JP2008218339A - Fuel cell system and dilution device - Google Patents

Fuel cell system and dilution device Download PDF

Info

Publication number
JP2008218339A
JP2008218339A JP2007057558A JP2007057558A JP2008218339A JP 2008218339 A JP2008218339 A JP 2008218339A JP 2007057558 A JP2007057558 A JP 2007057558A JP 2007057558 A JP2007057558 A JP 2007057558A JP 2008218339 A JP2008218339 A JP 2008218339A
Authority
JP
Japan
Prior art keywords
gas
exhaust
exhaust passage
container
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007057558A
Other languages
Japanese (ja)
Inventor
Jinsei Ishidoya
尽生 石戸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007057558A priority Critical patent/JP2008218339A/en
Publication of JP2008218339A publication Critical patent/JP2008218339A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To decrease fuel gas concentration in exhaust gas to a prescribed reference value or lower. <P>SOLUTION: A dilution device 50 is installed at meeting point A of an exhaust passage 37 through which fuel offgas is intermittently exhausted and an exhaust passage 23 of oxidative offgas, or its upstream side, and equipped with an expansion and contraction vessel 52 expanding or contracting the inner volume according to the gas pressure on the inside and an elastic body 53 installed adjacently to the expansion and contraction vessel 52, and the expansion and contraction vessel 52 has a fuel offgas introduction port 52a communicating with the upstream side of the exhaust passage 37 and a fuel offgas exhaust port 52b communicating with the downstream side of the exhaust passage 37 or an exhaust passage 23, and the elastic body 53 adds recovering force corresponding to the expansion of the inner volume of the expansion and contraction vessel 52 to the expansion and contraction vessel 52. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池から排出される排ガス中の燃料ガス濃度を低減させる希釈器および燃料電池システムに関する。   The present invention relates to a diluter and a fuel cell system that reduce the concentration of fuel gas in exhaust gas discharged from a fuel cell.

現在、反応ガス(燃料ガス及び酸化ガス)の供給を受けて発電を行う燃料電池を備えた燃料電池システムが提案され、実用化されている。かかる燃料電池システムは、燃料電池から排出された反応後の燃料ガス(水素オフガス)から、発電時に生じた水分を分離して回収し、回収した水分及び不純物を含む水素オフガスを外部に排出するパージ動作を行う。外部に排出される水素オフガスは、排気排水弁から排気流路側へ間欠的に放出される。この排気流路は、燃料電池10から排出された酸化オフガスの排気流路と合流している。従って、水素オフガスは酸化オフガスで希釈されて低濃度となって大気放出される。   Currently, a fuel cell system including a fuel cell that receives a supply of reaction gas (fuel gas and oxidizing gas) and generates electric power has been proposed and put into practical use. Such a fuel cell system separates and recovers moisture generated during power generation from the reacted fuel gas (hydrogen offgas) discharged from the fuel cell, and purges the hydrogen offgas containing the recovered moisture and impurities to the outside. Perform the action. The hydrogen off gas discharged to the outside is intermittently released from the exhaust drain valve to the exhaust flow path side. This exhaust passage joins with the exhaust passage for oxidizing off-gas discharged from the fuel cell 10. Accordingly, the hydrogen off-gas is diluted with the oxidizing off-gas and is released into the atmosphere at a low concentration.

ところで、大気放出される排ガス中の水素濃度は所定の濃度以下とされることが望ましいが、水素オフガスを間欠放出すると、間欠放出開始時に水素オフガスのガス圧が瞬間的に増大し、酸化オフガスの排気流路に水素オフガスが一気に流入する。その結果、大気放出される排ガスの水素濃度は、間欠放出のタイミングに対応するタイミングで増減し、ピーク時の水素濃度が一時的に増大して基準値を上回ってしまう虞が生じる。そこで、大気放出される排ガス中の水素濃度を基準値以下にするために、水素オフガスの排気流路中にバッファタンクを設け、このバッファタンクに設けた電磁バルブの開度を制御して水素オフガスの放出速度を調整することにより、合流後の排ガスの水素濃度が基準値を超えないようにしたものがある(例えば、特許文献1参照)。
特開2005−347008号公報
By the way, it is desirable that the hydrogen concentration in the exhaust gas discharged to the atmosphere is not more than a predetermined concentration. However, when hydrogen off-gas is intermittently released, the gas pressure of the hydrogen off-gas increases instantaneously at the start of intermittent discharge, and the oxidation off-gas Hydrogen off gas flows into the exhaust flow path at once. As a result, the hydrogen concentration of the exhaust gas released into the atmosphere increases or decreases at a timing corresponding to the timing of intermittent discharge, and the peak hydrogen concentration temporarily increases and may exceed the reference value. Therefore, in order to keep the hydrogen concentration in the exhaust gas released to the atmosphere below the reference value, a buffer tank is provided in the exhaust passage of hydrogen off gas, and the opening of the electromagnetic valve provided in this buffer tank is controlled to control the hydrogen off gas. There is one in which the hydrogen concentration of the exhaust gas after merging does not exceed a reference value by adjusting the release rate of the gas (see, for example, Patent Document 1).
JP 2005-347008 A

特許文献1の構成では、バッファタンク内の圧力や流量などの検出値に基づいて電磁バルブの開度を制御しており、予めこれらの検出値と水素濃度との相関関係をデータとして蓄積しておくなど、制御に必要なデータを蓄積する作業が必要であった。そして、制御データが不十分であれば、水素濃度を確実に基準値以下にすることができないという問題点があった。また、センサの検出値に基づいて電磁バルブの開度を調整する方法では、間欠放出等による瞬間的な圧力増大に対する応答性が十分ではないという問題点があった。   In the configuration of Patent Document 1, the opening degree of the electromagnetic valve is controlled based on detected values such as the pressure and flow rate in the buffer tank, and the correlation between these detected values and the hydrogen concentration is stored in advance as data. It was necessary to accumulate data necessary for control, such as setting up. And if control data is inadequate, there existed a problem that hydrogen concentration could not be reliably made into a reference value or less. Further, the method of adjusting the opening of the electromagnetic valve based on the detection value of the sensor has a problem that the response to an instantaneous pressure increase due to intermittent discharge or the like is not sufficient.

本発明は、かかる事情に鑑みてなされたものであり、間欠放出される燃料ガスを含む排ガスを他のガスの流路に合流させて希釈した排ガス中の燃料ガスの濃度の上昇を抑制することが可能な燃料電池システムと希釈器を提供することを目的とする。   The present invention has been made in view of such circumstances, and suppresses an increase in the concentration of the fuel gas in the exhaust gas diluted by joining the exhaust gas containing the fuel gas that is intermittently released to the flow path of another gas. It is an object of the present invention to provide a fuel cell system and a diluter capable of performing the above.

この目的を達成するため、本発明に係る希釈器は、燃料ガスを含む排ガスが間欠放出される第1の排気流路と、外気に連通された第2の排気流路との合流点又はその上流側に配設される希釈器であって、内部のガス圧に応じて内部容積が拡大又は縮小される伸縮容器と、該伸縮容器に隣接して配設される復元手段と、を備え、前記伸縮容器は、前記第1の排気流路の上流側に連通されるガス流入口と、前記第1の排気流路の下流側又は前記第2の排気流路に連通されるガス流出口と、を有し、前記復元手段は、前記伸縮容器の内部容積の拡大に応じた復元力を前記伸縮容器に加えるものである。   In order to achieve this object, a diluter according to the present invention includes a junction point between a first exhaust passage through which exhaust gas containing fuel gas is intermittently released and a second exhaust passage communicated with outside air, or the A diluter disposed on the upstream side, comprising: a telescopic container whose internal volume is expanded or contracted according to an internal gas pressure; and a restoring means disposed adjacent to the telescopic container, The telescopic container has a gas inlet communicating with the upstream side of the first exhaust flow path, and a gas outlet communicating with the downstream side of the first exhaust flow path or the second exhaust flow path. The restoring means applies a restoring force corresponding to the expansion of the internal volume of the expandable container to the expandable container.

かかる構成によれば、伸縮容器の伸縮によって機械的にガス流量が調整されるので、排ガスの間欠放出時の瞬間的な圧力上昇が抑制される。従って、排ガス中の燃料ガスの濃度の上昇を抑制することができる。   According to such a configuration, since the gas flow rate is mechanically adjusted by the expansion and contraction of the expansion and contraction container, an instantaneous pressure increase during the intermittent discharge of the exhaust gas is suppressed. Therefore, an increase in the concentration of fuel gas in the exhaust gas can be suppressed.

また、本発明の希釈器において、前記復元手段は、前記伸縮容器に隣接して配設された弾性体と、該弾性体及び前記伸縮容器の所定の領域外への移動を規制する位置規制部材と、を有し、前記弾性体は、その弾性力の作用方向と前記伸縮方向とが略一致するように配設されたものであってもよい。   Further, in the diluter of the present invention, the restoring means includes an elastic body disposed adjacent to the telescopic container, and a position regulating member that regulates movement of the elastic body and the telescopic container outside a predetermined region. The elastic body may be disposed so that the direction of the elastic force and the direction of expansion and contraction are substantially coincident.

かかる構成によれば、弾性体の弾性力を利用して位置規制部材によって位置規制された伸縮容器を収縮させることができる。よって、伸縮容器の伸縮によって機械的にガス流量を調整することができ、排ガスの間欠放出時の瞬間的な圧力上昇が抑制される。よって、排ガス中の燃料ガスの濃度の上昇が抑制される。   According to this configuration, the expansion and contraction container whose position is restricted by the position restriction member can be contracted using the elastic force of the elastic body. Therefore, the gas flow rate can be mechanically adjusted by the expansion and contraction of the expansion / contraction container, and an instantaneous pressure increase during the intermittent discharge of the exhaust gas is suppressed. Therefore, an increase in the concentration of the fuel gas in the exhaust gas is suppressed.

また、本発明の希釈器において、前記伸縮容器は、蛇腹状の管状体とその一端側の端部を閉塞する端面とを有し、該端面に前記ガス流入口又は前記ガス流出口が設けられ、前記弾性体は、前記端面に当接し、且つ、その弾性力の作用方向と前記管状体の軸方向とが略一致するように配設され、前記位置規制部材は、前記伸縮容器及び前記弾性体がその内部に収容される筐体からなり、前記ガス流入口に接続される上流側の前記第1の排気流路が挿通される開口と、前記ガス流出口に接続される下流側の前記第1の排気流路又は前記第2の排気流路が挿通される開口と、を有するようにしても良い。   In the diluter according to the present invention, the expandable container has a bellows-like tubular body and an end face that closes an end on one end thereof, and the gas inlet or the gas outlet is provided on the end face. The elastic body is disposed so as to abut against the end surface and the direction of the elastic force and the axial direction of the tubular body substantially coincide with each other, and the position restricting member includes the elastic container and the elastic body. A body that is housed therein, an opening through which the first exhaust passage on the upstream side connected to the gas inlet is inserted, and the downstream side connected to the gas outlet And an opening through which the first exhaust passage or the second exhaust passage is inserted.

かかる構成によれば、弾性体の弾性力を利用して筐体内に配設された蛇腹状の管状体を収縮させることができる。よって、管状体の伸縮によって機械的にガス流量を調整することができ、排ガスの間欠放出時の瞬間的な圧力上昇が抑制される。よって、排ガス中の燃料ガスの濃度の上昇が抑制される。   According to this configuration, the bellows-like tubular body disposed in the housing can be contracted using the elastic force of the elastic body. Therefore, the gas flow rate can be mechanically adjusted by the expansion and contraction of the tubular body, and an instantaneous pressure increase during intermittent discharge of exhaust gas is suppressed. Therefore, an increase in the concentration of the fuel gas in the exhaust gas is suppressed.

本発明の燃料電池システムは、燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池と、該燃料電池から排出された燃料オフガスを外部に間欠放出する第1の排気流路と、前記燃料電池から排出された酸化オフガスを外部に放出する第2の排気流路と、前記第1の排気流路と前記第2の排気流路との合流点又はその上流側に配設された希釈器と、を備えた燃料電池システムであって、前記希釈器は、内部のガス圧に応じて内部容積が拡大又は縮小される伸縮容器と、該伸縮容器に隣接して配設される復元手段と、を備え、前記伸縮容器は、前記第1の排気流路の上流側に連通されるガス流入口と、前記第1の排気流路の下流側又は前記第2の排気流路に連通されるガス流出口と、を有し、前記復元手段は、前記伸縮容器の内部容積の拡大に応じた復元力を前記伸縮容器に加えるものである。   The fuel cell system of the present invention includes a fuel cell that generates power by an electrochemical reaction between a fuel gas and an oxidizing gas, a first exhaust passage that intermittently discharges a fuel off-gas discharged from the fuel cell, and the fuel A diluter disposed on the upstream side or the second exhaust flow path for discharging the oxidizing off gas discharged from the battery to the outside, and the junction of the first exhaust flow path and the second exhaust flow path The diluter includes an extendable container whose internal volume is expanded or reduced according to an internal gas pressure, and a restoring means disposed adjacent to the expandable container. The expansion / contraction container is communicated with a gas inlet communicating with the upstream side of the first exhaust flow path and with the downstream side of the first exhaust flow path or the second exhaust flow path. A gas outlet, and the restoring means is an internal volume of the telescopic container. It is intended to apply a restoring force corresponding to the large to the expansion vessel.

かかる構成によれば、燃料電池から排出された燃料オフガスの間欠放出時に、その瞬間的な圧力上昇が抑制されるので、燃料電池システムの外部に排出される排ガス中の燃料ガスの濃度の上昇が抑制され、排ガスの燃料ガス濃度が所定の基準値を越えてしまうような事態の発生を抑制できる。   According to this configuration, when the fuel off-gas discharged from the fuel cell is intermittently released, the instantaneous pressure increase is suppressed, so that the concentration of the fuel gas in the exhaust gas discharged outside the fuel cell system is increased. It is possible to suppress the occurrence of a situation in which the fuel gas concentration of the exhaust gas exceeds a predetermined reference value.

この構成において、前記復元手段は、前記第2の排気流路側に放出された前記燃料オフガスと前記第2の排気流路内の酸化オフガスとの混合ガス中の燃料ガス濃度が、所定の基準値以下となるような放出速度で前記燃料オフガスを放出するように、前記伸縮容器を収縮させるものでもよい。   In this configuration, the restoring means is configured such that the fuel gas concentration in the mixed gas of the fuel off-gas discharged to the second exhaust passage and the oxidizing off-gas in the second exhaust passage is a predetermined reference value. The telescopic container may be contracted so that the fuel off-gas is released at a release rate as follows.

本発明によれば、伸縮容器の伸縮によって機械的にガス流量が調整されるので、排ガスの間欠放出時の瞬間的な圧力上昇が抑制され、排ガス中の燃料ガスの濃度の上昇が抑制される。   According to the present invention, since the gas flow rate is mechanically adjusted by the expansion and contraction of the expansion and contraction container, an instantaneous pressure increase at the time of intermittent discharge of the exhaust gas is suppressed, and an increase in the concentration of the fuel gas in the exhaust gas is suppressed. .

以下、図面を参照して、本発明の一実施形態に係る希釈器と該希釈器を備えた燃料電池システム1について説明する。   Hereinafter, a diluter according to an embodiment of the present invention and a fuel cell system 1 including the diluter will be described with reference to the drawings.

図1は、燃料電池システム1のシステム構成図である。この燃料電池システム1は、燃料電池自動車の車載発電システムや船舶、航空機、電車あるいは歩行ロボット等のあらゆる移動体用の発電システム、さらには、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システム等に適用可能であるが、具体的には自動車用となっている。   FIG. 1 is a system configuration diagram of the fuel cell system 1. The fuel cell system 1 is used as an in-vehicle power generation system for fuel cell vehicles, a power generation system for any moving body such as a ship, an aircraft, a train, or a walking robot, and also as a power generation facility for buildings (housing, buildings, etc.). Although it can be applied to stationary power generation systems, it is specifically for automobiles.

本実施形態に係る燃料電池システム1は、図1に示すように、反応ガス(酸化ガス及び燃料ガス)の供給を受けて電力を発生する燃料電池10を備えるとともに、燃料電池10に酸化ガスとしての空気を供給するガス流路としての酸化ガス配管系2、燃料電池10に燃料ガスとしての水素ガス(アノードガス)を供給するガス流路としての水素ガス配管系3、システム全体を統合制御する制御装置4等を備えている。また、燃料電池システム1は、酸化ガス配管系2と水素ガス配管系3の排気流路の合流点Aの近傍(合流点Aでも良い。)に設けられた水素希釈器50(希釈器)を備えている。   As shown in FIG. 1, the fuel cell system 1 according to the present embodiment includes a fuel cell 10 that generates electric power upon receiving a supply of reaction gas (oxidation gas and fuel gas), and the fuel cell 10 has an oxidant gas. Integrated control of the oxidizing gas piping system 2 as a gas flow path for supplying air, a hydrogen gas piping system 3 as a gas flow path for supplying hydrogen gas (anode gas) as a fuel gas to the fuel cell 10, and the entire system A control device 4 and the like are provided. Further, the fuel cell system 1 includes a hydrogen diluter 50 (diluter) provided in the vicinity of the merging point A (which may be the merging point A) of the exhaust gas flow path of the oxidizing gas piping system 2 and the hydrogen gas piping system 3. I have.

燃料電池10は、反応ガスの供給を受けて発電する単電池を所要数積層して構成したスタック構造を有している。ここで、単電池は固体高分子型のもので、電解質膜及びその両面に配置した一対の電極からなるMEA(Membrane Electrode Assembly)と、MEAを挟持する一対のセパレータとで構成される。燃料電池10により発生した電力は、PCU(Power Control Unit)11に供給される。PCU11は、燃料電池10とトラクションモータ12との間に配置されるインバータやDC‐DCコンバータ等を備えている。   The fuel cell 10 has a stack structure in which a required number of unit cells that generate power upon receiving a reaction gas are stacked. Here, the unit cell is of a solid polymer type, and is composed of an electrolyte membrane and a MEA (Membrane Electrode Assembly) composed of a pair of electrodes disposed on both surfaces thereof, and a pair of separators sandwiching the MEA. The electric power generated by the fuel cell 10 is supplied to a PCU (Power Control Unit) 11. The PCU 11 includes an inverter, a DC-DC converter, and the like that are disposed between the fuel cell 10 and the traction motor 12.

酸化ガス配管系2は、加湿器20により加湿された酸化ガス(空気)を燃料電池10に供給する空気供給流路21と、燃料電池10から排出された空気オフガス(酸化オフガス)を加湿器20に導く空気排出流路22と、加湿器20から外部(外気)に空気オフガスを導くための排気流路23(第2の排気流路)と、を備えている。空気供給流路21には、大気中の酸化ガスを取り込んで加湿器20に圧送するコンプレッサ24が設けられている。   The oxidizing gas piping system 2 includes an air supply passage 21 that supplies the fuel cell 10 with the oxidizing gas (air) humidified by the humidifier 20, and the air off-gas (oxidized off gas) discharged from the fuel cell 10 with the humidifier 20. And an exhaust passage 23 (second exhaust passage) for guiding the air off gas from the humidifier 20 to the outside (outside air). The air supply passage 21 is provided with a compressor 24 that takes in the oxidizing gas in the atmosphere and pumps it to the humidifier 20.

水素ガス配管系3は、高圧(例えば70MPa)の水素ガスを貯留した燃料供給源としての水素タンク30と、水素タンク30の水素ガスを燃料電池10に供給するための燃料供給流路としての水素供給流路31と、燃料電池10から排出された水素オフガス(燃料オフガス)を水素供給流路31に戻すための戻り配管としての循環流路32と、を備えている。   The hydrogen gas piping system 3 includes a hydrogen tank 30 as a fuel supply source storing high-pressure (for example, 70 MPa) hydrogen gas, and hydrogen as a fuel supply passage for supplying the hydrogen gas from the hydrogen tank 30 to the fuel cell 10. A supply flow path 31 and a circulation flow path 32 as a return pipe for returning hydrogen off gas (fuel off gas) discharged from the fuel cell 10 to the hydrogen supply flow path 31 are provided.

なお、水素タンク30に代えて、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、この改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクと、を燃料供給源として採用することもできる。また、水素吸蔵合金を有するタンクを燃料供給源として採用してもよい。   Instead of the hydrogen tank 30, a reformer that generates a hydrogen-rich reformed gas from a hydrocarbon-based fuel, a high-pressure gas tank that stores the reformed gas generated by the reformer in a high-pressure state, and Can also be employed as a fuel supply source. A tank having a hydrogen storage alloy may be employed as a fuel supply source.

水素供給流路31には、水素タンク30からの水素ガスの供給を遮断又は許容する遮断弁33と、水素ガスの圧力を調整するレギュレータ34と、が設けられている。レギュレータ34は、機械式の減圧弁等からなる。なお、レギュレータ34の下流側(燃料電池10側)に、制御装置4から出力される制御信号によって燃料電池10に供給されるガス流量やガス圧をより高精度に制御するための電磁駆動式の開閉弁を設けてもよい。   The hydrogen supply flow path 31 is provided with a shutoff valve 33 that shuts off or allows the supply of hydrogen gas from the hydrogen tank 30 and a regulator 34 that adjusts the pressure of the hydrogen gas. The regulator 34 is composed of a mechanical pressure reducing valve or the like. In addition, an electromagnetic drive type for controlling the gas flow rate and gas pressure supplied to the fuel cell 10 with higher accuracy by the control signal output from the control device 4 on the downstream side of the regulator 34 (fuel cell 10 side). An on-off valve may be provided.

循環流路32には、気液分離器35及び排気排水弁36を介して、排出流路37(第1の排気流路)が接続されている。気液分離器35は、燃料電池10から排出された水素オフガスから、発電時に生じた水分を分離して回収するものである。また、排気排水弁36は、気液分離器35で回収した水分と、循環流路32内の不純物を含む水素オフガスと、を外部(外気)に排出(パージ)するものである。   A discharge passage 37 (first exhaust passage) is connected to the circulation passage 32 via a gas-liquid separator 35 and an exhaust drain valve 36. The gas-liquid separator 35 separates and recovers moisture generated during power generation from the hydrogen off-gas discharged from the fuel cell 10. The exhaust / drain valve 36 discharges (purges) moisture collected by the gas-liquid separator 35 and hydrogen off-gas containing impurities in the circulation flow path 32 to the outside (outside air).

排気排水弁36は、例えば電磁バルブ等の電磁駆動式の開閉手段を有し、制御装置4からの制御信号によって作動する。排気排水弁36は、所定のタイミングで水素オフガスを排出流路37側に間欠放出する。なお、排気排水弁36は排気と排水との双方を行うものであるが、気液分離器35で回収した水分を外部に排出する排水弁と循環流路32内のガスを外部に排出するための排気弁とを別々に設け、制御装置4でこれらを別々に制御するようにしてもよい。   The exhaust / drain valve 36 has electromagnetically driven opening / closing means such as an electromagnetic valve, for example, and operates according to a control signal from the control device 4. The exhaust / drain valve 36 intermittently discharges hydrogen off-gas to the discharge channel 37 side at a predetermined timing. The exhaust / drain valve 36 performs both exhaust and drainage. In order to exhaust the gas collected in the gas-liquid separator 35 to the outside and the gas in the circulation channel 32 to the outside. These exhaust valves may be provided separately, and these may be controlled separately by the control device 4.

また、循環流路32には、気液分離器35で分離された水分回収後の水素オフガスを加圧して水素供給流路31側へ送り出す水素ポンプ38が設けられている。水素ポンプ38により水素供給流路31側へ移送された水素オフガスは、水素タンク30側から供給される水素ガスと混合され循環する。   Further, the circulation channel 32 is provided with a hydrogen pump 38 that pressurizes the hydrogen off-gas after moisture recovery separated by the gas-liquid separator 35 and sends it to the hydrogen supply channel 31 side. The hydrogen off-gas transferred to the hydrogen supply channel 31 side by the hydrogen pump 38 is mixed with the hydrogen gas supplied from the hydrogen tank 30 side and circulated.

排出流路37は排気流路23と合流しており、その下流において外気に連通されている。すなわち、酸化ガス配管系2と水素ガス配管系3は出口側で合流している。なお、排出流路37のうち、水素希釈器50から水素オフガスを排出する側の排出流路37は、水素希釈器50に水素オフガスを導入する側の排出流路37よりも小径とされている。   The discharge passage 37 joins the exhaust passage 23 and communicates with the outside air downstream thereof. That is, the oxidizing gas piping system 2 and the hydrogen gas piping system 3 merge at the outlet side. Of the discharge channels 37, the discharge channel 37 on the side where the hydrogen off gas is discharged from the hydrogen diluter 50 has a smaller diameter than the discharge channel 37 on the side where the hydrogen off gas is introduced into the hydrogen diluter 50. .

酸化ガス配管系2から排出される空気オフガスと、水素ガス配管系3から排出される水素オフガスは、排出流路37と排気流路23との合流点Aにおいて混合される。これにより、高濃度の水素を含む水素オフガスは、空気オフガスにより所定の水素濃度以下に希釈された希釈ガス(混合ガス)となって車両外部に排出される。   The air off-gas discharged from the oxidizing gas piping system 2 and the hydrogen off-gas discharged from the hydrogen gas piping system 3 are mixed at the junction A between the discharge flow path 37 and the exhaust flow path 23. As a result, the hydrogen off-gas containing high-concentration hydrogen is discharged outside the vehicle as a diluted gas (mixed gas) diluted to a predetermined hydrogen concentration or less by the air off-gas.

水素希釈器50は、排出流路37と排気流路23との合流点Aの近傍、より詳しくは、排出流路37の流路中の排気流路23との合流直前位置に挿入されている。排出流路37に排出された水素オフガスは、水素希釈器50を通って排気流路23を流れる空気オフガスと合流して希釈される。合流後の希釈ガスの水素濃度は、合流点Aにおける空気オフガスと水素オフガスの相対的な流入速度に応じて変動する。   The hydrogen diluter 50 is inserted in the vicinity of the confluence point A between the discharge flow path 37 and the exhaust flow path 23, more specifically, at a position immediately before the merge with the exhaust flow path 23 in the flow path of the discharge flow path 37. . The hydrogen off-gas discharged to the discharge passage 37 is diluted by joining with the air off-gas flowing through the exhaust passage 23 through the hydrogen diluter 50. The hydrogen concentration of the diluted gas after merging varies according to the relative inflow rates of the air off-gas and the hydrogen off-gas at the merging point A.

そこで、水素希釈器50は、排出流路37側から排気流路23内へ間欠放出される水素オフガスの放出速度を減速させる機能を有して構成されている。水素オフガスの放出速度を調整することにより、合流後の希釈ガスの水素濃度が急激に上昇しないようにするためである。   Accordingly, the hydrogen diluter 50 is configured to have a function of decelerating the discharge speed of the hydrogen off-gas that is intermittently discharged from the discharge flow path 37 side into the exhaust flow path 23. This is to prevent the hydrogen concentration of the diluted gas after the merging from rapidly increasing by adjusting the release rate of the hydrogen off gas.

図2に水素希釈器50の断面構成を示す。この図に示すように、水素希釈器50は、水素オフガスの放出方向(図2では上下方向)に沿って所定の外形長さを有する形状の筐体51(位置規制部材、復元手段の一部)と、筐体51の内部に配設された伸縮容器52(伸縮容器)及び弾性体53(弾性体、復元手段の一部)と、を備えている。   FIG. 2 shows a cross-sectional configuration of the hydrogen diluter 50. As shown in this figure, the hydrogen diluter 50 includes a casing 51 (position regulating member, part of the restoring means) having a predetermined outer length along the hydrogen off-gas discharge direction (vertical direction in FIG. 2). ), And an expansion / contraction container 52 (extension / contraction container) and an elastic body 53 (elastic body, part of the restoring means) disposed inside the housing 51.

筐体51は、例えば、中空の円筒形の部材からなる。なお、筐体51の形状は、その内部に伸縮容器52及び弾性体53を後述するような配置で収容可能な形状であればよく、特に限定されない。また、筐体51の材質は金属、樹脂等のように所定の強度を有していてその形状を保持可能なものであればよく、特に限定されない。   The housing | casing 51 consists of a hollow cylindrical member, for example. In addition, the shape of the housing | casing 51 should just be a shape which can accommodate the expansion / contraction container 52 and the elastic body 53 in the inside so that it may mention later, and is not specifically limited. Moreover, the material of the housing | casing 51 should just have a predetermined intensity | strength like metal, resin, etc., and can hold | maintain the shape, and is not specifically limited.

筐体51は、軸線方向(長さ方向)の一端側の端面51Aが排出流路37の上流側、すなわち、排気排水弁36側を向くように配設されている。この端面51Aには上流側の排出流路37を挿通可能な上流側開口51aが設けられている。また、筐体51の他端側の端面51Bは、排出流路37の下流側、すなわち、排気流路23との合流点A側を向いて配設されている。この端面51Bには下流側の排出流路37を挿通可能な下流側開口51bが設けられている。   The casing 51 is arranged so that the end surface 51A on one end side in the axial direction (length direction) faces the upstream side of the discharge flow path 37, that is, the exhaust / drain valve 36 side. The end face 51A is provided with an upstream opening 51a through which the upstream discharge passage 37 can be inserted. Further, the end surface 51 </ b> B on the other end side of the casing 51 is disposed facing the downstream side of the discharge flow path 37, that is, the confluence point A side with the exhaust flow path 23. The end face 51B is provided with a downstream opening 51b through which the downstream discharge channel 37 can be inserted.

伸縮容器52は、例えば、蛇腹状の管壁を有するフレキシブルパイプ(管状体)52Cの両端に端面52A,52Bを設けて当該伸縮容器52を閉塞し、これらの端面52A,52Bにガス導入口及びガス放出口を設けたものである。具体的には、金属製の薄板を蛇腹状に形成したベローズ管、樹脂製のベローズ管等である。なお、伸縮容器52は、ガス導入時の内圧に応じて内部容積が変動可能な部材であればよく、蛇腹管のような形状に限定されるものではない。例えば、軸線方向の伸縮に応じてその内部容積が変動可能な部材としては、蛇腹状の管壁の代わりに他の伸縮素材で管壁を形成したものが考えられる。また、軸線方向には伸縮しないが、径方向あるいはその他の方向に伸縮可能に構成されたものであってもよい。伸縮容器52の材質は、内部に導入される水素オフガスの外部への漏れを低減するため、水素ガス透過性の低いものが用いられる。   The expandable container 52 is provided with end surfaces 52A and 52B at both ends of a flexible pipe (tubular body) 52C having a bellows-like tube wall, for example, to close the expandable container 52, and the end surfaces 52A and 52B have gas introduction ports and A gas discharge port is provided. Specifically, a bellows tube in which a metal thin plate is formed in a bellows shape, a resin bellows tube, and the like. The expandable container 52 is not limited to a shape like a bellows tube, as long as the internal volume can be changed according to the internal pressure at the time of gas introduction. For example, as a member whose internal volume can be changed in accordance with the expansion and contraction in the axial direction, a member in which the tube wall is formed of another stretchable material instead of the bellows-like tube wall can be considered. Moreover, although it does not expand-contract in the axial direction, it may be configured to be extendable in the radial direction or other directions. As the material of the expansion / contraction container 52, a material having low hydrogen gas permeability is used in order to reduce leakage of hydrogen off-gas introduced into the outside to the outside.

伸縮容器52は筐体51の内部に収容されており、その一端側の端面52Aには水素オフガス導入口52a(ガス流入口)が設けられ、排出流路37の上流側に接続されている。また、伸縮容器52の他端側の端面52Bには水素オフガス放出口52b(ガス流出口)が設けられ、排出流路37の下流側(排気流路23との合流点Aの近傍)に接続されている。なお、水素オフガス放出口52bが直接排気流路23に接続されるように構成してもよい。   The expandable container 52 is accommodated in the housing 51, and a hydrogen off-gas inlet 52 a (gas inlet) is provided on the end surface 52 </ b> A on one end side, and connected to the upstream side of the discharge channel 37. The end surface 52B on the other end side of the expandable container 52 is provided with a hydrogen off-gas discharge port 52b (gas outlet) and is connected to the downstream side of the discharge passage 37 (near the confluence point A with the exhaust passage 23). Has been. Note that the hydrogen off-gas discharge port 52b may be directly connected to the exhaust passage 23.

弾性体53は、例えば、つるまき状のばねからなる。弾性体53は筐体51の内部に収容されており、伸縮容器52とその伸縮方向に隣接して同軸に配置されている。弾性体53は、一端を伸縮容器52の端面52Aに当接させ、他端を筐体51の内壁に当接させて配置されている。すなわち、弾性体53は、その伸縮方向と伸縮容器52の伸縮方向とが一致するように配設されている。図2では、つるまきばね状の弾性体53の中心に、上流側開口51aから筐体51の内部に挿入された上流側の排気流路37が挿通されている。   The elastic body 53 is made of, for example, a helical spring. The elastic body 53 is accommodated in the housing 51 and is coaxially disposed adjacent to the expansion / contraction container 52 and its expansion / contraction direction. The elastic body 53 is arranged with one end abutting on the end surface 52A of the expandable container 52 and the other end abutting on the inner wall of the casing 51. That is, the elastic body 53 is disposed so that the expansion / contraction direction of the elastic body 53 and the expansion / contraction direction of the expansion / contraction container 52 coincide. In FIG. 2, an upstream exhaust passage 37 inserted into the housing 51 from the upstream opening 51 a is inserted through the center of the helical spring-like elastic body 53.

なお、弾性体53は、伸縮容器52の上流側ではなく下流側に隣接して配置されていてもよい。また、弾性体53は、板ばね等の他の形状のばねを用いてもよい。また、複数のばねを並列させて用いてもよい。また、ばね以外の弾性体であってもよい。要は、弾性体53は、その弾性力によって、ガス導入時の内圧によって内部容積が拡大された伸縮容器52に、もとの形状に復帰する方向の復元力すなわち圧縮力を与えるものであればよい。例えば、図2に示すつるまきばね状の弾性体53では、蛇腹管状の伸縮容器52の伸縮方向とばねの伸縮方向とを一致させて隣接して配置し、この両部材を筐体51の内部に収納しているので、伸縮容器52の伸長(内部容積拡大)に応じて筐体51によって位置規制された弾性体53が圧縮され、圧縮された弾性体53のばね力により、伸縮容器52の端面52Aに、元の長さに復帰させる方向の復元力(圧縮力)が作用する。   In addition, the elastic body 53 may be arrange | positioned adjacent to the downstream rather than the upstream of the expansion-contraction container 52. FIG. The elastic body 53 may be a spring having another shape such as a leaf spring. A plurality of springs may be used in parallel. Moreover, elastic bodies other than a spring may be sufficient. The point is that the elastic body 53 can provide a restoring force in the direction of returning to the original shape, that is, a compressive force, to the expandable container 52 whose internal volume is expanded by the internal pressure at the time of gas introduction. Good. For example, in the helical spring-like elastic body 53 shown in FIG. 2, the expansion / contraction direction of the bellows tubular expansion / contraction container 52 and the expansion / contraction direction of the spring are aligned and adjacent to each other. The elastic body 53 whose position is regulated by the casing 51 is compressed according to the expansion (internal volume expansion) of the expansion / contraction container 52, and the elastic force of the compressed elastic body 53 compresses the expansion / contraction container 52. A restoring force (compression force) in a direction to restore the original length acts on the end face 52A.

従って、上記したように伸縮容器52を径方向あるいはその他の方向に伸縮可能に構成した場合には、弾性体53を、その伸縮方向である径方向等に隣接させて配置し、これらを所定の寸法内に収めるように筐体51内に収容すれば、同様に、伸縮容器52の内部容積拡大時には、その内圧に抗して復元力が働くように構成することができる。   Therefore, when the expandable container 52 is configured to be expandable / contractible in the radial direction or other directions as described above, the elastic body 53 is disposed adjacent to the radial direction, which is the expansion / contraction direction, and these are arranged in a predetermined manner. If it is accommodated in the casing 51 so as to be accommodated within the dimensions, similarly, when the internal volume of the expandable container 52 is expanded, it can be configured such that a restoring force acts against the internal pressure.

制御装置4は、車両に設けられた加速操作装置(アクセル等)の操作量を検出し、加速要求値(例えばトラクションモータ12等の負荷装置からの要求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。また、制御装置4は、コンプレッサ24、遮断弁33及びレギュレータ34を駆動制御して、燃料電池10内にガス(酸化ガス及び水素ガス)を供給すると共に、排気排水弁36、水素ポンプ38等を駆動制御して、パージ動作及び循環流路32からの水素オフガスの循環を行う。   The control device 4 detects an operation amount of an acceleration operation device (accelerator or the like) provided in the vehicle, receives control information such as an acceleration request value (for example, a required power generation amount from a load device such as the traction motor 12), Control the operation of various devices in the system. Further, the control device 4 drives and controls the compressor 24, the shut-off valve 33, and the regulator 34 to supply gas (oxidizing gas and hydrogen gas) into the fuel cell 10, as well as an exhaust drain valve 36, a hydrogen pump 38, and the like. Drive control is performed to perform purge operation and circulation of hydrogen off-gas from the circulation flow path 32.

燃料電池システム1の通常運転時においては、水素タンク30から水素ガスが水素供給流路31を介して燃料電池10のアノード極に供給されるとともに、加湿調整された空気が空気供給流路21を介して燃料電池10のカソード極に供給されることにより、発電が行われる。この際、燃料電池10から引き出すべき電力(要求電力)が制御装置4で演算され、その発電量に応じた量の水素ガス及び空気が燃料電池10内に供給されるようになっている。また、パージ動作においては、水素オフガスが所定のタイミングで排出流路37側に間欠放出される。   During normal operation of the fuel cell system 1, hydrogen gas is supplied from the hydrogen tank 30 to the anode electrode of the fuel cell 10 through the hydrogen supply channel 31, and the air that has been subjected to humidification adjustment passes through the air supply channel 21. Then, power is generated by being supplied to the cathode electrode of the fuel cell 10. At this time, the power (required power) to be drawn from the fuel cell 10 is calculated by the control device 4, and hydrogen gas and air in an amount corresponding to the amount of power generation are supplied into the fuel cell 10. Further, in the purge operation, the hydrogen off gas is intermittently released to the discharge flow path 37 side at a predetermined timing.

制御装置4は、図示していないコンピュータシステムによって構成されている。かかるコンピュータシステムは、CPU、ROM、RAM、HDD、入出力インタフェース及びディスプレイ等を備えるものであり、ROMに記録された各種制御プログラムをCPUが読み込んで実行することにより、各種制御動作が実現されるようになっている。   The control device 4 is configured by a computer system (not shown). Such a computer system includes a CPU, ROM, RAM, HDD, input / output interface, display, and the like, and various control operations are realized by the CPU reading and executing various control programs recorded in the ROM. It is like that.

ここで、図3に基づいて、排出流路37側へ間欠放出された水素オフガスを排気流路23内の空気オフガスに合流させる際の、水素希釈器50の動作について説明する。   Here, based on FIG. 3, the operation of the hydrogen diluter 50 when the hydrogen offgas intermittently released to the discharge channel 37 side is merged with the air offgas in the exhaust channel 23 will be described.

水素希釈器50は、上記したように、伸縮容器52の内部容積拡大に応じて内部容積を縮小させる復元力が働く構成となっているので、定常状態では、ガス圧と弾性体53の弾性力とが釣り合う状態となっている。従って、伸縮容器52の下流側が排気流路23に開放された状態では、伸縮容器52内のガス圧と排気流路23内の希釈ガスのガス圧とが同一となり、弾性体53は、これに釣り合う長さとなっている(図3a)。   As described above, the hydrogen diluter 50 has a configuration in which a restoring force that reduces the internal volume in accordance with the expansion of the internal volume of the expansion / contraction container 52 works. Therefore, in a steady state, the gas pressure and the elastic force of the elastic body 53 are used. Are in a balanced state. Therefore, in a state where the downstream side of the expansion / contraction container 52 is opened to the exhaust flow path 23, the gas pressure in the expansion / contraction container 52 and the gas pressure of the dilution gas in the exhaust flow path 23 become the same, and the elastic body 53 The length is balanced (Fig. 3a).

上流側の排出流路37を流れる間欠放出時の水素オフガスが水素オフガス導入口52aから高速で伸縮容器52内に流入すると、その流入ガス圧に応じて伸縮容器52が急激に伸長され、内部容積が拡大される。これにより、伸縮容器52の上流側の端面52Aが伸長方向に移動し、筐体51の内壁によって位置規制された弾性体53が圧縮される(図3b)。間欠放出ガス流入開始後の各時点における伸縮容器52内のガス圧は、弾性体53の復元力に対応する。従って、間欠放出ガス流入開始後に水素オフガス放出口52bから排出流路23側に放出される水素オフガスの流出速度は急激には上昇せず、弾性体53の圧縮に応じて上昇する。また、伸縮容器52内におけるピーク時のガス圧は、上流側の排出流路37を流れてきた間欠放出ガスのガス圧よりも低減されている。   When the hydrogen off-gas during intermittent discharge flowing through the upstream discharge passage 37 flows into the expansion / contraction container 52 at a high speed from the hydrogen off-gas introduction port 52a, the expansion / contraction container 52 is rapidly expanded according to the inflow gas pressure, and the internal volume is increased. Is enlarged. Thereby, the end surface 52A on the upstream side of the expandable container 52 moves in the extending direction, and the elastic body 53 whose position is regulated by the inner wall of the casing 51 is compressed (FIG. 3b). The gas pressure in the expansion / contraction container 52 at each time after the start of the intermittent discharge gas inflow corresponds to the restoring force of the elastic body 53. Therefore, the outflow speed of the hydrogen off gas released from the hydrogen off gas discharge port 52b to the discharge flow path 23 side after the start of the intermittent discharge gas inflow does not increase rapidly but increases according to the compression of the elastic body 53. In addition, the gas pressure at the peak time in the expandable container 52 is lower than the gas pressure of the intermittently released gas that has flowed through the upstream discharge passage 37.

続いて、間欠放出された水素オフガスの流入が止まると、弾性体53の復元力によって伸縮容器52が縮んで内部容積が縮小し、これに伴って水素オフガスが排出流路23側に徐々に放出される(図3c)。そして、弾性体53が自然長となり、伸縮容器52内のガス圧と排気流路23内の希釈ガスのガス圧とが同一となった時点で水素オフガスの放出が終了する。   Subsequently, when the inflow of the intermittently released hydrogen off gas stops, the elastic container 53 contracts due to the restoring force of the elastic body 53 to reduce the internal volume, and accordingly, the hydrogen off gas is gradually released to the discharge flow path 23 side. (FIG. 3c). The release of the hydrogen off-gas ends when the elastic body 53 has a natural length and the gas pressure in the expansion / contraction container 52 and the gas pressure of the dilution gas in the exhaust passage 23 become the same.

このような構成により、排気排水弁36からの急激な水素オフガスの放出があっても、放出されたガスは一時的に伸縮容器52内に収容され、排出流路23側には急激には放出されない。従って、排気流路23内を流れる空気オフガスとの合流時における水素オフガスの速度が低下するので、合流された希釈ガスの水素濃度が急激に上昇することがない。よって、車両外部へ排出する希釈ガスの濃度が所定の濃度以上にならないようにすることができる。   With such a configuration, even if there is a sudden release of hydrogen off-gas from the exhaust / drain valve 36, the released gas is temporarily stored in the expansion / contraction container 52 and suddenly released to the discharge flow path 23 side. Not. Therefore, since the speed of the hydrogen off gas at the time of merging with the air off gas flowing in the exhaust flow path 23 is decreased, the hydrogen concentration of the merged dilution gas does not increase rapidly. Therefore, the concentration of the dilution gas discharged to the outside of the vehicle can be prevented from exceeding a predetermined concentration.

なお、以上の実施形態では、筐体51の内部に内部容積を増減可能な伸縮容器52を設けていたが、筐体51の内部を仕切り板で2つの空間に気密に仕切り、この仕切り板が気密状態を維持しながら筐体51の内部を移動可能となるように構成すると共に、この仕切り板にばね等の弾性材の一端を取り付け、弾性材の他端は筐体51の内壁に取り付けてもよい。   In the above embodiment, the expansion / contraction container 52 capable of increasing / decreasing the internal volume is provided inside the casing 51. However, the inside of the casing 51 is partitioned into two spaces by a partition plate, and this partition plate is The inside of the housing 51 is configured to be movable while maintaining an airtight state, and one end of an elastic material such as a spring is attached to the partition plate, and the other end of the elastic material is attached to the inner wall of the housing 51. Also good.

このような構成において、2つに仕切られた空間のうち、弾性材が配設されていない空間に間欠放出ガスを流入させる流入口及び排気流路23側への放出口を設ければ、上記実施形態と同様に、排ガスの間欠放出時の瞬間的な圧力上昇が、仕切り板の移動に基づく内部容積拡大によって抑制される。   In such a configuration, if an inlet that allows intermittently released gas to flow into a space that is not provided with an elastic material in a space partitioned into two and an outlet to the exhaust passage 23 side are provided, Similar to the embodiment, the instantaneous pressure increase during the intermittent discharge of the exhaust gas is suppressed by the expansion of the internal volume based on the movement of the partition plate.

燃料電池システムの構成図である。It is a block diagram of a fuel cell system. 本発明の実施形態に係る水素希釈器の断面図である。It is sectional drawing of the hydrogen diluter which concerns on embodiment of this invention. 水素希釈器の動作を示す断面図である。It is sectional drawing which shows operation | movement of a hydrogen diluter.

符号の説明Explanation of symbols

1…燃料電池システム、4…制御装置、10…燃料電池、23…排気流路(第2の排気流路)、36…排気排水弁、37…排出流路(第1の排気流路)、50…水素希釈器(希釈器)、51…筐体(位置規制部材、復元手段の一部)、52…伸縮容器、52a…水素オフガス導入口(ガス流入口)、52b…水素オフガス放出口(ガス流出口)、53…弾性体(復元手段の一部)   DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 4 ... Control apparatus, 10 ... Fuel cell, 23 ... Exhaust flow path (2nd exhaust flow path), 36 ... Exhaust drain valve, 37 ... Discharge flow path (1st exhaust flow path), DESCRIPTION OF SYMBOLS 50 ... Hydrogen diluter (diluter), 51 ... Housing | casing (position control member, a part of decompression | restoration means), 52 ... Expansion-contraction container, 52a ... Hydrogen off gas inlet (gas inlet), 52b ... Hydrogen off gas discharge port ( Gas outlet), 53 .. Elastic body (part of restoring means)

Claims (5)

燃料ガスを含む排ガスが間欠放出される第1の排気流路と、外気に連通された第2の排気流路との合流点又はその上流側に配設される希釈器であって、
内部のガス圧に応じて内部容積が拡大又は縮小される伸縮容器と、該伸縮容器に隣接して配設される復元手段と、を備え、
前記伸縮容器は、前記第1の排気流路の上流側に連通されるガス流入口と、前記第1の排気流路の下流側又は前記第2の排気流路に連通されるガス流出口と、を有し、
前記復元手段は、前記伸縮容器の内部容積の拡大に応じた復元力を前記伸縮容器に加える希釈器。
A diluter disposed at the junction or upstream of a first exhaust passage through which exhaust gas containing fuel gas is intermittently released and a second exhaust passage communicated with outside air,
An extendable container whose internal volume is expanded or reduced according to the internal gas pressure, and a restoring means disposed adjacent to the expandable container,
The telescopic container has a gas inlet communicating with the upstream side of the first exhaust flow path, and a gas outlet communicating with the downstream side of the first exhaust flow path or the second exhaust flow path. Have
The diluting device, wherein the restoring means applies a restoring force corresponding to the expansion of the internal volume of the telescopic container to the telescopic container.
前記復元手段は、前記伸縮容器に隣接して配設された弾性体と、該弾性体及び前記伸縮容器の所定の領域外への移動を規制する位置規制部材と、を有し、
前記弾性体は、その弾性力の作用方向と前記伸縮方向とが略一致するように配設された請求項1に記載の希釈器。
The restoring means includes an elastic body disposed adjacent to the telescopic container, and a position regulating member that regulates movement of the elastic body and the telescopic container outside a predetermined region,
The diluter according to claim 1, wherein the elastic body is disposed so that an action direction of the elastic force and the expansion / contraction direction substantially coincide with each other.
前記伸縮容器は、蛇腹状の管状体とその一端側の端部を閉塞する端面とを有し、該端面に前記ガス流入口又は前記ガス流出口が設けられ、
前記弾性体は、前記端面に当接し、且つ、その弾性力の作用方向と前記管状体の軸方向とが略一致するように配設され、
前記位置規制部材は、前記伸縮容器及び前記弾性体がその内部に収容される筐体からなり、前記ガス流入口に接続される上流側の前記第1の排気流路が挿通される開口と、前記ガス流出口に接続される下流側の前記第1の排気流路又は前記第2の排気流路が挿通される開口と、を有する請求項2に記載の希釈器。
The expandable container has a bellows-like tubular body and an end face that closes an end on one end thereof, and the gas inlet or the gas outlet is provided on the end face,
The elastic body is disposed so as to abut against the end surface, and the direction in which the elastic force acts and the axial direction of the tubular body substantially coincide with each other.
The position restricting member comprises a housing in which the expandable container and the elastic body are accommodated, and an opening through which the first exhaust passage on the upstream side connected to the gas inlet is inserted, The diluter according to claim 2, further comprising: an opening through which the first exhaust passage or the second exhaust passage on the downstream side connected to the gas outlet is inserted.
燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池と、該燃料電池から排出された燃料オフガスを外部に間欠放出する第1の排気流路と、前記燃料電池から排出された酸化オフガスを外部に放出する第2の排気流路と、前記第1の排気流路と前記第2の排気流路との合流点又はその上流側に配設された希釈器と、を備えた燃料電池システムであって、
前記希釈器は、内部のガス圧に応じて内部容積が拡大又は縮小される伸縮容器と、該伸縮容器に隣接して配設される復元手段と、を備え、
前記伸縮容器は、前記第1の排気流路の上流側に連通されるガス流入口と、前記第1の排気流路の下流側又は前記第2の排気流路に連通されるガス流出口と、を有し、
前記復元手段は、前記伸縮容器の内部容積の拡大に応じた復元力を前記伸縮容器に加える燃料電池システム。
A fuel cell that generates electricity by an electrochemical reaction between a fuel gas and an oxidizing gas, a first exhaust passage that intermittently discharges a fuel off-gas discharged from the fuel cell to the outside, and an oxidizing off-gas discharged from the fuel cell. A fuel cell system comprising: a second exhaust passage that discharges to the outside; and a diluter that is disposed on the upstream side or the junction of the first exhaust passage and the second exhaust passage. Because
The diluter comprises an extendable container whose internal volume is expanded or reduced in accordance with an internal gas pressure, and a restoring means disposed adjacent to the expandable container,
The telescopic container includes a gas inlet connected to the upstream side of the first exhaust flow path, and a gas outlet connected to the downstream side of the first exhaust flow path or the second exhaust flow path. Have
The fuel cell system, wherein the restoring means applies a restoring force corresponding to the expansion of the internal volume of the telescopic container to the telescopic container.
前記復元手段は、前記第2の排気流路側に放出された前記燃料オフガスと前記第2の排気流路内の酸化オフガスとの混合ガス中の燃料ガス濃度が、所定の基準値以下となるような放出速度で前記燃料オフガスを放出するように、前記伸縮容器を収縮させる請求項4に記載の燃料電池システム。   The restoring means is configured so that a fuel gas concentration in a mixed gas of the fuel off-gas released to the second exhaust passage side and the oxidizing off-gas in the second exhaust passage is equal to or lower than a predetermined reference value. The fuel cell system according to claim 4, wherein the telescopic container is contracted so as to release the fuel off-gas at a high release rate.
JP2007057558A 2007-03-07 2007-03-07 Fuel cell system and dilution device Pending JP2008218339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057558A JP2008218339A (en) 2007-03-07 2007-03-07 Fuel cell system and dilution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057558A JP2008218339A (en) 2007-03-07 2007-03-07 Fuel cell system and dilution device

Publications (1)

Publication Number Publication Date
JP2008218339A true JP2008218339A (en) 2008-09-18

Family

ID=39838123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057558A Pending JP2008218339A (en) 2007-03-07 2007-03-07 Fuel cell system and dilution device

Country Status (1)

Country Link
JP (1) JP2008218339A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289237A (en) * 2001-01-18 2002-10-04 Toyota Motor Corp On-board fuel cell system and hydrogen off-gas exhausting method
JP2005285735A (en) * 2004-03-02 2005-10-13 Toyota Motor Corp Fuel cell system
JP2005298302A (en) * 2004-04-15 2005-10-27 Seiko Epson Corp Hydrogen cartridge and equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289237A (en) * 2001-01-18 2002-10-04 Toyota Motor Corp On-board fuel cell system and hydrogen off-gas exhausting method
JP2005285735A (en) * 2004-03-02 2005-10-13 Toyota Motor Corp Fuel cell system
JP2005298302A (en) * 2004-04-15 2005-10-27 Seiko Epson Corp Hydrogen cartridge and equipment

Similar Documents

Publication Publication Date Title
US20100216045A1 (en) Fuel cell system and control method thereof
KR101811107B1 (en) Fuel cell system and method for discharging fluid in the system
JP5273433B2 (en) Fuel cell system and injector operating method
JP4984329B2 (en) Valve device and fuel cell system for high pressure tank
JP4863651B2 (en) Fuel cell system
WO2005088757A1 (en) Fuel cell system and method for controlling same
WO2008018229A1 (en) Fuel cell system
US10355292B2 (en) Method of controlling fuel cell system by comparing pressures in fuel gas path
JP2008218072A (en) Fuel cell system
JP4288625B2 (en) Fuel cell system and reaction gas supply amount control method
JP5168821B2 (en) Fuel cell system
JP2009021025A (en) Fuel cell system and mobile unit
JP5093644B2 (en) Fuel cell system
JP2008084603A (en) Fuel cell system and its purging method
JP5316834B2 (en) Fuel cell system
JP2009168166A (en) Valve device for high-pressure tank and fuel cell system
WO2010070881A1 (en) Fuel cell system and method for controlling valve opening operation when the fuel cell system is activated
JP4998695B2 (en) Fuel cell system
WO2018096713A1 (en) Regenerative fuel cell system and water electrolysis system
JP2008218339A (en) Fuel cell system and dilution device
JP5115685B2 (en) Fuel cell system and method for stopping operation
JP5110347B2 (en) Fuel cell system and its stop processing method
JP5045041B2 (en) Fuel cell system
JP2009158250A (en) Fuel cell system
JP2008196596A (en) Solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120920