JP2008216072A - 複合レゾルバの径方向平面配置構造を有する転がり軸受装置 - Google Patents
複合レゾルバの径方向平面配置構造を有する転がり軸受装置 Download PDFInfo
- Publication number
- JP2008216072A JP2008216072A JP2007054493A JP2007054493A JP2008216072A JP 2008216072 A JP2008216072 A JP 2008216072A JP 2007054493 A JP2007054493 A JP 2007054493A JP 2007054493 A JP2007054493 A JP 2007054493A JP 2008216072 A JP2008216072 A JP 2008216072A
- Authority
- JP
- Japan
- Prior art keywords
- resolver
- rotor
- outer ring
- wall body
- rolling bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/36—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
- F16C19/361—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with cylindrical rollers
- F16C19/362—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with cylindrical rollers the rollers being crossed within the single row
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Rolling Contact Bearings (AREA)
Abstract
【課題】 モーメント荷重が加わった場合に、回転センサの誤検出を防止するのに好適な転がり軸受装置を提供する。
【解決手段】 薄型モータ100は、内輪14aおよび外輪14bを有するクロスローラ軸受14と、内輪14aに支持されるステータ22と、外輪14bに支持されるロータ12と、ロータ12に回転トルクを付与するモータ部16と、ロータ12の回転角度位置を検出するABS/INC一体型のレゾルバ30とを備え、レゾルバ30、クロスローラ軸受14およびモータ部16を径方向内側からその順序で径方向の同一平面上に配置した。
【選択図】図1
【解決手段】 薄型モータ100は、内輪14aおよび外輪14bを有するクロスローラ軸受14と、内輪14aに支持されるステータ22と、外輪14bに支持されるロータ12と、ロータ12に回転トルクを付与するモータ部16と、ロータ12の回転角度位置を検出するABS/INC一体型のレゾルバ30とを備え、レゾルバ30、クロスローラ軸受14およびモータ部16を径方向内側からその順序で径方向の同一平面上に配置した。
【選択図】図1
Description
本発明は、転がり軸受および回転センサを備える転がり軸受装置に係り、特に、モーメント荷重が加わった場合に、回転センサの誤検出を防止するのに好適な複合レゾルバの径方向平面配置構造を有する転がり軸受装置に関する。
従来、薄型モータとしては、転がり軸受および回転センサを備える薄型モータが知られている。
図10は、従来の薄型モータ200の軸方向の断面図である。
薄型モータ200は、図10に示すように、固定子であるハウジングインナ220と、回転子であるロータ12と、ロータ12とハウジングインナ220の間に介在してロータ12を回転可能に支持するクロスローラ軸受14とを有して構成されている。
図10は、従来の薄型モータ200の軸方向の断面図である。
薄型モータ200は、図10に示すように、固定子であるハウジングインナ220と、回転子であるロータ12と、ロータ12とハウジングインナ220の間に介在してロータ12を回転可能に支持するクロスローラ軸受14とを有して構成されている。
クロスローラ軸受14は、内輪14aおよび外輪14bを有して構成されている。内輪14aは、ハウジングインナ220の外周面に嵌合し、内輪押え26により軸方向に押圧された状態でハウジングインナ220に固定されている。外輪14bは、ロータ12の内周面に嵌合し、外輪押え28により軸方向に押圧された状態でロータ12に固定されている。
ロータ12とハウジングインナ220の間には、ロータ12に回転トルクを付与するモータ部16と、ロータ12の回転角度位置を検出する回転センサとしてのレゾルバ30とが設けられている。
レゾルバ30は、クロスローラ軸受14の軸心に対して偏心させた内周を有する円環状のレゾルバロータ18と、レゾルバロータ18と所定間隔をもって対向して配置され、レゾルバロータ18との間のリラクタンス変化を検出するレゾルバステータ20とを有して構成されている。レゾルバロータ18はロータ12の内周面に、レゾルバステータ20はハウジングインナ220の外周面に一体に取り付けられている。レゾルバロータ18を偏心させてレゾルバロータ18とレゾルバステータ20の間の距離を円周方向に変化させることにより、リラクタンスがレゾルバロータ18の位置により変化するようになっている。したがって、ロータ12の1回転につきリラクタンス変化の基本波成分が1周期となるため、レゾルバ30は、ロータ12の回転角度位置に応じて変化するレゾルバ信号を出力する。
レゾルバ30は、クロスローラ軸受14の軸心に対して偏心させた内周を有する円環状のレゾルバロータ18と、レゾルバロータ18と所定間隔をもって対向して配置され、レゾルバロータ18との間のリラクタンス変化を検出するレゾルバステータ20とを有して構成されている。レゾルバロータ18はロータ12の内周面に、レゾルバステータ20はハウジングインナ220の外周面に一体に取り付けられている。レゾルバロータ18を偏心させてレゾルバロータ18とレゾルバステータ20の間の距離を円周方向に変化させることにより、リラクタンスがレゾルバロータ18の位置により変化するようになっている。したがって、ロータ12の1回転につきリラクタンス変化の基本波成分が1周期となるため、レゾルバ30は、ロータ12の回転角度位置に応じて変化するレゾルバ信号を出力する。
なお、従来の転がり軸受装置としては、例えば、特許文献1〜3記載の軸受装置が知られている。特許文献1記載の軸受装置は、軸方向の予圧を付与して内輪14aおよび外輪14bを固定したものであり、特許文献2記載の軸受装置は、軸受の作用点を出力軸外に設定したものであり、特許文献3記載の軸受装置は、軸受の外周にモータを配置したものである。
特開2005−69252号公報
特開2006−25525号公報
特開2002−281720号公報
しかしながら、上記従来の薄型モータ200にあっては、薄型モータ200にモーメント荷重が加わると、薄型モータ200がクロスローラ軸受14を中心として傾き、レゾルバ30のギャップが変化する。そのため、ロータ12の回転角度位置を正確に検出することができないという問題があった。特に、クロスローラ軸受14を中心として傾くので、クロスローラ軸受14から離れるほどギャップ変化は大きい。また、薄型モータであるため、1つのクロスローラ軸受14でモーメント荷重を受けなければならず、クロスローラ軸受14の数を増やすことで剛性を高めギャップ変化を防止することは難しい。
そこで、本発明は、このような従来の技術の有する未解決の課題に着目してなされたものであって、モーメント荷重が加わった場合に、回転センサの誤検出を防止するのに好適な複合レゾルバの径方向平面配置構造を有する転がり軸受装置を提供することを目的としている。
〔発明1〕 上記目的を達成するために、発明1の複合レゾルバの径方向平面配置構造を有する転がり軸受装置は、内輪および外輪を有する転がり軸受と、前記内輪に支持される内輪被支持体と、前記外輪に支持される外輪被支持体と、前記内輪被支持体と前記外輪被支持体の間に配置され、それらの相対位置により変化するセンサ信号を出力する回転センサとを備える転がり軸受装置において、前記回転センサおよび前記転がり軸受を径方向の同一平面上に配置し、前記回転センサは、前記内輪被支持体または前記外輪被支持体の回転に同期してリラクタンスが変化し、前記リラクタンス変化の基本波成分の周期が異なる複数種類の前記センサ信号を出力するレゾルバである。
このような構成であれば、転がり軸受により、内輪被支持体および外輪被支持体が相対的に回転可能に支持される。
転がり軸受装置にモーメント荷重が加わると、転がり軸受装置が転がり軸受を中心として傾くが、回転センサが転がり軸受と径方向同一平面上に配置されているので、回転センサのギャップ変化を小さくすることができる。
転がり軸受装置にモーメント荷重が加わると、転がり軸受装置が転がり軸受を中心として傾くが、回転センサが転がり軸受と径方向同一平面上に配置されているので、回転センサのギャップ変化を小さくすることができる。
また、回転センサおよび転がり軸受が径方向同一平面上に配置されているので、転がり軸受装置の高さ(軸方向の長さ)を小さくすることができる。
さらに、転がり軸受の予圧を高くする等の方法を採用した場合は、ギャップ変化を抑制できる半面、転がり軸受の寿命が短くなるという不具合を伴うところ、本発明では、ギャップ変化が小さい位置に回転センサを配置することによりギャップ変化を低減するので、転がり軸受の長寿命化を図ることができる。
さらに、転がり軸受の予圧を高くする等の方法を採用した場合は、ギャップ変化を抑制できる半面、転がり軸受の寿命が短くなるという不具合を伴うところ、本発明では、ギャップ変化が小さい位置に回転センサを配置することによりギャップ変化を低減するので、転がり軸受の長寿命化を図ることができる。
一方、内輪被支持体および外輪被支持体が相対的に回転すると、内輪被支持体または外輪被支持体の回転に同期してリラクタンスが変化し、リラクタンス変化の基本波成分の周期が異なる複数種類のセンサ信号がレゾルバから出力される。
このようなレゾルバでは、リラクタンス変化の基本波成分の周期が長いセンサ信号ほど、モーメント荷重によるギャップ変化の影響が大きいので、ギャップ変化の低減は、誤検出防止に効果的である。
このようなレゾルバでは、リラクタンス変化の基本波成分の周期が長いセンサ信号ほど、モーメント荷重によるギャップ変化の影響が大きいので、ギャップ変化の低減は、誤検出防止に効果的である。
ここで、内輪被支持体および外輪被支持体は、転がり軸受により相対的に回転可能に支持されていればよく、内輪被支持体が固定されて外輪被支持体が回転可能に支持されていてもよいし、外輪被支持体が固定されて内輪被支持体が回転可能に支持されていてもよいし、両者が回転可能に支持されていてもよい。以下、発明2の複合レゾルバの径方向平面配置構造を有する転がり軸受装置において同じである。
〔発明2〕 さらに、発明2の複合レゾルバの径方向平面配置構造を有する転がり軸受装置は、内輪および外輪を有する転がり軸受と、前記内輪に支持される内輪被支持体と、前記外輪に支持される外輪被支持体と、前記内輪被支持体および前記外輪被支持体を相対的に回転させる駆動体と、前記内輪被支持体と前記外輪被支持体の間に配置され、それらの相対位置により変化するセンサ信号を出力する回転センサとを備える転がり軸受装置において、前記回転センサ、前記転がり軸受および前記駆動体を径方向内側からその順序で径方向の同一平面上に配置し、前記回転センサは、前記内輪被支持体または前記外輪被支持体の回転に同期してリラクタンスが変化し、前記リラクタンス変化の基本波成分の周期が異なる複数種類の前記センサ信号を出力するレゾルバである。
このような構成であれば、転がり軸受により、内輪被支持体および外輪被支持体が相対的に回転可能に支持される。
転がり軸受装置にモーメント荷重が加わると、転がり軸受装置が転がり軸受を中心として傾くが、回転センサが転がり軸受と径方向同一平面上に配置されているので、回転センサのギャップ変化を小さくすることができる。
転がり軸受装置にモーメント荷重が加わると、転がり軸受装置が転がり軸受を中心として傾くが、回転センサが転がり軸受と径方向同一平面上に配置されているので、回転センサのギャップ変化を小さくすることができる。
また、回転センサ、転がり軸受および駆動体が径方向同一平面上に配置されているので、転がり軸受装置の高さ(軸方向の長さ)を小さくすることができる。
さらに、回転センサが転がり軸受を挟んで駆動体の反対側に配置されているので、回転センサが駆動体からのノイズや熱の影響を受けにくい。
さらに、転がり軸受の予圧を高くする等の方法を採用した場合は、ギャップ変化を抑制できる半面、転がり軸受の寿命が短くなるという不具合を伴うところ、本発明では、ギャップ変化が小さい位置に回転センサを配置することによりギャップ変化を低減するので、転がり軸受の長寿命化を図ることができる。
さらに、回転センサが転がり軸受を挟んで駆動体の反対側に配置されているので、回転センサが駆動体からのノイズや熱の影響を受けにくい。
さらに、転がり軸受の予圧を高くする等の方法を採用した場合は、ギャップ変化を抑制できる半面、転がり軸受の寿命が短くなるという不具合を伴うところ、本発明では、ギャップ変化が小さい位置に回転センサを配置することによりギャップ変化を低減するので、転がり軸受の長寿命化を図ることができる。
一方、内輪被支持体および外輪被支持体が相対的に回転すると、内輪被支持体または外輪被支持体の回転に同期してリラクタンスが変化し、リラクタンス変化の基本波成分の周期が異なる複数種類のセンサ信号がレゾルバから出力される。
このようなレゾルバでは、リラクタンス変化の基本波成分の周期が長いセンサ信号ほど、モーメント荷重によるギャップ変化の影響が大きいので、ギャップ変化の低減は、誤検出防止に効果的である。
ここで、駆動体としては、例えば、モータやエンジン等のアクチュエータが該当する。
このようなレゾルバでは、リラクタンス変化の基本波成分の周期が長いセンサ信号ほど、モーメント荷重によるギャップ変化の影響が大きいので、ギャップ変化の低減は、誤検出防止に効果的である。
ここで、駆動体としては、例えば、モータやエンジン等のアクチュエータが該当する。
〔発明3〕 さらに、発明3の複合レゾルバの径方向平面配置構造を有する転がり軸受装置は、発明2の複合レゾルバの径方向平面配置構造を有する転がり軸受装置において、前記内輪被支持体および前記外輪被支持体は、径方向内外に形成される内壁体および外壁体をそれぞれ有し、前記内輪被支持体の内壁体が前記外輪被支持体の内壁体と外壁体の間に、前記外輪被支持体の外壁体が前記内輪被支持体の内壁体と外壁体の間に位置するように互いに跨って配置され、前記外輪被支持体の内壁体および前記内輪被支持体の内壁体の一方に前記回転センサの被検出体を、他方に前記回転センサの検出手段を固定し、前記内輪被支持体の内壁体に前記内輪を、前記外輪被支持体の外壁体に前記外輪を固定し、前記外輪被支持体の外壁体および前記内輪被支持体の外壁体の一方に前記駆動体の回転子を、他方に前記駆動体の固定子を固定した。
このような構成であれば、外輪被支持体の外壁体に駆動体の回転子が固定されている場合は、外輪被支持体および外輪が回転し、内輪被支持体の外壁体に駆動体の回転子が固定されている場合は、内輪被支持体および内輪が回転する。そして、それらが回転すると、外輪被支持体の内壁体および内輪被支持体の内壁体の一方に固定された回転センサの被検出体が、他方に固定された回転センサの検出手段により検出されることにより、内輪被支持体と外輪被支持体の相対位置により変化するセンサ信号が回転センサから出力される。
ここで、内輪被支持体の内壁体または外壁体は、内輪被支持体と一体に構成してもよいし、内輪被支持体とは別体に構成してもよい。別体で構成する場合、内輪押え等の部材が内輪被支持体の内壁体を構成してもよい。
また、外輪被支持体の内壁体または外壁体は、外輪被支持体と一体に構成してもよいし、外輪被支持体とは別体に構成してもよい。別体で構成する場合、外輪押え等の部材が外輪被支持体の外壁体を構成してもよい。
また、外輪被支持体の内壁体または外壁体は、外輪被支持体と一体に構成してもよいし、外輪被支持体とは別体に構成してもよい。別体で構成する場合、外輪押え等の部材が外輪被支持体の外壁体を構成してもよい。
また、内壁体または外壁体(この段落において、以下、「壁体」と略記する。)に固定することには、壁体に直接固定はされないが、壁体に近接または接触して配置され、かつ、壁体が固定される部材または壁体と一体をなす部材に固定されることにより壁体と実質的に一体をなす固定状態を含む。
〔発明4〕 さらに、発明4の複合レゾルバの径方向平面配置構造を有する転がり軸受装置は、発明1ないし3のいずれか1の複合レゾルバの径方向平面配置構造を有する転がり軸受装置において、前記転がり軸受は、クロスローラ軸受または4点接触玉軸受である。
このような構成であれば、モーメント荷重、アキシャル荷重およびラジアル荷重を同時に受けることができる。
このような構成であれば、モーメント荷重、アキシャル荷重およびラジアル荷重を同時に受けることができる。
〔発明5〕 さらに、発明5の複合レゾルバの径方向平面配置構造を有する転がり軸受装置は、発明1ないし4のいずれか1の複合レゾルバの径方向平面配置構造を有する転がり軸受装置において、前記回転センサは、複数の極が形成されかつ前記各極に巻き付けたコイルにより電機子巻線が形成されたレゾルバステータと、前記レゾルバステータの極に対向して複数の歯が円周方向に形成されたレゾルバロータとを有し、前記レゾルバロータおよび前記レゾルバステータの一方は、内周および外周の一方が前記転がり軸受の軸心に対して偏心している。
このような構成であれば、内輪被支持体および外輪被支持体が相対的に回転すると、これに伴ってレゾルバロータが回転し、この回転によりレゾルバロータとレゾルバステータの間のリラクタンスが変化する。このとき、レゾルバロータおよびレゾルバステータの一方が偏心しているので、レゾルバロータの1回転につきリラクタンス変化の基本波成分が1周期となる第1センサ信号が出力される。また、レゾルバステータの極とレゾルバロータの歯の間で距離が変化するので、レゾルバロータの1回転につきリラクタンス変化の基本波成分が多周期となる第2センサ信号が出力される。
このようなレゾルバでは、リラクタンス変化の基本波成分が1周期となる第1センサ信号については、モーメント荷重によるギャップ変化の影響が特に大きいので、ギャップ変化の低減は、誤検出防止に効果的である。
以上説明したように、発明1の複合レゾルバの径方向平面配置構造を有する転がり軸受装置によれば、転がり軸受装置にモーメント荷重が加わっても、ギャップ変化が小さい位置に回転センサが配置されているので、従来に比して、回転センサのギャップ変化を小さくすることができ、回転センサが誤検出する可能性を低減することができるという効果が得られる。また、回転センサおよび転がり軸受が径方向同一平面上に配置されているので、転がり軸受装置の高さを小さくすることができるという効果も得られる。さらに、転がり軸受の予圧を高くする等の方法に比して、転がり軸受の長寿命化を図ることができるという効果も得られる。さらに、リラクタンス変化の基本波成分の周期が異なる複数種類のセンサ信号を出力するレゾルバを回転センサとして採用するので、ギャップ変化の影響を効果的に低減することができるという効果も得られる。
さらに、発明2の複合レゾルバの径方向平面配置構造を有する転がり軸受装置によれば、転がり軸受装置にモーメント荷重が加わっても、ギャップ変化が小さい位置に回転センサが配置されているので、従来に比して、回転センサのギャップ変化を小さくすることができ、回転センサが誤検出する可能性を低減することができるという効果が得られる。また、回転センサ、転がり軸受および駆動体が径方向同一平面上に配置されているので、転がり軸受装置の高さを小さくすることができるという効果も得られる。さらに、回転センサが転がり軸受を挟んで駆動体の反対側に配置されているので、回転センサが駆動体からのノイズや熱の影響を受けにくく、高い検出精度を実現することができるという効果も得られる。さらに、転がり軸受の予圧を高くする等の方法に比して、転がり軸受の長寿命化を図ることができるという効果も得られる。さらに、リラクタンス変化の基本波成分の周期が異なる複数種類のセンサ信号を出力するレゾルバを回転センサとして採用するので、ギャップ変化の影響を効果的に低減することができるという効果も得られる。
さらに、発明4の複合レゾルバの径方向平面配置構造を有する転がり軸受装置によれば、モーメント荷重、アキシャル荷重およびラジアル荷重を同時に受けることができるので、アキシャル荷重およびラジアル荷重に対する剛性を維持しつつ、モーメント荷重によるギャップ変化を低減することができるという効果が得られる。
以下、本発明の実施の形態を図面を参照しながら説明する。図1ないし図4は、本発明に係る複合レゾルバの径方向平面配置構造を有する転がり軸受装置の実施の形態を示す図である。
まず、本発明を適用する薄型モータ100の構成を説明する。
図1は、本実施の形態に係る薄型モータ100の軸方向の断面図である。
まず、本発明を適用する薄型モータ100の構成を説明する。
図1は、本実施の形態に係る薄型モータ100の軸方向の断面図である。
薄型モータ100は、図1に示すように、固定子であるステータ22と、回転子であるロータ12と、ロータ12とステータ22の間に介在してロータ12を回転可能に支持するクロスローラ軸受14と、ロータ12に回転トルクを付与するモータ部16と、ロータ12の回転角度位置を検出するレゾルバ30とを有して構成されている。ここで、レゾルバ30、クロスローラ軸受14およびモータ部16は、径方向内側からその順序で径方向の同一平面上に配置されている。
ステータ22には、軸方向上方(図1の上方向)に突出した円環状の内壁体22aが形成され、内壁体22aよりも径方向外側には、軸方向上方に突出した円環状の外壁体22bが形成されている。一方、ロータ12には、軸方向下方(図1の下方向)に突出した円環状の内壁体12aが形成され、内壁体12aよりも径方向外側には、軸方向下方に突出した円環状の外壁体12bが形成されている。そして、ステータ22およびロータ12は、ステータ22の内壁体22aがロータ12の内壁体12aと外壁体12bの間に、ロータ12の外壁体12bがステータ22の内壁体22aと外壁体22bの間に位置するように互いに跨って配置されている。
クロスローラ軸受14は、内輪14aと、外輪14bと、内輪14aおよび外輪14bの間で転動可能に設けられた複数のクロスローラ(ころ)14cとを有して構成されている。クロスローラ14cは、直径が長さよりわずかに大きな略円筒状で、軌道上偶数番目の回転軸と、軌道上奇数番目の回転軸が互いに90°傾斜している。
内輪14aは、ステータ22の内壁体22aに軸方向に押圧された状態で固定されている。具体的には、ステータ22の内壁体22aの上端を内輪14aの下面に当接させ、内輪押え26の押圧部26bを内輪14aの上面に接触させ、内輪押え26をボルト26aでステータ22の内壁体22aに締結することにより固定される。
内輪14aは、ステータ22の内壁体22aに軸方向に押圧された状態で固定されている。具体的には、ステータ22の内壁体22aの上端を内輪14aの下面に当接させ、内輪押え26の押圧部26bを内輪14aの上面に接触させ、内輪押え26をボルト26aでステータ22の内壁体22aに締結することにより固定される。
外輪14bは、ロータ12の外壁体12bに軸方向に押圧された状態で固定されている。具体的には、ロータ12の外壁体12bの下端を外輪14bの上面に当接させ、外輪押え28の押圧部28bを外輪14bの下面に接触させ、外輪押え28をボルト28aでロータ12の外壁体12bに締結することにより固定される。
なお、ステータ22は、ボルト24aにより固定板24に固定され、ロータ12は、出力軸の外周面に嵌合している。
なお、ステータ22は、ボルト24aにより固定板24に固定され、ロータ12は、出力軸の外周面に嵌合している。
モータ部16は、永久磁石16aと、永久磁石16aと所定間隔をもって対向して配置されるコイル16bとを有して構成されている。永久磁石16aは、外輪押え28の外周面に取り付けられ、外輪押え28と一体にロータ12の外壁体12bの外周面側に固定されている。一方、コイル16bは、ボルト16cによりステータ22の外壁体22bに取り付けられている。
次に、レゾルバ30の構成を説明する。
図2は、レゾルバ30の断面図である。
レゾルバ30は、図2に示すように、中空環状の成層鉄心からなるレゾルバロータ18と、環状の成層鉄心からなるレゾルバステータ20を備えて構成されるアウターロータ式のABS(Absolute)/INC(Increment)一体型のレゾルバである。
図2は、レゾルバ30の断面図である。
レゾルバ30は、図2に示すように、中空環状の成層鉄心からなるレゾルバロータ18と、環状の成層鉄心からなるレゾルバステータ20を備えて構成されるアウターロータ式のABS(Absolute)/INC(Increment)一体型のレゾルバである。
レゾルバロータ18の内周面18bには、突極状の複数の歯32が円周方向に等間隔に形成されている。レゾルバステータ20は、環状のステータ基部34の円周方向に沿って複数のステータポール36を等間隔に配置した構成を備えている。レゾルバステータ20の外径中心、内径中心およびレゾルバロータ18の外径中心は、回転中心O1と一致するが、レゾルバロータ18の内径中心O2は、回転中心O1に対してΔXだけ偏心するように、レゾルバロータ18の径方向の肉厚を連続的に変化させている。
各ステータポール36には、レゾルバロータ18の絶対角度位置を検出するための単極レゾルバ信号を出力する単極検出用巻線38と、レゾルバロータ18の相対角度位置を検出するための多極レゾルバ信号を出力する多極検出用巻線40が巻装されている。これにより、絶対角度位置と相対角度位置をともに検出することができる。
図3は、単極検出用巻線38の配置図である。
図3は、単極検出用巻線38の配置図である。
図4は、多極検出用巻線40の配置図である。
図3および図4において、巻線C11〜C18は、各ステータポール36に巻装される単極検出用巻線38を示し、巻線C21〜C28は、各ステータポール36に巻装される多極検出用巻線40を示している。なお、Aバー相、Bバー相とは、それぞれA相、B相に対して電気角が180°異なる相をいうものとする。
図3および図4において、巻線C11〜C18は、各ステータポール36に巻装される単極検出用巻線38を示し、巻線C21〜C28は、各ステータポール36に巻装される多極検出用巻線40を示している。なお、Aバー相、Bバー相とは、それぞれA相、B相に対して電気角が180°異なる相をいうものとする。
単極検出用巻線38のA相、B相、Aバー相、Bバー相は、図3に示すように、この順序で90°ごとに配線されている。したがって、レゾルバロータ18が1回転すると、レゾルバロータ18とレゾルバステータ20の間のリラクタンスが変化し、その変化に応じて、A相、B相、Aバー相、Bバー相からは、レゾルバロータ18の1回転につきリラクタンス変化の基本波成分が1周期となる単極レゾルバ信号が出力される。A相、B相、Aバー相、Bバー相の単極レゾルバ信号は、それぞれ位相が90°ずれている。
一方、多極検出用巻線40のA相、B相、Aバー相、Bバー相は、図4に示すように、この順序で45°ごとに配線され、同一相が180°ずれた位置に配線されている。したがって、レゾルバロータ18が1回転すると、レゾルバロータ18とレゾルバステータ20の間のリラクタンスが変化し、その変化に応じて、A相、B相、Aバー相、Bバー相からは、レゾルバロータ18の1回転につきリラクタンス変化の基本波成分が多周期となる多極レゾルバ信号が出力される。A相、B相、Aバー相、Bバー相の多極レゾルバ信号は、それぞれ位相が90°ずれている。
レゾルバロータ18は、図1に示すように、ボルト18aによりロータ12の内壁体12aの外周面に取り付けられている。一方、レゾルバステータ20は、ボルト20aにより内輪押え26の内周面に取り付けられ、内輪押え26と一体にステータ22の内壁体22aの内周面側に固定されている。
薄型モータ100は、レゾルバ30により検出された単極レゾルバ信号および多極レゾルバ信号に基づいて、制御器(不図示)により回転速度や位置決めの制御を行う構造となっている。
薄型モータ100は、レゾルバ30により検出された単極レゾルバ信号および多極レゾルバ信号に基づいて、制御器(不図示)により回転速度や位置決めの制御を行う構造となっている。
次に、本実施の形態の動作を説明する。
コイル16bに通電すると、ロータ12に回転トルクが付与され、ロータ12が回転する。そして、レゾルバ30により、ロータ12と一体に回転するレゾルバロータ18との間のリラクタンス変化が検出され、制御器(不図示)により回転速度や位置決めの制御が行われる。このとき、レゾルバロータ18が偏心しているので、レゾルバロータ18の1回転につきリラクタンス変化の基本波成分が1周期となる単極レゾルバ信号がレゾルバ30から出力される。また、ステータポール36と歯32の間で距離が変化するので、レゾルバロータ18の1回転につきリラクタンス変化の基本波成分が多周期となる多極レゾルバ信号がレゾルバ30から出力される。
コイル16bに通電すると、ロータ12に回転トルクが付与され、ロータ12が回転する。そして、レゾルバ30により、ロータ12と一体に回転するレゾルバロータ18との間のリラクタンス変化が検出され、制御器(不図示)により回転速度や位置決めの制御が行われる。このとき、レゾルバロータ18が偏心しているので、レゾルバロータ18の1回転につきリラクタンス変化の基本波成分が1周期となる単極レゾルバ信号がレゾルバ30から出力される。また、ステータポール36と歯32の間で距離が変化するので、レゾルバロータ18の1回転につきリラクタンス変化の基本波成分が多周期となる多極レゾルバ信号がレゾルバ30から出力される。
薄型モータ100にモーメント荷重が加わると、薄型モータ100がクロスローラ軸受14を中心として傾くが、レゾルバ30がクロスローラ軸受14と径方向同一平面上に配置されているので、レゾルバ30のギャップ変化を小さくすることができる。
また、レゾルバ30、クロスローラ軸受14およびモータ部16が径方向同一平面上に配置されているので、薄型モータ100の高さ(軸方向の長さ)を小さくすることができる。
また、レゾルバ30、クロスローラ軸受14およびモータ部16が径方向同一平面上に配置されているので、薄型モータ100の高さ(軸方向の長さ)を小さくすることができる。
さらに、レゾルバ30がクロスローラ軸受14を挟んでモータ部16の反対側に配置されているので、レゾルバ30がモータ部16からのノイズや熱の影響を受けにくい。
さらに、クロスローラ軸受14の予圧を高くする等の方法を採用した場合は、ギャップ変化を抑制できる半面、クロスローラ軸受14の寿命が短くなるという不具合を伴うところ、本発明では、ギャップ変化が小さい位置にレゾルバ30を配置することによりギャップ変化を低減するので、クロスローラ軸受14の長寿命化を図ることができる。
さらに、クロスローラ軸受14の予圧を高くする等の方法を採用した場合は、ギャップ変化を抑制できる半面、クロスローラ軸受14の寿命が短くなるという不具合を伴うところ、本発明では、ギャップ変化が小さい位置にレゾルバ30を配置することによりギャップ変化を低減するので、クロスローラ軸受14の長寿命化を図ることができる。
このようにして、本実施の形態では、内輪14aおよび外輪14bを有するクロスローラ軸受14と、内輪14aに支持されるステータ22と、外輪14bに支持されるロータ12と、ロータ12に回転トルクを付与するモータ部16と、ロータ12の回転角度位置を検出するABS/INC一体型のレゾルバ30とを備え、レゾルバ30、クロスローラ軸受14およびモータ部16を径方向の同一平面上に配置した。
これにより、薄型モータ100にモーメント荷重が加わっても、ギャップ変化が小さい位置にレゾルバ30が配置されているので、従来に比して、レゾルバ30のギャップ変化を小さくすることができ、レゾルバ30が誤検出する可能性を低減することができる。また、レゾルバ30、クロスローラ軸受14およびモータ部16が径方向同一平面上に配置されているので、薄型モータ100の高さを小さくすることができる。さらに、クロスローラ軸受14の予圧を高くする等の方法に比して、クロスローラ軸受14の長寿命化を図ることができる。さらに、ABS/INC一体型のレゾルバ30を採用するので、ギャップ変化の影響を効果的に低減することができる。
さらに、本実施の形態では、レゾルバ30、クロスローラ軸受14およびモータ部16を径方向内側からその順序で径方向の同一平面上に配置した。
これにより、レゾルバ30がクロスローラ軸受14を挟んでモータ部16の反対側に配置されているので、レゾルバ30がモータ部16からのノイズや熱の影響を受けにくく、高い検出精度を実現することができる。
これにより、レゾルバ30がクロスローラ軸受14を挟んでモータ部16の反対側に配置されているので、レゾルバ30がモータ部16からのノイズや熱の影響を受けにくく、高い検出精度を実現することができる。
さらに、本実施の形態では、クロスローラ軸受14を採用した。
これにより、モーメント荷重、アキシャル荷重およびラジアル荷重を同時に受けることができるので、アキシャル荷重およびラジアル荷重に対する剛性を維持しつつ、モーメント荷重によるギャップ変化を低減することができる。
さらに、本実施の形態では、レゾルバ30は、複数のステータポール36が形成されかつ各ステータポール36に巻き付けたコイルにより電機子巻線38、40が形成されたレゾルバステータ20と、ステータポール36に対向して複数の歯32が円周方向に形成されたレゾルバロータ18とを有し、レゾルバロータ18は、クロスローラ軸受14の軸心に対して偏心している。
これにより、モーメント荷重、アキシャル荷重およびラジアル荷重を同時に受けることができるので、アキシャル荷重およびラジアル荷重に対する剛性を維持しつつ、モーメント荷重によるギャップ変化を低減することができる。
さらに、本実施の形態では、レゾルバ30は、複数のステータポール36が形成されかつ各ステータポール36に巻き付けたコイルにより電機子巻線38、40が形成されたレゾルバステータ20と、ステータポール36に対向して複数の歯32が円周方向に形成されたレゾルバロータ18とを有し、レゾルバロータ18は、クロスローラ軸受14の軸心に対して偏心している。
このようなABS/INC一体型のレゾルバ30では、単極レゾルバ信号については、モーメント荷重によるギャップ変化の影響が特に大きいので、ギャップ変化の低減は、誤検出防止に効果的である。
上記実施の形態において、クロスローラ軸受14は、発明1ないし5の転がり軸受に対応し、ステータ22は、発明1ないし3の内輪被支持体に対応し、ロータ12は、発明1ないし3の外輪被支持体に対応し、レゾルバ30は、発明1ないし3または5の回転センサに対応している。また、レゾルバロータ18は、発明3の被検出体に対応し、レゾルバステータ20は、発明3の検出手段に対応し、モータ部16は、発明2または3の駆動体に対応し、永久磁石16aは、発明3の回転子に対応し、コイル16bは、発明3の固定子に対応している。
上記実施の形態において、クロスローラ軸受14は、発明1ないし5の転がり軸受に対応し、ステータ22は、発明1ないし3の内輪被支持体に対応し、ロータ12は、発明1ないし3の外輪被支持体に対応し、レゾルバ30は、発明1ないし3または5の回転センサに対応している。また、レゾルバロータ18は、発明3の被検出体に対応し、レゾルバステータ20は、発明3の検出手段に対応し、モータ部16は、発明2または3の駆動体に対応し、永久磁石16aは、発明3の回転子に対応し、コイル16bは、発明3の固定子に対応している。
なお、上記実施の形態においては、レゾルバ30、クロスローラ軸受14およびモータ部16を径方向内側からその順序で径方向の同一平面上に配置したが、これに限らず、レゾルバ30、クロスローラ軸受14およびモータ部16の配置順序は任意とすることができ、例えば、次の5つの構成を採用することができる。
まず、第1の構成を説明する。
まず、第1の構成を説明する。
図5は、モータ部16、クロスローラ軸受14およびレゾルバ30を径方向内側からその順序で径方向の同一平面上に配置した薄型モータ100の軸方向の断面図である。
モータ部16、クロスローラ軸受14およびレゾルバ30は、図5に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
ステータ22には、軸方向上方(図5の上方向)に突出した円環状の内壁体22aが形成され、内壁体22aよりも径方向外側には、軸方向上方に突出した円環状の外壁体22bが形成されている。一方、ロータ12には、軸方向下方(図5の下方向)に突出した円環状の内壁体12aが形成され、内壁体12aよりも径方向外側には、軸方向下方に突出した円環状の外壁体12bが形成されている。そして、ステータ22およびロータ12は、ロータ12の内壁体12aがステータ22の内壁体22aと外壁体22bの間に、ステータ22の外壁体22bがロータ12の内壁体12aと外壁体12bの間に位置するように互いに跨って配置されている。
モータ部16、クロスローラ軸受14およびレゾルバ30は、図5に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
ステータ22には、軸方向上方(図5の上方向)に突出した円環状の内壁体22aが形成され、内壁体22aよりも径方向外側には、軸方向上方に突出した円環状の外壁体22bが形成されている。一方、ロータ12には、軸方向下方(図5の下方向)に突出した円環状の内壁体12aが形成され、内壁体12aよりも径方向外側には、軸方向下方に突出した円環状の外壁体12bが形成されている。そして、ステータ22およびロータ12は、ロータ12の内壁体12aがステータ22の内壁体22aと外壁体22bの間に、ステータ22の外壁体22bがロータ12の内壁体12aと外壁体12bの間に位置するように互いに跨って配置されている。
内輪14aは、ロータ12の内壁体12aに軸方向に押圧された状態で固定されている。具体的には、ロータ12の内壁体12aの下端を内輪14aの上面に当接させ、内輪押え26の押圧部26bを内輪14aの下面に接触させ、内輪押え26をボルト26aでロータ12の内壁体12aに締結することにより固定される。
外輪14bは、ステータ22の外壁体22bに軸方向に押圧された状態で固定されている。具体的には、ステータ22の外壁体22bの上端を外輪14bの下面に当接させ、外輪押え28の押圧部28bを外輪14bの上面に接触させ、外輪押え28をボルト28aでステータ22の外壁体22bに締結することにより固定される。
外輪14bは、ステータ22の外壁体22bに軸方向に押圧された状態で固定されている。具体的には、ステータ22の外壁体22bの上端を外輪14bの下面に当接させ、外輪押え28の押圧部28bを外輪14bの上面に接触させ、外輪押え28をボルト28aでステータ22の外壁体22bに締結することにより固定される。
永久磁石16aは、内輪押え26の内周面に取り付けられ、内輪押え26と一体にロータ12の内壁体12aの内周面側に固定されている。一方、コイル16bは、ボルト16cによりステータ22の内壁体22aの外周面に取り付けられている。
レゾルバロータ18は、ボルト18aによりロータ12の外壁体12bに取り付けられている。一方、レゾルバステータ20は、ボルト20aにより外輪押え28の外周面に取り付けられ、外輪押え28と一体にステータ22の外壁体22bの外周面側に固定されている。
レゾルバロータ18は、ボルト18aによりロータ12の外壁体12bに取り付けられている。一方、レゾルバステータ20は、ボルト20aにより外輪押え28の外周面に取り付けられ、外輪押え28と一体にステータ22の外壁体22bの外周面側に固定されている。
このようにして、第1の構成では、モータ部16、クロスローラ軸受14およびレゾルバ30を径方向内側からその順序で径方向の同一平面上に配置した。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、レゾルバ30がクロスローラ軸受14を挟んでモータ部16の反対側に配置されているので、レゾルバ30がモータ部16からのノイズや熱の影響を受けにくく、高い検出精度を実現することができる。また、レゾルバ30を径方向の最も外側に配置したことにより、レゾルバ30の直径を大きくすることができるので、金型加工時等の精度を安定化でき、さらに高い検出精度を実現することができる。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、レゾルバ30がクロスローラ軸受14を挟んでモータ部16の反対側に配置されているので、レゾルバ30がモータ部16からのノイズや熱の影響を受けにくく、高い検出精度を実現することができる。また、レゾルバ30を径方向の最も外側に配置したことにより、レゾルバ30の直径を大きくすることができるので、金型加工時等の精度を安定化でき、さらに高い検出精度を実現することができる。
次に、第2の構成を説明する。
図6は、クロスローラ軸受14、モータ部16およびレゾルバ30を径方向内側からその順序で径方向の同一平面上に配置した薄型モータ100の軸方向の断面図である。
クロスローラ軸受14、モータ部16およびレゾルバ30は、図6に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
図6は、クロスローラ軸受14、モータ部16およびレゾルバ30を径方向内側からその順序で径方向の同一平面上に配置した薄型モータ100の軸方向の断面図である。
クロスローラ軸受14、モータ部16およびレゾルバ30は、図6に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
ステータ22には、軸方向上方(図6の上方向)に突出した円環状の内壁体22aが形成され、内壁体22aよりも径方向外側には、軸方向上方に突出した円環状の外壁体22bが形成されている。一方、ロータ12には、軸方向下方(図6の下方向)に突出した円環状の内壁体12aが形成され、内壁体12aよりも径方向外側には、軸方向下方に突出した円環状の外壁体12bが形成されている。そして、ステータ22およびロータ12は、ロータ12の内壁体12aがステータ22の内壁体22aと外壁体22bの間に、ステータ22の外壁体22bがロータ12の内壁体12aと外壁体12bの間に位置するように互いに跨って配置されている。
内輪14aは、ステータ22の内壁体22aに軸方向に押圧された状態で固定されている。具体的には、ステータ22の内壁体22aの上端を内輪14aの下面に当接させ、内輪押え26の押圧部26bを内輪14aの上面に接触させ、内輪押え26をボルト26aでステータ22の内壁体22aに締結することにより固定される。
外輪14bは、ロータ12の内壁体12aに軸方向に押圧された状態で固定されている。具体的には、ロータ12の内壁体12aの下端を外輪14bの上面に当接させ、外輪押え28の押圧部28bを外輪14bの下面に接触させ、外輪押え28をボルト28aでロータ12の内壁体12aに締結することにより固定される。
外輪14bは、ロータ12の内壁体12aに軸方向に押圧された状態で固定されている。具体的には、ロータ12の内壁体12aの下端を外輪14bの上面に当接させ、外輪押え28の押圧部28bを外輪14bの下面に接触させ、外輪押え28をボルト28aでロータ12の内壁体12aに締結することにより固定される。
永久磁石16aは、外輪押え28の外周面に取り付けられ、外輪押え28と一体にロータ12の内壁体12aの外周面側に固定されている。一方、コイル16bは、ボルト16cによりステータ22の外壁体22bの内周面に取り付けられている。
レゾルバロータ18は、ボルト18aによりロータ12の外壁体12bに取り付けられている。一方、レゾルバステータ20は、ボルト20aによりステータ22の外壁体22bの外周面に取り付けられている。
レゾルバロータ18は、ボルト18aによりロータ12の外壁体12bに取り付けられている。一方、レゾルバステータ20は、ボルト20aによりステータ22の外壁体22bの外周面に取り付けられている。
このようにして、第2の構成では、クロスローラ軸受14、モータ部16およびレゾルバ30を径方向内側からその順序で径方向の同一平面上に配置した。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、レゾルバ30を径方向の最も外側に配置したことにより、レゾルバ30の直径を大きくすることができるので、金型加工時等の精度を安定化でき、さらに高い検出精度を実現することができる。また、クロスローラ軸受14が径方向の最も内側に配置されているので、クロスローラ軸受14のサイズを小さくすることにより薄型モータ100の高さを小さくすることができるとともに、モータ部16またはレゾルバ30への配線がしやすく、クロスローラ軸受14のグリースが漏れにくい。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、レゾルバ30を径方向の最も外側に配置したことにより、レゾルバ30の直径を大きくすることができるので、金型加工時等の精度を安定化でき、さらに高い検出精度を実現することができる。また、クロスローラ軸受14が径方向の最も内側に配置されているので、クロスローラ軸受14のサイズを小さくすることにより薄型モータ100の高さを小さくすることができるとともに、モータ部16またはレゾルバ30への配線がしやすく、クロスローラ軸受14のグリースが漏れにくい。
次に、第3の構成を説明する。
図7は、クロスローラ軸受14、レゾルバ30およびモータ部16を径方向内側からその順序で径方向の同一平面上に配置した薄型モータ100の軸方向の断面図である。
クロスローラ軸受14、レゾルバ30およびモータ部16は、図7に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
図7は、クロスローラ軸受14、レゾルバ30およびモータ部16を径方向内側からその順序で径方向の同一平面上に配置した薄型モータ100の軸方向の断面図である。
クロスローラ軸受14、レゾルバ30およびモータ部16は、図7に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
ステータ22には、軸方向上方(図7の上方向)に突出した円環状の内壁体22aが形成され、内壁体22aよりも径方向外側には、軸方向上方に突出した円環状の外壁体22bが形成されている。一方、ロータ12には、軸方向下方(図7の下方向)に突出した円環状の内壁体12aが形成され、内壁体12aよりも径方向外側には、軸方向下方に突出した円環状の外壁体12bが形成されている。そして、ステータ22およびロータ12は、ロータ12の内壁体12aがステータ22の内壁体22aと外壁体22bの間に、ステータ22の外壁体22bがロータ12の内壁体12aと外壁体12bの間に位置するように互いに跨って配置されている。
内輪14aは、ステータ22の内壁体22aに軸方向に押圧された状態で固定されている。具体的には、ステータ22の内壁体22aの上端を内輪14aの下面に当接させ、内輪押え26の押圧部26bを内輪14aの上面に接触させ、内輪押え26をボルト26aでステータ22の内壁体22aに締結することにより固定される。
外輪14bは、ロータ12の内壁体12aに軸方向に押圧された状態で固定されている。具体的には、ロータ12の内壁体12aの下端を外輪14bの上面に当接させ、外輪押え28の押圧部28bを外輪14bの下面に接触させ、外輪押え28をボルト28aでロータ12の内壁体12aに締結することにより固定される。
外輪14bは、ロータ12の内壁体12aに軸方向に押圧された状態で固定されている。具体的には、ロータ12の内壁体12aの下端を外輪14bの上面に当接させ、外輪押え28の押圧部28bを外輪14bの下面に接触させ、外輪押え28をボルト28aでロータ12の内壁体12aに締結することにより固定される。
永久磁石16aは、ロータ12の外壁体12bの内周面に取り付けられている。一方、コイル16bは、ボルト16cによりステータ22の外壁体22bの外周面に取り付けられている。
レゾルバロータ18は、ボルト18aにより外輪押え28の外周面に取り付けられ、外輪押え28と一体にロータ12の内壁体12aの外周面側に固定されている。一方、レゾルバステータ20は、ボルト20aによりステータ22の外壁体22bの内周面に取り付けられている。
レゾルバロータ18は、ボルト18aにより外輪押え28の外周面に取り付けられ、外輪押え28と一体にロータ12の内壁体12aの外周面側に固定されている。一方、レゾルバステータ20は、ボルト20aによりステータ22の外壁体22bの内周面に取り付けられている。
このようにして、第3の構成では、クロスローラ軸受14、レゾルバ30およびモータ部16を径方向内側からその順序で径方向の同一平面上に配置した。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、クロスローラ軸受14が径方向の最も内側に配置されているので、クロスローラ軸受14のサイズを小さくすることにより薄型モータ100の高さを小さくすることができるとともに、モータ部16またはレゾルバ30への配線がしやすく、クロスローラ軸受14のグリースが漏れにくい。また、モータ部16が径方向の最も外側に配置されているので、巻線を巻くスペースを大きく確保することができ、高い出力トルクを実現することができる。さらに、モータ部16の極数を増やすことができ、低速から超低速の運転を実現することができる。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、クロスローラ軸受14が径方向の最も内側に配置されているので、クロスローラ軸受14のサイズを小さくすることにより薄型モータ100の高さを小さくすることができるとともに、モータ部16またはレゾルバ30への配線がしやすく、クロスローラ軸受14のグリースが漏れにくい。また、モータ部16が径方向の最も外側に配置されているので、巻線を巻くスペースを大きく確保することができ、高い出力トルクを実現することができる。さらに、モータ部16の極数を増やすことができ、低速から超低速の運転を実現することができる。
次に、第4の構成を説明する。
図8は、モータ部16、レゾルバ30およびクロスローラ軸受14を径方向内側からその順序で径方向の同一平面上に配置した薄型モータ100の軸方向の断面図である。
モータ部16、レゾルバ30およびクロスローラ軸受14は、図8に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
図8は、モータ部16、レゾルバ30およびクロスローラ軸受14を径方向内側からその順序で径方向の同一平面上に配置した薄型モータ100の軸方向の断面図である。
モータ部16、レゾルバ30およびクロスローラ軸受14は、図8に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
ステータ22には、軸方向上方(図8の上方向)に突出した円環状の内壁体22aが形成され、内壁体22aよりも径方向外側には、軸方向上方に突出した円環状の外壁体22bが形成されている。一方、ロータ12には、軸方向下方(図8の下方向)に突出した円環状の内壁体12aが形成され、内壁体12aよりも径方向外側には、軸方向下方に突出した円環状の外壁体12bが形成されている。そして、ステータ22およびロータ12は、ロータ12の内壁体12aがステータ22の内壁体22aと外壁体22bの間に、ステータ22の外壁体22bがロータ12の内壁体12aと外壁体12bの間に位置するように互いに跨って配置されている。
内輪14aは、ステータ22の外壁体22bに軸方向に押圧された状態で固定されている。具体的には、ステータ22の外壁体22bの上端を内輪14aの下面に当接させ、内輪押え26の押圧部26bを内輪14aの上面に接触させ、内輪押え26をボルト26aでステータ22の外壁体22bに締結することにより固定される。
外輪14bは、ロータ12の外壁体12bに軸方向に押圧された状態で固定されている。具体的には、ロータ12の外壁体12bの下端を外輪14bの上面に当接させ、外輪押え28の押圧部28bを外輪14bの下面に接触させ、外輪押え28をボルト28aでロータ12の外壁体12bに締結することにより固定される。
外輪14bは、ロータ12の外壁体12bに軸方向に押圧された状態で固定されている。具体的には、ロータ12の外壁体12bの下端を外輪14bの上面に当接させ、外輪押え28の押圧部28bを外輪14bの下面に接触させ、外輪押え28をボルト28aでロータ12の外壁体12bに締結することにより固定される。
永久磁石16aは、ロータ12の内壁体12aの内周面に取り付けられている。一方、コイル16bは、ボルト16cによりステータ22の内壁体22aの外周面に取り付けられている。
レゾルバロータ18は、ボルト18aによりロータ12の内壁体12aの外周面に取り付けられている。一方、レゾルバステータ20は、ボルト20aにより内輪押え26の内周面に取り付けられ、内輪押え26と一体にステータ22の外壁体22bの内周面側に固定されている。
レゾルバロータ18は、ボルト18aによりロータ12の内壁体12aの外周面に取り付けられている。一方、レゾルバステータ20は、ボルト20aにより内輪押え26の内周面に取り付けられ、内輪押え26と一体にステータ22の外壁体22bの内周面側に固定されている。
このようにして、第4の構成では、モータ部16、レゾルバ30およびクロスローラ軸受14を径方向内側からその順序で径方向の同一平面上に配置した。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、クロスローラ軸受14が径方向の最も外側に配置されているので、大径のクロスローラ軸受14を収容することができ、高い剛性を実現することができる。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、クロスローラ軸受14が径方向の最も外側に配置されているので、大径のクロスローラ軸受14を収容することができ、高い剛性を実現することができる。
次に、第5の構成を説明する。
図9は、レゾルバ30、モータ部16およびクロスローラ軸受14を径方向内側からその順序で径方向の同一平面上に配置した薄型モータ100の軸方向の断面図である。
レゾルバ30、モータ部16およびクロスローラ軸受14は、図9に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
図9は、レゾルバ30、モータ部16およびクロスローラ軸受14を径方向内側からその順序で径方向の同一平面上に配置した薄型モータ100の軸方向の断面図である。
レゾルバ30、モータ部16およびクロスローラ軸受14は、図9に示すように、径方向内側からその順序で径方向の同一平面上に配置されている。
ステータ22には、軸方向上方(図9の上方向)に突出した円環状の内壁体22aが形成され、内壁体22aよりも径方向外側には、軸方向上方に突出した円環状の外壁体22bが形成されている。一方、ロータ12には、軸方向下方(図9の下方向)に突出した円環状の内壁体12aが形成され、内壁体12aよりも径方向外側には、軸方向下方に突出した円環状の外壁体12bが形成されている。そして、ステータ22およびロータ12は、ロータ12の内壁体12aがステータ22の内壁体22aと外壁体22bの間に、ステータ22の外壁体22bがロータ12の内壁体12aと外壁体12bの間に位置するように互いに跨って配置されている。
内輪14aは、ステータ22の外壁体22bに軸方向に押圧された状態で固定されている。具体的には、ステータ22の外壁体22bの上端を内輪14aの下面に当接させ、内輪押え26の押圧部26bを内輪14aの上面に接触させ、内輪押え26をボルト26aでステータ22の外壁体22bに締結することにより固定される。
外輪14bは、ロータ12の外壁体12bに軸方向に押圧された状態で固定されている。具体的には、ロータ12の外壁体12bの下端を外輪14bの上面に当接させ、外輪押え28の押圧部28bを外輪14bの下面に接触させ、外輪押え28をボルト28aでロータ12の外壁体12bに締結することにより固定される。
外輪14bは、ロータ12の外壁体12bに軸方向に押圧された状態で固定されている。具体的には、ロータ12の外壁体12bの下端を外輪14bの上面に当接させ、外輪押え28の押圧部28bを外輪14bの下面に接触させ、外輪押え28をボルト28aでロータ12の外壁体12bに締結することにより固定される。
永久磁石16aは、ロータ12の内壁体12aの外周面に取り付けられている。一方、コイル16bは、ボルト16cにより内輪押え26の内周面に取り付けられ、内輪押え26と一体にステータ22の外壁体22bの内周面側に固定されている。
レゾルバロータ18は、ボルト18aによりロータ12の内壁体12aの内周面に取り付けられている。一方、レゾルバステータ20は、ボルト20aによりステータ22の内壁体22aの外周面に取り付けられている。
レゾルバロータ18は、ボルト18aによりロータ12の内壁体12aの内周面に取り付けられている。一方、レゾルバステータ20は、ボルト20aによりステータ22の内壁体22aの外周面に取り付けられている。
このようにして、第5の構成では、レゾルバ30、モータ部16およびクロスローラ軸受14を径方向内側からその順序で径方向の同一平面上に配置した。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、クロスローラ軸受14が径方向の最も外側に配置されているので、大径のクロスローラ軸受14を収容することができ、高い剛性を実現することができる。
これにより、レゾルバ30の誤検出の可能性を低減する効果およびクロスローラ軸受14の長寿命化を図る効果のほか、クロスローラ軸受14が径方向の最も外側に配置されているので、大径のクロスローラ軸受14を収容することができ、高い剛性を実現することができる。
また、上記実施の形態においては、薄型モータ100の内側が回転するインナーロータ型で構成したが、これに限らず、薄型モータ100の外側が回転するアウターロータ型で構成することもできる。この場合、ロータ12が内輪被支持体となり、ステータ22が外輪被支持体となる。
また、図5ないし図9の構成においては、薄型モータ100の外側が回転するアウターロータ型で構成したが、これに限らず、薄型モータ100の内側が回転するインナーロータ型で構成することもできる。この場合、ロータ12が内輪被支持体となり、ステータ22が外輪被支持体となる。
また、図5ないし図9の構成においては、薄型モータ100の外側が回転するアウターロータ型で構成したが、これに限らず、薄型モータ100の内側が回転するインナーロータ型で構成することもできる。この場合、ロータ12が内輪被支持体となり、ステータ22が外輪被支持体となる。
また、上記実施の形態においては、レゾルバロータ18をロータ12の内壁体12aの外周面に、レゾルバステータ20を内輪押え26の内周面に取り付けて構成したが、これに限らず、レゾルバステータ20をロータ12の内壁体12aの外周面に、レゾルバロータ18を内輪押え26の内周面に取り付けて構成することもできる。図5ないし図9の構成についても同様である。
また、上記実施の形態においては、ステータ22の内壁体22aおよび外壁体22bをステータ22の一部として形成したが、これに限らず、ステータ22の内壁体22aまたは外壁体22bを別部材で構成し、これをステータ22に取り付けて構成することもできる。また、ステータ22の内壁体22aを形成せずに内輪押え26をステータ22に直接取り付けて構成することもできるが、この場合は、内輪押え26がステータ22の内壁体を構成することとなる。図5ないし図9の構成についても同様である。
また、上記実施の形態においては、ロータ12の内壁体12aおよび外壁体12bをロータ12の一部として形成したが、これに限らず、ロータ12の内壁体12aまたは外壁体12bを別部材で構成し、これをロータ12に取り付けて構成することもできる。また、ロータ12の外壁体12bを形成せずに外輪押え28をロータ12に直接取り付けて構成することもできるが、この場合は、外輪押え28がロータ12の外壁体を構成することとなる。図5ないし図9の構成についても同様である。
また、上記実施の形態においては、レゾルバ30、クロスローラ軸受14およびモータ部16を径方向の同一平面上に配置したが、これに限らず、モータ部16は、レゾルバ30およびクロスローラ軸受14と径方向同一平面上に配置しなくてもよい。図5ないし図9の構成についても同様である。
また、上記実施の形態においては、クロスローラ軸受14を適用したが、これに限定するものではなく、4点接触玉軸受、アンギュラ玉軸受、深溝玉軸受、円筒ころ軸受、円錐ころ軸受などを適用してもよい。この場合、モーメント荷重、アキシャル荷重およびラジアル荷重を同時に受けることができる転がり軸受を採用することが好ましい。かかる転がり軸受としては、例えば、4点接触玉軸受が該当する。図5ないし図9の構成についても同様である。
また、上記実施の形態においては、クロスローラ軸受14を適用したが、これに限定するものではなく、4点接触玉軸受、アンギュラ玉軸受、深溝玉軸受、円筒ころ軸受、円錐ころ軸受などを適用してもよい。この場合、モーメント荷重、アキシャル荷重およびラジアル荷重を同時に受けることができる転がり軸受を採用することが好ましい。かかる転がり軸受としては、例えば、4点接触玉軸受が該当する。図5ないし図9の構成についても同様である。
また、上記実施の形態においては、本発明に係る複合レゾルバの径方向平面配置構造を有する転がり軸受装置を、ステータ22とロータ12を回転可能に支持する構造に適用したが、これに限らず、2つの部材の間に介在してそれらを相対的に回転可能に支持する構造であればどのような構造にも適用することもできる。図5ないし図9の構成についても同様である。
100、200 薄型モータ
12 ロータ
14 クロスローラ軸受
14a 内輪
14b 外輪
14c クロスローラ
16 モータ部
16a 永久磁石
16b コイル
30 レゾルバ
18 レゾルバロータ
20 レゾルバステータ
32 歯
34 ステータ基部
36 ステータポール
38、C11〜C18 単極検出用巻線
40、C21〜C28 多極検出用巻線
22 ステータ
12a、22a 内壁体
12b、22b 外壁体
26 内輪押え
28 外輪押え
26b、28b 押圧部
16c、18a、20a、24a、26a、28a ボルト
24 固定板
220 ハウジングインナ
12 ロータ
14 クロスローラ軸受
14a 内輪
14b 外輪
14c クロスローラ
16 モータ部
16a 永久磁石
16b コイル
30 レゾルバ
18 レゾルバロータ
20 レゾルバステータ
32 歯
34 ステータ基部
36 ステータポール
38、C11〜C18 単極検出用巻線
40、C21〜C28 多極検出用巻線
22 ステータ
12a、22a 内壁体
12b、22b 外壁体
26 内輪押え
28 外輪押え
26b、28b 押圧部
16c、18a、20a、24a、26a、28a ボルト
24 固定板
220 ハウジングインナ
Claims (5)
- 内輪および外輪を有する転がり軸受と、前記内輪に支持される内輪被支持体と、前記外輪に支持される外輪被支持体と、前記内輪被支持体と前記外輪被支持体の間に配置され、それらの相対位置により変化するセンサ信号を出力する回転センサとを備える転がり軸受装置において、
前記回転センサおよび前記転がり軸受を径方向の同一平面上に配置し、
前記回転センサは、前記内輪被支持体または前記外輪被支持体の回転に同期してリラクタンスが変化し、前記リラクタンス変化の基本波成分の周期が異なる複数種類の前記センサ信号を出力するレゾルバであることを特徴とする複合レゾルバの径方向平面配置構造を有する転がり軸受装置。 - 内輪および外輪を有する転がり軸受と、前記内輪に支持される内輪被支持体と、前記外輪に支持される外輪被支持体と、前記内輪被支持体および前記外輪被支持体を相対的に回転させる駆動体と、前記内輪被支持体と前記外輪被支持体の間に配置され、それらの相対位置により変化するセンサ信号を出力する回転センサとを備える転がり軸受装置において、
前記回転センサ、前記転がり軸受および前記駆動体を径方向内側からその順序で径方向の同一平面上に配置し、
前記回転センサは、前記内輪被支持体または前記外輪被支持体の回転に同期してリラクタンスが変化し、前記リラクタンス変化の基本波成分の周期が異なる複数種類の前記センサ信号を出力するレゾルバであることを特徴とする複合レゾルバの径方向平面配置構造を有する転がり軸受装置。 - 請求項2において、
前記内輪被支持体および前記外輪被支持体は、径方向内外に形成される内壁体および外壁体をそれぞれ有し、前記内輪被支持体の内壁体が前記外輪被支持体の内壁体と外壁体の間に、前記外輪被支持体の外壁体が前記内輪被支持体の内壁体と外壁体の間に位置するように互いに跨って配置され、
前記外輪被支持体の内壁体および前記内輪被支持体の内壁体の一方に前記回転センサの被検出体を、他方に前記回転センサの検出手段を固定し、
前記内輪被支持体の内壁体に前記内輪を、前記外輪被支持体の外壁体に前記外輪を固定し、
前記外輪被支持体の外壁体および前記内輪被支持体の外壁体の一方に前記駆動体の回転子を、他方に前記駆動体の固定子を固定したことを特徴とする複合レゾルバの径方向平面配置構造を有する転がり軸受装置。 - 請求項1ないし3のいずれか1項において、
前記転がり軸受は、クロスローラ軸受または4点接触玉軸受であることを特徴とする複合レゾルバの径方向平面配置構造を有する転がり軸受装置。 - 請求項1ないし4のいずれか1項において、
前記回転センサは、複数の極が形成されかつ前記各極に巻き付けたコイルにより電機子巻線が形成されたレゾルバステータと、前記レゾルバステータの極に対向して複数の歯が円周方向に形成されたレゾルバロータとを有し、前記レゾルバロータおよび前記レゾルバステータの一方は、内周および外周の一方が前記転がり軸受の軸心に対して偏心していることを特徴とする複合レゾルバの径方向平面配置構造を有する転がり軸受装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007054493A JP2008216072A (ja) | 2007-03-05 | 2007-03-05 | 複合レゾルバの径方向平面配置構造を有する転がり軸受装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007054493A JP2008216072A (ja) | 2007-03-05 | 2007-03-05 | 複合レゾルバの径方向平面配置構造を有する転がり軸受装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008216072A true JP2008216072A (ja) | 2008-09-18 |
Family
ID=39836279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007054493A Pending JP2008216072A (ja) | 2007-03-05 | 2007-03-05 | 複合レゾルバの径方向平面配置構造を有する転がり軸受装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008216072A (ja) |
-
2007
- 2007-03-05 JP JP2007054493A patent/JP2008216072A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8616775B2 (en) | Roller bearing device having radial-plane arrangement structure of rotation sensor | |
JP5673206B2 (ja) | ダイレクトドライブモータ、位置決め装置及び機械装置 | |
JP5292530B2 (ja) | ブラシレスモータ | |
JP2009195002A (ja) | 減速機内蔵モータ | |
JP2010110110A (ja) | レゾルバ一体型回転電機及びロータコア | |
JP2007252097A (ja) | ブラシレスモータ | |
JP2014236531A (ja) | モータ | |
JP2008253124A (ja) | 回転センサの径方向平面配置構造を有する転がり軸受装置 | |
JP2008215514A (ja) | 補助転がり軸受を有する高剛性転がり軸受装置 | |
JP2008216072A (ja) | 複合レゾルバの径方向平面配置構造を有する転がり軸受装置 | |
JP2008215510A (ja) | 駆動体による予圧付与構造を有する転がり軸受装置 | |
JP2008253125A (ja) | 複合レゾルバの径方向平面配置構造を有する転がり軸受装置 | |
JP2008215513A (ja) | 電磁石による予圧付与構造を有する転がり軸受装置 | |
JP2008249136A (ja) | 回転センサの径方向平面配置構造を有する転がり軸受装置 | |
JP4844538B2 (ja) | 転がり軸受装置およびこれを備える薄型モータ | |
JP5463629B2 (ja) | ダイレクトドライブモータ及び機械装置及び電気自動車用のホイールモータ | |
JP2008215508A (ja) | 回転センサのユニット取付構造を有する転がり軸受装置および駆動体のユニット取付構造を有する転がり軸受装置 | |
JP4849081B2 (ja) | 転がり軸受装置およびこれを備える薄型モータ | |
JP2004132447A (ja) | 発電機能付き軸受 | |
JP5971320B2 (ja) | ダイレクトドライブモータ、位置決め装置、機械装置及びハウジング部品 | |
JP2008249134A (ja) | 回転センサの径方向平面配置構造を有する転がり軸受装置 | |
JP2008215511A (ja) | 駆動体による予圧付与構造を有する転がり軸受装置 | |
JP2008215512A (ja) | 磁石による予圧付与構造を有する転がり軸受装置 | |
JP2008249132A (ja) | 回転センサの径方向平面配置構造を有する転がり軸受装置 | |
JP2008253123A (ja) | 回転センサの径方向平面配置構造を有する転がり軸受装置 |