JP2008191099A - Light projection device - Google Patents

Light projection device Download PDF

Info

Publication number
JP2008191099A
JP2008191099A JP2007028271A JP2007028271A JP2008191099A JP 2008191099 A JP2008191099 A JP 2008191099A JP 2007028271 A JP2007028271 A JP 2007028271A JP 2007028271 A JP2007028271 A JP 2007028271A JP 2008191099 A JP2008191099 A JP 2008191099A
Authority
JP
Japan
Prior art keywords
light
projection
optical element
light beam
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007028271A
Other languages
Japanese (ja)
Inventor
Shinya Abe
慎也 阿部
Nobuo Miyairi
信夫 宮入
Yoshiki Adachi
芳樹 足立
Takekazu Terui
武和 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Olympus Imaging Corp
Original Assignee
Denso Corp
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Olympus Imaging Corp filed Critical Denso Corp
Priority to JP2007028271A priority Critical patent/JP2008191099A/en
Publication of JP2008191099A publication Critical patent/JP2008191099A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light projection device for an optical radar capable of adjusting easily scanning amplitude and an optical axis of a projection optical axis, and acquiring high adjustment accuracy. <P>SOLUTION: A projection direction of a beam radiated from a laser diode 31 is set by a projection lens 37. The position of the projection lens 37 is detected by position detectors 43a, 43b. The projection direction of the beam is converted into a position of the projection lens 37 by a scanner control part 25. Driving of an actuator 40 is controlled by the scanner control part 25 based on a target position of the projection lens 37 acquired by the scanner control part 25 and on a detected position of the projection lens 37 detected by the position detectors 43a, 43b. A deviation of the projection direction of the light projection device in a specific target projection direction of the beam is stored as a correction value in a memory 53 in the scanner control part 25, corrected by the correction value, and converted into a position of the projection lens 37. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザ光等の光源から光束を発生し、対象物体からの反射光を受光して、対象物体からの距離を検出する自動車搭載光レーダ装置の投光装置に於ける、出射光の方向制御装置及び光軸調整方法に関するものである。   The present invention generates a light beam from a light source such as a laser beam, receives reflected light from a target object, and detects the distance from the target object. The present invention relates to a direction control device and an optical axis adjustment method.

近年、自動車運転時のドライバの安全性向上を目指した技術開発への取り組みが進んでいる。その1つの手段として、先行車両及び自動車前方に存在する物体の位置情報を、レーダを使って検知する装置が実用化されている。具体的には、レーダ装置によって得られる車両前方物体の位置検出情報を基に、走行中、前方車両との衝突回避等の安全支援を行うといったものである。   In recent years, efforts have been made to develop technologies aimed at improving driver safety when driving a car. As one of the means, an apparatus for detecting position information of an object existing in front of a preceding vehicle and an automobile using a radar has been put into practical use. Specifically, based on the position detection information of the vehicle front object obtained by the radar device, safety support such as collision avoidance with the vehicle ahead is performed during traveling.

レーダ方式は、現在様々な方式が提案されており、装置コストを抑えつつ、十分な検出性能が得られることが要求されている。その中で1つの方式として、レーザ光を走査して物体検出する光レーダ装置が実用化されている。   Various radar systems have been proposed at present, and it is required that sufficient detection performance be obtained while suppressing apparatus costs. Among them, an optical radar device that scans a laser beam and detects an object has been put into practical use.

例えば、光レーダ用投光装置としては、下記特許文献1にあるように、レーザ光を所定角度で走査して前方物体に向かって投射され、物体によって発生する反射光を受光器で検出し、投射から受光検出までの時間差を検出することによって、前方物体の位置を算出する装置が提案されている。   For example, as a light radar projector, as disclosed in Patent Document 1 below, laser light is scanned at a predetermined angle and projected toward a front object, and reflected light generated by the object is detected by a light receiver. There has been proposed an apparatus for calculating the position of a front object by detecting a time difference from projection to detection of received light.

図8は、下記特許文献1に記載された従来技術の光レーダ装置の構成を示したブロック図である。   FIG. 8 is a block diagram showing a configuration of a conventional optical radar device described in Patent Document 1 below.

図8に於いて、この物体検出装置1は、投光部2と、受光部3と、オフセット位置記憶回路5と、複数の傾きセンサ6が接続されたCPU4とを有して成る。そして、投光部2内の発振回路11により駆動されて発光素子12から出射される光を、レンズ13、アクチュエータ14及びアクチュエータ(ACT)駆動回路15によって、水平または垂直方向へ移動させることによって、投射光方向を可変させる。   In FIG. 8, the object detection apparatus 1 includes a light projecting unit 2, a light receiving unit 3, an offset position storage circuit 5, and a CPU 4 to which a plurality of tilt sensors 6 are connected. Then, the light that is driven by the oscillation circuit 11 in the light projecting unit 2 and is emitted from the light emitting element 12 is moved in the horizontal or vertical direction by the lens 13, the actuator 14, and the actuator (ACT) driving circuit 15. Change the direction of the projected light.

CPU4は、レンズ13が投射方向に対応した位置に移動させるに必要な、アクチュエータ駆動量の指示を与える。上記アクチュエータ14の駆動量を、逐次増加または減少させた指示をACT駆動回路15に与えることによって、レンズ13を走査させる。投射用のレンズ13の走査中に、CPU4から発振回路11を介して発光素子12から投射光を出力する。そして、反射光を受光レンズ17、受光素子18及び検出回路19によって検出することにより、物体を検出するものである。
特開2002−162470号公報
The CPU 4 gives an instruction of an actuator driving amount necessary for moving the lens 13 to a position corresponding to the projection direction. The lens 13 is scanned by giving an instruction to the ACT driving circuit 15 to sequentially increase or decrease the driving amount of the actuator 14. During scanning of the projection lens 13, projection light is output from the light emitting element 12 via the oscillation circuit 11 from the CPU 4. The reflected light is detected by the light receiving lens 17, the light receiving element 18, and the detection circuit 19 to detect the object.
JP 2002-162470 A

上述したレーダ装置の投光装置は、投射レンズを、目標となる投射方向に対応した位置へ連続的に移動させることによって、出射ビームを連続的に走査し、一定周期毎に光線を発射する方法である。上記特許文献1のレーダ装置での投光装置では、アクチュエータの駆動指示から、投射レンズ位置及びそれに対応する発射ビーム角度を推定する。このため、実際に存在する投射レンズ位置をリアルタイムに検出して、該投射レンズ位置を補正制御することができない。   The above-described light projecting device of a radar apparatus is a method of continuously scanning an outgoing beam by continuously moving a projection lens to a position corresponding to a target projection direction, and emitting a light beam at regular intervals. It is. In the light projecting device in the radar device of Patent Document 1, the projection lens position and the corresponding emission beam angle are estimated from the actuator drive instruction. For this reason, it is impossible to detect and control the projection lens position that actually exists in real time and correct the projection lens position.

図8の構成の場合、アクチュエータ14の移動量感度特性に、温度変化、経時変化が生じる場合、駆動指示量に対するレンズ13の移動量が変化するが、実際のレンズ移動量を検出して位置を補正制御しないため、CPU4が指示する投射方向と、実際に投射される光の方向のずれを生じる。したがって、従来技術でのレーダ装置の投光装置では、投射光の光軸調整を行っても、アクチュエータ感度の温度変化、経時変化による調整ずれが発生しても、対応することができないものであった。   In the case of the configuration of FIG. 8, when the temperature change and the change with time occur in the movement amount sensitivity characteristic of the actuator 14, the movement amount of the lens 13 with respect to the drive instruction amount changes. Since correction control is not performed, a deviation occurs between the projection direction instructed by the CPU 4 and the direction of light actually projected. Therefore, in the conventional light projecting device of the radar device, even if the optical axis of the projection light is adjusted, even if the adjustment deviation due to the temperature change of the actuator sensitivity or the change with time occurs, it cannot cope. It was.

本発明は上記実情に鑑みてなされたものであり、その目的は、投射光軸の走査振幅及び光軸調整を容易に行い、且つ高い調整精度を得ることのできる光レーダ用の投光装置を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light radar projection device that can easily adjust the scanning amplitude and optical axis of the projection optical axis and obtain high adjustment accuracy. Is to provide.

すなわち、請求項1に記載の発明は、第1の光源から放射される光線を走査し、物体からの反射光を受光することで物体を検出する光レーダの投光装置に於いて、上記第1の光源が放射した光線の投射方向を設定する光学素子と、上記光学素子の位置を検出する位置検出器と、上記光線の投射方向を上記光学素子の位置に変換する変換手段と、上記光学素子を移動させるアクチュエータと、上記変換手段により得られた上記光学素子の目標位置と、上記位置検出器で検出された上記光学素子の検出位置を基に、上記アクチュエータの駆動を制御する駆動制御手段と、上記光線の特定の目標投射方向に対する当該投光装置によって光線が投射される方向のずれを補正する調整値を記憶する調整値記憶手段と、を具備し、上記変換手段は、投射方向を上記補正値で補正して上記光学素子の位置に変換することを特徴とする。   That is, the invention described in claim 1 is an optical radar projector that detects an object by scanning a light beam emitted from a first light source and receiving reflected light from the object. An optical element that sets a projection direction of a light beam emitted by one light source, a position detector that detects a position of the optical element, a conversion unit that converts the projection direction of the light beam into a position of the optical element, and the optical An actuator for moving the element, a drive control means for controlling the drive of the actuator based on the target position of the optical element obtained by the conversion means and the detection position of the optical element detected by the position detector And an adjustment value storage means for storing an adjustment value for correcting a deviation of the direction in which the light is projected by the light projecting device with respect to a specific target projection direction of the light, and the conversion means includes a projection method. The corrected by the correction value and converting the position of the optical element.

請求項1に記載の発明によれば、投射レンズ位置をフィードバック制御して、位置調整によってオフセット指示をすることで、走査中心角度及び走査振幅を、容易に調整することができる。   According to the first aspect of the present invention, it is possible to easily adjust the scanning center angle and the scanning amplitude by performing feedback control of the projection lens position and instructing an offset by position adjustment.

請求項2に記載の発明は、請求項1に記載の発明に於いて、上記光線の特定目標方向は、原点及び最大の振り幅に対応する角度であることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the specific target direction of the light beam is an angle corresponding to an origin and a maximum swing width.

請求項2に記載の発明によれば、2次元投射方向へのオフセット調整値、及び振り幅調整値を記憶手段に保持することによって、走査の原点となる方向及び投射角度の振り幅を、常に一定に保持することができる。   According to the second aspect of the invention, the offset adjustment value in the two-dimensional projection direction and the amplitude adjustment value are held in the storage unit, so that the direction of the scanning origin and the amplitude of the projection angle are always set. Can be held constant.

請求項3に記載の発明は、請求項1に記載の発明に於いて、上記位置検出手段は、第2の光源と、位置検出素子と、上記光学素子と連動して移動するスリットとを有し、上記光学素子位置の検出出力を得ることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the position detecting means includes a second light source, a position detecting element, and a slit that moves in conjunction with the optical element. The detection output of the optical element position is obtained.

請求項3に記載の発明によれば、実際の投射光学素子の位置を常時検出することで、目標投射方向に対応する位置に投射光学素子を追従制御できることから、アクチュエータ感度特性の変化の影響を受けることなく、投射角度の調整精度を向上することができる。   According to the third aspect of the present invention, by constantly detecting the actual position of the projection optical element, the projection optical element can be controlled to follow the position corresponding to the target projection direction. Without receiving it, the adjustment accuracy of the projection angle can be improved.

請求項4に記載の発明は、所定の光線を放射する第1の光源と、上記第1の光源から放射された光線の投射方向を設定するための移動可能な光学素子と、上記光学素子を、上記第1の光源の光軸方向に対して垂直な方向に2次元的に移動させるアクチュエータと、上記光学素子の位置を検出する位置検出手段と、上記光線の投射方向に基づいて上記光学素子を移動させるべく目標位置を算出する算出手段と、上記光線の特定の目標投射方向に対する、上記第1の光源より放射される光線の投射方向のずれを、上記算出手段により算出された上記光学素子の目標位置と、上記位置検出器で検出された上記光学素子の検出位置とに基づいて補正するべく上記アクチュエータの駆動を制御する駆動制御手段と、を具備することを特徴とする。   According to a fourth aspect of the present invention, there is provided a first light source that emits a predetermined light beam, a movable optical element for setting a projection direction of the light beam emitted from the first light source, and the optical element. An actuator that moves two-dimensionally in a direction perpendicular to the optical axis direction of the first light source, position detection means for detecting the position of the optical element, and the optical element based on the projection direction of the light beam Calculating means for calculating a target position to move the optical element, and a deviation of a projection direction of the light beam emitted from the first light source with respect to a specific target projection direction of the light beam, the optical element calculated by the calculation unit Drive control means for controlling the drive of the actuator to correct based on the target position and the detected position of the optical element detected by the position detector.

請求項4に記載の発明によれば、投射光学素子の位置をフィードバック制御して、位置調整によってオフセット指示をすることで、走査中心角度及び走査振幅を、容易に調整することができる。   According to the fourth aspect of the present invention, it is possible to easily adjust the scanning center angle and the scanning amplitude by performing feedback control of the position of the projection optical element and giving an offset instruction by position adjustment.

請求項5に記載の発明は、請求項4に記載の発明に於いて、上記光線の特定の目標投射方向に対する、上記第1の光源より放射される光線の投射方向のずれを調整値として記憶する調整値記憶手段を更に具備し、上記駆動制御手段は、上記算出手段により算出された上記光学素子の目標位置と、上記位置検出器で検出された上記光学素子の検出位置と、上記調整値記憶手段に記憶された調整値に基づいて、上記アクチュエータの駆動を制御することを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, a deviation of a projection direction of a light beam emitted from the first light source with respect to a specific target projection direction of the light beam is stored as an adjustment value. Adjustment value storage means, and the drive control means includes a target position of the optical element calculated by the calculation means, a detection position of the optical element detected by the position detector, and the adjustment value. The driving of the actuator is controlled based on the adjustment value stored in the storage means.

請求項5に記載の発明によれば、2次元投射方向へのオフセット調整値、及び振り幅調整値を記憶手段に保持することによって、走査の原点となる方向及び投射角度の振り幅を、常に一定に保持することができる。   According to the fifth aspect of the present invention, by holding the offset adjustment value and the amplitude adjustment value in the two-dimensional projection direction in the storage unit, the direction of the scanning origin and the amplitude of the projection angle are always set. Can be held constant.

請求項6に記載の発明は、請求項4に記載の発明に於いて、上記光線の特定目標方向は、原点及び最大の振り幅に対応する角度であることを特徴とする。   According to a sixth aspect of the present invention, in the fourth aspect of the present invention, the specific target direction of the light beam is an angle corresponding to an origin and a maximum swing width.

請求項6に記載の発明によれば、2次元投射方向へのオフセット調整値、及び振り幅調整値を記憶手段に保持することによって、走査の原点となる方向及び投射角度の振り幅を、常に一定に保持することができる。   According to the sixth aspect of the invention, by holding the offset adjustment value and the amplitude adjustment value in the two-dimensional projection direction in the storage means, the direction of the scanning origin and the amplitude of the projection angle are always set. Can be held constant.

請求項7に記載の発明は、請求項4に記載の発明に於いて、上記位置検出手段は、上記第1の光源とは異なる光線を放射する第2の光源と、位置検出素子と、上記光学素子の移動と連動して移動するスリットと、上記第2の光源から放射された光線を上記スリットを介して受光して上記光学素子の位置を検出する位置検出素子と、を備えることを特徴とする。   According to a seventh aspect of the present invention, in the invention according to the fourth aspect, the position detecting means includes a second light source that emits a light beam different from the first light source, a position detecting element, and the A slit that moves in conjunction with the movement of the optical element; and a position detection element that receives the light beam emitted from the second light source through the slit and detects the position of the optical element. And

請求項7に記載の発明によれば、実際の投射光学素子の位置を常時検出することで、目標投射方向に対応する位置に投射レンズを追従制御できることから、アクチュエータ感度特性の変化の影響を受けることなく、投射角度の調整精度を向上することができる。   According to the seventh aspect of the invention, since the projection lens can be controlled to follow the position corresponding to the target projection direction by always detecting the actual position of the projection optical element, it is affected by the change in the actuator sensitivity characteristic. Therefore, the adjustment accuracy of the projection angle can be improved.

本発明によれば、投射光軸の走査振幅及び光軸調整を容易に行い、且つ高い調整精度を得ることのできる光レーダ用の投光装置を提供することができる。   According to the present invention, it is possible to provide an optical radar projector that can easily adjust the scanning amplitude and optical axis of the projection optical axis and obtain high adjustment accuracy.

以下、図面を参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態を示すもので、本発明の投光装置が適用されたレーザレーダの全体構成を示すブロック構成図である。   FIG. 1 shows an embodiment of the present invention, and is a block diagram showing the overall structure of a laser radar to which the light projecting device of the present invention is applied.

図1に於いて、このレーザレーダは、該レーザレーダ全体の動作を制御するレーザ制御部21と、発光素子であるレーザダイオード31の光出力をビームに成形し、光学素子であるレンズ32、33及び37を用いてビームを任意の角度に投射するスキャナ部24と、該スキャナ部24の位置検出器の出力とレーザ制御部21から指示される目標角度を比較してレンズの動き量を制御するスキャナ制御部25と、対象物体62からの反射光を検出する受光部27と、レーザダイオード31の発光動作を制御するレーザ発光装置23とから構成されている。   In FIG. 1, this laser radar forms a light output of a laser control unit 21 that controls the operation of the entire laser radar and a laser diode 31 that is a light emitting element into a beam, and lenses 32 and 33 that are optical elements. And 37, the scanner unit 24 that projects the beam at an arbitrary angle, the output of the position detector of the scanner unit 24 and the target angle indicated by the laser control unit 21 are compared to control the amount of movement of the lens. The scanner control unit 25, a light receiving unit 27 that detects reflected light from the target object 62, and a laser light emitting device 23 that controls the light emitting operation of the laser diode 31 are configured.

上記レーザ制御装置21は、レーザ発光装置23への発光指示と、受光部27に於ける対象物体62からの反射光の検出と、スキャナ制御部25へのビーム投射方向の目標角度指示、角度オフセット指示信号の出力、スキャナ部24の移動完了信号の入力と、を行う。   The laser control device 21 instructs to emit light to the laser light emitting device 23, detects reflected light from the target object 62 in the light receiving unit 27, instructs the target angle of the beam projection direction to the scanner control unit 25, and angle offset. An instruction signal is output and a movement completion signal of the scanner unit 24 is input.

スキャナ部24は、レンズホルダ30内に固定されたレーザダイオード31及びリレーレンズ32、33と、第1の光源であるレーザダイオード31より投射された光を走査するための投射レンズ37を支持する支持部材36と、上記レンズホルダ30と支持部材36とを接続する複数のワイヤバネ35と、上記支持部材36の両側面にあって該支持部材36と共に投射レンズ37を移動させるための従動部材38a及び38bと、該従動部材38a及び38bを直接移動させるアクチュエータ40と、従動部材38a及び38bの位置を検出するための第2の光源である光源41a、41b及び位置検出器43a、43bとを有して構成される。   The scanner unit 24 supports a laser diode 31 and relay lenses 32 and 33 fixed in the lens holder 30 and a projection lens 37 for scanning light projected from the laser diode 31 as a first light source. A member 36, a plurality of wire springs 35 connecting the lens holder 30 and the support member 36, and driven members 38 a and 38 b on both sides of the support member 36 for moving the projection lens 37 together with the support member 36. An actuator 40 that directly moves the driven members 38a and 38b, and light sources 41a and 41b and position detectors 43a and 43b, which are second light sources for detecting the positions of the driven members 38a and 38b. Composed.

スキャナ部24では、リレーレンズ32、33が用いられて、レーザダイオード31からの光出力を適当な広がり角を持ったレーザレーダに好適なビームに成形される。レーザダイオード31は、レーザ制御部21からのレーザ発光命令に従って、レーザ発光装置23の駆動により発光される。そして、レーザダイオード31からリレーレンズ32、33を介して投射されたビームは、更に支持部材36に搭載された投射レンズ37を通して、レーザレーダの外部へ投射される。   In the scanner unit 24, relay lenses 32 and 33 are used to shape the light output from the laser diode 31 into a beam suitable for a laser radar having an appropriate divergence angle. The laser diode 31 emits light by driving the laser light emitting device 23 in accordance with a laser light emission command from the laser control unit 21. The beam projected from the laser diode 31 through the relay lenses 32 and 33 is further projected to the outside of the laser radar through the projection lens 37 mounted on the support member 36.

支持部材36は、アクチュエータ40によって従動部材38a及び38bと共に、水平方向(X方向)、垂直方向(Y方向)の2次元方向へ移動される。これにより、支持部材36に搭載された投射レンズ37が2次元方向に移動されるので、投射レンズ37で屈折したビームを2次元に走査することができる。   The support member 36 is moved in the two-dimensional direction of the horizontal direction (X direction) and the vertical direction (Y direction) together with the driven members 38a and 38b by the actuator 40. Thereby, since the projection lens 37 mounted on the support member 36 is moved in the two-dimensional direction, the beam refracted by the projection lens 37 can be scanned two-dimensionally.

従動部材38a及び38bにはX方向及びY方向に、それぞれ延出された2つのスリット39a及び39bが形成されている。そして、これらスリット39a及び39bを挟んで、従動部材38a及び38bの両側には、それぞれ光源41a及び41bと、位置検出器43a及び43bが配置されている。位置検出器43a、43bは、図示されないが、PSD(Position Sensing Device)や、分割フォトダイオード等の光電変換素子で構成される。   The driven members 38a and 38b are formed with two slits 39a and 39b extending in the X direction and the Y direction, respectively. Light sources 41a and 41b and position detectors 43a and 43b are disposed on both sides of the driven members 38a and 38b with the slits 39a and 39b interposed therebetween. Although not shown, the position detectors 43a and 43b are composed of photoelectric conversion elements such as PSD (Position Sensing Device) and divided photodiodes.

上記アクチュエータ40による支持部材36の動きは、X方向の動きを検出する位置検出器43aと、Y方向の動きを検出する位置検出器43bの、独立して設けられた2つの位置検出器によって検出され、スキャナ制御部25へ送られる。本実施形態では、PSD等の光学的な位置検出器を使用しているので、各位置検出器43a及び43bを照射する光源41a及び41bが配置されている。これらの光源41a及び41bは、発光ダイオード(LED)やレーザダイオードを使用するのが一般的である。   The movement of the support member 36 by the actuator 40 is detected by two position detectors provided independently, a position detector 43a that detects movement in the X direction and a position detector 43b that detects movement in the Y direction. And sent to the scanner control unit 25. In this embodiment, since optical position detectors, such as PSD, are used, the light sources 41a and 41b which irradiate each position detector 43a and 43b are arrange | positioned. The light sources 41a and 41b generally use light emitting diodes (LEDs) or laser diodes.

投射レンズ37と、その支持部材36は、図2に示されるように、光軸に垂直な平面内で上下方向(Y方向)及び、左右方向(X方向)に移動が可能であり、アクチュエータ40が、投射レンズ37をそれぞれ中立位置から移動する方向に駆動すると、ワイヤバネ35によって移動方向と反対方向へ復元力を作用させる。投射レンズ37は、アクチュエータ40の駆動力と、ワイヤバネ35の復元力が平衡する位置で保持される。   As shown in FIG. 2, the projection lens 37 and the support member 36 can move in the vertical direction (Y direction) and the horizontal direction (X direction) in a plane perpendicular to the optical axis, and the actuator 40. However, when the projection lens 37 is driven in the direction of moving from the neutral position, a restoring force is applied in the direction opposite to the moving direction by the wire spring 35. The projection lens 37 is held at a position where the driving force of the actuator 40 and the restoring force of the wire spring 35 are balanced.

投射レンズ37は、レンズ中心に対する光線の入射位置のズレ量に比例した屈折角度を持って出射する特性を有している。アクチュエータ40は、図示されないが、ボイルコイルモータ等の電磁アクチュエータで構成され、電磁コイルヘの供給電流によって発生する磁界と、永久磁石による磁界との吸引・反発作用により、水平、上下方向に駆動力を生じる。   The projection lens 37 has a characteristic of emitting with a refraction angle proportional to the amount of deviation of the incident position of the light beam with respect to the lens center. Although not shown, the actuator 40 is composed of an electromagnetic actuator such as a boil coil motor, and the driving force is applied in the horizontal and vertical directions by the attraction and repulsion action of the magnetic field generated by the current supplied to the electromagnetic coil and the magnetic field by the permanent magnet. Arise.

投射レンズ37の支持部材36の両側面には、上述したように従動部材38a、38bが配設され、それぞれスリット形状の導光部材(スリット)39a、39bが形成されている。第2の光源41a、41bは、スリット39a、39bのそれぞれ正面となる位置に配置される。第2の光源41a、41bから発光する光線は、スリット39a、39bに入射し、透過した光線42a、42bが位置検出器43a、43bそれぞれに入射される。   On both side surfaces of the support member 36 of the projection lens 37, the driven members 38a and 38b are disposed as described above, and slit-shaped light guide members (slits) 39a and 39b are formed, respectively. The 2nd light sources 41a and 41b are arrange | positioned in the position used as the front of each slit 39a and 39b. Light rays emitted from the second light sources 41a and 41b enter the slits 39a and 39b, and the transmitted light rays 42a and 42b enter the position detectors 43a and 43b, respectively.

投射レンズ37が移動することによって、上記スリット39a、39bの透過光42a、42bの中心位置が変化し、位置検出器43a、43bへの入射スポット位置が変化する。位置検出器43a、43bは、上記入射スポット光を受光することによって、上記投射レンズ37の移動量を電気信号に変換し、投射レンズ37の位置に対応する検出位置信号をスキャナ制御部25に出力する。   As the projection lens 37 moves, the center positions of the transmitted lights 42a and 42b of the slits 39a and 39b change, and the incident spot positions on the position detectors 43a and 43b change. The position detectors 43 a and 43 b receive the incident spot light to convert the movement amount of the projection lens 37 into an electrical signal, and output a detection position signal corresponding to the position of the projection lens 37 to the scanner control unit 25. To do.

方向制御部であるスキャナ制御部25は、レーザ制御部21から目標角度指示値と角度オフセット指示を受け取って投射レンズ37の移動位置に変換する変換手段(算出手段)としてのレンズ位置指示演算部45と、位置検出器43a、43bの検出信号から投射レンズ37の移動量を算出する位置センサ演算部51と、位置指示値と位置検出結果のずれを検出する位置偏差検出部46と、位置ずれ量を比較判定する判定部47と、アクチュエータ40に駆動電力を供給するリニアモータドライバ50と、位置偏差量からリニアモータドライバ50へ駆動指示を与える駆動制御手段である制御演算部48と、調整値記憶手段であるメモリ53とで構成される。   The scanner control unit 25, which is a direction control unit, receives a target angle instruction value and an angle offset instruction from the laser control unit 21 and converts them into a movement position of the projection lens 37, and a lens position instruction calculation unit 45 as conversion means (calculation means). A position sensor calculation unit 51 that calculates a movement amount of the projection lens 37 from detection signals of the position detectors 43a and 43b, a position deviation detection unit 46 that detects a shift between the position indication value and the position detection result, and a position shift amount A determination unit 47 for comparing and determining, a linear motor driver 50 that supplies drive power to the actuator 40, a control calculation unit 48 that is a drive control means for giving a drive instruction to the linear motor driver 50 from the amount of positional deviation, and an adjustment value storage It is comprised with the memory 53 which is a means.

上記判定部47は、投射レンズ37の位置偏差が所定内にあるか否かを判定するためのもので、その判定結果をレーザ制御部21に出力する。   The determination unit 47 is for determining whether or not the positional deviation of the projection lens 37 is within a predetermined range, and outputs the determination result to the laser control unit 21.

上記レーザ発光装置23は、レーザ制御部21の指示により、所定のパルス時間幅でレーザダイオード31を点灯及び消灯させる。レーザダイオード31から発光される光束L1は、リレーレンズ32、33を透過させて、平行光束L2を得る。平行光束L2は、投射レンズ37に入射され、投射レンズ37を透過する投射光61が対象物体62に向かって照射される。投射光61は、上記平行光束L2の光軸中心と、投射レンズ37入射位置の関係によって光線が図1に矢印A方向に屈折された光束であり、投射レンズ37を、左右方向(X方向)、上下方向(Y方向)へ移動させることで、出射光の投射方向を水平方向(図2に示されるAx方向)及び垂直方向(図2に示されるAy方向)の2次元に走査する。   The laser light emitting device 23 turns on and off the laser diode 31 with a predetermined pulse time width according to an instruction from the laser control unit 21. The light beam L1 emitted from the laser diode 31 is transmitted through the relay lenses 32 and 33 to obtain a parallel light beam L2. The parallel light beam L <b> 2 is incident on the projection lens 37, and the projection light 61 that passes through the projection lens 37 is irradiated toward the target object 62. The projection light 61 is a light beam in which the light beam is refracted in the direction of arrow A in FIG. 1 due to the relationship between the optical axis center of the parallel light beam L2 and the incident position of the projection lens 37. By moving in the vertical direction (Y direction), the projection direction of the emitted light is scanned two-dimensionally in the horizontal direction (Ax direction shown in FIG. 2) and the vertical direction (Ay direction shown in FIG. 2).

投射光61は対象物体62に照射され、ここで反射された反射光63が、受光部27内の受光レンズ55に入射され、光検出素子である受光センサ56にて、反射光強度の時間変化が検出される。そして、検出された受光検出信号が、レーザ制御部21に出力される。   The projection light 61 is applied to the target object 62, and the reflected light 63 reflected here is incident on the light receiving lens 55 in the light receiving unit 27, and the light receiving sensor 56, which is a light detection element, changes the reflected light intensity with time. Is detected. Then, the detected light reception detection signal is output to the laser control unit 21.

次に、投射レンズ37の移動方向と投射光61の方向との関係について、図2を参照して説明する。   Next, the relationship between the moving direction of the projection lens 37 and the direction of the projection light 61 will be described with reference to FIG.

投射レンズ37を左右方向(図示矢印B方向)に平行移動すると、移動量に応じて水平方向(図2のAy方向)の投射方向を変えることができる。同様に、投射レンズ37を上下方向(図示矢印C方向)に平行移動すると、移動量に応じて垂直方向(図のAy方向)の投射方向を変えることができる。   When the projection lens 37 is translated in the left-right direction (arrow B direction in the figure), the projection direction in the horizontal direction (Ay direction in FIG. 2) can be changed according to the amount of movement. Similarly, when the projection lens 37 is translated in the vertical direction (arrow C direction in the figure), the projection direction in the vertical direction (Ay direction in the figure) can be changed according to the amount of movement.

投射レンズ37の左右、上下の移動量に対して、投射角度変化量は比例関係にある。目標となる投射方向から投射レンズ37の目標移動量を算出し、投射レンズ37をアクチュエータ40によって駆動させ、上記目標位置と一致させるように移動制御することによって、投射方向を制御する。   The amount of change in projection angle is proportional to the amount of movement of the projection lens 37 left and right and up and down. The target movement amount of the projection lens 37 is calculated from the target projection direction, the projection lens 37 is driven by the actuator 40, and the movement is controlled so as to coincide with the target position, thereby controlling the projection direction.

水平、垂直方向の走査角度は、図2に示される照射範囲65内を走査するように制御される。   The scanning angle in the horizontal and vertical directions is controlled so as to scan within the irradiation range 65 shown in FIG.

次に、投射レンズ移動動作と光源発光の制御タイミングについて、図3のタイミングチャートを参照して説明する。   Next, the control timing of the projection lens moving operation and light source emission will be described with reference to the timing chart of FIG.

図3は本実施形態に於けるレーザレーダの投射レンズ移動制御動作と光源発光制御タイミングを説明するためのタイミングチャートである。   FIG. 3 is a timing chart for explaining the projection lens movement control operation and the light source emission control timing of the laser radar in this embodiment.

図3(a)は、横軸を時間、縦軸を投射レンズ位置及びそれに対応する投射角度で表しており、スキャナ制御部25の投射レンズ37の位置制御動作時の位置制御指示曲線Eと制御位置応答曲線Fの時間変化を示している。図3(a)では、投射レンズ位置を目標レンズ位置1に移動、停止動作した後に、目標レンズ位置1から目標レンズ位置2へ移動、及び停止制御する際の制御目標位置と制御位置応答を示している。   In FIG. 3A, the horizontal axis represents time, the vertical axis represents the projection lens position and the corresponding projection angle, and the position control instruction curve E and control during the position control operation of the projection lens 37 of the scanner control unit 25 are controlled. The time change of the position response curve F is shown. FIG. 3A shows the control target position and control position response when the projection lens position is moved to the target lens position 1 and stopped and then moved from the target lens position 1 to the target lens position 2 and stopped. ing.

図3(b)のグラフは、スキャナ制御装置で送受信される移動トリガ信号、移動完了信号、投射の発光、受信信号のタイミングを示している。また、図3(c)のグラフは、図3(b)のグラフの一部を拡大して示したグラフである。移動トリガ信号は、レーザ制御部21よりスキャナ制御部25に出力される論理信号であって、上記信号の論理が“L”レベルから“H”レベルへ切り替わる時を開始タイミングとし、投射レンズ37の位置の指示を目標位置となる点まで変化させ、投射レンズ37を目標位置へ移動させる。移動完了信号は、スキャナ制御部25が投射レンズ37の位置を検出し、目標位置との偏差が所定の範囲内にある場合に“H”レベル、範囲外にある場合を“L”レベルとして、レーザ制御部21に上記論理信号を出力する。   The graph of FIG. 3B shows the timing of the movement trigger signal, movement completion signal, projection light emission, and reception signal transmitted and received by the scanner control apparatus. Moreover, the graph of FIG.3 (c) is a graph which expanded and showed a part of graph of FIG.3 (b). The movement trigger signal is a logic signal that is output from the laser control unit 21 to the scanner control unit 25, and starts when the logic of the signal is switched from the “L” level to the “H” level. The position instruction is changed to the target position, and the projection lens 37 is moved to the target position. As for the movement completion signal, the scanner control unit 25 detects the position of the projection lens 37 and sets the “H” level when the deviation from the target position is within a predetermined range, and the “L” level when the deviation is outside the range. The logic signal is output to the laser controller 21.

上記移動完了信号が“H”レベルを出力する際、レーザ制御部25は、投射レンズ位置が目標位置に到達したとして、移動トリガ信号論理を“H”レベルから“L”レベルに変化させる。   When the movement completion signal outputs “H” level, the laser control unit 25 changes the movement trigger signal logic from “H” level to “L” level, assuming that the projection lens position has reached the target position.

そして、図3(c)に示されるタイミングで、レーザパルス発光が行われる。受光信号としては、上記レーザパルス発光のタイミングから反射光を検出するまでの検出時間Td後に、パルス状の信号が検出される。上記レーザパルス発光と反射光の検出は、所定回数繰り返し行われる。上記発光及び検出が所定回数行われた後、レーザ制御部21は、スキャナ制御部25に対して、次の投射レンズ37の目標位置を(図3の)レンズ位置2に指示し、移動トリガ信号の論理を“L”レベルから“H”レベルに出力する。上記信号を受けて、スキャナ制御部25は、レンズ位置1からレンズ位置2へ移動開始させる。   Then, laser pulse emission is performed at the timing shown in FIG. As the light reception signal, a pulse-like signal is detected after a detection time Td from the timing of the laser pulse emission until the reflected light is detected. The detection of laser pulse emission and reflected light is repeated a predetermined number of times. After the light emission and detection are performed a predetermined number of times, the laser control unit 21 instructs the target position of the next projection lens 37 to the lens position 2 (in FIG. 3) to the scanner control unit 25, and a movement trigger signal Is output from the “L” level to the “H” level. Upon receiving the signal, the scanner control unit 25 starts to move from the lens position 1 to the lens position 2.

レーザ制御部21からスキャナ制御部25に角度オフセット指示が送信されると、目標投射角度指示に、角度オフセット指示値が加算された値を目標指示として、投射レンズ37の位置が制御される。上記操作により、出射ビームの光軸が指示角度分オフセットされた状態で、投射レンズ37の位置制御が行われる。   When an angle offset instruction is transmitted from the laser control unit 21 to the scanner control unit 25, the position of the projection lens 37 is controlled using a value obtained by adding the angle offset instruction value to the target projection angle instruction as a target instruction. By the above operation, the position control of the projection lens 37 is performed in a state where the optical axis of the outgoing beam is offset by the designated angle.

上記構成の投光装置では、位置検出器43a、43bの出力オフセット、位置ずれ、レーザ光源の光軸ずれ、そして、装置全体を自動車に取り付ける際の物理的な角度ずれによって、角度指示値と実際に投射される光軸とでずれが生じる場合がある。しかしながら、角度オフセット指示値に光軸ずれ量を設定すると、走査角度中心を変えることができるため、出射光軸ずれを補正することができる。また、上記角度オフセット指示値を、メモリ53に保持することで、装置起動時に出射光軸を正しい方向へ制御することができる。   In the light projecting device having the above-described configuration, the angle indication value and the actual value are determined by the output offset of the position detectors 43a and 43b, the positional deviation, the optical axis deviation of the laser light source, and the physical angular deviation when the entire apparatus is attached to the automobile. There may be a deviation between the optical axis projected on the screen. However, if the optical axis deviation amount is set in the angle offset instruction value, the center of the scanning angle can be changed, so that the outgoing optical axis deviation can be corrected. Further, by holding the angle offset instruction value in the memory 53, the outgoing optical axis can be controlled in the correct direction when the apparatus is activated.

次に、このように構成された本実施形態のレーザレーダが投射光軸を走査する処理動作について、図4のフローチャートを参照して説明する。   Next, a processing operation in which the laser radar of the present embodiment configured as described above scans the projection optical axis will be described with reference to the flowchart of FIG.

図4に於いて、左側部分がレーザ制御部21の動作フローであり、右側部分がスキャナ制御部25の動作フローである。上記レーザ制御部21とスキャナ制御部25の処理は、並行して行われるものである。   In FIG. 4, the left side is an operation flow of the laser control unit 21, and the right side is an operation flow of the scanner control unit 25. The processes of the laser control unit 21 and the scanner control unit 25 are performed in parallel.

最初に、ステップS11にて、スキャナ制御部25により、出射光軸中心ずれの補正量に対応した、投射レンズ37の原点位置補正値、振り幅補正値が、メモリ53から読み出される。次いで、ステップS12にて、サブルーチン「投射レンズ位置の追従制御」が実行される。これは、後述する追値制御ルーチン(図5のフローチャートのステップS31〜S35)の処理を、一定インターバル毎に常時行うものである。   First, in step S <b> 11, the scanner control unit 25 reads from the memory 53 the origin position correction value and the amplitude correction value of the projection lens 37 corresponding to the correction amount of the outgoing optical axis center deviation. Next, in step S12, a subroutine “projection lens position tracking control” is executed. In this process, an additional value control routine (steps S31 to S35 in the flowchart of FIG. 5), which will be described later, is always performed at regular intervals.

追値制御ルーチンは、図5のフローチャートに示されるように、先ずステップS31にて、現在の投射レンズ位置が検出され、次いでステップS32にて目標位置とのずれ量が算出される。そして、ステップS33にて、投射レンズ位置が所定範囲内にあるか否かが判定される。ステップS34では、上記ステップS32の演算結果より、制御演算部48によりアクチュエータ40の操作量が算出される。次に、ステップS35にて、上記ステップS34の結果より、リニアモータドライバ50に対して指示がなされ、アクチュエータ40に駆動出力が行われる。これによって、位置指示値に対して、投射レンズ37の位置が追従制御される。   In the additional value control routine, as shown in the flowchart of FIG. 5, first, in step S31, the current projection lens position is detected, and then in step S32, the amount of deviation from the target position is calculated. In step S33, it is determined whether or not the projection lens position is within a predetermined range. In step S34, the operation amount of the actuator 40 is calculated by the control calculation unit 48 from the calculation result of step S32. Next, in step S35, an instruction is given to the linear motor driver 50 from the result of step S34, and drive output is performed to the actuator 40. As a result, the position of the projection lens 37 is controlled to follow the position instruction value.

このように、サブルーチン「追従制御」は、図4のフローチャートに於けるステップS1に於いて、インターバル割り込み開始により実行され、インターバル割り込み解除によって元のルーチンに戻る。   As described above, the subroutine “follow-up control” is executed when the interval interrupt is started in step S1 in the flowchart of FIG. 4 and returns to the original routine when the interval interrupt is released.

次に、ステップS1で目標投射方向となる移動角度指示が設定され、ステップS2でレーザ制御部21からスキャナ制御部25へ移動開始指令(Sig.1)が送信される。スキャナ制御部25では、ステップS13にてレーザ制御部21からの指令が受信されると、続くステップS14にて、レンズ位置指示演算部45で移動角度指示から移動目標位置指示が算出され、設定される。   Next, in step S1, a movement angle instruction to be the target projection direction is set, and in step S2, a movement start command (Sig. 1) is transmitted from the laser control unit 21 to the scanner control unit 25. When the command from the laser control unit 21 is received in step S13, the scanner control unit 25 calculates and sets the movement target position instruction from the movement angle instruction in the lens position instruction calculation unit 45 in subsequent step S14. The

ステップS15では、上記移動目標位置指示から、現在の投射レンズ37の指示位置との移動量が算出され、移動量に応じて移動位置指示値の移動プロファイルが算出される。そして、ステップS16では、上記ステップS11の処理結果が、レンズ位置指示演算部45によって、オフセット位置指示量として出力される。次いで、ステップS17にて、スキャナ制御部25では、上記移動プロファイル演算結果に沿って位置指示値が定時間周期毎に出力される。そして、ステップS18に於いて上記位置指示値が移動目標位置と一致した時点で、ステップS19に移行して位置指示値が移動目標位置に固定される。   In step S15, a movement amount with respect to the current designated position of the projection lens 37 is calculated from the movement target position instruction, and a movement profile of the movement position instruction value is calculated according to the movement amount. In step S16, the processing result of step S11 is output by the lens position instruction calculation unit 45 as an offset position instruction amount. Next, in step S17, the scanner control unit 25 outputs a position indication value for each fixed time period in accordance with the movement profile calculation result. Then, when the position instruction value coincides with the movement target position in step S18, the process proceeds to step S19 and the position instruction value is fixed to the movement target position.

上記ステップS17、S18、S19の処理と並行して、一定インターバル毎に、上述した追従制御ルーチン(図5のフローチャートのステップS31〜S35)が常時行われているため、位置指示値に対して、投射レンズ37の位置が追従移動される。   In parallel with the processing of steps S17, S18, and S19, the tracking control routine described above (steps S31 to S35 in the flowchart of FIG. 5) is always performed at regular intervals. The position of the projection lens 37 is moved following.

ステップS19では、(図5のフローチャートの)ステップS33で処理された結果より、投射レンズ37が目標位置に移動され、続くステップS20に於いて、位置センサ演算部51で検出された位置と、移動目標位置とが比較される。そして、両者の偏差が、所定範囲内になった時点で、ステップS21に移行して、レーザ制御部21に移動完了信号(Sig.2)が通知される。   In step S19, the projection lens 37 is moved to the target position based on the result processed in step S33 (of the flowchart of FIG. 5), and in the subsequent step S20, the position detected by the position sensor calculation unit 51 and the movement are moved. The target position is compared. Then, when the deviation between the two is within the predetermined range, the process proceeds to step S21, and the movement completion signal (Sig. 2) is notified to the laser control unit 21.

上記処理の間、レーザ制御部21は、ステップS3に於いて上記移動完了信号(Sig.2)を受信待ちの状態にある。そして、上記移動完了信号が受信された後、ステップS4に移行して、レーザダイオード31の発光が実施されて投射光61が照射される。投射光61が対象物体62に照射されると、その反射光63が受光部27の受光レンズ55に入射される。ステップS5では、この受光レンズ55に入射された光が、受光センサ56によって光強度に応じた電気信号として検出される。   During the process, the laser control unit 21 is in a state of waiting for the movement completion signal (Sig. 2) in step S3. Then, after the movement completion signal is received, the process proceeds to step S4, where the laser diode 31 emits light and the projection light 61 is irradiated. When the projection light 61 is irradiated onto the target object 62, the reflected light 63 enters the light receiving lens 55 of the light receiving unit 27. In step S <b> 5, the light incident on the light receiving lens 55 is detected by the light receiving sensor 56 as an electric signal corresponding to the light intensity.

一方、スキャナ制御部25では、上記ステップS21での移動完了通知後、ステップS22に移行して、投射レンズ37の位置が目標位置に保持制御される。この保持制御が実施されている間、一定インターバル毎に上述したステップS33の処理結果が確認される。その結果、ステップS23に於いて、レンズ位置ずれ量が所定範囲にある状態では、ステップS24に移行して、スキャナ制御部25からレーザ制御部21へ、移動完了通知(Sig.4)が常時出力される。   On the other hand, in the scanner control unit 25, after the movement completion notification in step S21, the process proceeds to step S22, and the position of the projection lens 37 is controlled to be held at the target position. While this holding control is being performed, the processing result of step S33 described above is confirmed at regular intervals. As a result, in step S23, when the lens position deviation amount is within the predetermined range, the process proceeds to step S24, and a movement completion notification (Sig. 4) is constantly output from the scanner control unit 25 to the laser control unit 21. Is done.

また、上記ステップS33の処理結果より、ステップS23にて、レンズ位置ずれ量が所定範囲を超えたことが検出された場合は、ステップS25に移行して、スキャナ制御部25からレーザ制御部21へ、レンズ位置はずれ指示(Sig.5)が通知される。   If it is detected from step S33 that the lens position deviation amount exceeds the predetermined range in step S23, the process proceeds to step S25, and the scanner control unit 25 moves to the laser control unit 21. The lens position deviation instruction (Sig. 5) is notified.

レーザ制御部21では、ステップS6に於いてレンズ位置はずれ指示(Sig.5)の受信時に、ステップS7に移行してレーザ発光が停止される。その後、上記ステップS3に移行して、再度スキャナ制御部25から移動完了通知(Sig.4)を受信するまで、待機する。一方、スキャナ制御部25では、ステップS26に於いて、レーザ制御部21から次の移動指令を受信するまで、上述したステップS22〜26の処理動作が繰り返し行われる。そして、次の移動指令が受信されたならば、上記ステップS13に移行して、以降の処理動作が繰り返される。   In step S6, the laser control unit 21 proceeds to step S7 and stops laser emission when the lens position deviation instruction (Sig. 5) is received. Thereafter, the process proceeds to step S3 and waits until a movement completion notification (Sig. 4) is received from the scanner control unit 25 again. On the other hand, in the scanner control unit 25, the processing operations in steps S22 to S26 described above are repeatedly performed until the next movement command is received from the laser control unit 21 in step S26. If the next movement command is received, the process proceeds to step S13, and the subsequent processing operations are repeated.

その後、レーザ制御部21では、ステップS6に於いて、スキャナ制御部25からの移動完了通知(Sig.3)またはレンズ位置はずれ通知(Sig.5)の受信状態が判定される。レンズ位置ずれ量が所定範囲にある状態では、スキャナ制御部25から、レーザ制御部21へ、移動完了通知(Sig.4)が常時出力され、ステップS8に移行して上述したレーザダイオード31の発光及び受光の処理動作が所定回数実施されたか否かが判定される。そして、所定回数になるまで、上記ステップS4〜S8の処理が繰り返し行われる。   Thereafter, in step S6, the laser control unit 21 determines the reception state of the movement completion notification (Sig. 3) or the lens position deviation notification (Sig. 5) from the scanner control unit 25. In a state where the lens position deviation amount is within a predetermined range, a movement completion notification (Sig. 4) is constantly output from the scanner control unit 25 to the laser control unit 21, and the process proceeds to step S8 to emit light from the laser diode 31 described above. It is determined whether or not the light receiving processing operation has been performed a predetermined number of times. Then, the processes in steps S4 to S8 are repeated until the predetermined number of times is reached.

また、上記ステップS8にて、上記処理動作が所定回数実施されたならば、ステップS9に移行して、上記ステップS5で検出された電気信号により、レーザ発光開始タイミングとから、反射光の受光タイミングの時間差が検出されて、時間差結果から、対象物体62との距離が算出される。   If the processing operation has been performed a predetermined number of times in step S8, the process proceeds to step S9, and the reflected light reception timing from the laser emission start timing is determined based on the electrical signal detected in step S5. Is detected, and the distance from the target object 62 is calculated from the time difference result.

レーザ制御部21では、上述したステップS9までの処理動作が完了後、上記ステップS1に移行して、以降の処理動作が行われ、スキャナ制御部25へ、次の投射角度位置に対する指示が行われる。水平及び垂直方向へ投射レンズ37を移動させ、同様の操作が繰り返し実施されることで、ビーム角度が水平及び垂直方向に走査される。   In the laser control unit 21, after the processing operation up to step S9 described above is completed, the process proceeds to step S1, the subsequent processing operation is performed, and the scanner control unit 25 is instructed for the next projection angle position. . By moving the projection lens 37 in the horizontal and vertical directions and repeating the same operation, the beam angle is scanned in the horizontal and vertical directions.

上記処理のように、投射レンズ37に対し、移動、停止が所定回数繰り返されて実施された後、ビーム走査角度初期位置に移動され、再度走査が実施される。   As described above, the projection lens 37 is repeatedly moved and stopped a predetermined number of times, then moved to the initial position of the beam scanning angle, and scanning is performed again.

尚、上述した実施形態では、移動指示時での目標レンズ位置指示の時間変化、移動量、軌道は、毎回の走査で一定としているが、走査時の投射範囲に応じて、逐次、移動時の移動指示の時間変化、移動量、軌道を変えてもよい。   In the above-described embodiment, the time change, the movement amount, and the trajectory of the target lens position instruction at the time of the movement instruction are constant in each scan, but sequentially, according to the projection range at the time of movement, The time change, the movement amount, and the trajectory of the movement instruction may be changed.

次に、本実施形態に於ける投射ビーム光軸の調整方法について、図6及び図7を参照して説明する。   Next, a method of adjusting the projection beam optical axis in the present embodiment will be described with reference to FIGS.

図6は、投光装置のビーム投射光軸と対象物体との距離検出との関係を示した図であり、図7は光軸調整及び走査幅調整の流れを説明するためのフローチャートである。   FIG. 6 is a diagram showing the relationship between the beam projection optical axis of the light projecting device and the distance detection between the target objects, and FIG. 7 is a flowchart for explaining the flow of optical axis adjustment and scanning width adjustment.

図6(a)に示されるように、投光装置20の前方で、所定距離Lとなる位置に反射平面70が設置される。先ず、ステップS41に於いて、レーザ制御部21により、角度オフセット指示が0度となるように、スキャナ制御部25から指示される。次に、ステップS42にて、レーザ制御部21により、スキャナ制御部25に対して、ビーム投射方向が走査角度中心、すなわち走査の原点方向となるように、角度指示が出される。すると、ステップS43にて、スキャナ制御部25により、ビーム角度指示に応じてレンズ位置目標が設定され、投射レンズ37の検出位置と目標位置とが一致するように、フィードバック制御により、投射レンズ37の位置が移動される。投射レンズ37が目標位置へ移動完了後、レーザ制御部21に完了信号が報告される。   As shown in FIG. 6A, the reflection plane 70 is installed at a position where the predetermined distance L is in front of the light projecting device 20. First, in step S41, the laser control unit 21 instructs the scanner control unit 25 so that the angle offset instruction is 0 degree. Next, in step S42, the laser control unit 21 issues an angle instruction to the scanner control unit 25 so that the beam projection direction is the scanning angle center, that is, the scanning origin direction. Then, in step S43, the lens position target is set according to the beam angle instruction by the scanner control unit 25, and the projection lens 37 is controlled by feedback control so that the detection position of the projection lens 37 matches the target position. The position is moved. After the projection lens 37 has been moved to the target position, a completion signal is reported to the laser controller 21.

こうして、レーザ制御部21がスキャナ制御部25から移動完了信号を受けると、ステップS44にて、レーザダイオード31からパルス状の光束(L1)が出力され、投射レンズ37を通じて、反射平面70へ投射光61が投射される。対象物体62により反射された反射光(光束)63は受光部27に入射される。   Thus, when the laser control unit 21 receives the movement completion signal from the scanner control unit 25, the pulsed light beam (L1) is output from the laser diode 31 in step S44, and the projection light is projected to the reflection plane 70 through the projection lens 37. 61 is projected. The reflected light (light beam) 63 reflected by the target object 62 is incident on the light receiving unit 27.

次いで、ステップS45にて、受光部27に入射された光束が、受光レンズ55を通じて、受光センサ56にて検出される。ステップS46では、レーザダイオード31が発光されてから反射光63が検出されるまでの時間差tdが測定されて、反射平面70までの距離Lが検出される。   Next, in step S <b> 45, the light beam incident on the light receiving unit 27 is detected by the light receiving sensor 56 through the light receiving lens 55. In step S46, the time difference td from when the laser diode 31 emits light until the reflected light 63 is detected is measured, and the distance L to the reflection plane 70 is detected.

投射光軸が正しく調整されている時、レーザダイオード31が発光されてから、受光部27が反射光63を検出するまでの時間差tdは、物体間距離L、光束移動速度Vpとすると、下記(1)式で算出される。
td=2L/Vp …(1)
したがって、上記時間差tdを検出することにより、物体間距離Lが算出される。
When the projection optical axis is correctly adjusted, the time difference td from when the laser diode 31 emits light until the light receiving unit 27 detects the reflected light 63 is given by the following (inter-object distance L and luminous flux moving speed Vp) ( 1) Calculated by the equation.
td = 2L / Vp (1)
Therefore, the inter-object distance L is calculated by detecting the time difference td.

投射光軸ずれの角度をδとすると、投射光61と反射光63を加算した光路長は2L/cosδとなる。このときの時間差をtd′とすると、上記tdに対して(1/cosδ)倍に延長され、結果として、物体距離を測定すると、理論値より(1/cosδ)倍に検出される。このときの距離測定結果をL′とすると、下記(2)式の関係となる。
tan2 δ=1+(L′/L) …(2)
したがって、ステップS47に於いて、検出距離の実測値(距離測定結果)L′と理論値Lとのずれから、投射光軸ずれ量δを算出する。
If the angle of the projection optical axis deviation is δ, the optical path length obtained by adding the projection light 61 and the reflected light 63 is 2 L / cos δ. Assuming that the time difference at this time is td ′, the time difference is extended to (1 / cos δ) times the above td. As a result, when the object distance is measured, it is detected (1 / cos δ) times the theoretical value. When the distance measurement result at this time is L ′, the following equation (2) is established.
tan 2 δ = 1 + (L ′ / L) (2)
Accordingly, in step S47, the projection optical axis deviation amount δ is calculated from the deviation between the actual measurement value (distance measurement result) L ′ of the detection distance and the theoretical value L.

次に、投射光軸ずれ量δの方向を、検出するため、以下の処理が行われる。すなわち、ステップS48にて、レーザ制御部21からスキャナ制御部25に、投射角度がθ1となるように走査角度指示がなされる。次いで、ステップS49にて、上記投射角度指示に応じて、投射レンズ37の位置が移動される。そして、ステップS50にて、レーザダイオード31が発光されて、図6(b)に示されるように、反射平面70に光束が投射される。ステップS51では、受光部27により、反射平面70から反射された光が検出される。   Next, in order to detect the direction of the projection optical axis deviation amount δ, the following processing is performed. That is, in step S48, the scanning angle is instructed from the laser control unit 21 to the scanner control unit 25 so that the projection angle becomes θ1. Next, in step S49, the position of the projection lens 37 is moved in accordance with the projection angle instruction. In step S50, the laser diode 31 emits light, and a light beam is projected onto the reflection plane 70 as shown in FIG. 6B. In step S <b> 51, the light reflected from the reflection plane 70 is detected by the light receiving unit 27.

ステップS52に於いては、レーザダイオード31が発光されてから受光部27で検出されるまでの時間差が計測され、距離が検出される。ここで検出された距離がL1とされる。   In step S52, the time difference from when the laser diode 31 emits light until it is detected by the light receiving unit 27 is measured, and the distance is detected. The distance detected here is L1.

ここで、物体間距離をL、光束移動速度をvpとすると、検出時間は下記(3)式で表される。
td=2L/(vp・cosθ1) …(3)
検出距離L1は、検出時間よりL1=L/cosθ1と検出される。
Here, when the distance between the objects is L and the light flux moving speed is vp, the detection time is expressed by the following equation (3).
td = 2L / (vp · cos θ1) (3)
The detection distance L1 is detected as L1 = L / cos θ1 from the detection time.

また、検出距離L1と投射方向θ1の関係は、下記(4)式で表される。これにより、ステップS53にて投射方向が算出される。
cosθ1=L/L1 …(4)
角度指示をθ1としたときに、実際に検出される角度をθ1′とする。
The relationship between the detection distance L1 and the projection direction θ1 is expressed by the following equation (4). Thereby, a projection direction is calculated in step S53.
cos θ1 = L / L1 (4)
When the angle instruction is θ1, the actually detected angle is θ1 ′.

同様に、θ1とは光軸中心に対し絶対値は同じで、方向が逆方向となる角度指示θ2が与えられ、距離L2が検出されて、検出距離から実際の投射角度をθ2′が検出される。これらはステップS54〜S59の処理動作により行われるが、θ2、θ2′、L2がそれぞれθ1、θ1′、L1に代わる以外は上述したステップS48〜S53と同じであるので、それぞれ対応するステップ番号を参照するものとして、ここでは説明を省略する。   Similarly, θ1 has the same absolute value with respect to the center of the optical axis and is given an angle instruction θ2 in which the direction is opposite, the distance L2 is detected, and the actual projection angle θ2 ′ is detected from the detected distance. The These are performed by the processing operations of steps S54 to S59, but are the same as steps S48 to S53 described above except that θ2, θ2 ′, and L2 are replaced with θ1, θ1 ′, and L1, respectively. As a reference, the description is omitted here.

ステップS60では、上述した処理によって算出された、実際の投射角度θ1′、θ2′の大きさが比較される。そして、ステップS61にて、θ1′、θ2′の絶対値が大きい方の角度指示の方向が検出され、続くステップS62にて、光軸中心ずれδの方向がオフセット調整値指示として計算され、その調整値(オフセット調整値)がメモリ53に保持される。   In step S60, the actual projection angles θ1 ′ and θ2 ′ calculated by the above-described processing are compared. In step S61, the direction of the angle instruction with the larger absolute value of θ1 ′ and θ2 ′ is detected, and in the subsequent step S62, the direction of the optical axis deviation δ is calculated as an offset adjustment value instruction. The adjustment value (offset adjustment value) is held in the memory 53.

次に、ステップS63にて、上記θ1、θ2、θ1′、θ2′より、下記(5)式に従って、走査幅指示に対する実際の走査振幅の比が算出される。
走査振幅ずれの比率k=(θ1′−θ2′)/(θ1−θ2) …(5)
スキャナ制御部25では、目標指示角度に対して1/kとなる係数が乗算されることにより、走査指示角度振り幅に対する、実際の投射角度振り幅を一致させるように調整が可能である。ステップS64では、こうして算出された走査幅の比kが、走査ふり幅調整値としてメモリ53に保持される。
Next, in step S63, the ratio of the actual scanning amplitude to the scanning width instruction is calculated from the above θ1, θ2, θ1 ′, θ2 ′ according to the following equation (5).
Scanning amplitude deviation ratio k = (θ1′−θ2 ′) / (θ1−θ2) (5)
The scanner control unit 25 can perform adjustment so that the actual projection angle amplitude matches the scan indication angle amplitude by multiplying the target indication angle by a factor of 1 / k. In step S64, the scanning width ratio k calculated in this way is held in the memory 53 as a scanning head width adjustment value.

そして、このメモリ53に保持されたオフセット調整値と走査ふり幅調整値に基づいて、投射光61の投光方向を補正することにより、レーザダイオード31の投光方向を常に所望の方向に合わせることが可能となる。   Then, the projection direction of the projection light 61 is corrected based on the offset adjustment value and the scan deflection width adjustment value held in the memory 53, so that the projection direction of the laser diode 31 is always adjusted to a desired direction. Is possible.

以上のように本実施形態によれば、投光装置を分解することなく装置を取り付けた状態で、出射光軸のふり幅と、光軸調整を容易かつ、アクチュエータ感度特性の温度変化、および経時変化による、調整ずれの影響のない、高い調整精度を得ることができる投光装置を提供することが可能になる。   As described above, according to the present embodiment, in the state in which the projector is mounted without disassembling the projection optical axis, the swing width of the outgoing optical axis, the optical axis adjustment is easy, the temperature change of the actuator sensitivity characteristic, and the time It is possible to provide a light projecting device that can obtain high adjustment accuracy without being affected by adjustment deviation due to change.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形実施が可能であるのは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

更に、上述した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件の適当な組合せにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成も発明として抽出され得る。   Further, the above-described embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the column of the effect of the invention Can be extracted as an invention.

尚、本発明の上記実施形態によれば、以下の如き構成を得ることができる。   In addition, according to the said embodiment of this invention, the following structures can be obtained.

すなわち、
(1) 光源と、
上記光源からの発光量を制御する手段と、
上下左右に移動可能な光学素子と、
上記光学素子を駆動させる手段と、
上記光学素子の位置を検出する位置検出手段と、
上記光学素子の移動量を設定する手段と、
上記位置検出手段の検出結果から、上記光学素子位置をフィードバック制御する手段と、
上記光学素子の位置を調整及び補正する手段と、
移動位置調整値の記憶手段と、
を備えたことを特徴とする投光装置。
That is,
(1) a light source;
Means for controlling the amount of light emitted from the light source;
An optical element movable up and down, left and right;
Means for driving the optical element;
Position detecting means for detecting the position of the optical element;
Means for setting the amount of movement of the optical element;
Means for feedback controlling the position of the optical element from the detection result of the position detection means;
Means for adjusting and correcting the position of the optical element;
Storage means for moving position adjustment values;
A light projecting device comprising:

(2) 移動角度設定手段からの角度オフセット指示値を設定することで、上記光学素子の移動量設定値に上記角度オフセット量に相当する移動量を加算した値を設定し、投射光軸の走査角度中心をオフセットさせ、投射角度の走査角度中心を調整することができ、移動角度ふり幅の指示と、実際の投射ビーム角度のずれによる、走査角度幅のずれに対して光学素子の移動量を補正することで、水平及び垂直方向の投射ビーム角度範囲を調整することができることと、上記それぞれの調整結果を保持することを特徴とする上記(1)に記載の投光装置。   (2) By setting an angle offset instruction value from the movement angle setting means, a value obtained by adding a movement amount corresponding to the angle offset amount to the movement amount setting value of the optical element is set, and scanning of the projection optical axis is performed. It is possible to adjust the scanning angle center of the projection angle by offsetting the angle center, and the amount of movement of the optical element with respect to the deviation of the scanning angle width due to the indication of the moving angle swing width and the deviation of the actual projection beam angle The projection device according to (1), wherein the projection beam angle range in the horizontal and vertical directions can be adjusted by correction, and the respective adjustment results are held.

(3) 投射光軸に対応した光学素子位置を検出する手段として、第1の光源から発する光線から、光学素子と連動した導光素子(スリット)を透過した光スポット位置を、位置検出素子によって検出することにより、常時光学素子の位置を検出できることを特徴とする上記(1)に記載の投光装置。   (3) As a means for detecting the position of the optical element corresponding to the projection optical axis, the position of the light spot transmitted from the light beam emitted from the first light source through the light guide element (slit) linked to the optical element is detected by the position detection element. The light projecting device according to (1) above, wherein the position of the optical element can always be detected by detecting.

上記(1)の投光装置に於いて、投射光軸の方向は、上記光学素子の移動位置によって変化させ、上記移動量を、目標となる位置に移動させ、停止制御させることにより、任意の角度に投射角度を変化させる。上記光学素子位置の上下左右方向の移動量設定値を、定時間毎に変化させて指示し、目標位置指示に停止させたときに、光源からのビーム発射と、反射光の検出を行うことで、投射光を任意角度で、走査できるようにしたものである。   In the light projecting device of the above (1), the direction of the projection optical axis is changed depending on the movement position of the optical element, the movement amount is moved to a target position, and stop control is performed. Change the projection angle to an angle. By instructing the set amount of movement of the optical element position in the up / down / left / right directions at regular intervals and stopping at the target position instruction, by emitting a beam from the light source and detecting reflected light The projection light can be scanned at an arbitrary angle.

上記投光装置では、位置検出手段の出力オフセット、検出感度誤差によって、制御する光学素子の位置と、目標となる位置指示値にずれを生じ、その結果、投射角度指示と、実際に投射される光線の方向のずれを生じる場合があるが、投射角度指示と、実際の投射方向のずれを検出し、ずれ量から補正量を算出し、補正量を記憶手段に保持することができる。また、上記光学素子を位置制御する際、補正量を記憶手段から参照し、制御指示値に補正を与えることによって、投射角度指示と、実際の投射角度とのずれを、解消することができる。   In the above projector, the position of the optical element to be controlled and the target position indication value are shifted due to the output offset and detection sensitivity error of the position detection means. As a result, the projection angle instruction and the actual projection are actually projected. Although a deviation in the direction of the light beam may occur, it is possible to detect a projection angle instruction and a deviation in the actual projection direction, calculate a correction amount from the deviation amount, and hold the correction amount in the storage unit. Further, when controlling the position of the optical element, by referring to the correction amount from the storage means and correcting the control instruction value, the deviation between the projection angle instruction and the actual projection angle can be eliminated.

上記投光装置にあっては、光源から発生する光束は、光学素子に入射し、透過した光を投射光として対象物体に向けて投射する。上記光学素子は、入射光の中心位置と、光学素子の中心位置の位置ずれ量に応じて入射光を屈折させ、反射光として投射する。投射光は、光学素子の入射光の進行方向に対して、屈折角度分ずれた方向に投射される。上記屈折角は、入射光の中心位置と、光学素子の中心位置の位置ずれ量が大きくなるに従って、増大する。光学素子を上下方向、左右方向に移動することにより、投射光の進行方向を、水平方向、垂直方向共に、目標となる方向へ向けることができる。   In the above projector, the light beam generated from the light source enters the optical element and projects the transmitted light toward the target object as projection light. The optical element refracts incident light in accordance with the center position of the incident light and the amount of positional deviation between the center positions of the optical elements and projects it as reflected light. The projected light is projected in a direction shifted by the refraction angle with respect to the traveling direction of the incident light of the optical element. The refraction angle increases as the amount of positional deviation between the center position of incident light and the center position of the optical element increases. By moving the optical element in the vertical direction and the horizontal direction, the traveling direction of the projection light can be directed to the target direction in both the horizontal direction and the vertical direction.

移動位置検出部は、第1の光源からの光線を光学素子と連動する導光素子に入射させ、透過光のスポット中心位置を位置検出素子によって検出して、光学素子の移動量を求める。制御手段は、上記検出された位置と、目標移動値との偏差に対し、偏差を補正する方向へ、光学素子を移動させるようにフィードバック制御を行う。制御手段は、目標位置とのずれが所定の範囲に入ると、上記光学素子位置を保持するように動作しつつ、光レーダ制御部へ移動完了の通知を行う。光レーダ制御部は、上記通知を受け、対象物体に向けてビーム光を発光し物体からの反射光を検出し、投射から受光までの時間差を計測することにより、物体までの距離を検出する。   The movement position detection unit causes the light beam from the first light source to enter the light guide element that is linked to the optical element, detects the spot center position of the transmitted light by the position detection element, and obtains the movement amount of the optical element. The control means performs feedback control so as to move the optical element in the direction of correcting the deviation with respect to the deviation between the detected position and the target movement value. When the deviation from the target position falls within a predetermined range, the control means notifies the optical radar control unit of the completion of movement while operating to hold the optical element position. Upon receiving the above notification, the optical radar control unit detects the distance to the object by emitting the beam light toward the target object, detecting the reflected light from the object, and measuring the time difference from the projection to the light reception.

次に、投射ビーム光軸の調整方法を説明する。   Next, a method for adjusting the projection beam optical axis will be described.

光軸ずれの原因には、角度によらず定量の偏差を発生するオフセット誤差と、角度指示値に略比例して増加(減少)する振幅依存誤差の2通りが存在する。   There are two causes of the optical axis deviation: an offset error that generates a quantitative deviation regardless of the angle, and an amplitude-dependent error that increases (decreases) substantially in proportion to the angle instruction value.

オフセット誤差の補正値を決める方法は次の通りである。投射ビームの制御手段に対して投射ビームの投光方向が光軸中心となるような指示を与えたときの、実際の投射ビームの投光方向と光軸中心とのずれ量を計測し、このずれが無くなるように光学素子のオフセットを調整する。このオフセット調整値をオフセット誤差補正値として記憶手段に記録しておく。   The method for determining the offset error correction value is as follows. When an instruction is given to the projection beam control means so that the projection direction of the projection beam is the optical axis center, the amount of deviation between the actual projection beam projection direction and the optical axis center is measured. The offset of the optical element is adjusted so that there is no deviation. This offset adjustment value is recorded in the storage means as an offset error correction value.

振幅依存誤差の補正値を決める方法は次の通りである。投射ビームの走査範囲の始めとなる角度を投射角度指示として制御手段に与えた時の、実際の投射ビームの投光角度を検出する。同様に、投射ビームの走査範囲の終わりとなる角度を投射角度指示として制御手段に与えた時の、実際の投射ビームの投光角度を検出する。これより、投射ビームの走査範囲の始めから終わりについて、制御手段に与えたビーム走査範囲の角度幅と、実際の投射ビームの投光角度幅を検出する。この角度幅が一致するように、光学素子の振り幅を調整する。この振り幅調整値を振幅依存誤差補正値として記憶手段に記録しておく。上記のオフセット誤差補正値と振幅依存誤差補正値を制御手段に与え、投射ビームの投光方向を補正することにより、投射ビームの投光方向を常に所望の方向に合わせることが可能となる。   The method for determining the correction value for the amplitude-dependent error is as follows. The actual projection beam projection angle is detected when the angle at the beginning of the scanning range of the projection beam is given to the control means as the projection angle instruction. Similarly, the projection angle of the actual projection beam when the angle at the end of the scanning range of the projection beam is given to the control means as the projection angle instruction is detected. Thus, the angle width of the beam scanning range given to the control means and the actual projection beam projection angle width are detected from the beginning to the end of the scanning range of the projection beam. The swing width of the optical element is adjusted so that the angular widths match. This amplitude adjustment value is recorded in the storage means as an amplitude-dependent error correction value. By supplying the offset error correction value and the amplitude-dependent error correction value to the control unit and correcting the projection direction of the projection beam, the projection direction of the projection beam can always be adjusted to a desired direction.

本発明の一実施形態を示すもので、本発明の投光装置が適用されたレーザレーダの全体構成を示すブロック構成図である。1, showing an embodiment of the present invention, is a block configuration diagram showing an overall configuration of a laser radar to which a light projecting device of the present invention is applied. 投射レンズ37の移動方向と投射光61の方向との関係について説明する図である。It is a figure explaining the relationship between the moving direction of the projection lens 37, and the direction of the projection light 61. FIG. 本発明の一実施形態に於けるレーザレーダの投射レンズ移動制御動作と光源発光制御タイミングを説明するためのタイミングチャートである。It is a timing chart for demonstrating the projection lens movement control operation | movement of a laser radar and light source light emission control timing in one Embodiment of this invention. 本発明の一実施形態のレーザレーダが投射光軸を走査する処理動作について説明するためのフローチャートである。It is a flowchart for demonstrating the processing operation which the laser radar of one Embodiment of this invention scans a projection optical axis. 図4のフローチャートに於けるステップS12のサブルーチン「追従制御」の動作を説明するためのフローチャートである。6 is a flowchart for explaining an operation of a subroutine “follow-up control” in step S12 in the flowchart of FIG. 4. 投光装置のビーム投射光軸と対象物体との距離検出との関係を示した図である。It is the figure which showed the relationship between the beam projection optical axis of a light projector, and the distance detection of a target object. 光軸調整及び走査幅調整の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of optical axis adjustment and scanning width adjustment. 従来技術の光レーダ装置の構成を示したブロック図である。It is the block diagram which showed the structure of the optical radar apparatus of a prior art.

符号の説明Explanation of symbols

21…レーザ制御部、23…レーザ発光装置、24…スキャナ部、25…スキャナ制御部、27…受光部、30…レンズホルダ、31…レーザダイオード、32、33…リレーレンズ、35…ワイヤバネ、36…支持部材、37…投射レンズ、38a、38b…従動部材、39a、39b…スリット、40…アクチュエータ、41a、41b…光源、43a、43b…位置検出器(PSD)、45…レンズ位置指示演算部、46…位置偏差検出部、47…判定部、48…制御演算部、50…リニアモータドライバ、51…位置センサ演算部、53…メモリ、61…投射光、62…対象物体、63…反射光。   DESCRIPTION OF SYMBOLS 21 ... Laser control part, 23 ... Laser light-emitting device, 24 ... Scanner part, 25 ... Scanner control part, 27 ... Light-receiving part, 30 ... Lens holder, 31 ... Laser diode, 32, 33 ... Relay lens, 35 ... Wire spring, 36 ... support member, 37 ... projection lens, 38a, 38b ... driven member, 39a, 39b ... slit, 40 ... actuator, 41a, 41b ... light source, 43a, 43b ... position detector (PSD), 45 ... lens position indication calculation unit , 46 ... Position deviation detection unit, 47 ... Determination unit, 48 ... Control calculation unit, 50 ... Linear motor driver, 51 ... Position sensor calculation unit, 53 ... Memory, 61 ... Projected light, 62 ... Target object, 63 ... Reflected light .

Claims (7)

第1の光源から放射される光線を走査し、物体からの反射光を受光することで物体を検出する光レーダの投光装置に於いて、
上記第1の光源が放射した光線の投射方向を設定する光学素子と、
上記光学素子の位置を検出する位置検出器と、
上記光線の投射方向を上記光学素子の位置に変換する変換手段と、
上記光学素子を移動させるアクチュエータと、
上記変換手段により得られた上記光学素子の目標位置と、上記位置検出器で検出された上記光学素子の検出位置を基に、上記アクチュエータの駆動を制御する駆動制御手段と、
上記光線の特定の目標投射方向に対する当該投光装置によって光線が投射される方向のずれを補正する調整値を記憶する調整値記憶手段と、
を具備し、
上記変換手段は、投射方向を上記補正値で補正して上記光学素子の位置に変換することを特徴とする投光装置。
In an optical radar projector that detects an object by scanning a light beam emitted from a first light source and receiving reflected light from the object,
An optical element for setting a projection direction of a light beam emitted by the first light source;
A position detector for detecting the position of the optical element;
Conversion means for converting the projection direction of the light beam into the position of the optical element;
An actuator for moving the optical element;
Drive control means for controlling the drive of the actuator based on the target position of the optical element obtained by the conversion means and the detection position of the optical element detected by the position detector;
Adjustment value storage means for storing an adjustment value for correcting a deviation of the direction in which the light is projected by the light projecting device with respect to the specific target projection direction of the light;
Comprising
The light-projecting device, wherein the converting means corrects the projection direction with the correction value and converts it into the position of the optical element.
上記光線の特定目標方向は、原点及び最大の振り幅に対応する角度であることを特徴とする請求項1に記載の投光装置。   The light projecting device according to claim 1, wherein the specific target direction of the light beam is an angle corresponding to an origin and a maximum swing width. 上記位置検出手段は、第2の光源と、位置検出素子と、上記光学素子と連動して移動するスリットとを有し、上記光学素子位置の検出出力を得ることを特徴とする請求項1に記載の投光装置。   2. The position detection means includes a second light source, a position detection element, and a slit that moves in conjunction with the optical element, and obtains a detection output of the optical element position. The light projector described. 所定の光線を放射する第1の光源と、
上記第1の光源から放射された光線の投射方向を設定するための移動可能な光学素子と、
上記光学素子を、上記第1の光源の光軸方向に対して垂直な方向に2次元的に移動させるアクチュエータと、
上記光学素子の位置を検出する位置検出手段と、
上記光線の投射方向に基づいて上記光学素子を移動させるべく目標位置を算出する算出手段と、
上記光線の特定の目標投射方向に対する、上記第1の光源より放射される光線の投射方向のずれを、上記算出手段により算出された上記光学素子の目標位置と、上記位置検出器で検出された上記光学素子の検出位置とに基づいて補正するべく上記アクチュエータの駆動を制御する駆動制御手段と、
を具備することを特徴とする投光装置。
A first light source that emits a predetermined light beam;
A movable optical element for setting a projection direction of a light beam emitted from the first light source;
An actuator for two-dimensionally moving the optical element in a direction perpendicular to the optical axis direction of the first light source;
Position detecting means for detecting the position of the optical element;
Calculating means for calculating a target position to move the optical element based on the projection direction of the light beam;
The deviation of the projection direction of the light beam emitted from the first light source with respect to the specific target projection direction of the light beam is detected by the target position of the optical element calculated by the calculation means and the position detector. Drive control means for controlling the drive of the actuator to correct based on the detection position of the optical element;
A light projection device comprising:
上記光線の特定の目標投射方向に対する、上記第1の光源より放射される光線の放射方向のずれを調整値として記憶する調整値記憶手段を更に具備し、
上記駆動制御手段は、上記算出手段により算出された上記光学素子の目標位置と、上記位置検出器で検出された上記光学素子の検出位置と、上記調整値記憶手段に記憶された調整値に基づいて、上記アクチュエータの駆動を制御することを特徴とする請求項4に記載の投光装置。
Adjustment value storage means for storing, as an adjustment value, a shift in the radiation direction of the light beam emitted from the first light source with respect to a specific target projection direction of the light beam;
The drive control means is based on the target position of the optical element calculated by the calculation means, the detection position of the optical element detected by the position detector, and the adjustment value stored in the adjustment value storage means. The projector according to claim 4, wherein driving of the actuator is controlled.
上記光線の特定の目標投射方向は、走査の原点及び最大の振り幅に対応する角度であることを特徴とする請求項4に記載の投光装置。   The light projection device according to claim 4, wherein the specific target projection direction of the light beam is an angle corresponding to an origin of scanning and a maximum swing width. 上記位置検出手段は、上記第1の光源とは異なる光線を放射する第2の光源と、位置検出素子と、上記光学素子の移動と連動して移動するスリットと、上記第2の光源から放射された光線を上記スリットを介して受光して上記光学素子の位置を検出する位置検出素子と、を備えることを特徴とする請求項4に記載の投光装置。   The position detection means includes a second light source that emits a light beam different from the first light source, a position detection element, a slit that moves in conjunction with the movement of the optical element, and radiation from the second light source. The light projecting device according to claim 4, further comprising: a position detection element that receives the received light beam through the slit and detects a position of the optical element.
JP2007028271A 2007-02-07 2007-02-07 Light projection device Pending JP2008191099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028271A JP2008191099A (en) 2007-02-07 2007-02-07 Light projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028271A JP2008191099A (en) 2007-02-07 2007-02-07 Light projection device

Publications (1)

Publication Number Publication Date
JP2008191099A true JP2008191099A (en) 2008-08-21

Family

ID=39751324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028271A Pending JP2008191099A (en) 2007-02-07 2007-02-07 Light projection device

Country Status (1)

Country Link
JP (1) JP2008191099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020978A (en) * 2012-07-20 2014-02-03 Fujitsu Ltd Irradiation device, ranging device, and calibration program and calibration method of irradiation device
WO2019031328A1 (en) * 2017-08-07 2019-02-14 パイオニア株式会社 Optical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798381A (en) * 1993-08-06 1995-04-11 Omron Corp Scanning type distance measuring device, vehicle mounted with it, and light detecting device
JPH08313302A (en) * 1995-05-16 1996-11-29 Omron Corp Position detecting device and on-vehicle laser rader
JP2002098531A (en) * 2000-09-21 2002-04-05 Toshiba Corp Optical axis correcting system, its measuring device of optical axis deviation, and lightwave collimator system having optical axis correcting function
JP2006258604A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Detection device
JP2006349694A (en) * 2006-08-10 2006-12-28 Omron Corp Object detection device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798381A (en) * 1993-08-06 1995-04-11 Omron Corp Scanning type distance measuring device, vehicle mounted with it, and light detecting device
JPH08313302A (en) * 1995-05-16 1996-11-29 Omron Corp Position detecting device and on-vehicle laser rader
JP2002098531A (en) * 2000-09-21 2002-04-05 Toshiba Corp Optical axis correcting system, its measuring device of optical axis deviation, and lightwave collimator system having optical axis correcting function
JP2006258604A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Detection device
JP2006349694A (en) * 2006-08-10 2006-12-28 Omron Corp Object detection device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020978A (en) * 2012-07-20 2014-02-03 Fujitsu Ltd Irradiation device, ranging device, and calibration program and calibration method of irradiation device
WO2019031328A1 (en) * 2017-08-07 2019-02-14 パイオニア株式会社 Optical device
JPWO2019031328A1 (en) * 2017-08-07 2020-08-06 パイオニア株式会社 Optical device
US11703571B2 (en) 2017-08-07 2023-07-18 Pioneer Corporation Optical device

Similar Documents

Publication Publication Date Title
JP6805504B2 (en) Distance measuring device, mobile device and distance measuring method
CN107957237B (en) Laser projector with flash alignment
JP2004125739A (en) Object detection system and method
JP4345783B2 (en) Object detection apparatus and method
JP2004157044A (en) Scanning type laser radar
US20090051997A1 (en) Laser radar and beam irradiation apparatus therefor
JP2011053137A (en) Optical range finder
JP2015132599A (en) Photoelectric sensor and method of detecting object in monitoring area
JP2009014698A (en) Beam irradiation device and laser radar
JP4484835B2 (en) Beam irradiation device
JP2022159464A (en) Ranging device
WO2019031328A1 (en) Optical device
CN112213853A (en) Optical scanning device, object detection device, optical scanning method, object detection method, and program
JP4890928B2 (en) Radar equipment
JP2008191099A (en) Light projection device
JP2007003333A (en) Distance measuring device
JP2008298652A (en) Beam irradiation device and laser radar
JP2008191098A (en) Light projection device
JP2006214850A (en) Laser surveying instrument
JPWO2019176749A1 (en) Scanning device and measuring device
US20210382177A1 (en) System for monitoring surroundings of vehicle
JP2010175856A (en) Beam irradiation device and laser radar system
JP2004157065A (en) Radar device
KR20220156123A (en) Distance Measuring Device for Correcting Lens Distortion and Method for Controlling the same
WO2019176583A1 (en) Light detection device, light detection method, and lidar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101