JP2008217196A - Positioning device and positioning method - Google Patents

Positioning device and positioning method Download PDF

Info

Publication number
JP2008217196A
JP2008217196A JP2007051104A JP2007051104A JP2008217196A JP 2008217196 A JP2008217196 A JP 2008217196A JP 2007051104 A JP2007051104 A JP 2007051104A JP 2007051104 A JP2007051104 A JP 2007051104A JP 2008217196 A JP2008217196 A JP 2008217196A
Authority
JP
Japan
Prior art keywords
detection output
moving member
moving
pitch
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007051104A
Other languages
Japanese (ja)
Other versions
JP4629691B2 (en
Inventor
Kazuhiro Shibatani
一弘 柴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007051104A priority Critical patent/JP4629691B2/en
Publication of JP2008217196A publication Critical patent/JP2008217196A/en
Application granted granted Critical
Publication of JP4629691B2 publication Critical patent/JP4629691B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position Or Direction (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positioning device and a positioning method, positioning a moving member so that the detection output becomes maximum in a short time. <P>SOLUTION: According a positioning method for moving the moving member moved within a movable range by a driving device so that the detection output of the position detecting means whose detection output changes depending on the position of the moving member becomes maximum, the moving member is returned to the origin at the end of the movable range, the detection output is confirmed every time the moving member is pitch-fed by a predetermined moving amount each, and when the detection output is more than a predetermined threshold, scanning is performed to stop pitch-feeding, the moving member is moved from the stopped position by a predetermined vary small amount by scanning to confirm the detection output, and perform fine adjustment for moving the moving member in the direction estimated to increase the detection output. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は位置決め装置および位置決め方法に関する。   The present invention relates to a positioning device and a positioning method.

例えば、特許文献1に、レーザ発振器などの投光部から発せられたレーザ光をレンズなどの光学部材によって、光ファイバのような受光部材に芯合わせして導くレーザ装置が記載されている。   For example, Patent Document 1 describes a laser device that guides a laser beam emitted from a light projecting unit such as a laser oscillator to an optical receiving member such as an optical fiber by an optical member such as a lens.

特許文献1では、光学部材を一定周期、一定振幅で微小振動させ、光ファイバにおけるレーザ光の強度の変化を測定して、レーザ光の受光強度を最大にするための光学部材の移動方向と移動量とを算出するウォブリング(wobbling)と呼ばれる手法により、レーザ光を光ファイバに対して位置決めしている。しかしながら、レーザ光の芯ずれが大きい場合、このウォブリングを繰り返し行う必要があり、光学部材を正確に位置決めするためには相当の時間を要するという問題がある。   In Patent Document 1, the optical member is microvibrated with a constant period and a constant amplitude, the change in the intensity of the laser light in the optical fiber is measured, and the moving direction and movement of the optical member for maximizing the received light intensity of the laser light. The laser beam is positioned with respect to the optical fiber by a method called wobbling for calculating the quantity. However, when the laser beam is misaligned, it is necessary to repeat this wobbling, and there is a problem that it takes a considerable time to accurately position the optical member.

また、このようなレーザ装置において、光学部材を所定量移動させ、受光強度が増加するか否かを確認し、受光強度が増加する方向に、受光強度が減少に転ずるまで連続して所定量ずつ移動させる、山登り制御と呼ばれる制御方法も知られている。この山登り制御は、ウォブリングよりも高精度な調芯が可能であるが、ウォブリングよりもさらに位置決めに要する時間が長いという問題がある。   In such a laser device, the optical member is moved by a predetermined amount, whether or not the received light intensity is increased, and is continuously increased by a predetermined amount in the direction in which the received light intensity increases until the received light intensity starts to decrease. A control method called hill climbing control is also known. This hill-climbing control is capable of aligning with higher accuracy than wobbling, but has a problem that the time required for positioning is longer than that of wobbling.

特に、光学部材の可動範囲が広い場合、レーザ光が受光部材から大きく外れてしまうと受光強度がゼロになり、ウォブリングによって受光強度の最大点を見つけ出すことができなくなる可能性もあった。
特開2003−338795号公報 特開平6−265759号公報
In particular, when the movable range of the optical member is wide, the received light intensity becomes zero when the laser beam is greatly deviated from the light receiving member, and the maximum point of the received light intensity may not be found by wobbling.
JP 2003-338895 A JP-A-6-265759

前記問題点に鑑みて、短時間で検出出力が最大となるように移動部材を位置決めでき、且つ、検出出力が得られないほどに位置ずれしていても検出出力が最大となるように移動部材を位置決めできる位置決め装置および位置決め方法を提供することを課題とする。   In view of the above problems, the moving member can be positioned so that the detection output is maximized in a short time, and the detection output is maximized even if the position is shifted so that the detection output cannot be obtained. It is an object of the present invention to provide a positioning device and a positioning method capable of positioning a device.

前記課題を解決するために、本発明による位置決め装置は、駆動装置によって可動範囲内を移動させられる移動部材と、前記移動部材が所定位置にあるときに検出出力が最大となる位置検出手段と、前記移動部材を前記可動範囲の端部に原点復帰させ、前記移動部材を所定の移動量ずつピッチ送りする毎に前記検出出力を確認し、前記検出出力が所定の閾値以上であれば前記ピッチ送りを停止するスキャンを実行し、前記移動部材を前記スキャンにより停止した位置から所定の微少量だけ移動させて、前記検出出力を確認し、前記移動部材を前記検出出力が増加すると予想される方向に移動させる微調整を実行する制御手段とを備えるものとする。   In order to solve the above-mentioned problem, a positioning device according to the present invention includes a moving member that is moved within a movable range by a driving device, and a position detecting unit that has a maximum detection output when the moving member is at a predetermined position, The moving member is returned to the end of the movable range and the detection output is checked every time the moving member is pitch-fed by a predetermined movement amount. If the detection output is equal to or greater than a predetermined threshold, the pitch feed is The moving member is moved from the position stopped by the scanning by a predetermined minute amount, the detection output is confirmed, and the moving member is moved in a direction in which the detection output is expected to increase. Control means for performing fine adjustment to be moved.

この構成によれば、スキャンによって、検出出力のピーク位置の近傍まで移動部材をピッチ送りによって迅速に移動させ、ピーク位置の近くから、ウォブリングや山登り制御などの微調整によって正確なピーク位置に位置決めする。これにより、位置決め部材を検出出力が最大となる位置に短時間で正確に位置決めできる。   According to this configuration, the moving member is quickly moved by pitch feed to the vicinity of the peak position of the detection output by scanning, and is positioned at an accurate peak position from near the peak position by fine adjustment such as wobbling or mountain climbing control. . As a result, the positioning member can be accurately positioned in a short time at a position where the detection output is maximized.

また、本発明の位置決め装置において、前記移動部材の前記ピッチ送りの移動量を、前記検出出力が前記閾値以上となる前記移動部材の位置の幅の1/2以下とすれば、前記スキャンにおいて、1回の前記ピッチ送りにより、前記検出主力のピークを飛び越えてしまい、前記移動部材の停止位置を発見できなくなることを防止できる。   Further, in the positioning device of the present invention, in the scan, if the movement amount of the pitch feed of the moving member is less than or equal to ½ of the width of the position of the moving member at which the detection output is equal to or greater than the threshold value, It can be prevented that the pitch of the detected main force jumps over the peak of the detection main force and the stop position of the moving member cannot be found by one pitch feed.

また、本発明の位置決め装置において、前記スキャンによって前記移動部材を前記ピッチ送りした移動回数を記憶し、後に前記スキャンを行う際は、前記原点復帰した前記移動部材を、記憶した前記移動回数以下のスキップ回数だけピッチ送りした位置から前記検出出力の確認を開始すれば、2回目以降の前記スキャンに要する時間を短縮できる。   In the positioning device of the present invention, the number of movements of the moving member pitch-fed by the scan is stored, and when performing the scan later, the moving member returned to the origin is less than the stored number of movements. If confirmation of the detection output is started from the position where the pitch is fed by the skip count, the time required for the second and subsequent scans can be shortened.

また、本発明の位置決め装置において、前記移動回数の記憶を、前記スキャンを行う毎に更新すれば、経時変化によって、駆動装置の駆動量が変化しても、短時間で且つ適切に検出出力が最大となる位置を発見することができる。   In the positioning device of the present invention, if the storage of the number of movements is updated every time the scan is performed, even if the driving amount of the driving device changes due to a change over time, the detection output can be appropriately and quickly performed. The maximum position can be found.

また、本発明の位置決め装置において、前記スキップ回数を、前記移動回数から所定のマージン回数を減じた回数とすれば、環境変化などにより駆動装置の駆動量が急に変化しても、検出出力が最大となる位置をスキップによって飛び越えずに発見することができる。   In the positioning device of the present invention, if the number of skips is set to a number obtained by subtracting a predetermined number of margins from the number of movements, the detection output can be output even if the drive amount of the drive device changes suddenly due to environmental changes or the like. The maximum position can be found without skipping by skipping.

また、本発明の位置決め装置において、前記原点復帰は、前記移動部材を上方の移動端に移動させれば、重力による位置ずれを矯正できる。   In the positioning device of the present invention, the return to origin can correct a positional shift due to gravity by moving the moving member to the upper moving end.

また、本発明によれば、駆動装置によって可動範囲内を移動させられる移動部材を、前記移動部材の位置に応じて検出出力が変化する位置検出手段の前記検出出力が最大となるように前記移動部材を位置決めする位置決め方法は、前記移動部材を前記可動範囲の端部に原点復帰させ、前記移動部材を所定の移動量ずつピッチ送りする毎に前記検出出力を確認し、前記検出出力が所定の閾値以上であれば前記ピッチ送りを停止するスキャンを実行し、前記移動部材を前記スキャンにより停止した位置から所定の微少量だけ移動させて、前記検出出力を確認し、前記移動部材を前記検出出力が増加すると予想される方向に移動させる微調整を実行する方法とする。   Further, according to the present invention, the moving member that is moved within the movable range by the driving device moves the moving member so that the detection output of the position detecting means whose detection output changes according to the position of the moving member is maximized. The positioning method for positioning the member is to return the origin of the moving member to the end of the movable range, check the detection output every time the moving member is pitch-fed by a predetermined movement amount, and the detection output is a predetermined value. If it is equal to or greater than a threshold value, a scan for stopping the pitch feed is executed, the moving member is moved by a predetermined minute amount from the position stopped by the scan, the detection output is confirmed, and the moving member is detected by the detection output. A fine adjustment is made to move in a direction where the increase is expected to increase.

本発明によれば、スキャンによって、検出出力のピーク位置の近傍まで移動部材をピッチ送りして迅速に移動させ、ピーク位置の近くから、ウォブリングや山登り制御などの微調整によって正確なピーク位置に移動部材を位置決めするので、短時間で正確な位置決めができる。   According to the present invention, by scanning, the moving member is pitch-fed to the vicinity of the peak position of the detection output to quickly move, and from the vicinity of the peak position to the accurate peak position by fine adjustment such as wobbling or hill climbing control. Since the member is positioned, accurate positioning can be performed in a short time.

これより、本発明の実施形態について、図面を参照しながら説明する。
図1に、本発明の第1実施形態の位置決め装置1を示す。位置決め装置1は、レーザ光を発生するレーザダイオード2と、固定された投光レンズ3と、駆動装置4によってレーザ光に直交するX−Yの2方向に移動可能な移動レンズ(移動部材)5と、レーザ光が投光レンズ3および移動レンズ5を介して入射する第二高調波発生素子(Second Harmonic Generation)6と、第二高調波発生素子6の出力を射出する射出レンズ7と、第二高調波発生素子6の出力を分光するハーフミラー8と、分光した第二高調波発生素子6の出力レベルを電圧信号(検出出力)に変換するパワーモニタ(位置検出手段)9と、パワーモニタ9の検出出力に応じて、移動レンズ5をY−Y方向に移動させる制御装置(制御手段)10とを有している。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 shows a positioning device 1 according to a first embodiment of the present invention. The positioning device 1 includes a laser diode 2 that generates laser light, a fixed light projecting lens 3, and a moving lens (moving member) 5 that can be moved by the driving device 4 in two directions XY orthogonal to the laser light. A second harmonic generation element (Second Harmonic Generation) 6 in which the laser light is incident through the light projecting lens 3 and the moving lens 5, an emission lens 7 for emitting the output of the second harmonic generation element 6, and a first A half mirror 8 that splits the output of the second harmonic generation element 6, a power monitor (position detection means) 9 that converts the output level of the split second harmonic generation element 6 into a voltage signal (detection output), and a power monitor And a control device (control means) 10 for moving the moving lens 5 in the Y-Y direction according to the detection output 9.

第二高調波発生素子6は、受光部の口径が1〜3μm程度である。移動レンズ5は、レーザ光を第二高調波発生素子6の受光部と同程度の径になるように集光するとともに、第二高調波発生素子6の受光部の中心にレーザ光の光軸を芯合わせする。   The second harmonic generation element 6 has a light receiving portion with a diameter of about 1 to 3 μm. The moving lens 5 condenses the laser light so as to have the same diameter as the light receiving portion of the second harmonic generation element 6, and the optical axis of the laser light at the center of the light receiving portion of the second harmonic generation element 6. Align the center.

移動レンズ5によってレーザ光の光軸が第二高調波発生素子6の中心に一致している場合、レーザ光のエネルギーが全て第二高調波発生素子6に入力されるので、第二高調波発生素子6の出力が最大になり、パワーモニタ9の検出出力も最大になる。   When the optical axis of the laser beam coincides with the center of the second harmonic generation element 6 by the moving lens 5, all the energy of the laser beam is input to the second harmonic generation element 6. The output of the element 6 is maximized, and the detection output of the power monitor 9 is also maximized.

図2に、移動レンズ5を移動させる駆動装置4の構成を示す。駆動装置4は、筐体11に固定されたX軸アクチュエータ12と、X軸アクチュエータ12によってX軸方向に移動させられ、Y軸方向に移動レンズ5を移動させるY軸アクチュエータ13とからなっている。   FIG. 2 shows a configuration of the driving device 4 that moves the moving lens 5. The drive device 4 includes an X-axis actuator 12 fixed to the housing 11 and a Y-axis actuator 13 that is moved in the X-axis direction by the X-axis actuator 12 and moves the moving lens 5 in the Y-axis direction. .

X軸アクチュエータ12は、筐体11に一端が固定され、電圧が印加されるとX軸方向に伸縮するX軸圧電素子14と、X軸圧電素子14の伸縮によってX軸方向に往復移動するX軸駆動軸15と、X軸駆動軸15に摩擦係合するX軸摩擦係合部材16と、X軸駆動軸15の先端に設けられたX軸ストッパ17とからなる。Y軸アクチュエータ13は、X軸摩擦係合部材16に一端が固定され、電圧が印加されるとY軸方向に伸縮するY軸圧電素子18と、Y軸圧電素子18の伸縮によってY軸方向に往復移動するY軸駆動軸19と、Y軸駆動軸19に摩擦係合するY軸摩擦係合部材20と、Y軸駆動軸19の先端に設けられたY軸ストッパ21とからなり、Y軸摩擦係合部材20が移動レンズ5を保持している。X軸摩擦係合部材16は、X軸圧電素子14とX軸ストッパ17との間を可動範囲として移動可能であり、Y軸摩擦係合部材20は、Y軸圧電素子18とY軸ストッパ21との間を可動範囲として移動可能である。   One end of the X-axis actuator 12 is fixed to the housing 11, and when a voltage is applied, the X-axis piezoelectric element 14 expands and contracts in the X-axis direction, and the X-axis piezoelectric element 14 expands and contracts to reciprocate in the X-axis direction. The shaft drive shaft 15 includes an X-axis friction engagement member 16 that frictionally engages the X-axis drive shaft 15, and an X-axis stopper 17 provided at the tip of the X-axis drive shaft 15. One end of the Y-axis actuator 13 is fixed to the X-axis friction engagement member 16, and when a voltage is applied, the Y-axis piezoelectric element 18 expands and contracts in the Y-axis direction, and the Y-axis piezoelectric element 18 expands and contracts in the Y-axis direction. A Y-axis drive shaft 19 that reciprocates, a Y-axis friction engagement member 20 that frictionally engages the Y-axis drive shaft 19, and a Y-axis stopper 21 provided at the tip of the Y-axis drive shaft 19, The friction engagement member 20 holds the moving lens 5. The X-axis friction engagement member 16 can move between the X-axis piezoelectric element 14 and the X-axis stopper 17 as a movable range, and the Y-axis friction engagement member 20 includes a Y-axis piezoelectric element 18 and a Y-axis stopper 21. Can be moved as a movable range.

図3に示すように、移動レンズ5の位置は、X−Y座標上に表すことができ、駆動装置4により、図示する調芯位置に位置決めすることで、第二高調波発生素子6の出力およびパワーモニタ9の検出出力を最大(例えば3V)にできる。しかし、製造上のバラツキなどにより、個々の位置決め装置1において、正確な調芯位置は不明である。   As shown in FIG. 3, the position of the moving lens 5 can be represented on the XY coordinates, and is positioned at the alignment position shown in the figure by the driving device 4, so that the output of the second harmonic generation element 6 is obtained. And the detection output of the power monitor 9 can be maximized (for example, 3V). However, the exact alignment position in each positioning device 1 is unknown due to manufacturing variations and the like.

図4に、本実施形態の制御装置10による駆動装置4の制御の流れを示す。位置決め装置1が起動されたなら、制御装置10は、先ず、ステップS1で、移動レンズ5を原点に復帰させる(図5参照)。原点復帰には、X軸アクチュエータ12およびY軸アクチュエータ13を、X軸摩擦係合部材16およびY軸摩擦係合部材20がそれぞれの可動範囲の端から端まで移動するよりも十分に多い逆動作のパルスを印加することで、X軸摩擦係合部材16およびY軸摩擦係合部材20を可動範囲の移動端に機械的に突き当たらせることで行う。   FIG. 4 shows a flow of control of the driving device 4 by the control device 10 of the present embodiment. If the positioning device 1 is activated, the control device 10 first returns the moving lens 5 to the origin in step S1 (see FIG. 5). To return to the origin, the X-axis actuator 12 and the Y-axis actuator 13 are operated in reverse directions much more than the X-axis friction engagement member 16 and the Y-axis friction engagement member 20 move from end to end of their respective movable ranges. Is applied by mechanically butting the X-axis friction engagement member 16 and the Y-axis friction engagement member 20 against the moving end of the movable range.

仮に、X軸アクチュエータ12において、X軸ストッパ17に当接しているX軸摩擦係合部材16をX軸圧電素子14に当接させるまでに要する、設計上の駆動パルスの数が1000回であるなら、ステップS1で原点復帰のためにX軸アクチュエータ12に入力されるがパルス数を設計上のパルス数よりも多い、例えば1200回に設定しておくことで、X軸アクチュエータ12を確実に原点復帰させることができる。   Temporarily, in the X-axis actuator 12, the number of design drive pulses required to bring the X-axis friction engagement member 16 in contact with the X-axis stopper 17 into contact with the X-axis piezoelectric element 14 is 1000 times. Then, in step S1, the X-axis actuator 12 is input to the X-axis actuator 12 to return to the origin, but the number of pulses is set to be larger than the designed number of pulses, for example, 1200 times, so that the X-axis actuator 12 can be reliably Can be restored.

また、Y軸アクチュエータ13の原点は、Y軸摩擦係合部材20が上方のY軸ストッパ21に当接する位置に設定される。これは、不使用時に、Y軸摩擦係合部材20が移動している場合、重力によって下方に落下していることが多いので、原点復帰において、上方に移動させることで、Y軸摩擦係合部材20の固着解消などの作用が期待できるからである。   The origin of the Y-axis actuator 13 is set at a position where the Y-axis friction engagement member 20 contacts the upper Y-axis stopper 21. This is because, when the Y-axis friction engagement member 20 is moved when not in use, it is often dropped downward due to gravity. Therefore, when returning to the origin, the Y-axis friction engagement member 20 is moved upward. This is because an effect such as the elimination of sticking of the member 20 can be expected.

続いて、制御装置10は、ステップS2で、X軸アクチュエータ12を駆動して、記憶しているスキップ量だけ移動レンズ5をX軸方向にさせるが、スキップ量の初期値はゼロであるので、最初に、ステップS2の処理がないものとして説明する。   Subsequently, in step S2, the control device 10 drives the X-axis actuator 12 to move the moving lens 5 in the X-axis direction by the stored skip amount, but the initial value of the skip amount is zero. First, it is assumed that there is no processing in step S2.

ステップS3において、制御装置10は、パワーモニタ9の検出出力を確認する。検出出力が所定の閾値(例えば1V)未満であれば、ステップS4に進んで、図5に示すように、移動レンズ5をX−Y方向に所定ピッチで走査移動させるスキャンを行う。本実施形態では、Y軸を主走査方向として、X軸を副走査方向としている。つまり、移動レンズ5は、原点からY軸方向に所定ピッチずつ移動して、可動範囲の反対側に到達したなら、X軸方向に1ピッチだけピッチ送りされ、今度はY軸方向に1ピッチずつ逆送りされる。再びY軸方向に移動端に達したなら、さらに、X軸方向に1ピッチ移動させられ、Y軸方向に再度向きを変えてピッチ送りされる。制御装置10は、駆動装置4によって移動レンズ5をX軸方向またはY軸方向に1ピッチ移動させる毎にステップS3で検出出力の値を確認するようになっている。   In step S <b> 3, the control device 10 confirms the detection output of the power monitor 9. If the detection output is less than a predetermined threshold value (for example, 1V), the process proceeds to step S4, and as shown in FIG. 5, scanning is performed to scan and move the moving lens 5 at a predetermined pitch in the XY direction. In the present embodiment, the Y axis is the main scanning direction, and the X axis is the sub scanning direction. That is, the moving lens 5 moves by a predetermined pitch in the Y-axis direction from the origin, and when it reaches the opposite side of the movable range, it is fed by one pitch in the X-axis direction, and this time, one pitch in the Y-axis direction. Reverse feed. When the moving end is reached again in the Y-axis direction, it is further moved by one pitch in the X-axis direction, and the direction is changed again in the Y-axis direction to feed the pitch. The control device 10 confirms the value of the detection output in step S3 every time the moving lens 5 is moved by one pitch in the X-axis direction or the Y-axis direction by the driving device 4.

ステップS3で、検出出力が閾値以上になったなら、スキャンを終了して、ステップS5に進んで、移動レンズ5をX軸方向にピッチ送りした回数(図5では7回)を制御装置10のメモリに記憶する。   If the detection output is equal to or greater than the threshold value in step S3, the scan is terminated, the process proceeds to step S5, and the number of times the moving lens 5 is pitched in the X-axis direction (seven times in FIG. 5) is Store in memory.

図3に示すように、移動レンズ5が調芯位置から一定の距離の範囲内に達すると、検出出力が閾値以上になる。ただし、レーザ光が歪んでいる場合、スキャンを停止する範囲は楕円状に歪んだものになる。   As shown in FIG. 3, when the moving lens 5 reaches a certain distance from the alignment position, the detection output becomes equal to or greater than the threshold value. However, when the laser beam is distorted, the scanning stop range is distorted elliptically.

ここで、X軸方向およびY軸方向の各ピッチ送りは、検出出力が閾値以上になる移動レンズ5の位置の幅、図3のスキャン停止範囲のX軸方向およびY軸方向の直径(例えば40パルス相当)の1/2(例えば20パルス)以下にすることで、移動レンズ5が1回のピッチ送りによってスキャン停止範囲を飛び越えてしまい、調芯位置を発見できなくなることを防止できる。   Here, the pitch feeds in the X-axis direction and the Y-axis direction are the width of the position of the moving lens 5 where the detection output is equal to or greater than the threshold, the diameter in the X-axis direction and the Y-axis direction of the scan stop range in FIG. By setting it to 1/2 (e.g., 20 pulses) or less of the equivalent of the pulse, it is possible to prevent the movable lens 5 from jumping over the scan stop range by one pitch feed and making it impossible to find the alignment position.

続いて、制御装置10は、図3のステップS6において、X軸およびY軸のウォブリングを順番に繰り返し、移動レンズ5を調芯位置に近づける動作を継続して行う。   Subsequently, in step S6 of FIG. 3, the control device 10 repeats the wobbling of the X axis and the Y axis in order, and continuously performs the operation of bringing the moving lens 5 closer to the alignment position.

図6に、ウォブリングの概略を示す。ウォブリングは、X軸およびY軸について、順番に1つずつ行われるが、ここでは、X軸について説明する。最初に移動レンズ5がP0に位置しており、このときの検出出力がV0であったとする。先ず、X軸アクチュエータ12に、所定の微少量だけX軸摩擦係合部材16を順送りするパルス(例えば2パルス)を入力する。こうして移動した後の移動レンズ5の位置をP1、検出出力をV1とする。さらに、X軸アクチュエータ12に、所定の微少量の2倍、X軸摩擦係合部材16を逆送りするパルス(例えば4パルス)を入力し、このときの移動レンズ5の位置をP2、検出出力をV2とする。さらに、X軸アクチュエータ12に、所定の微少量だけX軸摩擦係合部材16を順送りするパルス(例えば2パルス)を入力すると、移動レンズ5は、最初の位置P0に戻る。   FIG. 6 shows an outline of wobbling. The wobbling is performed one by one for the X-axis and the Y-axis in order. Here, the X-axis will be described. First, it is assumed that the moving lens 5 is positioned at P0, and the detection output at this time is V0. First, a pulse (for example, two pulses) for sequentially feeding the X-axis friction engagement member 16 by a predetermined minute amount is input to the X-axis actuator 12. After the movement, the position of the moving lens 5 is P1, and the detection output is V1. Further, a pulse (for example, 4 pulses) that reversely feeds the X-axis friction engagement member 16 twice as much as a predetermined minute amount is input to the X-axis actuator 12, and the position of the moving lens 5 at this time is detected as P2. Is V2. Further, when a pulse (for example, two pulses) for sequentially feeding the X-axis friction engagement member 16 by a predetermined minute amount is input to the X-axis actuator 12, the moving lens 5 returns to the initial position P0.

このように移動レンズ5を前後に微小量移動させ、V1とV2とを(実際的には一定時間の積分値を)測定し、その差分を算出する。図示するように、V1>V2であれば、差分は正の値となり、V1<V2であれば、差分は負の値となる。V1>V2である場合、検出出力が最大となる位置は、P0よりもさらに順送りした位置にあり、V1<V2である場合、検出出力が最大となる位置は、P0から逆送りした位置にあることが分かる。P0が検出出力が最大になる位置であれば、V1とV2の差はなくなる。そこで、制御装置10は、X軸アクチュエータ12に、検出出力の差分(V1−V2)に係数(パワーモニタ9のゲインとX軸アクチュエータ12のゲインとの比)をかけた数のパルスを入力することで、移動レンズ5を、検出出力が最大になる調芯位置に近い位置P3に移動させられる。   In this way, the movable lens 5 is moved back and forth by a minute amount, and V1 and V2 are measured (actually, an integral value for a fixed time), and the difference is calculated. As shown in the figure, if V1> V2, the difference is a positive value, and if V1 <V2, the difference is a negative value. When V1> V2, the position where the detection output is maximum is in a position further forward than P0, and when V1 <V2, the position where the detection output is maximum is at a position reversely fed from P0. I understand that. If P0 is the position where the detection output is maximized, the difference between V1 and V2 is eliminated. Therefore, the control device 10 inputs, to the X-axis actuator 12, a number of pulses obtained by multiplying the difference (V1-V2) in the detection output by a coefficient (ratio between the gain of the power monitor 9 and the gain of the X-axis actuator 12). Thus, the moving lens 5 can be moved to the position P3 close to the alignment position where the detection output is maximized.

同様に、Y軸方向についても、Y軸アクチュエータ13を順方向および逆方向に微小送りして、Y軸アクチュエータ13に検出出力の差分に比例した駆動パルスを入力する。   Similarly, in the Y-axis direction, the Y-axis actuator 13 is finely fed in the forward direction and the reverse direction, and a drive pulse proportional to the difference between the detection outputs is input to the Y-axis actuator 13.

検出出力が最大になる調芯位置の近傍では、調芯位置からの距離と、検出出力の差分(V1−V2)との間に比例関係が見られるが、移動レンズ5が調芯位置から遠くなると、検出出力の差分が小さくなり、1度のウォブリングでは調芯位置に移動レンズ5を移動させることができないので、ステップS6では、X軸方向およびY軸方向のウォブリングを繰り返して行う必要がある。また、ウォブリングを繰り返して行うことで、移動レンズ5を調芯位置に向かって移動させ続け、検出出力を最大に維持することを保証する。   In the vicinity of the alignment position where the detection output is maximum, a proportional relationship is seen between the distance from the alignment position and the difference (V1−V2) in the detection output, but the moving lens 5 is far from the alignment position. Then, the difference between the detection outputs becomes small, and the moving lens 5 cannot be moved to the alignment position by one wobbling. Therefore, in step S6, it is necessary to repeat the wobbling in the X axis direction and the Y axis direction. . Further, by repeatedly performing the wobbling, it is ensured that the moving lens 5 is continuously moved toward the alignment position and the detection output is maintained at the maximum.

このようにして、位置決め装置1では、移動レンズ5を調芯位置に位置決めするが、電源をオフにしたときなどは、X軸摩擦係合部材16やY軸摩擦係合部材20が位置ずれする可能性がある。そこで、位置決め装置1を再起動したときには、再度、図4の制御を行って、つまり、一旦、移動レンズ5を原点に復帰させてから、スキャンおよびウォブリングによって移動レンズ5を調芯位置に位置決めする。   In this way, the positioning device 1 positions the movable lens 5 at the alignment position. However, when the power is turned off, the X-axis friction engagement member 16 and the Y-axis friction engagement member 20 are displaced. there is a possibility. Therefore, when the positioning device 1 is restarted, the control of FIG. 4 is performed again, that is, the movable lens 5 is once returned to the origin, and then the movable lens 5 is positioned at the alignment position by scanning and wobbling. .

このとき、制御装置10は、前回移動レンズ5を調芯位置に位置決めするために行ったピッチ送りの回数を記憶している。よって、ステップS2において、記憶しているスキップ回数と等しいスキップ回数だけ移動レンズ5をX方向にピッチ送りしてから、ステップS3およびS4のスキャンを行うことで、図7に示すように、Y軸方向のピッチ送りの回数を大幅に削減することができる。   At this time, the control device 10 stores the number of times of pitch feed performed for positioning the moving lens 5 at the previous alignment position. Therefore, in step S2, the moving lens 5 is pitch-fed in the X direction by the number of skips equal to the stored number of skips, and then the scans in steps S3 and S4 are performed, as shown in FIG. The number of pitch feeds in the direction can be greatly reduced.

ステップS2において、スキップ回数だけ移動レンズ5をピッチ送りした場合にも、温度変化などにより、X軸アクチュエータのパルス当たりの駆動量が減少した場合には、スキャン時に、さらに、移動レンズ5をX軸方向にピッチ送りする必要が生じることがある。そのような場合には、スキップ回数を含めた移動レンズ5のX軸方向のピッチ送りの回数を、改めて制御装置10に記憶する。つまり、ピッチ送り回数は、スキャンの度に更新される。   Even when the moving lens 5 is pitch-fed by the number of skips in step S2, if the driving amount per pulse of the X-axis actuator decreases due to a temperature change or the like, the moving lens 5 is further moved to the X-axis during scanning. It may be necessary to pitch forward in the direction. In such a case, the number of pitch feeds in the X-axis direction of the moving lens 5 including the number of skips is stored in the control device 10 again. That is, the number of pitch feeds is updated each time scanning is performed.

また、ステップS2においてX軸方向にピッチ送りするスキップ回数を、記憶している移動レンズ5をX方向にピッチ送りした回数から所定のマージン回数を差し引いた回数とすれば、図8に示すように、ステップS3およびS4のスキャンにおいて、移動レンズ5がマージン回数(図では2回)だけY方向に往復してから、検出出力が閾値以上になり、ウォブリングを開始するようになる。   Further, if the skip count for pitch feeding in the X-axis direction in step S2 is set to the number obtained by subtracting a predetermined margin count from the stored pitch of the moving lens 5 in the X direction, as shown in FIG. In the scans in steps S3 and S4, after the moving lens 5 reciprocates in the Y direction by the number of margins (two times in the figure), the detection output becomes equal to or greater than the threshold value and wobbling starts.

これにより、位置決め装置1を起動したときの温度の違いなどにより、駆動装置4の駆動量が増加していても、ステップS2でスキップ回数だけピッチ送りしたときに、検出出力が閾値以上になる範囲を行き過ぎてしまうことがない。   Thereby, even if the driving amount of the driving device 4 is increased due to a difference in temperature when the positioning device 1 is started, the detection output becomes a threshold value or more when the pitch is fed by the number of skips in step S2. Never go too far.

本発明では、図8に示す第2実施形態のように、投光レンズ3を第1の移動部材としてY軸方向に駆動可能とし、移動レンズ5を第2の移動部材としてX軸方向にのみ移動可能としてもよい。このように、移動部材が複数に分散されていても、その制御方法やその効果に違いはない。   In the present invention, as in the second embodiment shown in FIG. 8, the projection lens 3 can be driven as the first moving member in the Y-axis direction, and the moving lens 5 can be driven as the second moving member only in the X-axis direction. It may be movable. Thus, even if the moving member is dispersed in a plurality, there is no difference in its control method and its effect.

さらに、本発明は、1軸にのみ移動可能な位置決め装置や、3軸以上に位置決めできる位置決め装置にも適用可能である。   Furthermore, the present invention is also applicable to a positioning device that can move only on one axis and a positioning device that can position on three or more axes.

また、レーザ光の調芯だけでなく、例えばホール素子の出力に基づいてアクチュエータを原点復帰させる場合などにも適用可能である。この場合、ウォブリングにおいて、微小送りしたときの検出出力の差が所定の閾値以下になったときに原点に復帰したものとして、ウォブリングを終了してもよい。   Further, the present invention can be applied not only to the alignment of the laser beam but also to the case where the actuator is returned to the origin based on the output of the Hall element, for example. In this case, in the wobbling, the wobbling may be terminated on the assumption that when the difference in the detection output when the minute feeding is performed is equal to or less than a predetermined threshold value, the origin is restored.

また、本発明では、ウォブリングに代えて、例えば、山登り制御のような、検出出力を最大にするように移動部材駆動する公知の制御を適用してもよい。   In the present invention, instead of wobbling, a known control for driving the moving member so as to maximize the detection output, such as hill climbing control, may be applied.

本発明の第1実施形態の位置決め装置の概略図。The schematic diagram of the positioning device of a 1st embodiment of the present invention. 図1の位置決め装置の駆動装置の概略図。Schematic of the drive device of the positioning device of FIG. 図1の位置決め装置の移動レンズの可動範囲と検出出力の関係を示す図。The figure which shows the relationship between the movable range of the moving lens of the positioning apparatus of FIG. 1, and a detection output. 図1の位置決め装置の制御の流れ図。FIG. 2 is a flowchart of control of the positioning device of FIG. 1. 図1の位置決め装置の最初の位置決めにおける移動レンズの軌跡を例示する図。The figure which illustrates the locus | trajectory of the moving lens in the initial positioning of the positioning device of FIG. ウォブリングの原理を示す図。The figure which shows the principle of wobbling. 図1の位置決め装置の2度目以降の位置決めにおける移動レンズの軌跡を例示する図。The figure which illustrates the locus | trajectory of the moving lens in the positioning after the 2nd time of the positioning apparatus of FIG. 図1の位置決め装置の2度目以降の位置決めにおいて、マージン回数を設定した場合の移動レンズの軌跡を例示する図。The figure which illustrates the locus | trajectory of a moving lens when the frequency | count of a margin is set in the positioning after the 2nd time of the positioning apparatus of FIG. 本発明の第2実施形態の位置決め装置の概略図。The schematic diagram of the positioning device of a 2nd embodiment of the present invention.

符号の説明Explanation of symbols

1 位置決め装置
2 レーザダイオード
4 駆動装置
5 移動レンズ(移動部材)
6 第二高調波発生素子
9 パワーモニタ(位置検出手段)
10 制御装置(制御手段)
DESCRIPTION OF SYMBOLS 1 Positioning device 2 Laser diode 4 Drive device 5 Moving lens (moving member)
6 Second harmonic generator 9 Power monitor (position detection means)
10 Control device (control means)

Claims (7)

駆動装置によって可動範囲内を移動させられる移動部材と、前記移動部材が所定位置にあるときに検出出力が最大となる位置検出手段と、
前記移動部材を前記可動範囲の端部に原点復帰させ、
前記移動部材を所定の移動量ずつピッチ送りする毎に前記検出出力を確認し、前記検出出力が所定の閾値以上であれば前記ピッチ送りを停止するスキャンを実行し、
前記移動部材を前記スキャンにより停止した位置から所定の微少量だけ移動させて、前記検出出力を確認し、前記移動部材を前記検出出力が増加すると予想される方向に移動させる微調整を実行する制御手段とを備えることを特徴とする位置決め装置。
A moving member that can be moved within a movable range by the driving device; and a position detecting means that provides a maximum detection output when the moving member is at a predetermined position;
The origin of the moving member is returned to the end of the movable range,
Check the detection output every time the moving member is pitch-fed by a predetermined amount of movement, and if the detection output is equal to or greater than a predetermined threshold, execute a scan to stop the pitch feed,
Control for moving the moving member by a predetermined minute amount from the position stopped by the scan, confirming the detection output, and performing fine adjustment for moving the moving member in a direction in which the detection output is expected to increase. And a positioning device.
前記移動部材の前記ピッチ送りの移動量は、前記検出出力が前記閾値以上となる前記移動部材の位置の幅の1/2以下であることを特徴とする請求項1に記載の位置決め装置。   The positioning device according to claim 1, wherein the movement amount of the pitch feed of the moving member is ½ or less of the width of the position of the moving member at which the detection output is equal to or greater than the threshold value. 前記制御手段は、前記スキャンによって前記移動部材を前記ピッチ送りした移動回数を記憶し、後に前記スキャンを行う際は、前記原点復帰した前記移動部材を、記憶した前記移動回数以下のスキップ回数だけピッチ送りした位置から前記検出出力の確認を開始することを特徴とする請求項1または2に記載の位置決め装置。   The control means stores the number of times the moving member has been pitch-fed by the scan, and when performing the scanning later, the moving member having returned to the origin is pitched by the number of skips equal to or less than the stored number of movements. The positioning apparatus according to claim 1, wherein confirmation of the detection output is started from a fed position. 前記制御手段は、前記移動回数の記憶を、前記スキャンを行う毎に更新することを特徴とする請求項3に記載の位置決め装置。   The positioning apparatus according to claim 3, wherein the control unit updates the storage of the number of movements every time the scan is performed. 前記スキップ回数は、前記移動回数から所定のマージン回数を減じた回数であることを特徴とする請求項3または4に記載の位置決め装置。   5. The positioning apparatus according to claim 3, wherein the skip count is a count obtained by subtracting a predetermined margin count from the move count. 前記原点復帰は、前記移動部材を上方の移動端に移動させることを特徴とする請求項1から5のいずれかに記載の位置決め装置。   The positioning apparatus according to claim 1, wherein the return to origin moves the moving member to an upper moving end. 駆動装置によって可動範囲内を移動させられる移動部材を、前記移動部材の位置に応じて検出出力が変化する位置検出手段の前記検出出力が最大となるように前記移動部材を位置決めする位置決め方法であって、
前記移動部材を前記可動範囲の端部に原点復帰させ、
前記移動部材を所定の移動量ずつピッチ送りする毎に前記検出出力を確認し、前記検出出力が所定の閾値以上であれば前記ピッチ送りを停止するスキャンを実行し、
前記移動部材を前記スキャンにより停止した位置から所定の微少量だけ移動させて、前記検出出力を確認し、前記移動部材を前記検出出力が増加すると予想される方向に移動させる微調整を実行することを特徴とする位置決め方法。
In this positioning method, a moving member that is moved within a movable range by a driving device is positioned so that the detection output of the position detection means whose detection output changes according to the position of the moving member is maximized. And
The origin of the moving member is returned to the end of the movable range,
Check the detection output every time the moving member is pitch-fed by a predetermined amount of movement, and if the detection output is equal to or greater than a predetermined threshold, execute a scan to stop the pitch feed,
Moving the moving member from the position stopped by the scan by a predetermined minute amount, confirming the detection output, and performing fine adjustment to move the moving member in a direction in which the detection output is expected to increase. A positioning method characterized by the above.
JP2007051104A 2007-03-01 2007-03-01 Positioning device and positioning method Expired - Fee Related JP4629691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051104A JP4629691B2 (en) 2007-03-01 2007-03-01 Positioning device and positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051104A JP4629691B2 (en) 2007-03-01 2007-03-01 Positioning device and positioning method

Publications (2)

Publication Number Publication Date
JP2008217196A true JP2008217196A (en) 2008-09-18
JP4629691B2 JP4629691B2 (en) 2011-02-09

Family

ID=39837193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051104A Expired - Fee Related JP4629691B2 (en) 2007-03-01 2007-03-01 Positioning device and positioning method

Country Status (1)

Country Link
JP (1) JP4629691B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104208A (en) * 1990-08-24 1992-04-06 Fujitsu Ltd Optical axis detecting method
JPH0584641A (en) * 1991-04-03 1993-04-06 Roland D G Kk Original point setting method for spindle
JP2001325026A (en) * 2000-05-12 2001-11-22 Canon Inc Method for restoring mobile stage to origin
JP2002169062A (en) * 2000-11-29 2002-06-14 Furukawa Electric Co Ltd:The Method for aligning laser diode element and optical fiber, aligning device using this method, and laser diode module
JP2007025887A (en) * 2005-07-13 2007-02-01 Sumitomo Heavy Ind Ltd Plane stage device and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104208A (en) * 1990-08-24 1992-04-06 Fujitsu Ltd Optical axis detecting method
JPH0584641A (en) * 1991-04-03 1993-04-06 Roland D G Kk Original point setting method for spindle
JP2001325026A (en) * 2000-05-12 2001-11-22 Canon Inc Method for restoring mobile stage to origin
JP2002169062A (en) * 2000-11-29 2002-06-14 Furukawa Electric Co Ltd:The Method for aligning laser diode element and optical fiber, aligning device using this method, and laser diode module
JP2007025887A (en) * 2005-07-13 2007-02-01 Sumitomo Heavy Ind Ltd Plane stage device and its control method

Also Published As

Publication number Publication date
JP4629691B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
US7936797B2 (en) Laser apparatus and output control method of laser apparatus
US7965457B2 (en) Vibratory driving device
US7547867B2 (en) Positioning device and positiioning method
US10447176B2 (en) Vibration type actuator control apparatus, apparatus having the same, and storage medium storing vibration type actuator control program
CN114026449A (en) Optical distance measuring device
JP5326681B2 (en) LENS DRIVE DEVICE AND IMAGING DEVICE
JP4629691B2 (en) Positioning device and positioning method
JP2007037337A (en) Drive device
JP2008250731A (en) Positioning device
KR20220140355A (en) A method for measuring frequency response characteristic to evaluate the stability of a voice coil motor actuator and a device therefor
JP2011049409A (en) Device and method of drawing pattern
US7899096B1 (en) Methods and circuits for controlling drive mechanisms
JP5092455B2 (en) Positioning device and positioning method
JP2009128238A (en) Laser radar equipment
JP2010175856A (en) Beam irradiation device and laser radar system
US20210149026A1 (en) Optical distance measuring device
US20210021211A1 (en) Controller capable of stopping control target in short time, vibration actuator, image capture apparatus, and control method
KR20220156123A (en) Distance Measuring Device for Correcting Lens Distortion and Method for Controlling the same
KR102162212B1 (en) Camera module and method for controlling auto focusing
JP6758204B2 (en) Optical axis adjustment method, optical device manufacturing method, and optical axis adjustment system
JP2010051059A (en) Drive device and optical device
JP2008191099A (en) Light projection device
TWI786991B (en) Autofocus system and autofocus method
JP2008122437A (en) Laser scanner
WO2006051447A1 (en) Opto-electronic module, and method for aligning components in an opto-electronic module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4629691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees