JP2008218890A - Electrode material for electrochemical capacitor and electrochemical capacitor - Google Patents

Electrode material for electrochemical capacitor and electrochemical capacitor Download PDF

Info

Publication number
JP2008218890A
JP2008218890A JP2007057298A JP2007057298A JP2008218890A JP 2008218890 A JP2008218890 A JP 2008218890A JP 2007057298 A JP2007057298 A JP 2007057298A JP 2007057298 A JP2007057298 A JP 2007057298A JP 2008218890 A JP2008218890 A JP 2008218890A
Authority
JP
Japan
Prior art keywords
electrode
electrochemical capacitor
electrode material
powder
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007057298A
Other languages
Japanese (ja)
Inventor
Tadashi Inaba
忠司 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007057298A priority Critical patent/JP2008218890A/en
Publication of JP2008218890A publication Critical patent/JP2008218890A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new electrode material for an electrochemical capacitor which contains composite oxide. <P>SOLUTION: An electrode material for an electrochemical capacitor contains composite oxide the general formula of which is M<SB>m</SB>WO<SB>n</SB>(m is either 1 or 2, n is either 4 or 6, and M is at least one kind of material selected from among Mn, Fe, Co, Ni, Cu, Zn, Mg, Ca, Sr, and Bi). Preferably, this composite oxide is Fe<SB>2</SB>WO<SB>6</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気化学キャパシタ用電極材料及び電気化学キャパシタに関する。   The present invention relates to an electrode material for an electrochemical capacitor and an electrochemical capacitor.

従来、電気化学キャパシタとしては、ルテニウム酸をナノシート状に形成し、このナノシートを積層して電極とし、活性面積を増大させた電気化学キャパシタが提案されている(例えば、特許文献1参照)。また、タングステン、コバルト及び鉄などから選ばれるアモルファス酸化物をナノ粒子として電極としエネルギー密度を高めた電気化学キャパシタが提案されている(例えば、特許文献2参照)。
特開2004−315347号公報 特開2005−252217号公報
Conventionally, as an electrochemical capacitor, an electrochemical capacitor has been proposed in which ruthenic acid is formed in a nanosheet shape, and this nanosheet is laminated to form an electrode, thereby increasing the active area (see, for example, Patent Document 1). In addition, an electrochemical capacitor has been proposed in which an amorphous oxide selected from tungsten, cobalt, iron, and the like is used as an electrode as an electrode to increase the energy density (see, for example, Patent Document 2).
JP 2004-315347 A JP 2005-252217 A

しかしながら、この特許文献1に記載された電気化学キャパシタでは、高い蓄電容量を示すが希少なルテニウムを利用しているためコストが高いという問題があった。一方、特許文献2に記載された電気化学キャパシタでは、コストは低いがキャパシタとしての性能は酸化ルテニウムに遙かに及ばないという問題があった。このような観点から、新規な電気化学キャパシタ用電極材料の開発が望まれている。   However, the electrochemical capacitor described in Patent Document 1 has a problem of high cost because it shows high storage capacity but uses rare ruthenium. On the other hand, the electrochemical capacitor described in Patent Document 2 has a problem that its performance as a capacitor is much lower than that of ruthenium oxide although the cost is low. From such a viewpoint, development of a new electrode material for an electrochemical capacitor is desired.

本発明は、このような課題に鑑みなされたものであり、複合酸化物を含む新規な電気化学キャパシタ用電極材料及び電気化学キャパシタを提供することを目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the novel electrode material for electrochemical capacitors and electrochemical capacitor containing complex oxide.

上述した目的を達成するために、本発明者らは、タングステンと、他の遷移元素やアルカリ土類などと、を含む複合酸化物を備えた電極を用いた電気化学キャパシタを作製したところ、有用な性能を有することを見いだし、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors have produced an electrochemical capacitor using an electrode including a composite oxide containing tungsten and other transition elements, alkaline earths, and the like. The present invention has been found to have excellent performance, and the present invention has been completed.

即ち、本発明の電気化学キャパシタ用電極材料は、
一般式がMmWOn(mは1及び2のいずれかであり、nは4及び6のいずれかであり、MはMn,Fe,Co,Ni,Cu,Zn,Mg,Ca,Sr及びBiから選ばれた少なくとも一種)である複合酸化物を含むものである。
That is, the electrode material for an electrochemical capacitor of the present invention is
The general formula is M m WO n (m is either 1 or 2, n is either 4 or 6, M is Mn, Fe, Co, Ni, Cu, Zn, Mg, Ca, Sr and A composite oxide which is at least one selected from Bi).

本発明の電気化学キャパシタ用電極材料によれば、複合酸化物を含む有用な性能を有する新規な電気化学キャパシタを提供することができる。   According to the electrode material for an electrochemical capacitor of the present invention, a novel electrochemical capacitor having a useful performance including a composite oxide can be provided.

本発明の電気化学キャパシタ用電極材料は、一般式がMmWOn(mは1及び2のいずれかであり、nは4及び6のいずれかである)のものであり、Mは、Mn,Fe,Co,Ni,Cuなど複数の酸化数を有する遷移金属元素や、Mg,Ca,Srなどのアルカリ土類金属元素、ZnやBiなどの典型金属元素から選ばれた少なくとも一種である複合酸化物を含むものである。例えば、複合酸化物は、CoWO4であるものとしてもよいし、Fe2WO6であるものとしてもよい。Feは、資源として豊富にあり、比較的コストを低く押さえることができるため、電極材料としてより好ましい。 The electrode material for an electrochemical capacitor of the present invention has a general formula of M m WO n (m is 1 or 2 and n is 4 or 6), and M is Mn , Fe, Co, Ni, Cu, a transition metal element having a plurality of oxidation numbers, an alkaline earth metal element such as Mg, Ca, Sr, and a composite metal that is at least one selected from typical metal elements such as Zn and Bi It contains an oxide. For example, the composite oxide may be CoWO 4 or Fe 2 WO 6 . Fe is more preferable as an electrode material because it is abundant as a resource and can keep costs relatively low.

本発明の電気化学キャパシタ用電極材料において、複合酸化物は、窒素吸着のBET法で測定した比表面積が120cm2/g以上であることが好ましい。こうすれば、蓄電特性を向上させることができる。なお、材料作製の容易性を考慮すると、比表面積が2000m2/g以下であることが好ましい。また、複合酸化物は、走査型電子顕微鏡で観察した平均粒径が100nm以下であることが好ましく、80nm以下であることがより好ましい。こうすれば、充放電するサイトが増えるため、蓄電性能を向上することができる。なお、材料作製の容易性を考慮すると、平均粒径が1nm以上であることが好ましい。 In the electrode material for an electrochemical capacitor of the present invention, the composite oxide preferably has a specific surface area of 120 cm 2 / g or more measured by a nitrogen adsorption BET method. In this way, the storage characteristics can be improved. In view of ease of material production, the specific surface area is preferably 2000 m 2 / g or less. In addition, the composite oxide preferably has an average particle diameter of 100 nm or less, more preferably 80 nm or less, observed with a scanning electron microscope. By doing so, the number of sites to be charged / discharged increases, so that the power storage performance can be improved. In view of ease of material production, the average particle diameter is preferably 1 nm or more.

本発明の電気化学キャパシタ用電極材料は、目的の組成となるように、Mn,Fe,Co,Ni,Cu,Zn,Mg,Ca,Sr及びBiから選ばれた少なくとも一種と、Wとを秤量し、この秤量した原料粉末をボールミルやアトライターなどを用いて湿式混合、粉砕し、得られたスラリーを乾燥したのち所定温度で焼成することにより作製することが好ましい。原料粉体は、酸化物としてもよいし、炭酸塩や硝酸塩、シュウ酸などとしてもよい。焼成温度は、原料粉体にもよるが、700℃〜1200℃が好ましい。得られた焼成物を粉砕し、導電補助材や結着剤を混合し、電極基材に接着して電極を作製してもよい。電極基材は、ステンレスや銅などの板やメッシュなどを用いることができる。導電補助材は、例えば炭素や金属繊維、金属粉末類、有機導電性材料などを用いることができる。また結着剤は、例えばテフロン(登録商標)などを用いることができる。導電補助剤と結着剤は、電極材料に対してそれぞれ5重量%とするのが好ましい。   The electrode material for an electrochemical capacitor of the present invention weighs at least one selected from Mn, Fe, Co, Ni, Cu, Zn, Mg, Ca, Sr, and Bi and W so as to have a target composition. The weighed raw material powder is preferably wet-mixed and pulverized using a ball mill or attritor, and the resulting slurry is dried and then fired at a predetermined temperature. The raw material powder may be an oxide, carbonate, nitrate, oxalic acid, or the like. The firing temperature is preferably 700 ° C. to 1200 ° C., although it depends on the raw material powder. The obtained fired product may be pulverized, mixed with a conductive auxiliary material or a binder, and bonded to an electrode substrate to produce an electrode. As the electrode base material, a plate such as stainless steel or copper, a mesh, or the like can be used. As the conductive auxiliary material, for example, carbon, metal fibers, metal powders, organic conductive materials, or the like can be used. As the binder, for example, Teflon (registered trademark) can be used. The conductive auxiliary agent and the binder are each preferably 5% by weight based on the electrode material.

あるいは、上述と同様に目的の組成となるように原料粉末を秤量し、この秤量した原料粉末を硝酸などの水溶液に溶解させ、更にポリエチレングリコールを添加し、得られた溶液を電極基材(例えば導電性ガラス)に塗布して焼成してもよい。このとき、原料粉末は、水溶液に可溶な塩を用いることが好ましい。こうすれば、比表面積の高い電極を得ることができる。   Alternatively, the raw material powder is weighed so as to have the desired composition in the same manner as described above, the weighed raw material powder is dissolved in an aqueous solution such as nitric acid, polyethylene glycol is further added, and the resulting solution is used as an electrode substrate (for example, It may be applied to conductive glass and fired. At this time, it is preferable to use a salt soluble in an aqueous solution as the raw material powder. In this way, an electrode having a high specific surface area can be obtained.

こうして得られた本発明の電極材料を備えた電極を用いて電気化学キャパシタを作製する。例えば、コイン型の電気化学キャパシタでは、上述した一対の電極の間に電解液を浸したセパレータを設けコイン型のケースに封入することにより作製することができ、シリンダ型の電気化学キャパシタでは、シート状の電極を作製し、この一対の電極シートの間に電解液を浸したセパレータを設け、全体を渦巻き状に巻回してシリンダ型のケースに封入することにより作製することができる。セパレータは、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムが挙げられる。これらは単独で用いてもよいし、複合して用いてもよい。電解液は、例えば硫酸などの酸水溶液や水酸化ナトリウムなどのアルカリ溶液を用いることができる。本発明の電気化学キャパシタは、上述した電気化学キャパシタ用電極材料を備えているため、上述した電気化学キャパシタ用電極材料と同様の効果を得ることができる。   An electrochemical capacitor is produced using the electrode provided with the electrode material of the present invention thus obtained. For example, a coin-type electrochemical capacitor can be manufactured by providing a separator in which an electrolytic solution is immersed between the pair of electrodes described above and enclosing the separator in a coin-type case. It is possible to fabricate a cylindrical electrode by providing a separator in which an electrolytic solution is immersed between the pair of electrode sheets, winding the whole in a spiral shape, and enclosing it in a cylindrical case. Examples of the separator include polymer nonwoven fabrics such as polypropylene nonwoven fabrics and polyphenylene sulfide nonwoven fabrics, and microporous films of olefinic resins such as polyethylene and polypropylene. These may be used alone or in combination. As the electrolytic solution, for example, an acid aqueous solution such as sulfuric acid or an alkaline solution such as sodium hydroxide can be used. Since the electrochemical capacitor of the present invention includes the above-described electrode material for an electrochemical capacitor, the same effects as those of the above-described electrode material for an electrochemical capacitor can be obtained.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

(実施例1)
Fe2WO6の組成となるようにFe23とWO3とを秤量し、秤量した原料粉末と、分散媒としてエタノールを入れ、ボールミルで20h湿式混合、粉砕を行った。得られたスラリーを乾燥したのち、1100℃、2hの条件で大気中で焼成した。得られた焼成物を粉砕して実施例1の電極粉を得た。この電極粉と、導電補助材として炭素(電気化学工業製デンカブラック)と、結着剤としてテフロン(三井デュポンフロロケミカル製6J)とを、90:5:5の重量比で混合し、SUS網(寸法0.5cm×10cm、厚さ0.02cm)の先端に押し付け、形状を矩形板状に整えて実施例1の電極とした。
(Example 1)
Were weighed Fe 2 O 3 and WO 3 as a composition of Fe 2 WO 6, and the raw material powder was weighed, ethanol was placed as a dispersion medium, 20h wet mixed by a ball mill, pulverization was carried out. The obtained slurry was dried and then calcined in air at 1100 ° C. for 2 hours. The obtained fired product was pulverized to obtain the electrode powder of Example 1. This electrode powder, carbon (Denka Black manufactured by Denki Kagaku Kogyo) as a conductive auxiliary material, and Teflon (6J manufactured by Mitsui DuPont Fluorochemical) as a binder are mixed at a weight ratio of 90: 5: 5, and a SUS network is mixed. The electrode of Example 1 was prepared by pressing against the tip of (size 0.5 cm × 10 cm, thickness 0.02 cm) and adjusting the shape to a rectangular plate.

(実施例2)
CoWO4の組成となるようにCo34とWO3とを秤量し、秤量した原料粉末と、分散媒としてエタノールを入れ、ボールミルで20h湿式混合、粉砕を行った。得られたスラリーを乾燥したのち、1200℃、2hの条件で大気中で焼成した。得られた焼成物を粉砕して実施例2の電極粉を得た。実施例1に記載したのと同様に、この電極粉と、導電補助材として炭素と、結着剤としてテフロンとを、90:5:5の重量比で混合し、SUS網の先端に押し付け、形状を矩形板状に整えて実施例2の電極とした。
(Example 2)
Co 3 O 4 and WO 3 were weighed so as to have the composition of CoWO 4 , weighed raw material powder and ethanol as a dispersion medium were added, and wet mixed and pulverized by a ball mill for 20 hours. The obtained slurry was dried and then calcined in the air at 1200 ° C. for 2 hours. The obtained fired product was pulverized to obtain the electrode powder of Example 2. In the same manner as described in Example 1, this electrode powder, carbon as a conductive auxiliary material, and Teflon as a binder are mixed at a weight ratio of 90: 5: 5, and pressed against the tip of the SUS net, The shape was adjusted to a rectangular plate to obtain an electrode of Example 2.

(実施例3)
Fe(NO33と(NH4101241とを化学量論比が1:1となるように混合し、0.05Mの硝酸水溶液0.2Lに溶解させた。更に、ポリエチレングリコールを50vol%添加し、得られた溶液を導電性ガラス(F−SnO2:寸法10cm×10cm、厚さ1mm)に塗布し、700℃、3h焼成を行った。得られたものを実施例3の電極とした。更に、この電極面に形成された物質を削り落とし、得られた粉体を実施例3の電極粉とした。なお、この実施例3の電極粉の比表面積を、日本ベル製BELSORPにより窒素吸着の1点BET法で測定したところ、120m2/gであった。また、実施例3の電極粉を走査型電子顕微鏡(日本電子製JSM−890)を用いて観察したところ、平均粒径が80nmであった。
(Example 3)
Fe (NO 3 ) 3 and (NH 4 ) 10 W 12 O 41 were mixed so that the stoichiometric ratio was 1: 1, and dissolved in 0.2 L of 0.05 M nitric acid aqueous solution. Furthermore, 50 vol% of polyethylene glycol was added, and the obtained solution was applied to conductive glass (F-SnO 2 : dimensions 10 cm × 10 cm, thickness 1 mm), followed by baking at 700 ° C. for 3 hours. The obtained electrode was used as the electrode of Example 3. Further, the material formed on the electrode surface was scraped off, and the obtained powder was used as the electrode powder of Example 3. In addition, it was 120 m < 2 > / g when the specific surface area of the electrode powder of this Example 3 was measured by the 1-point BET method of nitrogen adsorption by BELSORP made from Nippon Bell. Moreover, when the electrode powder of Example 3 was observed using the scanning electron microscope (JEOL JSM-890), the average particle diameter was 80 nm.

(実施例4)
SrWO4の組成となるようにSrOとWO3とを秤量し、秤量した原料粉末と、分散媒としてエタノールを入れ、ボールミルで20h湿式混合、粉砕を行った。得られたスラリーを乾燥したのち、1100℃、2hの条件で大気中で焼成した。得られた焼成物を粉砕して実施例4の電極粉を得た。実施例1に記載したのと同様に、この電極粉と、導電補助材として炭素と、結着剤としてテフロンとを、90:5:5の重量比で混合し、SUS網の先端に押し付け、形状を矩形板状に整えて実施例4の電極とした。
Example 4
SrO and WO 3 were weighed so as to have a composition of SrWO 4 , weighed raw material powder and ethanol as a dispersion medium were added, and wet-mixed and pulverized with a ball mill for 20 hours. The obtained slurry was dried and then calcined in air at 1100 ° C. for 2 hours. The obtained fired product was pulverized to obtain the electrode powder of Example 4. In the same manner as described in Example 1, this electrode powder, carbon as a conductive auxiliary material, and Teflon as a binder are mixed at a weight ratio of 90: 5: 5, and pressed against the tip of the SUS net, The shape was adjusted to a rectangular plate to obtain an electrode of Example 4.

(実施例5)
ZnWO4の組成となるようにZnOとWO3とを秤量し、秤量した原料粉末と、分散媒としてエタノールを入れ、ボールミルで20h湿式混合、粉砕を行った。得られたスラリーを乾燥したのち、1100℃、2hの条件で大気中で焼成した。得られた焼成物を粉砕して実施例5の電極粉を得た。実施例1に記載したのと同様に、この電極粉と、導電補助材として炭素と、結着剤としてテフロンとを、90:5:5の重量比で混合し、SUS網の先端に押し付け、形状を矩形板状に整えて実施例5の電極とした。
(Example 5)
ZnO and WO 3 were weighed so as to have a composition of ZnWO 4 , weighed raw material powder and ethanol as a dispersion medium were added, and wet mixed and pulverized by a ball mill for 20 hours. The obtained slurry was dried and then calcined in air at 1100 ° C. for 2 hours. The obtained fired product was pulverized to obtain the electrode powder of Example 5. In the same manner as described in Example 1, this electrode powder, carbon as a conductive auxiliary material, and Teflon as a binder are mixed at a weight ratio of 90: 5: 5, and pressed against the tip of the SUS net, The shape was adjusted to a rectangular plate to obtain an electrode of Example 5.

(X線回折測定)
実施例1〜5の電極粉のX線回折測定をX線回折装置(リガク製RINT2200)によりCuKα線を用いて行った。
(X-ray diffraction measurement)
X-ray diffraction measurement of the electrode powders of Examples 1 to 5 was performed using CuKα rays by an X-ray diffractometer (RINT2200 manufactured by Rigaku).

(CV特性評価)
実施例1〜5の電極を用い、図1に示すCV評価装置を用いてCV特性の評価を行った。図1に示すように、実施例1〜3のいずれかの電極とAg/AgClの参照極との距離を1cmとし、この参照極とPtの対極との距離を2cmとし、それぞれの電極を、容積0.05Lの0.1MのNaOH水溶液に入れ、ポテンショスタットを用いて電位走査速度を10〜200mV/sとしてサイクリックボルタモグラム(CV)を測定した。なお、対極の寸法は、上述したように0.5cm×10cm、厚さ0.02cmとした。
(CV characteristic evaluation)
Using the electrodes of Examples 1 to 5, CV characteristics were evaluated using the CV evaluation apparatus shown in FIG. As shown in FIG. 1, the distance between any of the electrodes of Examples 1 to Ag / AgCl reference electrode is 1 cm, the distance between the reference electrode and the counter electrode of Pt is 2 cm, A cyclic voltammogram (CV) was measured using a potentiostat at a potential scanning speed of 10 to 200 mV / s using a potentiostat. The dimensions of the counter electrode were 0.5 cm × 10 cm and the thickness was 0.02 cm as described above.

(評価結果)
X線回折の測定結果は、図2に示すように、実施例1がFe2WO6の結晶となっていることが確認された。また、実施例3も同様であった。図3に示すように、実施例1は、そのCV特性がヒステリシスを示し電荷が蓄積される現象が確認されたため、蓄電性能を持つことが明らかとなった。また、電位走査速度を10,50,100,200mV/sと変化させても電流飽和領域が大きく減少することはなく、高速の充放電にも対応できることがわかった。実施例1の電極のCV特性から算出される容量は12F/gであった。また、図4に示すX線回折の結果から、実施例2がCoWO4の結晶となっていることが確認された。図5に示すように、実施例2は、そのCV特性がヒステリシスを示し電荷が蓄積される現象が確認されたため、蓄電性能を持つことが明らかとなった。なお、図5は電位走査速度50mV/sのデータである。実施例2の電極のCV特性から算出される容量は10F/gであった。また、図6に示すように、実施例3は、実施例1よりも高いCV特性を示すことがわかった。なお、図6は電位走査速度50mV/sのデータである。この実施例3の電極のCV特性から算出される容量は210F/gであった。したがって、電極は、数十nm以下の粒子で電極を構成し、比表面積を向上させることにより蓄電性能が向上することがわかった。また、図7に示すように、実施例4のSrWO4や、図8に示す実施例5のZnWO4についても、電位走査速度50mV/sでCV特性を評価したところ、このCV特性がヒステリシスを示し電荷が蓄積される現象が確認されたため、蓄電性能を持つことが明らかとなった。
(Evaluation results)
As shown in FIG. 2, the X-ray diffraction measurement results confirmed that Example 1 was Fe 2 WO 6 crystals. Moreover, Example 3 was also the same. As shown in FIG. 3, it was revealed that Example 1 has a storage performance because the phenomenon that the CV characteristic shows hysteresis and charge is accumulated is confirmed. Further, it was found that even when the potential scanning speed was changed to 10, 50, 100, and 200 mV / s, the current saturation region was not greatly reduced, and high-speed charging / discharging could be handled. The capacity calculated from the CV characteristics of the electrode of Example 1 was 12 F / g. Further, from the result of X-ray diffraction shown in FIG. 4, it was confirmed that Example 2 was a CoWO 4 crystal. As shown in FIG. 5, it was revealed that Example 2 has a power storage performance because the phenomenon that the CV characteristic shows hysteresis and charge is accumulated is confirmed. FIG. 5 shows data at a potential scanning speed of 50 mV / s. The capacity calculated from the CV characteristics of the electrode of Example 2 was 10 F / g. Moreover, as shown in FIG. 6, Example 3 showed that CV characteristic higher than Example 1 was shown. FIG. 6 shows data at a potential scanning speed of 50 mV / s. The capacity calculated from the CV characteristics of the electrode of Example 3 was 210 F / g. Therefore, it was found that the electrode is composed of particles of several tens of nanometers or less and the power storage performance is improved by improving the specific surface area. Further, as shown in FIG. 7, the SrWO 4 and Example 4, for the ZnWO 4 of Example 5 shown in FIG. 8, it was evaluated CV characteristics at a potential scan rate 50 mV / s, this CV characteristic hysteresis Since the phenomenon of the accumulated charge was confirmed, it became clear that it has power storage performance.

本発明は、蓄電材料に関する分野に利用可能である。   The present invention can be used in the field related to power storage materials.

電気化学キャパシタの説明図である。It is explanatory drawing of an electrochemical capacitor. 実施例1のX線回折の測定チャートである。2 is a measurement chart of X-ray diffraction of Example 1. FIG. 実施例1のCV特性の評価結果を表す図である。It is a figure showing the evaluation result of the CV characteristic of Example 1. 実施例2のX線回折の測定チャートである。6 is a measurement chart of X-ray diffraction of Example 2. 実施例2のCV特性の評価結果を表す図である。It is a figure showing the evaluation result of the CV characteristic of Example 2. 実施例3のCV特性の評価結果を表す図である。It is a figure showing the evaluation result of the CV characteristic of Example 3. 実施例4のCV特性の評価結果を表す図である。It is a figure showing the evaluation result of the CV characteristic of Example 4. 実施例5のCV特性の評価結果を表す図である。It is a figure showing the evaluation result of the CV characteristic of Example 5.

Claims (4)

一般式がMmWOn(mは1及び2のいずれかであり、nは4及び6のいずれかであり、MはMn,Fe,Co,Ni,Cu,Zn,Mg,Ca,Sr及びBiから選ばれた少なくとも一種)である複合酸化物を含む、電気化学キャパシタ用電極材料。 The general formula is M m WO n (m is either 1 or 2, n is either 4 or 6, M is Mn, Fe, Co, Ni, Cu, Zn, Mg, Ca, Sr and An electrode material for an electrochemical capacitor, comprising a composite oxide that is at least one selected from Bi. 前記複合酸化物は、Fe2WO6である、請求項1に記載の電気化学キャパシタ用電極材料。 The electrode material for an electrochemical capacitor according to claim 1, wherein the composite oxide is Fe 2 WO 6 . 前記複合酸化物は、比表面積が120cm2/g以上である、請求項1又は2に記載の電気化学キャパシタ用電極材料。 The electrode material for an electrochemical capacitor according to claim 1, wherein the complex oxide has a specific surface area of 120 cm 2 / g or more. 請求項1〜3のいずれかに記載の電気化学キャパシタ用電極材料を備えた、電気化学キャパシタ。   The electrochemical capacitor provided with the electrode material for electrochemical capacitors in any one of Claims 1-3.
JP2007057298A 2007-03-07 2007-03-07 Electrode material for electrochemical capacitor and electrochemical capacitor Pending JP2008218890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057298A JP2008218890A (en) 2007-03-07 2007-03-07 Electrode material for electrochemical capacitor and electrochemical capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057298A JP2008218890A (en) 2007-03-07 2007-03-07 Electrode material for electrochemical capacitor and electrochemical capacitor

Publications (1)

Publication Number Publication Date
JP2008218890A true JP2008218890A (en) 2008-09-18

Family

ID=39838537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057298A Pending JP2008218890A (en) 2007-03-07 2007-03-07 Electrode material for electrochemical capacitor and electrochemical capacitor

Country Status (1)

Country Link
JP (1) JP2008218890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155106A (en) * 2012-01-31 2013-08-15 Toyota Motor Engineering & Manufacturing North America Inc Water oxidation catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155106A (en) * 2012-01-31 2013-08-15 Toyota Motor Engineering & Manufacturing North America Inc Water oxidation catalyst

Similar Documents

Publication Publication Date Title
JP5320710B2 (en) Positive electrode active material, method for producing the same, and electrochemical device
WO2013031331A1 (en) Positive electrode active material for sodium batteries and method for producing same
JP2003068298A (en) Lithium containing transition metal composite oxide and its producing method
US10431812B2 (en) Non-aqueous, high capacity cathode material for lithium secondary battery, and method for preparing same
CN108232133B (en) Active material and fluoride ion battery
Aslam et al. Electrochemical performance of transition metal doped Co3O4 as electrode material for supercapacitor applications
WO2016132932A1 (en) Catalyst for oxygen reduction reaction and air electrode for metal-air secondary batteries
JP2021048137A (en) Cathode active material for lithium secondary battery
JP2017216126A (en) Active material for battery negative electrode, battery, and method for manufacturing active material for battery negative electrode
Zawar et al. Mn0. 06Co2. 94O4 nano-architectures anchored on reduced graphene oxide as highly efficient hybrid electrodes for supercapacitors
Biswal et al. Electrodeposition of Sea Urchin and Cauliflower‐like Nickel‐/Cobalt‐Doped Manganese Dioxide Hierarchical Nanostructures with Improved Energy‐Storage Behavior
JP2020047572A (en) Zinc secondary battery electrode active material and secondary battery including the same
JP4310780B2 (en) Ruthenic acid nanosheet and method for producing the same
JP2021120965A (en) Electrochemical capacitor
KR101064299B1 (en) Nickel-manganese binary complex electrode materials for an electrochemical supercapacitor and method for the preparing the same
JP2014143013A (en) Active material and secondary battery using the same
JP2002104827A (en) Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it
JP2020107602A (en) Positive electrode active material for secondary battery and manufacturing method thereof
JP2008218890A (en) Electrode material for electrochemical capacitor and electrochemical capacitor
KR100600412B1 (en) Ruthenic acid nanosheet and production method thereof, ruthenic acid compound, and electrochemical element
JP5447917B2 (en) Electrochemical capacitor and method for producing working electrode for electrochemical capacitor
JP5282259B2 (en) Molecular cluster secondary battery
JP2015082488A (en) Sodium secondary battery
JP2006127911A (en) Lithium secondary battery
JPH10324522A (en) Production of lithium cobalt oxide particulate powder