JP2008216114A - 圧力センサ - Google Patents

圧力センサ Download PDF

Info

Publication number
JP2008216114A
JP2008216114A JP2007055501A JP2007055501A JP2008216114A JP 2008216114 A JP2008216114 A JP 2008216114A JP 2007055501 A JP2007055501 A JP 2007055501A JP 2007055501 A JP2007055501 A JP 2007055501A JP 2008216114 A JP2008216114 A JP 2008216114A
Authority
JP
Japan
Prior art keywords
pressure
sensor chip
introduction port
detected
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055501A
Other languages
English (en)
Inventor
Yoshifumi Watanabe
善文 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007055501A priority Critical patent/JP2008216114A/ja
Publication of JP2008216114A publication Critical patent/JP2008216114A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】差圧だけでなく、絶対圧も検出することができる圧力センサを提供する。
【解決手段】第1センサチップ30で検出された大気圧と第1圧力導入ポート11に導入された圧力との差圧である第1差圧と、大気圧と第2圧力導入ポート12に導入された圧力との差圧である第2差圧との差分を取得することで、各圧力導入ポート11、12に導入される各圧力の差圧を取得し、第1差圧と大気圧と真空圧との差圧である第3差圧との差分を取得することで第1圧力導入ポート11に導入される絶対圧を取得する。
【選択図】図1

Description

本発明は、センシング部の裏面で受圧する圧力センサに関する。
近年では、車両から排出されるNO(窒素酸化物)やPM(粒子状物質)を低減させるDPFシステムが普及し始めている。DPFは、PMを排出するディーゼル車に装備され、エンジンの燃焼室から排出された排気ガスに含まれるPMを捕集して大気に放出しないようにするフィルタである。
図3は、上記DPFシステムのブロック図である。この図に示されるように、DPFシステムでは、エンジン210から排出された排気ガスはDPF220を介して浄化され、マフラー230から大気に排出されるようになっている。また、当該DPFシステムには、DPF220を通過する排気ガスの通過前と通過後との差圧を検出することでDPF220の目詰まりの検出に用いられる差圧センサ240が備えられている。このようなDPFシステムは図示しないECUによって制御される。
図4は、従来の差圧センサ240の概略断面図である。この図に示されるように、差圧センサ240は、ケース310と、ケース310に収納され、演算を行う回路を備えた基板320と、2つのセンサチップ330、340とを備えて構成されている。各センサチップ330、340は、基板320上に接着剤70で固定された台座350、360上にそれぞれ設置されている。
各センサチップ330、340はそれぞれ裏面受圧方式で圧力検出を行うようになっているため、各センサチップ330、340の各ダイヤフラム331、341の裏面側が台座350、360に対向するように台座350、360上にそれぞれ固定されている。そして、台座350、360および基板320には、各圧力導入ポート311、312と繋がる貫通した貫通孔351、361および圧力導入孔321、322がそれぞれ設けられている。そして、各センサチップ330、340はケース310に備えられた図示しない電気回路にボンディングワイヤ371、372で電気的に接続された状態になっている。
このような差圧センサ240では、各圧力導入ポート311、312の一方がDPF220の上流側、他方がDPF220の下流側にそれぞれ接続され、各圧力導入ポート311、312に導入された圧力がそれぞれ各センサチップ330、340にて検出され、基板20に備えられた回路で差圧が演算されて上記ECUに出力されるようになっている。
上記のような差圧センサ240を備えたDPFシステムにおいて、DPF220の目詰まりを正確に検出するためには、DPF220の上流側および下流側の差圧と、DPF220の上流側の絶対圧の両方が必要である。そこで、従来では、差圧センサ240からDPF前絶対差圧としての出力1とDPF前後差圧としての出力2との差圧を取得し、EUCにて差圧に大気圧とマフラー230の圧損とを足し合わせることでDPF220の上流側の絶対圧を推定していた。なお、マフラー230の圧損は一定値であり、大気圧のデータと共にECUに記憶されている。
しかしながら、上記従来の技術では、差圧センサ240にてDPF220の上流側と下流側との差圧を検出することはできるものの、DPF220の上流側の絶対圧については検出した差圧、大気圧、そしてマフラー230の圧損のパラメータから推定しなければならず、DPF220の上流側の絶対値を直接検出することできなかった。
本発明は、上記点に鑑み、差圧だけでなく、絶対圧も検出することができる圧力センサを提供することを目的とする。
上記目的を達成するため、本発明の第1の特徴では、前記回路チップ(60)は、前記第1センサチップ(30)で検出された基準圧力と第1圧力導入ポート(11)に導入された圧力との差圧である第1差圧と、基準圧力と第2圧力導入ポート(12)に導入された圧力との差圧である第2差圧との差分を取得することで、各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、第1差圧と基準圧力と真空圧との差圧である第3差圧との差分を取得することで第1圧力導入ポート(11)に導入される絶対圧を取得する。
このように、第1、第2センサチップ(30、40)で検出された第1、第2差圧の差分を取得することで、基準圧力を相殺することができ、ひいては各圧力導入ポート(11、12)に導入される各圧力の差圧を取得することができる。また、第1、第3センサチップ(30、50)で検出された第1、第3差圧の差分を取得することで、基準圧力を相殺することができ、真空圧に対する第1圧力導入ポート(11)に導入された圧力、すなわち第1圧力導入ポート(11)に導入された圧力の絶対圧を取得することができる。以上のようにして、1つの圧力センサで各圧力導入ポート(11、12)の導入される各圧力の差圧、第1圧力導入ポート(11)に導入される圧力の絶対圧をそれぞれ取得することができる。
この場合、回路チップ(60)は、第1センサチップ(30)で検出された第1差圧と第2センサチップ(40)で検出された第2差圧との差分を取得することで、各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、第2センサチップ(40)で検出された第2差圧と第3センサチップ(50)で検出された第3差圧との差分を取得することで第2圧力導入ポート(12)に導入される絶対圧を取得することができる。
また、回路チップ(60)は、第1センサチップ(30)で検出された第1差圧と第2センサチップ(40)で検出された第2差圧との差分を取得することで、各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、第1センサチップ(30)で検出された第1差圧と第3センサチップ(50)で検出された第3差圧との差分を取得することで第1圧力導入ポート(11)に導入される絶対圧を取得し、第2センサチップ(40)で検出された第2差圧と第3センサチップ(50)で検出された第3差圧との差分を取得することで第2圧力導入ポート(12)に導入される絶対圧を取得することができる。
さらに、回路チップ(60)は、第1センサチップ(30)で検出された第1差圧と第3センサチップ(50)で検出された第3差圧との差分を取得することで第1圧力導入ポート(11)に導入される絶対圧を取得し、第2センサチップ(40)で検出された第2差圧と第3センサチップ(50)で検出された第3差圧との差分を取得することで第2圧力導入ポート(12)に導入される絶対圧を取得することもできる。
本発明の第2の特徴では、前記回路チップ(60)は、第1圧力導入ポート(11)に導入される圧力と真空圧との差圧である第1差圧と第2圧力導入ポート(12)に導入される圧力と真空圧との差圧である第2差圧との差分を取得することで、各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、第1センサチップ(110)で検出された第1差圧を第1圧力導入ポート(11)に導入される絶対圧として取得する。
これにより、各センサチップ(110、120)にて各圧力導入ポート(11、12)に導入される圧力をそれぞれ検出することができる。したがって、各センサチップ(110、120)で検出された各圧力の差分を取得することで、各圧力導入ポート(11、12)に導入される各圧力の差圧を取得することができる。また、第1センサチップ(110)は第1圧力導入ポート(11)に導入される圧力そのものを検出しているので、第1圧力導入ポート(11)に導入される圧力の絶対圧を取得することができる。
この場合、回路チップ(60)は、第1センサチップ(110)で検出された第1差圧と第2センサチップ(120)で検出された第2差圧との差分を取得することで、各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、第2センサチップ(120)で検出された第2差圧を第2圧力導入ポート(12)に導入される絶対圧として取得することができる。
また、回路チップ(60)は、第1センサチップ(110)で検出された第1差圧と第2センサチップ(120)で検出された第2差圧との差分を取得することで、各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、第1センサチップ(110)で検出された第1差圧を第1圧力導入ポート(11)に導入される絶対圧として取得し、第2センサチップ(120)で検出された第2差圧を第2圧力導入ポート(12)に導入される絶対圧として取得することができる。
さらに、回路チップ(60)は、第1センサチップ(110)で検出された第1差圧を第1圧力導入ポート(11)に導入される絶対圧として取得し、第2センサチップ(120)で検出された第2差圧を第2圧力導入ポート(12)に導入される絶対圧として取得することもできる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
以下、本発明の第1実施形態について図を参照して説明する。以下では、図3、図4に示す構成要素と同一のものには、同一符号を記してある。
本実施形態で示される圧力センサは、図3に示されるようにエンジン210から排出される排気ガスを浄化するDPFシステムにおいて、フィルタとして機能するDPF220を通過する排気ガスの通過前と通過後との差圧およびDPF220の上流側の絶対圧を検出することでDPF220の目詰まりの診断する際に用いられるものである。
図1は、本発明の第1実施形態に係る圧力センサの概略断面図である。この図に示されるように、圧力センサは、ケース10と、基板20と、第1〜第3センサチップ30、40、50、回路チップ60とを備えて構成されている。
ケース10は、圧力センサの外形をなすものであり、例えばPPS(ポリフェニレンサルファイド)、PBT(ポリブチレンテレフタレート)やエポキシ樹脂等の樹脂材料を型成形してなるものである。このケース10内に基板20が収納され、当該基板20の一面側にセンサチップ30、40、50および回路チップ60が設置されている。
ケース10には、筒状の第1、第2圧力導入ポート11、12が備えられており、第1圧力導入ポート11に例えばDPF220の上流側の圧力が導入され、第2圧力導入ポート12に例えばDPF220の下流側の圧力が導入される。
各センサチップ30、40、50は、圧力を検出してその圧力に応じたレベルの電気信号を発生するものであり、ピエゾ抵抗効果を利用した周知構成のものである。各センサチップ30、40、50は、表面側に薄肉部であり歪み部であるダイヤフラム31、41、51を有し、裏面側にダイヤフラム31、41、51を構成するために異方性エッチング等により形成された凹部32、42、52をそれぞれ有している。これらダイヤフラム31、41、51に拡散抵抗などにより形成されたブリッジ回路などが形成されている。
各センサチップ30、40、50は、接着剤70で基板20の一面側に固定された台座81、82、83上に設置されている。この場合、各センサチップ30、40、50は、各ダイヤフラム裏面側が台座81、82、83上にそれぞれ固定される。
そして、各センサチップ30、40、50のうち第1、第2センサチップ30、40については、裏面受圧方式にて圧力が検出されるようになっている。具体的には、台座81、82および基板20のうち第1、第2センサチップ30、40のダイヤフラム裏面側が対向する場所にそれぞれ貫通した貫通孔81a、82aおよび圧力導入孔21、22が設けられている。
第1センサチップ30の凹部32に繋がる貫通孔81aおよび圧力導入孔21は、第1圧力導入ポート11に繋がり、第2センサチップ40の凹部42に繋がる貫通孔82aおよび圧力導入孔22は、第2圧力導入ポート12に繋がる。これにより、DPF220の上流側の圧力は第1センサチップ30にて検出され、DPF220の下流側の圧力は第2センサチップ40にて検出される。
より具体的には、第1、第2センサチップ30、40のダイヤフラム表面側には大気圧が印加され、ダイヤフラム裏面側に圧力媒体の圧力が印加されるため、第1、第2センサチップ30、40ではそれぞれ圧力媒体の圧力と大気圧との差圧が検出されることとなる。
また、第3センサチップ50では、大気圧が検出されるようになっている。具体的には、第3センサチップ50のダイヤフラム裏面側が台座83上に固定され、台座83によって密閉された第3センサチップ50の凹部52内が真空になっている。これにより、第3センサチップ50のダイヤフラム表面側には大気圧が印加され、ダイヤフラム裏面側には真空圧が印加されるため、第3センサチップ50では大気圧が検出されるようになっている。なお、この大気圧は、本発明の基準圧力に相当する。
回路チップ60は、ボンディングワイヤ91、92、93等を介して各センサチップ30、40、50から入力される電圧信号に基づいて、DPF220の上流側と下流側との差圧、DPF220の上流側の絶対圧を取得し、その差圧、絶対圧に相当する電圧信号を増幅して外部に出力するものである。回路チップ60で取得された電圧値は、例えば図示しないターミナルを介してケース10の外部に出力される。以上が、本実施形態に係る圧力センサの構成である。
なお、図示していないが、上記圧力センサは、排気ガスという腐食性の高い圧力媒体にさらされる厳しい環境に置かれるため、DPF220の上流側、下流側の圧力を検出する第1、第2センサチップ30、40の凹部32、42内に少なくとも耐食性の高いゲル部材が充填される。
次に、上記圧力センサが、図3に示されるDPFシステムにて使用される場合、DPF220の上流側と下流側との差圧、DPF220の上流側の絶対圧を検出する方法について説明する。上述のように、各センサチップ30、40、50で検出される物理量は圧力に応じたレベルの電圧信号であるが、以下では、各センサチップ30、40、50で検出された電圧信号によって得られる各圧力値を用いて説明する。
まず、DPF220の上流側の圧力をA、下流側の圧力をB、大気圧をC、真空圧をDと定義する。そして、第1センサチップ30のダイヤフラム31には表面側に大気圧Cが印加され、裏面側にDPF220の上流側の圧力Aが印加されるので、第1センサチップ30で検出される圧力は、
(1) 第1センサチップ30で検出される圧力=圧力A−圧力C
となる。なお、(1)式で得られる圧力は、本発明の第1差圧に相当する。
同様に、第2センサチップ40のダイヤフラム41には表面側に大気圧Cが印加され、裏面側にDPF220の下流側の圧力Bが印加されるので、第2センサチップ40で得られる圧力は、
(2) 第2センサチップ40で検出される圧力=圧力B−圧力C
となる。なお、(2)式で得られる圧力は、本発明の第2差圧に相当する。
また、第3センサチップ50のダイヤフラム51には表面側に大気圧Cが印加され、裏面側に真空圧Dが印加されるので、第3センサチップ50で得られる圧力は、
(3) 第3センサチップ50で検出される圧力=圧力D−圧力C
となる。なお、(3)式で得られる圧力は、本発明の第3差圧に相当する。
上記(1)〜(3)式で示される各圧力は、各圧力に相当する電圧信号が回路チップ60に入力されることで取得される。このようにして各センサチップ30、40、50で得られる各圧力に基づいて、DPF220の上流側と下流側との差圧、およびDPF220の上流側の絶対圧は回路チップ60にて以下のように演算される。
具体的には、DPF220の上流側と下流側との差圧は、
(4) 差圧=(1)−(2)=圧力A−圧力B
として得られる。また、DPF220の上流側の絶対圧は、
(5) 絶対圧=(1)−(3)=圧力A−圧力D
として得られる。圧力Dは真空圧であり、圧力は0であるので、(5)式による演算では圧力Aのみが得られる。
こうして得られた差圧、絶対圧は、それぞれ電圧信号として回路チップ60にて増幅処理等されてDPFシステムを制御するECUに出力されると共に、当該ECUにて圧力値に変換され、排気制御に利用される。
以上説明したように、本実施形態では、DPF220の上流側および下流側の各圧力を検出する第1、第2センサチップ30、40に加えて、大気圧を検出する第3センサチップ50を圧力センサに備えたことが特徴となっている。
これにより、第1、第2センサチップ30、40で検出された圧力値を減算し、大気圧を相殺することで、DPF220の上流側と下流側との差圧を取得することができる。さらに、第3センサチップ50にて検出される大気圧を用いて、第1センサチップ30にて検出されるDPF220の上流側の圧力と大気圧との差圧から大気圧を相殺させることで、DPF220の上流側の絶対圧を取得することができる。
このようにして、1つの圧力センサでDPF220の上流側と下流側との差圧、DPF220の上流側の絶対圧をそれぞれ取得することができる。
(第2実施形態)
本実施形態では、第1実施形態と異なる部分についてのみ説明する。上記第1実施形態では、各センサチップ30、40、50は裏面受圧方式にて圧力検出を行っているが、本実施形態ではダイヤフラム表面側で受圧することが特徴となっている。
図2は、本発明の第2実施形態に係る圧力センサの概略断面図である。本実施形態では、回路チップ60が基板20の表面側に設置されている。また、第4、第5センサチップ110、120が、接着剤70を介して基板20の裏面側に固定された台座131、132上に設置されている。なお、各センサチップ110、120は、本発明の第1、第2センサチップに相当する。
この場合、各センサチップ110、120の各ダイヤフラム111、121を構成する各凹部112、122内が真空となるように、各センサチップ110、120が台座131、132にそれぞれ固定されている。したがって、各センサチップ110、120は絶対圧を検出するセンサとして用いられる。また、各センサチップ110、120はボンディングワイヤ141、142で基板20に設けられた回路を介して回路チップ60に接続されている。
そして、基板20がケース10に収納されることで、各センサチップ110、120は各圧力導入ポート11、12内に配置される。すなわち、各センサチップ110、120はダイヤフラム111、121の表面側で受圧する。なお、各センサチップ110、120を腐食性の高い圧力媒体から保護するため、耐食性の高い図示しないゲル部材で各センサチップ110、120を被覆保護してある。以上が、本実施形態に係る圧力センサの構成である。
次に、上記圧力センサにてDPF220の上流側と下流側との差圧、DPF220の上流側の絶対圧を検出する方法について説明する。まず、DPF220の上流側の圧力をA、下流側の圧力をB、真空圧をDと定義する。そして、第4センサチップ110のダイヤフラム111には表面側にDPF220の上流側の圧力Aが印加され、裏面側に真空圧D印加されるので、第4センサチップ110で検出される圧力は、
(1) 第4センサチップ110で検出される圧力=圧力A−圧力D
となる。なお、(1)式で得られる圧力は、本発明の第1差圧に相当する。
同様に、第5センサチップ120のダイヤフラム121には表面側にDPF220の下流側の圧力Bが印加され、裏面側に真空圧Dが印加されるので、第5センサチップ120で得られる圧力は、
(2) 第5センサチップ120で検出される圧力=圧力B−圧力D
となる。なお、(2)式で得られる圧力は、本発明の第2差圧に相当する。
上記(1)、(2)式で示される各圧力に基づいて、DPF220の上流側と下流側との差圧、およびDPF220の上流側の絶対圧は回路チップ60にて以下のように演算される。すなわち、DPF220の上流側と下流側との差圧は、
(3) 差圧=(1)−(2)=圧力A−圧力B
として得られる。
また、DPF220の上流側の絶対圧は、
(4) 絶対圧=(1)=圧力A−圧力D
として得られる。圧力Dは真空圧であり、圧力は0であるので、第4センサチップ110で検出される圧力は、DPF220の上流側の絶対圧そのものとなる。こうして得られた差圧、絶対圧は、それぞれ電圧信号として回路チップ60にて増幅処理等されてDPFシステムを制御するECUに出力される。
以上説明したように、本実施形態では絶対圧を検出する2つのセンサチップ110、120にてDPF220の上流側、下流側の圧力を検出し、各圧力値を演算することでDPF220の上流側と下流側との差圧、DPF220の上流側の絶対圧を取得することが特徴となっている。
これにより、第4センサチップ110を差圧検出および絶対圧検出の両方に使用することができる。すなわち、第1実施形態の場合と比較して、圧力センサに備えるチップの数を減らすことができる。これに伴い、1つのセンサチップに関わる増幅用チップ等の数も減らすことができる。
(他の実施形態)
上記各実施形態では、各センサチップ30、40、50、110、120をケース10に収納するに際し、台座81、82、83、131、132や基板20を用いているが、これらを用いずにケース10に直接設置しても構わない。
すなわち、第1実施形態では、第1センサチップ30は、第1圧力導入ポート11に導入される圧力が当該第1センサチップ30の裏面側に印加されると共に表面側に大気圧が印加されるようにケース10に収納され、第2センサチップ40は、第2圧力導入ポート12に導入される圧力が当該第2センサチップ40の裏面側に印加されると共に表面側に大気圧が印加されるようにケース10に収納され、第3センサチップ50は、当該第3センサチップ50の裏面側に真空圧が印加されると共に表面側に大気圧が印加されるようにケース10に収納されていれば良い。
同様に、第2実施形態では、第4センサチップ110は、第1圧力導入ポート11に導入される圧力が当該第4センサチップ110の表面側に印加されると共に裏面側に真空圧が印加されるようにケース10に収納され、第5センサチップ120は、第2圧力導入ポート12に導入される圧力が当該第5センサチップ120の表面側に印加されると共に裏面側に真空圧が印加されるようにケース10に収納されていれば良い。
上記第1実施形態では、差圧や絶対圧を演算する回路チップ60が単独で設けられていたが、大気圧を検出するための第3センサチップ50に回路チップ60に備えられた演算・増幅回路を作り込むようにしても構わない。これにより、回路チップ60が不要となり、基板20に搭載するチップの数を減らすことができる。
上記第1実施形態では、各センサチップ30、40、50と回路チップ60とを基板20上の回路を介して電気的に接続していたが、各センサチップ30、40、50と回路チップ60とをボンディングワイヤ91、92、93で直接接続することもできる。なお、この場合、第3センサチップ50については、ボンディングワイヤ93で回路チップ60に直接接続できる場所に配置させることが好ましい。
上記第2実施形態では、第4センサチップ110でDPF220の上流側の絶対圧を取得していたが、第5センサチップ120でDPF220の下流側の絶対圧を取得することもできる。
例えば、DPF220の上流側の圧力を基板20の裏面側に設置された第4センサチップ110で検出し、DPF220の下流側の圧力を基板20の表面側に設置された裏面受圧方式の第2センサチップ40で検出するようにしても構わない。もちろん、DPF220の上流側を裏面受圧方式で圧力検出し、下流側を表面受圧によって圧力検出しても良い。
上記第1実施形態では、差圧と第1圧力導入ポートに導入される圧力媒体の絶対圧を取得していたが、回路チップ60は、第2センサチップ40で検出された第2差圧と第3センサチップ50で検出された第3差圧との差分を取得することで第2圧力導入ポート22に導入される絶対圧を取得するようにしても構わない。また、回路チップ60は、各圧力導入ポート11、12に導入される各圧力の差圧、第1圧力導入ポート11に導入される絶対圧、第2圧力導入ポート22に導入される絶対圧を取得するようにしても構わない。さらに、回路チップ60は、各圧力導入ポート11、12に導入される各絶対圧をそれぞれ取得するようにしても構わない。
第2実施形態についても同様に、回路チップ60は、第2圧力導入ポート12に導入される絶対圧を取得するようにしても構わない。また、回路チップ60は、第1センサチップ110で検出された第1差圧を第1圧力導入ポート11に導入される絶対圧として取得し、第2センサチップ120で検出された第2差圧を第2圧力導入ポート12に導入される絶対圧としてそれぞれ取得するようにしても構わない。さらに、回路チップ60は、各圧力導入ポート11、12に導入される各絶対圧を各センサチップ110、120でそれぞれ取得するようにしても構わない。
本発明の第1実施形態に係る圧力センサの概略断面図である。 本発明の第2実施形態に係る圧力センサの概略断面図である。 DPFシステムのブロック図である。 従来の差圧センサの概略断面図である。
符号の説明
10…ケース、11、12…第1、第2圧力導入ポート、30、40、50…第1〜第3センサチップ、60…回路チップ、110、120…第4、第5センサチップ。

Claims (8)

  1. 圧力媒体を導入する第1、第2圧力導入ポート(11、12)を備えたケース(10)と、
    板状であって、当該板の表面側と裏面側とに印加される圧力の差圧に応じたレベルの電気信号を発生する第1〜第3センサチップ(30、40、50)と、
    前記各センサチップ(30、40、50)で検出された各差圧に基づいて、前記第1圧力導入ポート(11)に導入される圧力と前記第2圧力導入ポート(12)に導入される圧力との差圧、前記第1圧力導入ポート(11)に導入される絶対圧を取得する回路チップ(60)とを備え、
    前記第1センサチップ(30)は、前記第1圧力導入ポート(11)に導入される圧力が当該第1センサチップ(30)の裏面側に印加されると共に表面側に基準圧力が印加されるように前記ケース(10)に収納され、当該第1センサチップ(30)の表面側に印加される基準圧力と裏面側に印加される前記第1圧力導入ポート(11)に導入された圧力との第1差圧を検出し、
    前記第2センサチップ(40)は、前記第2圧力導入ポート(12)に導入される圧力が当該第2センサチップ(40)の裏面側に印加されると共に表面側に前記基準圧力が印加されるように前記ケース(10)に収納され、当該第2センサチップ(40)の表面側に印加される基準圧力と裏面側に印加される前記第2圧力導入ポート(12)に導入された圧力との第2差圧を検出し、
    前記第3センサチップ(50)は、当該第3センサチップ(50)の裏面側に真空圧が印加されると共に表面側に前記基準圧力が印加されるように前記ケース(10)に収納され、当該第3センサチップ(50)の表面側に印加される前記基準圧力と裏面側に印加される前記真空圧との第3差圧を検出し、
    前記回路チップ(60)は、前記第1センサチップ(30)で検出された前記第1差圧と前記第2センサチップ(40)で検出された前記第2差圧との差分を取得することで、前記各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、前記第1センサチップ(30)で検出された前記第1差圧と前記第3センサチップ(50)で検出された前記第3差圧との差分を取得することで前記第1圧力導入ポート(11)に導入される絶対圧を取得するようになっていることを特徴とする圧力センサ。
  2. 前記回路チップ(60)は、前記第1センサチップ(30)で検出された前記第1差圧と前記第2センサチップ(40)で検出された前記第2差圧との差分を取得することで、前記各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、前記第2センサチップ(40)で検出された前記第2差圧と前記第3センサチップ(50)で検出された前記第3差圧との差分を取得することで前記第2圧力導入ポート(12)に導入される絶対圧を取得するようになっていることを特徴とする請求項1に記載の圧力センサ。
  3. 前記回路チップ(60)は、前記第1センサチップ(30)で検出された前記第1差圧と前記第2センサチップ(40)で検出された前記第2差圧との差分を取得することで、前記各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、前記第1センサチップ(30)で検出された前記第1差圧と前記第3センサチップ(50)で検出された前記第3差圧との差分を取得することで前記第1圧力導入ポート(11)に導入される絶対圧を取得し、前記第2センサチップ(40)で検出された前記第2差圧と前記第3センサチップ(50)で検出された前記第3差圧との差分を取得することで前記第2圧力導入ポート(12)に導入される絶対圧を取得するようになっていることを特徴とする請求項1に記載の圧力センサ。
  4. 前記回路チップ(60)は、前記第1センサチップ(30)で検出された前記第1差圧と前記第3センサチップ(50)で検出された前記第3差圧との差分を取得することで前記第1圧力導入ポート(11)に導入される絶対圧を取得し、前記第2センサチップ(40)で検出された前記第2差圧と前記第3センサチップ(50)で検出された前記第3差圧との差分を取得することで前記第2圧力導入ポート(12)に導入される絶対圧を取得するようになっていることを特徴とする請求項1に記載の圧力センサ。
  5. 圧力媒体を導入する第1、第2圧力導入ポート(11、12)を備えたケース(10)と、
    前記ケース(10)に収納され、板状であって、当該板の表面側と裏面側とに印加される圧力の差圧に応じたレベルの電気信号を発生する第1、第2センサチップ(110、120)と、
    前記各センサチップ(110、120)で検出された各差圧に基づいて、前記第1圧力導入ポート(11)に導入される圧力と前記第2圧力導入ポート(12)に導入される圧力との差圧、前記第1圧力導入ポート(11)に導入される絶対圧を取得する回路チップ(60)とを備え、
    前記第1センサチップ(110)は、前記第1圧力導入ポート(11)に導入される圧力が当該第1センサチップ(110)の表面側に印加されると共に裏面側に真空圧が印加されるように前記ケース(10)に収納され、当該第1センサチップ(30)の表面側に印加される前記第1圧力導入ポート(11)に導入される圧力と裏面側に印加される前記真空圧との第1差圧を検出し、
    前記第2センサチップ(120)は、前記第2圧力導入ポート(12)に導入される圧力が当該第2センサチップ(120)の表面側に印加されると共に裏面側に真空圧が印加されるように前記ケース(10)に収納され、前記第2圧力導入ポート(12)に導入される圧力と裏面側に印加される前記真空圧との第2差圧を検出するようになっており、
    前記回路チップ(60)は、前記第1センサチップ(110)で検出された前記第1差圧と前記第2センサチップ(120)で検出された前記第2差圧との差分を取得することで、前記各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、前記第1センサチップ(110)で検出された前記第1差圧を前記第1圧力導入ポート(11)に導入される絶対圧として取得するようになっていることを特徴とする圧力センサ。
  6. 前記回路チップ(60)は、前記第1センサチップ(110)で検出された前記第1差圧と前記第2センサチップ(120)で検出された前記第2差圧との差分を取得することで、前記各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、前記第2センサチップ(120)で検出された前記第2差圧を前記第2圧力導入ポート(12)に導入される絶対圧として取得するようになっていることを特徴とする請求項5に記載の圧力センサ。
  7. 前記回路チップ(60)は、前記第1センサチップ(110)で検出された前記第1差圧と前記第2センサチップ(120)で検出された前記第2差圧との差分を取得することで、前記各圧力導入ポート(11、12)に導入される各圧力の差圧を取得し、前記第1センサチップ(110)で検出された前記第1差圧を前記第1圧力導入ポート(11)に導入される絶対圧として取得し、前記第2センサチップ(120)で検出された前記第2差圧を前記第2圧力導入ポート(12)に導入される絶対圧として取得するようになっていることを特徴とする請求項5に記載の圧力センサ。
  8. 前記回路チップ(60)は、前記第1センサチップ(110)で検出された前記第1差圧を前記第1圧力導入ポート(11)に導入される絶対圧として取得し、前記第2センサチップ(120)で検出された前記第2差圧を前記第2圧力導入ポート(12)に導入される絶対圧として取得するようになっていることを特徴とする請求項5に記載の圧力センサ。
JP2007055501A 2007-03-06 2007-03-06 圧力センサ Pending JP2008216114A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055501A JP2008216114A (ja) 2007-03-06 2007-03-06 圧力センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055501A JP2008216114A (ja) 2007-03-06 2007-03-06 圧力センサ

Publications (1)

Publication Number Publication Date
JP2008216114A true JP2008216114A (ja) 2008-09-18

Family

ID=39836321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055501A Pending JP2008216114A (ja) 2007-03-06 2007-03-06 圧力センサ

Country Status (1)

Country Link
JP (1) JP2008216114A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108586A1 (ja) * 2010-03-04 2011-09-09 いすゞ自動車株式会社 空燃比検出装置
WO2018025434A1 (ja) * 2016-08-01 2018-02-08 アルプス電気株式会社 圧力センサおよび圧力センサモジュール
CN114575979A (zh) * 2021-03-25 2022-06-03 长城汽车股份有限公司 车辆的尾气处理系统以及车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219529A (ja) * 1984-04-16 1985-11-02 Fuji Electric Co Ltd 半導体式圧力センサ
JPH0465643A (ja) * 1990-07-05 1992-03-02 Mitsubishi Electric Corp 半導体圧力センサ及びその製造方法
JP2007003383A (ja) * 2005-06-24 2007-01-11 Denso Corp 圧力センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219529A (ja) * 1984-04-16 1985-11-02 Fuji Electric Co Ltd 半導体式圧力センサ
JPH0465643A (ja) * 1990-07-05 1992-03-02 Mitsubishi Electric Corp 半導体圧力センサ及びその製造方法
JP2007003383A (ja) * 2005-06-24 2007-01-11 Denso Corp 圧力センサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108586A1 (ja) * 2010-03-04 2011-09-09 いすゞ自動車株式会社 空燃比検出装置
JP2011185097A (ja) * 2010-03-04 2011-09-22 Isuzu Motors Ltd 空燃比検出装置
WO2018025434A1 (ja) * 2016-08-01 2018-02-08 アルプス電気株式会社 圧力センサおよび圧力センサモジュール
JPWO2018025434A1 (ja) * 2016-08-01 2019-04-18 アルプスアルパイン株式会社 圧力センサおよび圧力センサモジュール
CN114575979A (zh) * 2021-03-25 2022-06-03 长城汽车股份有限公司 车辆的尾气处理系统以及车辆

Similar Documents

Publication Publication Date Title
US7536917B2 (en) Pressure sensor
US7036383B2 (en) Pressure sensor having sensor chip and signal processing circuit mounted on a common stem
US7287433B2 (en) Pressure sensor
KR101883571B1 (ko) 센서 지원 마이크 시스템 및 방법
JP4320963B2 (ja) 圧力センサ
US7270011B2 (en) Combined absolute-pressure and relative-pressure sensor
JP2003315193A (ja) 圧力センサ
JP2008008762A (ja) 圧力センサ
JP2008511005A (ja) 背面検知および単一asicによる差圧測定
JP2009250969A (ja) 絶対圧を測定するための圧力センサアセンブリ
US20110094305A1 (en) Air pressure sensor for impact recognition
JP2008532041A (ja) 媒体から分離された絶対圧力センサ
JP2006226756A (ja) 圧力センサ
JP2008216114A (ja) 圧力センサ
US8281665B2 (en) Pressure sensor assembly
JP4556782B2 (ja) 圧力センサ
US20160334291A1 (en) Pressure sensor for recording a pressure of a fluid medium
JP7303374B2 (ja) 圧力センサ
JP2009047670A (ja) 圧力センサ
JP2006343276A (ja) 圧力センサ
JP4682792B2 (ja) 圧力センサ
JP6830174B2 (ja) 圧力センサアセンブリ、測定装置、およびそれらの製造方法
US20100199776A1 (en) Jointless Pressure Sensor Port
US6718829B2 (en) Semiconductor pressure sensor and an exhaust system including the same
JP2005257498A (ja) 圧力センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090422

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214