル比1:5.3の割合で混合し、800℃、20時間の焼成を2回行った。生成したチタン酸セシウムを希塩酸中で撹拌、ろ過、乾燥するという一連の処理を4回繰り返し、セシウムイオンを水素イオンに置き換えた層状チタン酸を得た。これに、テトラブチルアンモニウム塩酸塩水溶液を加え、14日間撹拌してチタニアナノシートを調製した。
a) Production of titania nanosheet Cesium carbonate and titanium oxide were mixed at a molar ratio of 1: 5.3, and baked at 800 ° C. for 20 hours twice. A series of treatments of stirring, filtering and drying the produced cesium titanate in dilute hydrochloric acid was repeated four times to obtain layered titanic acid in which cesium ions were replaced with hydrogen ions. Tetrabutylammonium hydrochloride aqueous solution was added to this, and it stirred for 14 days, and prepared the titania nanosheet.

b)コーティング剤の調製
チオ尿素3.05gを量りとり、エタノール100mlへ入れて超音波洗浄機で10分間、マグネティックスターラーで30分間それぞれ撹拌してチオ尿素を完全に溶解し、0.4Mのチオ尿素エタノール溶液とした。このチオ尿素エタノール溶液11.5ml、ポリエチレングリコール3.4ml、予めアセチルアセトンで安定化させたチタンアルコキシド3.33ml、及び前記a)で製造したチタニアナノシートを分散させたエタノール溶液(チタニアナノシートの濃度1重量%)5mlを、それぞれ量りとり、ビーカーに入れてマグネティックスターラーで30分間撹拌してコーティング溶液を調製した。
b) Preparation of coating agent 3.05 g of thiourea was weighed, put into 100 ml of ethanol, stirred for 10 minutes with an ultrasonic cleaner and 30 minutes with a magnetic stirrer to completely dissolve thiourea, and 0.4 M thiol A urea ethanol solution was used. 11.5 ml of this thiourea ethanol solution, 3.4 ml of polyethylene glycol, 3.33 ml of titanium alkoxide previously stabilized with acetylacetone, and an ethanol solution in which the titania nanosheet produced in a) is dispersed (concentration of titania nanosheet 1 weight) %) 5 ml each was weighed, placed in a beaker and stirred with a magnetic stirrer for 30 minutes to prepare a coating solution.

c)光触媒塗膜の形成
前記b)で調製したコーティング溶液を、予め洗浄しておいたパイレックス(登録商標)ガラス上にスピンコート法(1000rpm、20秒)で塗布、乾燥してから、450
℃で3時間焼成することで、光触媒塗膜を形成した。
(比較例1)
エタノール溶液11.5ml、ポリエチレングリコール3.4ml、予めアセチルアセトンで安定化させたチタンアルコキシド65μl、及び前記実施例1のa)で製造したチタニアナノシートを分散させた溶液(チタニアナノシートの濃度1重量%)5mlをそれぞれ量りとり、ビーカーに入れてマグネティックスターラーで30分間撹拌してコーティング溶液を調製した。その後、予め洗浄しておいたパイレックス(登録商標)ガラス上にコーティング溶液をスピンコート法(1000rpm、20秒)で塗布、乾燥してから、450℃で3時間焼成することで、光触媒塗膜を形成した。
(比較例2)
市販されている、高温焼付けゾル・ゲルタイプの光触媒コーティング剤(日本曹達(株)
ビストレイターH 光触媒コーティング NDH−510C)をパイレックス(登録商標)ガラス上にスピンコート法(1000rpm、20秒)で塗布、乾燥してから、450℃で3時間焼成することで、光触媒塗膜を形成した。
(効果を確かめるための試験)
(i)可視光吸収特性
実施例1、及び比較例1で製造した光触媒塗膜の可視光吸収特性を紫外可視分光光度計((株)日立ハイテクノロジーズ製:U−3310)にて測定した。その結果を図2に示す。図2から明らかなとおり、実施例1で製造した光触媒塗膜は、比較例1で製造した光触媒塗膜に比べて可視光領域での吸収が遙かに高い。この結果は、実施例1で製造した光触媒塗膜が可視光領域で光触媒活性を有することを裏付けている。
(ii) 光触媒塗膜の硬度
実施例1、及び比較例2で製造した光触媒塗膜の塗膜硬度を、「JIS−K5400」における鉛筆引っかき試験の方法に準じて測定した。その結果、実施例1で製造した光触媒塗膜の塗膜硬度は9H以上であり、非常に高かった。一方、比較例2で製造した光触媒塗膜の塗膜硬度は6Bであった。
(iii)塗膜の平滑度
実施例1、及び比較例2で製造した光触媒塗膜の表面を、走査型プローブ顕微鏡(日本電子(株)製:JSPM−5200)を用いて測定した。測定条件は、タッピングモードとした。実施例1で製造した光触媒塗膜の表面観察画像を図3(a)に示し、比較例2で製造した光触媒塗膜の表面観察画像を図3(b)に示す。図3(a)から明らかなとおり、実施例1で製造した光触媒塗膜は非常に緻密で平滑となっており、表面粗さRaは2.1mmであった。一方、図3(b)から明らかなとおり、比較例2で製造した光触媒塗膜の表面は凹凸が大きくなっており、表面粗さは9.2nmであった。
(iv)防汚性
汚れのモデル物質であるメチレンブルー水溶液(濃度が0.01M)を調製し、このメチレンブルー水溶液に、実施例1で光触媒塗膜を形成したガラス片、及び比較例2で光触媒塗膜を形成したガラス片をそれぞれ12時間浸漬した。引き上げたガラス片を水洗したのち、紫外可視分光光度計((株)日立ハイテクノロジーズ製:U−3310)にて光触媒塗膜に付着したメチレンブルーの吸収スペクトルを測定した。その結果を図4に示す。
図4から明らかなとおり、実施例1で製造した光触媒塗膜は、比較例2で製造した光触媒塗膜よりも吸収スペクトルのピークが小さい。このことから、実施例1で製造した光触媒塗膜は、焼成することによって非常に緻密で平滑な塗膜となっており、メチレンブルーが塗膜内部に侵入し難く、且つ付着し難いことが分かる。
(v)微弱な紫外光照射時の光誘起親水性
実施例1、及び比較例1で製造した光触媒塗膜のそれぞれについて、室内蛍光灯レベル
に近い5μW/cm2の強度で所定時間紫外光照射を行い、その直後に接触角計(dataphysics社製:OCA15plus)を用いて水の接触角を測定した。測定は、照射時間を変えながら、繰り返し行った。その結果を図5に示す。図5から明らかなとおり、実施例1で製造した光触媒塗膜は、照射10分で接触角が10度以下となるまで親水化し、照射20分では、接触角が0度である超親水性状態を示した。一方、比較例1で製造した光触媒塗膜は、照射100分後でも接触角が10度以上であった。
(vi)可視光照射時の光誘起親水性
次に、前記(v)の実験方法を基本としつつ、光源を蛍光灯とし、また、420nm以下の波長をカットするフィルターを光源に装着して試験を行った。その結果を図6に示す。図6から明らかなとおり、実施例1で製造した光触媒塗膜は、照射10時間で接触角が10度付近となるまで親水化し、照射35時間後に接触角が10度以下となった。一方、比較例1で製造した光触媒塗膜は、照射35時間後でも、接触角が45度以上であり、ほとんど親水化しなかった。
c) Formation of photocatalyst coating film The coating solution prepared in the above b) was applied to a pre-cleaned Pyrex (registered trademark) glass by a spin coating method (1000 rpm, 20 seconds) and dried, then 450
The photocatalyst coating film was formed by baking at 3 degreeC for 3 hours.
(Comparative Example 1)
11.5 ml of ethanol solution, 3.4 ml of polyethylene glycol, 65 μl of titanium alkoxide previously stabilized with acetylacetone, and a solution in which the titania nanosheet produced in a) of Example 1 is dispersed (concentration of titania nanosheet 1% by weight) Each 5 ml was weighed, placed in a beaker and stirred for 30 minutes with a magnetic stirrer to prepare a coating solution. After that, the coating solution is applied on a pre-cleaned Pyrex (registered trademark) glass by a spin coating method (1000 rpm, 20 seconds), dried, and then baked at 450 ° C. for 3 hours to form a photocatalytic coating film. Formed.
(Comparative Example 2)
Commercially available high-temperature baking sol / gel type photocatalytic coating agent (Nippon Soda Co., Ltd.)
Vistraiter H Photocatalyst coating NDH-510C) is applied onto Pyrex (registered trademark) glass by spin coating (1000 rpm, 20 seconds), dried, and then baked at 450 ° C. for 3 hours to form a photocatalytic coating film did.
(Examination to confirm the effect)
(i) Visible light absorption characteristics The visible light absorption characteristics of the photocatalyst coating films produced in Example 1 and Comparative Example 1 were measured with an ultraviolet-visible spectrophotometer (manufactured by Hitachi High-Technologies Corporation: U-3310). The result is shown in FIG. As is clear from FIG. 2, the photocatalyst coating film produced in Example 1 has much higher absorption in the visible light region than the photocatalyst coating film produced in Comparative Example 1. This result confirms that the photocatalytic coating film produced in Example 1 has photocatalytic activity in the visible light region.
(ii) Hardness of the photocatalyst coating film The coating film hardness of the photocatalyst coating film produced in Example 1 and Comparative Example 2 was measured according to the pencil scratch test method in “JIS-K5400”. As a result, the coating film hardness of the photocatalyst coating film produced in Example 1 was 9H or higher, which was very high. On the other hand, the coating film hardness of the photocatalyst coating film produced in Comparative Example 2 was 6B.
(iii) Smoothness of coating film The surface of the photocatalyst coating film produced in Example 1 and Comparative Example 2 was measured using a scanning probe microscope (manufactured by JEOL Ltd .: JSPM-5200). The measurement conditions were tapping mode. The surface observation image of the photocatalyst coating film manufactured in Example 1 is shown in FIG. 3 (a), and the surface observation image of the photocatalyst coating film manufactured in Comparative Example 2 is shown in FIG. 3 (b). As apparent from FIG. 3A, the photocatalyst coating film produced in Example 1 was very dense and smooth, and the surface roughness Ra was 2.1 mm. On the other hand, as is clear from FIG. 3B, the surface of the photocatalyst coating film produced in Comparative Example 2 had large irregularities, and the surface roughness was 9.2 nm.
(iv) A methylene blue aqueous solution (concentration: 0.01 M), which is a model substance for antifouling soil, was prepared, and a glass piece on which a photocatalytic coating film was formed in Example 1 and a photocatalyst coating in Comparative Example 2 were prepared. Each piece of glass on which the film was formed was immersed for 12 hours. After the pulled glass piece was washed with water, the absorption spectrum of methylene blue adhering to the photocatalyst coating film was measured with an ultraviolet-visible spectrophotometer (manufactured by Hitachi High-Technologies Corporation: U-3310). The result is shown in FIG.
As is clear from FIG. 4, the photocatalyst coating film produced in Example 1 has a smaller absorption spectrum peak than the photocatalyst coating film produced in Comparative Example 2. From this, it can be seen that the photocatalyst coating film produced in Example 1 is a very dense and smooth coating film when fired, and that methylene blue hardly penetrates into and adheres to the inside of the coating film.
(v) Photo-induced hydrophilicity during irradiation with weak ultraviolet light Each of the photocatalyst coating films produced in Example 1 and Comparative Example 1 was irradiated with ultraviolet light for a predetermined time at an intensity of 5 μW / cm 2 close to the level of an indoor fluorescent lamp. Immediately thereafter, the contact angle of water was measured using a contact angle meter (manufactured by dataphysics: OCA15plus). The measurement was repeated while changing the irradiation time. The result is shown in FIG. As is clear from FIG. 5, the photocatalytic coating film produced in Example 1 became hydrophilic until the contact angle became 10 degrees or less after 10 minutes of irradiation, and the superhydrophilic state where the contact angle was 0 degrees after 20 minutes of irradiation. showed that. On the other hand, the photocatalytic coating film produced in Comparative Example 1 had a contact angle of 10 degrees or more even after 100 minutes of irradiation.
(vi) Light-induced hydrophilicity during visible light irradiation Next, based on the experimental method (v) above, the light source is a fluorescent lamp, and a filter that cuts a wavelength of 420 nm or less is attached to the light source. Went. The result is shown in FIG. As is clear from FIG. 6, the photocatalyst coating film produced in Example 1 became hydrophilic until the contact angle became around 10 degrees after 10 hours of irradiation, and the contact angle became 10 degrees or less after 35 hours of irradiation. On the other hand, the photocatalyst coating film produced in Comparative Example 1 had a contact angle of 45 degrees or more even after 35 hours of irradiation and was hardly hydrophilized.

尚、本発明は前記実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。   Needless to say, the present invention is not limited to the above-described embodiments, and can be implemented in various modes without departing from the scope of the present invention.

コーティング剤を用いて形成された塗膜の構成を表す断面図である。It is sectional drawing showing the structure of the coating film formed using the coating agent. 光触媒塗膜の可視光吸収特性を表すグラフである。It is a graph showing the visible light absorption characteristic of a photocatalyst coating film. 光触媒塗膜の表面形状を表す走査型プローブ顕微鏡の観察画像である。It is an observation image of the scanning probe microscope showing the surface shape of a photocatalyst coating film. 光触媒塗膜の表面に付着したメチレンブルーの吸光度スペクトルを表すグラフである。It is a graph showing the absorbance spectrum of the methylene blue adhering to the surface of a photocatalyst coating film. 微弱紫外光照射後における光触媒塗膜の表面での水の接触角変化を表すグラフである。It is a graph showing the contact angle change of the water in the surface of the photocatalyst coating film after weak ultraviolet light irradiation. 可視光照射後における光触媒塗膜の表面での水の接触角変化を表すグラフである。It is a graph showing the contact angle change of the water in the surface of the photocatalyst coating film after visible light irradiation.

符号の説明Explanation of symbols

1・・光触媒塗膜 3・・・基板 5・・・シート状酸化チタン
7・・・バインダー
1 .... Photocatalytic coating film 3 ... Substrate 5 ... Sheet titanium oxide 7 ... Binder

Claims (7)

鱗片状の酸化チタン微粒子と、
含硫黄化合物と、
を含むコーティング剤。
Scaly titanium oxide particles,
A sulfur-containing compound;
Coating agent containing.
前記含硫黄化合物がチオ尿素であることを特徴とする請求項1記載のコーティング剤。   The coating agent according to claim 1, wherein the sulfur-containing compound is thiourea. 請求項1又は2に記載のコーティング剤を塗布する塗布工程と、
塗布された前記コーティング剤を乾燥させる乾燥工程と、を有することを特徴とする光触媒塗膜の形成方法。
An application step of applying the coating agent according to claim 1 or 2,
And a drying step of drying the applied coating agent.
前記乾燥工程において400〜600℃の温度に加熱することを特徴とする請求項3に記載の光触媒塗膜の形成方法。   The method for forming a photocatalyst coating film according to claim 3, wherein heating is performed at a temperature of 400 to 600 ° C. in the drying step. 請求項3又は4に記載の光触媒塗膜の形成方法によって形成される光触媒塗膜。   The photocatalyst coating film formed by the formation method of the photocatalyst coating film of Claim 3 or 4. 前記鱗片状の酸化チタン微粒子が一定の配向性をもって積層した微細構造を有することを特徴とする請求項5に記載の光触媒塗膜。   6. The photocatalytic coating film according to claim 5, which has a fine structure in which the scaly titanium oxide fine particles are laminated with a certain orientation. 基材と、当該基材の表面に形成された請求項5又は6記載の光触媒塗膜とを有する光触媒塗膜具有製品。   A product with a photocatalyst coating film comprising a substrate and the photocatalyst coating film according to claim 5 or 6 formed on the surface of the substrate.
JP2007062172A 2007-03-12 2007-03-12 Photocatalytic coating film forming coating agent and photocatalytic coating film forming method Expired - Fee Related JP5148901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062172A JP5148901B2 (en) 2007-03-12 2007-03-12 Photocatalytic coating film forming coating agent and photocatalytic coating film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062172A JP5148901B2 (en) 2007-03-12 2007-03-12 Photocatalytic coating film forming coating agent and photocatalytic coating film forming method

Publications (2)

Publication Number Publication Date
JP2008222842A true JP2008222842A (en) 2008-09-25
JP5148901B2 JP5148901B2 (en) 2013-02-20

Family

ID=39841834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062172A Expired - Fee Related JP5148901B2 (en) 2007-03-12 2007-03-12 Photocatalytic coating film forming coating agent and photocatalytic coating film forming method

Country Status (1)

Country Link
JP (1) JP5148901B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181210A1 (en) * 2021-02-24 2022-09-01 Apsジャパン株式会社 Member having photocatalytic activity and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126314A (en) * 2003-09-29 2005-05-19 Jfe Steel Kk Method of manufacturing titanium oxide solution, titanium oxide solution and photocatalytic coating material
JP2005290369A (en) * 2004-03-10 2005-10-20 Central Japan Railway Co Titanium oxide-coating agent, and forming method for titanium oxide-coating film
WO2006095464A1 (en) * 2005-03-09 2006-09-14 Central Japan Railway Company Titanium oxide coating agent, and method for titanium oxide coating film formation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126314A (en) * 2003-09-29 2005-05-19 Jfe Steel Kk Method of manufacturing titanium oxide solution, titanium oxide solution and photocatalytic coating material
JP2005290369A (en) * 2004-03-10 2005-10-20 Central Japan Railway Co Titanium oxide-coating agent, and forming method for titanium oxide-coating film
WO2006095464A1 (en) * 2005-03-09 2006-09-14 Central Japan Railway Company Titanium oxide coating agent, and method for titanium oxide coating film formation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181210A1 (en) * 2021-02-24 2022-09-01 Apsジャパン株式会社 Member having photocatalytic activity and method for producing same

Also Published As

Publication number Publication date
JP5148901B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP4995428B2 (en) Titanium oxide coating formation method
KR101077709B1 (en) Coating liquid, titanium oxide thin-film formed using coating liquid, and method of forming the same
US8048511B2 (en) Titanium oxide coating agent and titanium oxide film forming method
KR101758934B1 (en) Near-infrared shielding coating agent curable at ordinary temperatures, near-infrared shielding film using same, and manufacturing method therefor
JP5874266B2 (en) Photocatalyst coating liquid and photocatalytic thin film obtained therefrom
JP5118067B2 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT
JP5148901B2 (en) Photocatalytic coating film forming coating agent and photocatalytic coating film forming method
JPH1192689A (en) Inorganic coating
JP5915717B2 (en) Room temperature curable highly active photocatalyst coating liquid and photocatalytic thin film obtained therefrom
JP2010234355A (en) Photocatalyst coating solution having excellent response to visible light
JP5434778B2 (en) Cage-type silsesquioxane-peroxotitanium composite photocatalyst aqueous coating liquid and coating film for hydrophilic film formation
JP2003055580A (en) Water-borne coating material, laminate, and method for producing the laminate
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
JP6695417B2 (en) Photocatalyst structure and manufacturing method thereof
JP2010096359A (en) Refrigerating showcase
JP3866147B2 (en) Painted metal plate with excellent processability, concealability and photocatalytic activity, and method for producing the same
JP2010275542A (en) Photocatalyst coating liquid and coating film
US11964739B2 (en) Coatings that reduce or prevent barnacle attachment to a marine structure
JP4090030B2 (en) Photocatalyst-coated metal plate excellent in stain resistance and coating film adhesion and method for producing the same
WO2012053566A1 (en) Photocatalytic coating solution and photocatalytic thin film produced from same
JPH10287237A (en) Stone flying accident-preventing rolling stock
WO2006123426A1 (en) Method for preparing titanium oxide film and solution for forming titanium oxide film
JP2010099098A (en) Pot lid
WO2006123424A1 (en) Titanium oxide film, process for producing the same and aqueous peroxotitanic acid solution
JPH10137098A (en) Stainproofing tableware and housing device for stainproofing tableware

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees