JP2008222654A - Vitamin b12-titania hybrid compound and dehalogenation catalyst - Google Patents

Vitamin b12-titania hybrid compound and dehalogenation catalyst Download PDF

Info

Publication number
JP2008222654A
JP2008222654A JP2007064940A JP2007064940A JP2008222654A JP 2008222654 A JP2008222654 A JP 2008222654A JP 2007064940 A JP2007064940 A JP 2007064940A JP 2007064940 A JP2007064940 A JP 2007064940A JP 2008222654 A JP2008222654 A JP 2008222654A
Authority
JP
Japan
Prior art keywords
vitamin
titania
hybrid compound
group
titania hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007064940A
Other languages
Japanese (ja)
Other versions
JP5141866B2 (en
Inventor
Hisashi Shimakoshi
恒 嶌越
Yoshio Kueda
良雄 久枝
Makoto Abiru
真 阿比留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2007064940A priority Critical patent/JP5141866B2/en
Publication of JP2008222654A publication Critical patent/JP2008222654A/en
Application granted granted Critical
Publication of JP5141866B2 publication Critical patent/JP5141866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vitamin B<SB>12</SB>-titania hybrid compound and a dehalogenation catalyst each having high endurance under various pH conditions and obtained by firmly fixing a vitamin B<SB>12</SB>compound which becomes a catalytic site through a binding part having a siloxane bond as a main chain to the surface of titania which is a solid photocatalyst exhibiting photosensitization action. <P>SOLUTION: The vitamin B<SB>12</SB>-titania hybrid compound is obtained by fixing one or more vitamin B<SB>12</SB>compounds through a binding part to the titania. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ビタミンB12−チタニアハイブリッド化合物および脱ハロゲン化触媒に関する。 The present invention relates to a vitamin B 12 -titania hybrid compound and a dehalogenation catalyst.

有機ハロゲン化物を還元的に脱ハロゲン化したり化学変換するためには、ビタミンB12錯体を還元し触媒として用いる方法が知られている(非特許文献1、非特許文献2、非特許文献3参照)。さらに触媒となるビタミンB12錯体を電極や高分子などの基材に担持させ使用する方法が知られている(非特許文献4参照)。これらは、電気化学還元や化学試薬によりビタミンB12錯体を還元活性化しており、支持電解質や化学還元剤が必要であったり、非共有結合により基材に担持しているため(特許文献1参照)、環境対策や安全性および安定性に大きな問題があった。
「ダルトン・トランスアクション(Dalton Trans.)」、(英国)、2004年、p.878−882 「ジャーナル・オブ・エレクトロアナリティカル・ケミストリー(J. Electroanal. Chem.)」、(英国)、2001年、p.170−176 「資源環境対策」、(日本国)、2006年、42、p.99−102 「ダルトン・トランスアクション(Dalton Trans.」、(英国)、2003年、p.2308−2312 特開2006−191947号公報(特許請求の範囲)
In order to reductively dehalogenate or chemically convert organic halides, methods are known in which vitamin B 12 complex is reduced and used as a catalyst (see Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3). ). Furthermore, a method is known in which a vitamin B 12 complex serving as a catalyst is supported on a substrate such as an electrode or a polymer (see Non-Patent Document 4). In these, vitamin B 12 complex is reduced and activated by electrochemical reduction or a chemical reagent, and a supporting electrolyte or a chemical reducing agent is required or is supported on a base material by non-covalent bonding (see Patent Document 1). ), There were major problems with environmental measures, safety and stability.
“Dalton Trans.” (UK), 2004, p. 878-882 “J. Electroanal. Chem.” (UK), 2001, p. 170-176 “Resource Environment Measures” (Japan), 2006, 42, p. 99-102 “Dalton Trans.” (UK), 2003, p. 2308-2312. JP 2006-191947 A (Claims)

本発明は、光増感作用を示す固体光触媒であるチタニアの表面に触媒部位となるビタミンB12化合物を、シロキサン結合を主鎖に有する結合部を介して強固に固定化することによる、様々なpH条件で耐久性の高いビタミンB12−チタニアハイブリッド光触媒の提供、およびビタミンB12を固体上に固定化することで、触媒を容易に回収・再利用できる方法を提供することを課題とする。 The present invention provides a variety of compounds by firmly fixing a vitamin B 12 compound serving as a catalytic site on the surface of titania, which is a solid photocatalyst exhibiting a photosensitizing action, via a bonding part having a siloxane bond in the main chain. It is an object of the present invention to provide a vitamin B 12 -titania hybrid photocatalyst that is highly durable under pH conditions, and to provide a method for easily recovering and reusing the catalyst by immobilizing vitamin B 12 on a solid.

本発明者らは、上記目的を達成するために鋭意検討した結果、ビタミンB12化合物を結合部を介してチタニアに固定化した触媒を合成した。本触媒は、様々なpH条件で高い耐久性を示し、光照射により、脱ハロゲン化反応のみならず、様々な有機合成化学反応へも適用することができる。また、固体上に固定化しているため、触媒を容易に回収・再利用できることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventors have synthesized a catalyst in which a vitamin B 12 compound is immobilized on titania via a binding portion. This catalyst exhibits high durability under various pH conditions, and can be applied not only to a dehalogenation reaction but also to various organic synthetic chemical reactions by light irradiation. Further, the present invention has been completed by finding that the catalyst can be easily recovered and reused because it is immobilized on a solid.

すなわち、本発明は、第1観点として、一つ以上のビタミンB12化合物が、結合部を介してチタニアに固定化されていることを特徴とするビタミンB12−チタニアハイブリッド化合物、
第2観点として、前記結合部が、シロキサン結合を主鎖に有する、第1観点記載のビタミンB12−チタニアハイブリッド化合物、
第3観点として、式(1)で表されるトリアルコキシシリル基を有するビタミンB12化合物をチタニアと反応させて得られる第2観点記載のビタミンB12−チタニアハイブリッド化合物、
{式中、R1、R2、R3、R4、R5、R6及びR7は、それぞれ独立して、水素原子、炭素
原子数1ないし20のアルコキシ基又は−NR8−(CH2n−Si(OR93(式中、
nは1から20までの整数を表し、R8は水素原子又は炭素原子数1〜10のアルキル基
を表し、R9は同一又は異なって、炭素原子数1〜10のアルキル基を表す。)を表すが
、但し、R1、R2、R3、R4、R5、R6及びR7の少なくとも1つ以上は−NR8−(CH2n−Si(OR93を表し、Xはシアノ基、ヒドロキシ基またはメチル基を表し、YはCo原子に配位している水分子を表す。}、
第4観点として、式(2)で表されるトリアルコキシシリル基を有するビタミンB12化合物をチタニアと反応させて得られる第3観点記載のビタミンB12−チタニアハイブリッド化合物、
{式中、R2、R3、R4、R5、R6及びR7は、それぞれ独立して、水素原子または炭素原
子数1ないし20のアルコキシ基を表し、nは1から20までの整数を表し、R8は水素
原子又は炭素原子数1〜10のアルキル基を表し、R9は同一又は異なって、炭素原子数
1〜10のアルキル基を表し、Xはシアノ基、ヒドロキシ基またはメチル基を表し、YはCo原子に配位している水分子を表す。}、
第5観点として、有機ハロゲン化物を光脱ハロゲン化するにあたり、第1観点ないし第4観点のいずれかに記載のビタミンB12−チタニアハイブリッド化合物をその表面に担持した基材を用いる、光脱ハロゲン化方法、
第6観点として、第1観点ないし第4観点のいずれかに記載のビタミンB12−チタニアハイブリッド化合物を含む光有機合成触媒、
第7観点として、第1観点ないし第4観点のいずれかに記載のビタミンB12−チタニアハイブリッド化合物を含む光脱ハロゲン化触媒、
である。
That is, the present invention provides, as a first aspect, a vitamin B 12 -titania hybrid compound characterized in that one or more vitamin B 12 compounds are immobilized on titania via a binding portion,
As a second aspect, the binding part has a siloxane bond in the main chain, the vitamin B 12 -titania hybrid compound according to the first aspect,
As a third aspect, the vitamin B 12 -titania hybrid compound according to the second aspect obtained by reacting a vitamin B 12 compound having a trialkoxysilyl group represented by the formula (1) with titania,
{Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, or —NR 8 — (CH 2 ) n- Si (OR 9 ) 3 (wherein
n represents an integer of 1 to 20, R 8 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 9 is the same or different and represents an alkyl group having 1 to 10 carbon atoms. ), Provided that at least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 represents —NR 8 — (CH 2 ) n —Si (OR 9 ) 3 . X represents a cyano group, a hydroxy group or a methyl group, and Y represents a water molecule coordinated to a Co atom. },
As a fourth aspect, the vitamin B 12 -titania hybrid compound according to the third aspect obtained by reacting a vitamin B 12 compound having a trialkoxysilyl group represented by the formula (2) with titania,
{Wherein R 2 , R 3 , R 4 , R 5 , R 6 and R 7 each independently represents a hydrogen atom or an alkoxy group having 1 to 20 carbon atoms, and n is 1 to 20 R 8 represents an integer, R 8 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R 9 is the same or different and represents an alkyl group having 1 to 10 carbon atoms, and X represents a cyano group, a hydroxy group or Represents a methyl group, Y represents a water molecule coordinated to a Co atom. },
As a fifth aspect, in the photodehalogenation of an organic halide, photodehalogenation using a substrate carrying the vitamin B 12 -titania hybrid compound according to any one of the first to fourth aspects on its surface. Conversion method,
As a sixth aspect, a photo-organic synthesis catalyst comprising the vitamin B 12 -titania hybrid compound according to any one of the first to fourth aspects,
As a seventh aspect, a photodehalogenation catalyst comprising the vitamin B 12 -titania hybrid compound according to any one of the first to fourth aspects,
It is.

本発明のビタミンB12−チタニアハイブリッド化合物を用いれば、様々なpH条件で高い耐久性を示す触媒を開発することができる。さらに本触媒を用いれば、光照射により、脱ハロゲン化反応のみならず、様々な光有機合成反応へも適用することができる。 If the vitamin B 12 -titania hybrid compound of the present invention is used, a catalyst exhibiting high durability under various pH conditions can be developed. Furthermore, if this catalyst is used, it can be applied not only to a dehalogenation reaction but also to various photo-organic synthesis reactions by light irradiation.

以下、本発明について詳細に説明する。
本発明に用いられるビタミンB12化合物とは、ビタミンB12骨格を有する化合物であり、例えば、アルコキシシリル基を有するビタミンB12(シアノコバラミン)が挙げられる。
Hereinafter, the present invention will be described in detail.
The vitamin B 12 compound used in the present invention is a compound having a vitamin B 12 skeleton, and examples thereof include vitamin B 12 (cyanocobalamin) having an alkoxysilyl group.

続いて、式(1)または式(2)の各置換基を具体的に説明する。
1ないしR7におけるアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基などの炭素原子数1ないし20のアルコキシ基が挙げられ、好ましくはメトキシ基である。
8は、水素原子又は炭素原子数1〜10のアルキル基を表すが、炭素原子数1〜10
のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられ、好ましいR8
水素原子である。
9の炭素原子数1〜10のアルキル基としては、メチル基、エチル基、プロピル基等
が挙げられ、好ましくはメチル基である。
Then, each substituent of Formula (1) or Formula (2) is demonstrated concretely.
Examples of the alkoxy group in R 1 to R 7 include alkoxy groups having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group, and a methoxy group is preferable.
R 8 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, but 1 to 10 carbon atoms.
Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and the like, and preferred R 8 is a hydrogen atom.
Examples of the alkyl group having 1 to 10 carbon atoms of R 9 include a methyl group, an ethyl group, and a propyl group, and a methyl group is preferable.

本発明において、ビタミンB12化合物は、結合部を介してチタニア(酸化チタン)に固定化されるが、チタニア(酸化チタン)は、一般に固体光触媒として使用されている。
固体光触媒とは、光を照射されることにより、励起され高い還元力と酸化力を示す固体であり、バンドギャップエネルギーに相当する紫外光を照射されることにより光増感作用を示す紫外光応答型の光触媒が一般に用いられる。紫外光では金属錯体が分解するおそれがある場合は、可視光を照射されることにより光励起されるバンドギャップエネルギーの小さい光触媒も用いられる。固体光触媒の中で、チタニア(酸化チタン)は、光照射されることにより中性条件の水中で、−0.3VvsNHE以下の還元電位を示して、ビタミンB12型錯体のコバルト原子(Co)を1価に還元することができ、また、安定かつ安価で、光を照射することにより−0.5VNHE以下の還元電位を示すことから、本発明に使用される。
In the present invention, the vitamin B 12 compound is immobilized on titania (titanium oxide) via a binding portion, but titania (titanium oxide) is generally used as a solid photocatalyst.
A solid photocatalyst is a solid that is excited when irradiated with light and exhibits a high reducing power and oxidizing power, and an ultraviolet light response that exhibits a photosensitizing action when irradiated with ultraviolet light corresponding to the band gap energy. A type of photocatalyst is generally used. In the case where the metal complex may be decomposed by ultraviolet light, a photocatalyst having a small band gap energy that is photoexcited by irradiation with visible light is also used. Among the solid photocatalysts, titania (titanium oxide) shows a reduction potential of −0.3 V vs NHE or less in water under neutral conditions when irradiated with light, and the cobalt atom (Co) of the vitamin B 12 type complex Since it can be reduced to monovalent, is stable and inexpensive, and exhibits a reduction potential of −0.5 VNHE or less when irradiated with light, it is used in the present invention.

チタニア(酸化チタン)としては、結晶系の異なる、アナターゼ型、ルチル型、アナターゼ・ルチル混合型、ブルッカイト型の酸化チタンなどが用いられるが、還元力の強いアナターゼ型を含むものが望ましい。
このようなチタニア(酸化チタン)としては、以下の市販品の粉末状酸化チタンが一般
に用いられる。例えば、「P-25」(日本エアロジル(株)製)、「ST-01」(石原産業(
株)製)、「ST-21」(石原産業(株)製)、「TKP-101」(テイカ(株)製)、「AKT-600」(テイカ(株)製)、「MT-150A」(テイカ(株)製)、「TP-S201」(住友化学(株
)製)などが挙げられるが、これに限らず通常の酸化チタンのほとんどが使用できる。
As titania (titanium oxide), anatase type, rutile type, anatase / rutile mixed type, brookite type titanium oxide and the like having different crystal systems are used, and those containing anatase type having strong reducing power are desirable.
As such titania (titanium oxide), the following commercially available powdered titanium oxide is generally used. For example, “P-25” (manufactured by Nippon Aerosil Co., Ltd.), “ST-01” (Ishihara Sangyo (
Co., Ltd.), "ST-21" (Ishihara Sangyo Co., Ltd.), "TKP-101" (Taika Co., Ltd.), "AKT-600" (Taika Co., Ltd.), "MT-150A" (Manufactured by Teika Co., Ltd.), “TP-S201” (manufactured by Sumitomo Chemical Co., Ltd.), and the like, but not limited to this, most ordinary titanium oxide can be used.

次に本発明のビタミンB12−チタニアハイブリッド化合物を用いる光脱ハロゲン化反応について説明する。
本発明のビタミンB12−チタニアハイブリッド化合物を用いて光脱ハロゲン化反応を行うには、例えば溶媒となるエタノール中で、基質(有機ハロゲン化物)とビタミンB12−チタニアハイブリッド化合物を混合させ、光照射すればよい。
反応温度は、通常20℃〜40℃、好ましくは30℃〜35℃程度である。反応に要する時間は、通常3時間〜24時間程度である。
Next, the photodehalogenation reaction using the vitamin B 12 -titania hybrid compound of the present invention will be described.
In order to perform a photodehalogenation reaction using the vitamin B 12 -titania hybrid compound of the present invention, for example, a substrate (organic halide) and a vitamin B 12 -titania hybrid compound are mixed in ethanol as a solvent, and light is removed. Irradiation is sufficient.
The reaction temperature is usually about 20 ° C to 40 ° C, preferably about 30 ° C to 35 ° C. The time required for the reaction is usually about 3 to 24 hours.

ビタミンB12−チタニアハイブリッド化合物において、中心金属原子であるコバルト原子の価数は通常、3価または2価であるが、-1〜-2.0V vs. Ag/AgClの電位をかけると1
価に還元される。よってチタニア(酸化チタン)の励起状態における高い還元作用によりコバルト原子が1価に還元されると、ビタミンB12−チタニアハイブリッド化合物は高い求核性を示すので、本発明の光脱ハロゲン化反応では、かかるビタミンB12−チタニアハイブリッド化合物が、基質となる有機ハロゲン化物に求核攻撃し、反応するものと考えられる。
In the vitamin B 12 -titania hybrid compound, the valence of the cobalt atom that is the central metal atom is usually trivalent or divalent, but it is 1 when a potential of −1 to −2.0 V vs. Ag / AgCl is applied.
Reduced to a valence. Therefore, when the cobalt atom is reduced to monovalent by the high reduction action in the excited state of titania (titanium oxide), the vitamin B 12 -titania hybrid compound exhibits high nucleophilicity. Therefore, in the photodehalogenation reaction of the present invention, Such a vitamin B 12 -titania hybrid compound is considered to react by nucleophilic attack on the organic halide as a substrate.

反応後のビタミンB12−チタニアハイブリッド化合物は、溶解せずに懸濁しているため、反応混合物から生成物を回収した後、再利用することができる。生成物を回収せずに、反応混合物として含んだまま連続して再利用することも可能である。 Since the vitamin B 12 -titania hybrid compound after the reaction is suspended without being dissolved, it can be reused after the product is recovered from the reaction mixture. It is also possible to continuously recycle the product as it is contained in the reaction mixture without recovering the product.

次に、本発明のビタミンB12−チタニアハイブリッド化合物の製造方法について説明する。
ビタミンB12化合物を、結合部を介してチタニア(酸化チタン)に固定化するには、例えばエタノールなどの溶媒中で、結合部としてシロキサン結合を主鎖に有するビタミンB12化合物とチタニア(酸化チタン)を混合して撹拌接触したのち、濾過法により溶媒を除去して集めれば良い。前記反応に用い得る溶媒としては、ビタミンB12化合物およびチタニア(酸化チタン)に対して不活性なものが用いられ、具体的には、例えばメタノール、エタノール、プロパノールなどのアルコール類、アセトンなどのケトン類、ベンゼン、トルエンなどの芳香族炭化水素類などが用いられる。接触は通常、攪拌下に行われる。
Next, a method for producing the vitamin B 12 -titania hybrid compound of the present invention will be described.
In order to immobilize the vitamin B 12 compound on titania (titanium oxide) via a bonding part, for example, in a solvent such as ethanol, a vitamin B 12 compound and titania (titanium oxide) having a siloxane bond as a bonding part in the main chain. ) Are mixed and brought into contact with stirring, and then the solvent is removed by filtration and collected. As the solvent that can be used in the reaction, those inert to vitamin B 12 compounds and titania (titanium oxide) are used. Specifically, alcohols such as methanol, ethanol, and propanol, and ketones such as acetone are used. , Aromatic hydrocarbons such as benzene and toluene are used. Contact is usually carried out with stirring.

接触させることにより、チタニア(酸化チタン)表面でトリアルコキシシリル基部位のゾル-ゲル反応が進行し、ビタミンB12化合物がチタニア(酸化チタン)上に担持されて
、目的のビタミンB12−チタニアハイブリッド化合物を得ることができる。接触後、通常は濾過操作により、結合部を介してビタミンB12化合物がチタニアに固定化されたビタミンB12−チタニアハイブリッド化合物を得ることができる。
By contacting, the sol-gel reaction of the trialkoxysilyl group site proceeds on the titania (titanium oxide) surface, and the vitamin B 12 compound is supported on titania (titanium oxide), and the target vitamin B 12 -titania hybrid is obtained. A compound can be obtained. After the contact, a vitamin B 12 -titania hybrid compound in which the vitamin B 12 compound is immobilized on titania through a binding portion is usually obtained by filtration.

本発明のビタミンB12−チタニアハイブリッド化合物は、光有機合成触媒として使用することができる。
ここで、光有機合成触媒は、脱ハロゲン化反応に加えて、例えば、官能基転移反応、環拡大反応、二量化反応、還元反応、ラジカル付加反応等の有機合成反応を触媒する。
また、光脱ハロゲン化触媒とは、紫外線などの光照射により、例えば、1,1−ビス(4−クロロフェニル)−2,2,2−トリクロロエタン[DDT]、クロロホルム、塩化メチレン、ブロモホルム、臭化メチレン等の有機ハロゲン化合物からハロゲン原子を脱離させることができる触媒である。
Vitamin B 12 of the present invention - titania hybrid compounds can be used as an optical organic synthesis catalyst.
Here, in addition to the dehalogenation reaction, the photo-organic synthesis catalyst catalyzes an organic synthesis reaction such as a functional group transfer reaction, a ring expansion reaction, a dimerization reaction, a reduction reaction, or a radical addition reaction.
The photodehalogenation catalyst is, for example, 1,1-bis (4-chlorophenyl) -2,2,2-trichloroethane [DDT], chloroform, methylene chloride, bromoform, bromide by irradiation with light such as ultraviolet rays. It is a catalyst capable of removing a halogen atom from an organic halogen compound such as methylene.

前記光有機合成触媒が触媒する光有機合成は、例えば溶媒中で基質をビタミンB12−チタニアハイブリッド化合物と混合し、光照射を行うことにより達成される。
前記反応に用いうる溶媒としては、基質(有機ハロゲン化物等)およびビタミンB12−チタニアハイブリッド化合物に対して反応しないもの、例えばメタノール、エタノール、プロパノールなどのアルコール類、アセトンなどのケトン類、ベンゼン、トルエンなどの芳香族炭化水素類、アセトニトリル、ベンゾニトリルなどが挙げられる。チタニア(酸化チタン)が光増感作用を効率良く起こすためには、価電子帯のホールと高い反応性を示す、アルコール類を含む溶媒系が望ましい。
The photo-organic synthesis catalyzed by the photo-organic synthesis catalyst can be achieved, for example, by mixing a substrate with a vitamin B 12 -titania hybrid compound in a solvent and performing light irradiation.
Solvents that can be used for the reaction include those that do not react with substrates (organic halides, etc.) and vitamin B 12 -titania hybrid compounds, such as alcohols such as methanol, ethanol, and propanol, ketones such as acetone, benzene, Aromatic hydrocarbons such as toluene, acetonitrile, benzonitrile and the like can be mentioned. In order for titania (titanium oxide) to efficiently cause photosensitization, a solvent system containing alcohols that exhibits high reactivity with holes in the valence band is desirable.

照射使用する光は、バンドギャップエネルギーに相当する波長の光が用いられ、紫外光、可視光等が用いられる。
反応温度は、通常20℃〜40℃の範囲で30℃〜35℃程度が最も適切である。反応に要する時間は、通常3時間〜24時間程度である。
The light used for irradiation is light having a wavelength corresponding to the band gap energy, and ultraviolet light, visible light, or the like is used.
The reaction temperature is usually 20 ° C to 40 ° C, and most preferably about 30 ° C to 35 ° C. The time required for the reaction is usually about 3 to 24 hours.

ビタミンB12−チタニアハイブリッド化合物において、中心金属原子であるコバルト原子は通常、3価であるが、チタニア(酸化チタン)の存在下に光を照射すると、チタニア(酸化チタン)の還元作用によって1価に還元される。コバルト原子が1価に還元されたビタミンB12−チタニアハイブリッド化合物は、高い求核性を示すので、本発明のビタミンB12−チタニアハイブリッド化合物を用いる光有機合成反応では、かかるビタミンB12−チタニアハイブリッド化合物が、基質(有機ハロゲン化物等)に作用して反応し、様々な反応活性種を与え、多くはラジカル中間体を経て光有機合成反応が進行するものと考えられる。 Vitamin B 12 - in titania hybrid compound, a cobalt atom is usually a central metal atom, but is a trivalent, titania is irradiated with light in the presence of (titanium oxide), a monovalent by the reducing action of titania (titanium oxide) Reduced to Since the vitamin B 12 -titania hybrid compound in which the cobalt atom has been reduced to monovalent value exhibits high nucleophilicity, in the photo-organic synthesis reaction using the vitamin B 12 -titania hybrid compound of the present invention, such vitamin B 12 -titania It is considered that the hybrid compound acts on the substrate (organic halide or the like) and reacts to give various reactive species, and in many cases, the photo-organic synthesis reaction proceeds via a radical intermediate.

反応後のビタミンB12−チタニアハイブリッド化合物は、反応混合物から回収して、再利用することができる。具体的には、セライトを敷いた濾紙による濾過操作や遠心分離操作が、容易にビタミンB12−チタニアハイブリッド化合物を反応混合物から回収することができるため、好ましい。また、ビタミンB12−チタニアハイブリッド化合物を基材に担持させて用いた場合には、反応器から引き上げるだけで容易に反応後の反応混合物から回収することができるので、簡便である。 The vitamin B 12 -titania hybrid compound after the reaction can be recovered from the reaction mixture and reused. Specifically, a filtration operation or a centrifugal separation operation using a filter paper with celite is preferable because the vitamin B 12 -titania hybrid compound can be easily recovered from the reaction mixture. In addition, when the vitamin B 12 -titania hybrid compound is supported on a substrate and used, it can be easily recovered from the reaction mixture after the reaction simply by pulling it up from the reactor.

ビタミンB12−チタニアハイブリッド化合物は、粉末状で用いられてもよいが、触媒反応後の反応混合物から容易に取り出すことができる形状に加工されていることが好ましく、基材や反応容器の内壁に固定化して使用するのが望ましい。
また、ビタミンB12−チタニアハイブリッド化合物は、反応混合物から容易に取り出すことのできる形状の基材に担持されていると反応操作が簡便となり望ましい。基材としては、光照射により分解しないものや有機溶媒に対して安定で不活性なものであればよく、例えば無機ガラス、アルミナなどのセラミックス、白金、金などの金属などが挙げられる。基材の形状は、触媒反応後の混合物から取り出し易く加工されたものが好ましく、例えば板状、球状、リング状、網状の基材が用いられ、具体的には、例えば、ガラスビーズ等も含まれる。反応を効率良く進ませるためには、多孔質性で基質との接触面積が大きいものが望ましい。またガラス反応器の内壁に直接固定化されるのが最も好ましい。
The vitamin B 12 -titania hybrid compound may be used in a powder form, but is preferably processed into a shape that can be easily taken out from the reaction mixture after the catalytic reaction, and is formed on the inner wall of the substrate or reaction vessel. It is desirable to fix and use.
The vitamin B 12 -titania hybrid compound is preferably carried on a substrate having a shape that can be easily taken out from the reaction mixture, because the reaction operation is simple. The substrate may be any substrate that does not decompose by light irradiation or that is stable and inert to organic solvents. Examples thereof include inorganic glass, ceramics such as alumina, and metals such as platinum and gold. The shape of the substrate is preferably processed so that it can be easily taken out from the mixture after the catalytic reaction. For example, a plate-like, spherical, ring-like, or net-like substrate is used, and specifically includes, for example, glass beads. It is. In order to advance the reaction efficiently, a porous material having a large contact area with the substrate is desirable. Most preferably, it is directly fixed to the inner wall of the glass reactor.

ビタミンB12−チタニアハイブリッド化合物を基材上に担持するには、例えばバインダーを含む市販のコーティング液に粉末状のビタミンB12−チタニアハイブリッド化合物を分散させ、基材上にキャスティング法やデイップコーティング法、スピンコーティング法により塗布した後、乾燥させ溶媒を揮発させればよい。コーティング液に用いうる溶媒としては、例えばエタノールなどのアルコール類、水などが挙げられる。このようなコーティング液として一般に入手可能なものを用いることもでき、例えば「TKC−303」(テイカ(株)製)、「TKC−304」(テイカ(株)製)、「TS−S4110」(住友化学(株)製)などが挙げられる。溶媒を揮発させることにより、バインダーにより粉末状の
ビタミンB12−チタニアハイブリッド化合物が基材上に担持することができる。
In order to carry the vitamin B 12 -titania hybrid compound on the substrate, for example, a powdered vitamin B 12 -titania hybrid compound is dispersed in a commercially available coating solution containing a binder, and the casting method or the dip coating method is performed on the substrate. After applying by spin coating, the solvent may be evaporated by drying. Examples of the solvent that can be used for the coating liquid include alcohols such as ethanol, water, and the like. As such a coating liquid, a generally available one can be used. For example, “TKC-303” (manufactured by Teika), “TKC-304” (manufactured by Teica), “TS-S4110” ( Sumitomo Chemical Co., Ltd.). By volatilizing the solvent, the powdered vitamin B 12 -titania hybrid compound can be supported on the substrate by the binder.

以下、本発明について実施例を挙げて詳述するが、本発明はこれらの実施例に何ら限定されるものではない。なお、下記において、電子スペクトル(UV−Vis)、赤外吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量スペクトル(GC−MS、MALDI−TOF−MS)は下記の装置によりそれぞれ測定した。
[1]電子スペクトル(UV−Vis)
U−3000型紫外可視分光光度計((株)日立製作所製)
[2]赤外吸収スペクトル(IR)
FT−IR 460plus分光光度計((株)日本分光社製)
[3]核磁気共鳴スペクトル(NMR)
NMR:AVANCE 500 核磁気共鳴装置((株)ブルカー製)
[4]GC−MS
GCMS−QP5050AHガスクロマトグラフ質量分析計((株)島津製作所製)
「5」MALDI−TOF−MS
Bruker Autoflex質量分析装置((株)ブルカーダルトニクス社製)
Hereinafter, although an example is given and the present invention is explained in full detail, the present invention is not limited to these examples at all. In the following, an electron spectrum (UV-Vis), an infrared absorption spectrum (IR), a nuclear magnetic resonance spectrum (NMR), and a mass spectrum (GC-MS, MALDI-TOF-MS) were measured by the following apparatuses. .
[1] Electronic spectrum (UV-Vis)
U-3000 type UV-visible spectrophotometer (manufactured by Hitachi, Ltd.)
[2] Infrared absorption spectrum (IR)
FT-IR 460plus spectrophotometer (manufactured by JASCO Corporation)
[3] Nuclear magnetic resonance spectrum (NMR)
NMR: AVANCE 500 nuclear magnetic resonance apparatus (manufactured by Bruker)
[4] GC-MS
GCMS-QP5050AH gas chromatograph mass spectrometer (manufactured by Shimadzu Corporation)
"5" MALDI-TOF-MS
Bruker Autoflex mass spectrometer (manufactured by Bruker Daltonics)

参考例1(ビタミンB12誘導体(カルボキシル基)の合成)
ビタミンB12誘導体を以下に示す操作で合成し、1つのカルボキシル基を有する(CN)2Cob(III)6C1esterを得た。
シアノコバラミン2.0 g(1.5×10-3 mol)を0.1 mol/L酢酸水溶液300 mLに溶解し、N-
ブロモスクシンイミド0.35 g(2.0×10-3 mol)を加え、室温で20時間撹拌した。反応溶
液からフェノールで抽出し(200 mL×3)、フェノール層を水で洗浄した(100 mL×2)。得られたフェノール溶液にジエチルエーテル300mLと水100mLを加え、水層に目的物を逆抽出した。水を減圧留去した後、残査をアセトン/水で再沈殿を行い、赤色粉末(c-lac)cobalamin (2.0 g 収率91%)を得た。
(c-lac)cobalaminは、UV-visスペクトル(図1)、IRスペクトル(図2)で同定を行った。
上記操作で得られた赤色粉末2.0 g(1.5×10-3 mol)のメタノール溶液300 mLに、98%
冷濃硫酸 30 mLを滴下した。遮光条件下、窒素雰囲気下で120 時間加熱還流した。反応混合物を減圧濃縮し、冷水100 mLを加えた後、固体炭酸ナトリウムで中和し、シアン化カリウム2.0 g(3.1×10-2 mol)を加えた。四塩化炭素(100 mL×2)で抽出を行い、抽出液を
水(100 mL×2)で洗浄し、硫酸ナトリウムで乾燥後、減圧乾固した。ベンゼン/n-へキサンで再沈殿を行い、紫色粉末の(c-lac)6C1ester(0.75 g 収率47%)を得た。
(c-lac)6C1esterは、UV-visスペクトル(図3)、IRスペクトル(図4)で同定を行っ
た。
上記操作で得られた紫色粉末0.6 g(0.6×10-3 mol)の酢酸 溶液100 mLに窒素ガスを
バブリングして脱気した後、亜鉛粉末2.4gを加え窒素雰囲気下で2時間撹拌した。亜鉛を
濾別後、水100 mLを加えた後、塩化メチレン(100 mL×2)で抽出を行い、抽出液を水(100 mL×2)で洗浄し、シアン化カリウム水溶液と振とうし、硫酸ナトリウムで乾燥後、減圧乾固した。得られた紫色粉末を薄層クロマトグラフ法(Klesegel 60H、塩化メチレン:メタノール=14:1)により精製した。得られた化合物をベンゼン/n-へキサンで再沈殿を行い
、赤紫色粉末(CN)2Cob(III)6C1ester(0.37 g 収率67%)を得た。
(CN)2Cob(III)6C1esterは、UV-visスペクトル(図5)、IRスペクトル(図6)、MALDI-TOF-MSで同定を行った。
MALDI-TOF-MS:(M-2CN)=1021.7
Reference Example 1 (Synthesis of vitamin B 12 derivative (carboxyl group))
A vitamin B 12 derivative was synthesized by the following procedure to obtain (CN) 2 Cob (III) 6C 1 ester having one carboxyl group.
Dissolve 2.0 g (1.5 × 10 -3 mol) of cyanocobalamin in 300 mL of 0.1 mol / L acetic acid aqueous solution, and add N-
Bromosuccinimide 0.35 g (2.0 × 10 −3 mol) was added, and the mixture was stirred at room temperature for 20 hours. The reaction solution was extracted with phenol (200 mL × 3), and the phenol layer was washed with water (100 mL × 2). To the obtained phenol solution, 300 mL of diethyl ether and 100 mL of water were added, and the target product was back-extracted into the aqueous layer. After distilling off water under reduced pressure, the residue was reprecipitated with acetone / water to obtain a red powder (c-lac) cobalamin (2.0 g yield 91%).
(c-lac) cobalamin was identified by UV-vis spectrum (FIG. 1) and IR spectrum (FIG. 2).
To 300 mL of methanol solution of 2.0 g (1.5 × 10 -3 mol) of red powder obtained by the above operation, 98%
30 mL of cold concentrated sulfuric acid was added dropwise. The mixture was heated to reflux for 120 hours under a nitrogen atmosphere under light-shielding conditions. The reaction mixture was concentrated under reduced pressure, 100 mL of cold water was added, neutralized with solid sodium carbonate, and 2.0 g (3.1 × 10 −2 mol) of potassium cyanide was added. Extraction was performed with carbon tetrachloride (100 mL × 2), and the extract was washed with water (100 mL × 2), dried over sodium sulfate, and then dried under reduced pressure. Reprecipitation was performed with benzene / n-hexane to obtain a purple powder of (c-lac) 6C 1 ester (0.75 g, yield 47%).
(c-lac) 6C 1 ester was identified by UV-vis spectrum (FIG. 3) and IR spectrum (FIG. 4).
Nitrogen gas was bubbled into 100 mL of an acetic acid solution of 0.6 g (0.6 × 10 −3 mol) of the purple powder obtained by the above operation, 2.4 g of zinc powder was added, and the mixture was stirred under a nitrogen atmosphere for 2 hours. After removing the zinc by filtration, add 100 mL of water, extract with methylene chloride (100 mL × 2), wash the extract with water (100 mL × 2), shake with aqueous potassium cyanide solution, and add sodium sulfate. And dried under reduced pressure. The resulting purple powder was purified by thin layer chromatography (Klesegel 60H, methylene chloride: methanol = 14: 1). The obtained compound was reprecipitated with benzene / n-hexane to obtain a reddish purple powder (CN) 2 Cob (III) 6C 1 ester (0.37 g yield 67%).
(CN) 2 Cob (III) 6C 1 ester was identified by UV-vis spectrum (FIG. 5), IR spectrum (FIG. 6), and MALDI-TOF-MS.
MALDI-TOF-MS: (M-2CN) = 1021.7

参考例2(トリメトキシシリルビタミンB12錯体の合成)
(CN)2Cob(III)6C1ester 0.1 g(9.3×10-5 mol)の塩化メチレン溶液100 mLに30%過塩
素酸水溶液 80 mLを加え振とうした。分液ロートで水層を除き、塩化メチレン溶液を水(50 mL×2)で洗浄し、硫酸ナトリウムで乾燥後、減圧乾固した。得られた化合物をベンゼン/n-へキサンで再沈殿を行い、赤紫色粉末(H2O) (CN)Cob(III)6C1ester(69 mg 収率70%)を得た。この赤紫色粉末(H2O) (CN)Cob(III)6C1ester0.05 g(4.7×10-5 mol)を無水N,N-
ジメチルホルムアミド10 mLに溶解し、窒素雰囲気下でシアノリン酸ジエチル15 mg(9.2
×10-5 mol)を加え0℃で30分間撹拌した。そこへ3-アミノプロピルトリメトキシシラン1
8 mg(8.0×10-5 mol)およびトリエチルアミン0.016mL(9.6×10-5 mol)を加え0℃で6
時間、室温で15時間撹拌した。反応溶液に水100mLを加え、塩化メチレン(50 mL×3)で抽
出した後、さらに水(100 mL×3)で洗浄した。硫酸ナトリウムで乾燥後、減圧乾固した。
得られた化合物をベンゼン/n-へキサンで再沈殿を行い、赤紫色粉末トリメトキシシリル
ビタミンB12錯体(52 mg 収率88%)を得た。
トリメトキシシリルビタミンB12錯体は、UV-visスペクトル(図7)、NMRスペクトル
(図8)、元素分析、MALDI-TOF-MSで同定を行った。
元素分析:理論値 H, 7.01; C, 57.32; N, 7.93、分析値 H, 6.99; C, 56.91; N, 7.52MALDI-TOF-MS:(M-CN)=1209.5
Reference Example 2 (Synthesis of trimethoxysilyl vitamin B 12 complex)
To 100 mL of methylene chloride solution of 0.1 g (9.3 × 10 −5 mol) of (CN) 2 Cob (III) 6C 1 ester, 80 mL of 30% perchloric acid aqueous solution was added and shaken. The aqueous layer was removed with a separatory funnel, and the methylene chloride solution was washed with water (50 mL × 2), dried over sodium sulfate, and then dried under reduced pressure. The obtained compound was reprecipitated with benzene / n-hexane to obtain a reddish purple powder (H 2 O) (CN) Cob (III) 6C 1 ester (69 mg, yield 70%). This reddish purple powder (H 2 O) (CN) Cob (III) 6C 1 ester 0.05 g (4.7 × 10 -5 mol) was added to anhydrous N, N-
Dissolve in 10 mL of dimethylformamide and add 15 mg of diethyl cyanophosphate (9.2 mg under a nitrogen atmosphere).
× 10 -5 mol) was added and the mixture was stirred at 0 ° C for 30 minutes. 3-aminopropyltrimethoxysilane 1 there
Add 8 mg (8.0 × 10 -5 mol) and triethylamine 0.016 mL (9.6 × 10 -5 mol) and add 6 at 0 ° C.
Stir for 15 hours at room temperature. To the reaction solution was added 100 mL of water, and the mixture was extracted with methylene chloride (50 mL × 3), and further washed with water (100 mL × 3). After drying with sodium sulfate, it was dried under reduced pressure.
The obtained compound was reprecipitated with benzene / n-hexane to obtain a reddish purple powder trimethoxysilylvitamin B 12 complex (52 mg, yield 88%).
The trimethoxysilyl vitamin B 12 complex was identified by UV-vis spectrum (FIG. 7), NMR spectrum (FIG. 8), elemental analysis, and MALDI-TOF-MS.
Elemental analysis: Theoretical value H, 7.01; C, 57.32; N, 7.93; Analytical value H, 6.99; C, 56.91; N, 7.52 MALDI-TOF-MS: (M-CN) = 1209.5

実施例1(ビタミンB12−チタニアハイブリッド化合物の合成)
トリアルコキシシリルビタミンB12型錯体17.3mg(1.4×10-5 mol)をエタノール(和光
純薬工業(株)製、試薬特級)1mLに溶解し、アナターゼ/ルチル混合型酸化チタン粉末(日本エアロゾル(株)製、「P-25」)150mgを加える。本懸濁液を室温(約25℃)で24時
間撹拌した後、固形分を濾取し乾燥させて、ビタミンB12−チタニアハイブリッド化合物を得た。化合物は、MALDI-TOF-MS(図9)で同定を行った。ビタミンB12錯体に由来する分子イオンピークが強く観測された。電子スペクトル法から求めたビタミンB12−チタニアハイブリッド化合物の複合化率(表面修飾率)は、酸化チタン粉末の単位表面積あたりで5.0×10-11mol/cm2であった。
Example 1 (vitamin B 12 - synthesis of titania hybrid compound)
Trialkoxysilyl vitamin B 12 complex 17.3mg (1.4 × 10 -5 mol) is dissolved in 1mL of ethanol (made by Wako Pure Chemical Industries, Ltd., special grade reagent), and anatase / rutile mixed titanium oxide powder (Japan Aerosol ( 150 mg of “P-25” manufactured by Co., Ltd. is added. The suspension was stirred at room temperature (about 25 ° C.) for 24 hours, and then the solid content was collected by filtration and dried to obtain a vitamin B 12 -titania hybrid compound. The compound was identified by MALDI-TOF-MS (FIG. 9). A strong molecular ion peak derived from the vitamin B 12 complex was observed. The complexing rate (surface modification rate) of the vitamin B 12 -titania hybrid compound determined from the electron spectrum method was 5.0 × 10 −11 mol / cm 2 per unit surface area of the titanium oxide powder.

実施例2(ビタミンB12−チタニアハイブリッド薄膜の合成)
ビタミンB12−チタニアハイブリッド化合物10mgをコーティング剤(TS−S4110、住友化学(株)製)3mLに加え、撹拌する。本懸濁液をガラス基板(MATSUNAMIスライドガラス)上に10〜300μLキャスティングし室温で24時間乾燥させることで、基板上に固定化したビタミンB12−チタニアハイブリッド化合物を得た。ガラス基板上に固定化したビタミンB12−チタニアハイブリッド化合物は、エタノール(和光純薬工業(株)製、試薬特級)中で超音波照射装置((株)アズワン社製US-4)にかけても安定であり、強固に基板に固定化されていた。ガラス基板上に固定化されたビタミンB12−チタニアハイブリッド化合物の写真を図10として示した。
Example 2 (Synthesis of vitamin B 12 -titania hybrid thin film)
Vitamin B 12 -titania hybrid compound (10 mg) is added to 3 mL of a coating agent (TS-S4110, manufactured by Sumitomo Chemical Co., Ltd.) and stirred. This suspension was cast on a glass substrate (MATSUNAMI slide glass) at 10 to 300 μL and dried at room temperature for 24 hours to obtain a vitamin B 12 -titania hybrid compound immobilized on the substrate. Vitamin immobilized on a glass substrate B 12 - titania hybrid compound, ethanol (manufactured by Wako Pure Chemical Industries, Ltd., guaranteed reagent) be subjected to ultrasonic irradiation device in (Co. AS ONE Corporation US-4) stable It was firmly fixed to the substrate. A photograph of the vitamin B 12 -titania hybrid compound immobilized on the glass substrate is shown in FIG.

実施例3(ビタミンB12−チタニアハイブリッド化合物の耐久性)
ビタミンB12−チタニアハイブリッド化合物(粉末)10mgを各種溶媒に懸濁させ、3時
間撹拌した後濾過し、濾液に溶出したビタミンB12の吸光度から、耐久性を評価した。
安定度(%)=(溶液浸せき後のビタミンB12固定化量 / 溶液浸せき前のビタミンB12固定化量)×100
メタノール:99%以上、メタノール(加熱還流):99%以上、メタノール(超音波処理):99%以上、メタノール-酢酸(1:1):99%以上、水(中性):99%以上、水(pH3):99%以上、水(pH10):99%以上
Example 3 (vitamin B 12 - durable titania hybrid compound)
Vitamin B 12 -titania hybrid compound (powder) 10 mg was suspended in various solvents, stirred for 3 hours, filtered, and durability was evaluated from the absorbance of vitamin B 12 eluted in the filtrate.
Stability (%) = (Amount of vitamin B 12 immobilized after immersion in solution / Amount of vitamin B 12 immobilized before immersion in solution) x 100
Methanol: 99% or more, methanol (heating reflux): 99% or more, methanol (sonication): 99% or more, methanol-acetic acid (1: 1): 99% or more, water (neutral): 99% or more, Water (pH 3): 99% or more, Water (pH 10): 99% or more

実施例4(ビタミンB12−チタニアハイブリッド化合物を触媒として用いる有機ハロゲン化物の光脱ハロゲン化反応)
第1表に示す1,1−ビス(4−クロロフェニル)−2,2,2−トリクロロエタン〔
DDT〕を3ミリモル/L(3mmol/L)の濃度でエタノール(和光純薬工業(株)製、試薬特級)に溶解させ、30mLを秤取り、パイレックス(登録商標)ガラス製セルに入れた。次いで、実施例1で得たビタミンB12−チタニアハイブリッド化合物20mgを触媒として加え、撹拌して懸濁させながら窒素ガスをバブリングさせて溶存酸素を除去し、次いで撹拌下にブラックライト[フナコシ(株)製、15W]により、反応セル外表面における紫外光強度1.76mW/cm2で紫外光を3時間照射した。紫外光照射後の反応混合物における有機ハロゲン化物の含有量をガスクロマトグラフィー質量分析装置により求めて、用いた有機ハロゲン化物のうち脱ハロゲン化されたものの割合(転化率、%)を求めた。脱塩素化反応物として、1
,1−ビス(4−クロロフェニル)−2−クロロエチレン〔DDMU〕、1,1−ビス(4−クロロフェニル)−2-クロロエタン〔DDMS〕、1,1−ビス(4−クロロフェ
ニル)−2,2−ジクロロエタン〔DDD〕、1,1,4,4−テトラキス(4−クロロフェニル)−2,3−ジクロロ−2−ブテン〔TTDB〕、エチル-1,1−ビス(4−
クロロフェニル)−アセテート〔DDA ethyl ester〕が得られた。結果を第1表に示す。
Example 4 (Photodehalogenation reaction of an organic halide using a vitamin B 12 -titania hybrid compound as a catalyst)
1,1-bis (4-chlorophenyl) -2,2,2-trichloroethane shown in Table 1 [
DDT] was dissolved in ethanol (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) at a concentration of 3 mmol / L (3 mmol / L), 30 mL was weighed and placed in a Pyrex (registered trademark) glass cell. Next, 20 mg of the vitamin B 12 -titania hybrid compound obtained in Example 1 was added as a catalyst, and nitrogen gas was bubbled while suspended by stirring to remove dissolved oxygen, and then blacklight [Funakoshi Co., Ltd. 15 W], UV light was irradiated for 3 hours at an ultraviolet light intensity of 1.76 mW / cm 2 on the outer surface of the reaction cell. The content of the organic halide in the reaction mixture after irradiation with ultraviolet light was determined by a gas chromatography mass spectrometer, and the ratio of the halogenated organic halide used (conversion rate,%) was determined. As dechlorination reactant, 1
1,1-bis (4-chlorophenyl) -2-chloroethylene [DDMU], 1,1-bis (4-chlorophenyl) -2-chloroethane [DDMS], 1,1-bis (4-chlorophenyl) -2,2 -Dichloroethane [DDD], 1,1,4,4-tetrakis (4-chlorophenyl) -2,3-dichloro-2-butene [TTDB], ethyl-1,1-bis (4-
Chlorophenyl) -acetate [DDA ethyl ester] was obtained. The results are shown in Table 1.

実施例5(ビタミンB12−チタニアハイブリッド化合物を触媒として用いる光有機合成反応)
実施例4で用いた有機ハロゲン化物に代えて第2表に示す有機ハロゲン化物(ブロモメチルフェニルマロン酸ジエチル)を用いた以外は実施例4と同様に操作し光化学反応を行った。反応物として、単純還元体(メチルフェニルマロン酸ジエチル)に加え、フェニル基が隣接炭素に転位したフェニル基転位体(ベンジルマロン酸ジエチル)が得られた。結果を第2表に示す。
Example 5 (photo-organic synthesis reaction using vitamin B 12 -titania hybrid compound as a catalyst)
The photochemical reaction was carried out in the same manner as in Example 4 except that the organic halide shown in Table 2 (diethyl bromomethylphenylmalonate) was used instead of the organic halide used in Example 4. As a reaction product, in addition to a simple reduced form (diethyl methylphenylmalonate), a phenyl group rearrangement (diethylbenzylmalonate) in which a phenyl group was rearranged to an adjacent carbon was obtained. The results are shown in Table 2.

実施例6(ビタミンB12−チタニアハイブリッド化合物を触媒として用いる光有機合成反応)
実施例4で用いた有機ハロゲン化物に代えて第3表に示す有機ハロゲン化物(フェネチ
ルブロマイド)を用いた以外は実施例4と同様に操作し光化学反応を行った。反応物として、単純還元体(エチルベンゼン)に加え、炭素-炭素結合が生成した二量化体(2,3
−ジフェニルブタン)が得られた。結果を第3表に示す。
Example 6 (Photo-organic synthesis reaction using a vitamin B 12 -titania hybrid compound as a catalyst)
The photochemical reaction was carried out in the same manner as in Example 4 except that the organic halide (phenethyl bromide) shown in Table 3 was used instead of the organic halide used in Example 4. As a reactant, in addition to a simple reductant (ethylbenzene), a dimer (2,3 with a carbon-carbon bond formed)
-Diphenylbutane) was obtained. The results are shown in Table 3.

実施例7(ビタミンB12−チタニアハイブリッド化合物を触媒として用いる光有機合成反
応)
実施例4で用いた有機ハロゲン化物に代えて第4表に示す有機ハロゲン化物(2-ブロモ
メチル-1-オキソシクロペンタンカルボン酸エチル)を用いた以外は実施例4と同様に操
作し光化学反応を行った。反応物として、環拡大物(3-オキソ-1-シクロヘキサンカルボ
ン酸エチル)が得られた。結果を第4表に示す。
Example 7 (Photo-organic synthesis reaction using a vitamin B 12 -titania hybrid compound as a catalyst)
The photochemical reaction was carried out in the same manner as in Example 4 except that the organic halide shown in Table 4 (ethyl 2-bromomethyl-1-oxocyclopentanecarboxylate) was used instead of the organic halide used in Example 4. went. As a reactant, a ring expansion product (ethyl 3-oxo-1-cyclohexanecarboxylate) was obtained. The results are shown in Table 4.

参考例1で得られた(c-lac)cobalaminのUV-visスペクトルを示す図である。FIG. 4 is a view showing a UV-vis spectrum of (c-lac) cobalamin obtained in Reference Example 1. 参考例1で得られた(c-lac)cobalaminのIRスペクトルを示す図である。2 is a graph showing an IR spectrum of (c-lac) cobalamin obtained in Reference Example 1. FIG. 参考例1で得られた(c-lac)6C1esterのUV-visスペクトルを示す図である。FIG. 4 is a view showing a UV-vis spectrum of (c-lac) 6C 1 ester obtained in Reference Example 1. 参考例1で得られた(c-lac)6C1esterのIRスペクトルを示す図である。FIG. 4 shows an IR spectrum of (c-lac) 6C 1 ester obtained in Reference Example 1. 参考例1で得られたビタミンB12誘導体(カルボキシル基)(CN)2Cob(III)6C1esterのUV-visスペクトルを示す図である。FIG. 3 is a view showing a UV-vis spectrum of a vitamin B 12 derivative (carboxyl group) (CN) 2 Cob (III) 6C 1 ester obtained in Reference Example 1. 参考例1で得られたビタミンB12誘導体(カルボキシル基)(CN)2Cob(III)6C1esterのIRスペクトルを示す図である。4 is a diagram showing an IR spectrum of a vitamin B 12 derivative (carboxyl group) (CN) 2 Cob (III) 6C 1 ester obtained in Reference Example 1. FIG. 参考例2で得られたトリメトキシシリルビタミンB12錯体のUV-visスペクトルを示す図である。4 is a diagram showing a UV-vis spectrum of the trimethoxysilylvitamin B 12 complex obtained in Reference Example 2. FIG. 参考例2で得られたトリメトキシシリルビタミンB12錯体のNMRスペクトルを示す図である。4 is a diagram showing an NMR spectrum of a trimethoxysilylvitamin B 12 complex obtained in Reference Example 2. FIG. 実施例1で得られたビタミンB12−チタニアハイブリッド化合物のMALDI-TOF-MSを示す図である。1 is a diagram showing MALDI-TOF-MS of a vitamin B 12 -titania hybrid compound obtained in Example 1. FIG. 実施例2で得られたガラス基板上に固定化されたビタミンB12−チタニアハイブリッド化合物の写真である。2 is a photograph of a vitamin B 12 -titania hybrid compound immobilized on a glass substrate obtained in Example 2. FIG.

Claims (7)

一つ以上のビタミンB12化合物が、結合部を介してチタニアに固定化されていることを特徴とするビタミンB12−チタニアハイブリッド化合物。 One or more vitamin B 12 compounds, vitamin B 12, characterized in that it is immobilized on titania via the coupling portion - titania hybrid compound. 前記結合部が、シロキサン結合を主鎖に有する請求項1記載のビタミンB12−チタニアハイブリッド化合物。 The vitamin B 12 -titania hybrid compound according to claim 1, wherein the bonding portion has a siloxane bond in the main chain. 式(1)で表されるトリアルコキシシリル基を有するビタミンB12化合物をチタニアと反応させて得られる請求項2記載のビタミンB12−チタニアハイブリッド化合物。
{式中、R1、R2、R3、R4、R5、R6及びR7は、それぞれ独立して、水素原子、炭素
原子数1ないし20のアルコキシ基又は−NR8−(CH2n−Si(OR93(式中、
nは1から20までの整数を表し、R8は水素原子又は炭素原子数1〜10のアルキル基
を表し、R9は同一又は異なって、炭素原子数1〜10のアルキル基を表す。)を表すが
、但し、R1、R2、R3、R4、R5、R6及びR7の少なくとも1つ以上は−NR8−(CH2n−Si(OR93を表し、Xはシアノ基、ヒドロキシ基またはメチル基を表し、YはCo原子に配位している水分子を表す。}
Titania hybrid compound - vitamin B 12 vitamin B 12 compound according to claim 2 obtained by reacting titania with a trialkoxysilyl group represented by formula (1).
{Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, or —NR 8 — (CH 2 ) n- Si (OR 9 ) 3 (wherein
n represents an integer of 1 to 20, R 8 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 9 is the same or different and represents an alkyl group having 1 to 10 carbon atoms. ), Provided that at least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 represents —NR 8 — (CH 2 ) n —Si (OR 9 ) 3 . X represents a cyano group, a hydroxy group or a methyl group, and Y represents a water molecule coordinated to a Co atom. }
式(2)で表されるトリアルコキシシリル基を有するビタミンB12化合物をチタニアと反応させて得られる請求項3記載のビタミンB12−チタニアハイブリッド化合物。
{式中、R2、R3、R4、R5、R6及びR7は、それぞれ独立して、水素原子または炭素原子数1ないし20のアルコキシ基を表し、nは1から20までの整数を表し、R8は水素
原子又は炭素原子数1〜10のアルキル基を表し、R9は同一又は異なって、炭素原子数
1〜10のアルキル基を表し、Xはシアノ基、ヒドロキシ基またはメチル基を表し、YはCo原子に配位している水分子を表す。}
Titania hybrid compound - vitamin B 12 vitamin B 12 compound according to claim 3, wherein obtained by reacting titania with a trialkoxysilyl group represented by formula (2).
{Wherein R 2 , R 3 , R 4 , R 5 , R 6 and R 7 each independently represents a hydrogen atom or an alkoxy group having 1 to 20 carbon atoms, and n is 1 to 20 R 8 represents an integer, R 8 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R 9 is the same or different and represents an alkyl group having 1 to 10 carbon atoms, and X represents a cyano group, a hydroxy group or Represents a methyl group, Y represents a water molecule coordinated to a Co atom. }
有機ハロゲン化物を光脱ハロゲン化するにあたり、請求項1ないし4のいずれか1項に記載のビタミンB12−チタニアハイブリッド化合物をその表面に担持した基材を用いる、光脱ハロゲン化方法。 The organic halide Upon light dehalogenation claims 1 to according to any one of the 4 vitamin B 12 - titania hybrid compound using a carrying substrate on its surface, light dehalogenation process. 請求項1ないし4のいずれか1項に記載のビタミンB12−チタニアハイブリッド化合物を含む光有機合成触媒。 A photo-organic synthesis catalyst comprising the vitamin B 12 -titania hybrid compound according to any one of claims 1 to 4. 請求項1ないし4のいずれか1項に記載のビタミンB12−チタニアハイブリッド化合物を含む光脱ハロゲン化触媒。 It claims 1 to according to any one of the 4 vitamin B 12 - light dehalogenation catalyst comprising titania hybrid compound.
JP2007064940A 2007-03-14 2007-03-14 Vitamin B12-titania hybrid compound and dehalogenation catalyst Expired - Fee Related JP5141866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064940A JP5141866B2 (en) 2007-03-14 2007-03-14 Vitamin B12-titania hybrid compound and dehalogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064940A JP5141866B2 (en) 2007-03-14 2007-03-14 Vitamin B12-titania hybrid compound and dehalogenation catalyst

Publications (2)

Publication Number Publication Date
JP2008222654A true JP2008222654A (en) 2008-09-25
JP5141866B2 JP5141866B2 (en) 2013-02-13

Family

ID=39841679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064940A Expired - Fee Related JP5141866B2 (en) 2007-03-14 2007-03-14 Vitamin B12-titania hybrid compound and dehalogenation catalyst

Country Status (1)

Country Link
JP (1) JP5141866B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209044A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Dinuclear metal complex and photocatalyst containing the same
JP2012024757A (en) * 2010-06-24 2012-02-09 Kyushu Univ Light hydrogen generation catalyst consisting of base metal complex and titanium dioxide
JP2012106236A (en) * 2010-10-22 2012-06-07 Kyushu Univ Photo-reduction catalyst including base-metal complex and titanium dioxide
CN107744838A (en) * 2017-10-16 2018-03-02 辽宁大学 A kind of photochemical catalyst that catalytic activity is respectively provided with visible region and ultraviolet region and its preparation method and application
CN110981720A (en) * 2019-12-24 2020-04-10 河南大学 Diaryl acetate compound and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
JP2003154265A (en) * 2001-11-22 2003-05-27 National Institute For Materials Science Hollandite compound/titania fiber hybrid photocatalyst, method for manufacturing the same and module for cleaning gas phase environment which uses the photocatalyst
JP2006191947A (en) * 2005-01-11 2006-07-27 Sumitomo Chemical Co Ltd Dehalogenation method of organic halide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
JP2003154265A (en) * 2001-11-22 2003-05-27 National Institute For Materials Science Hollandite compound/titania fiber hybrid photocatalyst, method for manufacturing the same and module for cleaning gas phase environment which uses the photocatalyst
JP2006191947A (en) * 2005-01-11 2006-07-27 Sumitomo Chemical Co Ltd Dehalogenation method of organic halide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012037719; Langmuir 14(24), 1998, p.7027-7033 *
JPN6012037720; Jasco Report 48(2), 2006, p.13-18 *
JPN6012037721; 資源環境対策 42(7), 2006, p.99-102 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209044A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Dinuclear metal complex and photocatalyst containing the same
JP2012024757A (en) * 2010-06-24 2012-02-09 Kyushu Univ Light hydrogen generation catalyst consisting of base metal complex and titanium dioxide
JP2012106236A (en) * 2010-10-22 2012-06-07 Kyushu Univ Photo-reduction catalyst including base-metal complex and titanium dioxide
CN107744838A (en) * 2017-10-16 2018-03-02 辽宁大学 A kind of photochemical catalyst that catalytic activity is respectively provided with visible region and ultraviolet region and its preparation method and application
CN110981720A (en) * 2019-12-24 2020-04-10 河南大学 Diaryl acetate compound and preparation method thereof
CN110981720B (en) * 2019-12-24 2020-11-03 河南大学 Diaryl acetate compound and preparation method thereof

Also Published As

Publication number Publication date
JP5141866B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
Hayyan et al. Superoxide ion: generation and chemical implications
Balayeva et al. Rh/TiO2-photocatalyzed acceptorless dehydrogenation of N-heterocycles upon visible-light illumination
Schwarz et al. A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions
Wang et al. Enhanced removal of chlorophene and 17β-estradiol by Mn (III) in a mixture solution with humic acid: investigation of reaction kinetics and formation of co-oligomerization products
Tobin et al. Polymer-supported photosensitizers for oxidative organic transformations in flow and under visible light irradiation
Li et al. Photocatalytic degradation of 4-chlorophenol. 1. The hydroquinone pathway
Shukla et al. A mild, chemoselective oxidation of sulfides to sulfoxides using o-iodoxybenzoic acid and tetraethylammonium bromide as catalyst
Manley et al. Titania-promoted carboxylic acid alkylations of alkenes and cascade addition–cyclizations
Moorthy et al. ibx− i2 redox couple for facile generation of IOH and I+: expedient protocol for iodohydroxylation of olefins and iodination of aromatics
Bianco Prevot et al. Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions
Xiao et al. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles
Hirakawa et al. Mechanism of photocatalytic production of active oxygens on highly crystalline TiO2 particles by means of chemiluminescent probing and ESR spectroscopy
Leow et al. Al2O3 surface complexation for photocatalytic organic transformations
Elhage et al. Light-Induced sonogashira C–C coupling under mild conditions using supported palladium nanoparticles
Kumar et al. Visible light assisted photocatalytic [3+ 2] azide–alkyne “Click” reaction for the synthesis of 1, 4-substituted 1, 2, 3-triazoles using a novel bimetallic Ru–Mn complex
Jarusiewicz et al. Efficient three-component Strecker reaction of aldehydes/ketones via NHC-amidate palladium (II) complex catalysis
JP5141866B2 (en) Vitamin B12-titania hybrid compound and dehalogenation catalyst
McCauley et al. Properties and reactivity of chlorovinylcobalamin and vinylcobalamin and their implications for vitamin B12-catalyzed reductive dechlorination of chlorinated alkenes
Sun et al. Efficient photo-degradation of 4-nitrophenol by using new CuPp-TiO2 photocatalyst under visible light irradiation
Petronella et al. Photocatalytic activity of nanocomposite catalyst films based on nanocrystalline metal/semiconductors
McCauley et al. Synthesis and characterization of chlorinated alkenylcobaloximes to probe the mechanism of vitamin B12-catalyzed dechlorination of priority pollutants
Xu et al. Supported gold clusters as effective and reusable photocatalysts for the abatement of endocrine-disrupting chemicals under visible light
Li et al. Axial reactivity of soluble silicon (IV) phthalocyanines
Shichijo et al. Visible light-driven photocatalytic duet reaction catalyzed by the B12-rhodium-titanium oxide hybrid catalyst
JP2006191947A (en) Dehalogenation method of organic halide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5141866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees