JP2008215711A - Heat source machine - Google Patents

Heat source machine Download PDF

Info

Publication number
JP2008215711A
JP2008215711A JP2007053709A JP2007053709A JP2008215711A JP 2008215711 A JP2008215711 A JP 2008215711A JP 2007053709 A JP2007053709 A JP 2007053709A JP 2007053709 A JP2007053709 A JP 2007053709A JP 2008215711 A JP2008215711 A JP 2008215711A
Authority
JP
Japan
Prior art keywords
heating
hot water
water supply
heat
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007053709A
Other languages
Japanese (ja)
Other versions
JP4550077B2 (en
Inventor
Hideo Okamoto
英男 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2007053709A priority Critical patent/JP4550077B2/en
Publication of JP2008215711A publication Critical patent/JP2008215711A/en
Application granted granted Critical
Publication of JP4550077B2 publication Critical patent/JP4550077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat source machine capable of properly generating power by a thermal power generating element so far as only one of a hot water supply operation and a heating operation is operated. <P>SOLUTION: A thermal heat generating element 18 of which a high temperature side 20 is heated by a heating means 4 is disposed. A heating circuit 2 for circulating the water for heating between a heating terminal 5 and the heating means 4, and a hot water supply circuit 3 for distributing the water for hot water supply, heated by the heating means 4 to a hot water supply terminal 13, are disposed. The heating circuit 2 and the hot water supply circuit 3 are provided with elemental cooling portions 28 for cooling a low temperature side 21 of the thermal heat generating element 18 in a state that a water channel 26 for heating, of the heating circuit 2 and a water channel 27 for hot water supply, of the hot water supply circuit 3 are heat-transferrably kept into contact with each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、暖房機能と給湯機能とを有する熱源機に関する。   The present invention relates to a heat source machine having a heating function and a hot water supply function.

従来、給湯運転の際に燃焼させるバーナの加熱により熱発電を行う熱発電素子を備えた熱源機が知られている(例えば、特許文献1参照)。この熱源機は、バーナにより加熱される熱交換器と、この熱交換器を介して給湯用水を給湯端末に送る給湯用水管とからなる給湯回路を備えている。熱発電素子は、その高温側がバーナにより加熱され、その低温側が給湯回路の一部を構成する給湯用水管により冷却されるようになっている。熱発電素子は、周知のようにN型半導体とP型半導体との間に閉回路が形成され、高温側と低温側とに温度差を付与することにより起電力が得られる。熱発電素子から得られる電力は熱源機が備える電気部品(例えば、制御装置や送風機等)に供給してもよく、また、バッテリ等に蓄電してもよい。   2. Description of the Related Art Conventionally, a heat source device including a thermoelectric generator that performs thermoelectric generation by heating a burner that burns during a hot water supply operation is known (see, for example, Patent Document 1). The heat source device includes a hot water supply circuit including a heat exchanger heated by a burner and a hot water supply water pipe that sends hot water supply water to a hot water supply terminal via the heat exchanger. The high temperature side of the thermoelectric generator is heated by a burner, and the low temperature side is cooled by a hot water supply water pipe constituting a part of the hot water supply circuit. As is well known, a thermoelectric generator has a closed circuit formed between an N-type semiconductor and a P-type semiconductor, and an electromotive force is obtained by applying a temperature difference between a high temperature side and a low temperature side. The electric power obtained from the thermoelectric generator may be supplied to an electrical component (for example, a control device or a blower) provided in the heat source device, or may be stored in a battery or the like.

ところで、この種の熱源機において給湯回路の他に、暖房端末に接続されて暖房用水が循環する暖房回路を備えるものでは、例えば、給湯回路の熱交換器を加熱するための給湯用バーナを備える給湯用燃焼部と、暖房回路に介設される熱交換器を加熱するための暖房用バーナを備える暖房用燃焼部とが設けられているものがある。給湯運転と暖房運転とが各々単独で行われるときには、何れか一方のバーナのみが燃焼運転されるが、給湯運転と暖房運転との何れが行われた場合であっても熱発電素子による発電が行えるように、給湯用燃焼部と暖房用燃焼部との夫々に熱発電素子を設ける必要がある。熱発電素子は比較的高価であるため、このように複数の熱発電素子を設けた場合には熱源機を安価に構成することができない。   By the way, in this kind of heat source machine, in addition to the hot water supply circuit, the one provided with a heating circuit connected to the heating terminal and circulating the heating water includes, for example, a hot water supply burner for heating the heat exchanger of the hot water supply circuit. Some are provided with a hot water supply combustion section and a heating combustion section including a heating burner for heating a heat exchanger interposed in the heating circuit. When the hot water supply operation and the heating operation are performed independently, only one of the burners is operated for combustion. However, even if either the hot water supply operation or the heating operation is performed, power generation by the thermoelectric generator is performed. In order to be able to do so, it is necessary to provide thermoelectric generators in each of the hot water supply combustion section and the heating combustion section. Since the thermoelectric generator is relatively expensive, when a plurality of thermoelectric generators are provided in this way, the heat source device cannot be configured at a low cost.

また、他の熱源機として、暖房用水を暖房用バーナにより加熱して循環ポンプにより暖房回路に循環させ、給湯回路に流れる給湯用水を暖房用水により加熱する液々熱交換器を設けて単一のバーナで給湯運転と暖房運転とを行えるようにしたものが知られている(例えば、特許文献2参照)。このような熱源機に熱発電素子を設けた場合には、給湯運転と暖房運転との何れの運転が行われても発電を行うことができるが、給湯運転のみを行う場合には、液々熱交換器による給湯用水の加熱のために暖房回路の循環ポンプを作動させなければならず、発電を行っているにもかかわらず消費電力が大となって好ましくない。
特開平11−55975号公報(図6、図10) 特開2006−112785号公報(図1)
Further, as another heat source machine, there is provided a liquid heat exchanger that heats the heating water by the heating burner and circulates it in the heating circuit by the circulation pump, and heats the hot water flowing in the hot water supply circuit by the heating water. A hot water supply operation and a heating operation can be performed with a burner (see, for example, Patent Document 2). When a thermoelectric generator is provided in such a heat source device, power can be generated regardless of whether the hot water supply operation or the heating operation is performed. However, when only the hot water supply operation is performed, In order to heat the hot water supply water by the heat exchanger, it is necessary to operate the circulation pump of the heating circuit, which is not preferable because the power consumption becomes large despite power generation.
JP-A-11-55975 (FIGS. 6 and 10) JP 2006-112785 A (FIG. 1)

本発明は、以上の点に鑑み、給湯運転と暖房運転とのうち何れか一方のみが運転されていれば熱発電素子により良好な発電を行うことができる熱源機を提供することを課題としている。   This invention makes it a subject to provide the heat source machine which can perform favorable electric power generation with a thermoelectric power generation element, if only any one of hot water supply operation and heating operation is drive | operated in view of the above point. .

かかる課題を解決するために、本発明は、加熱手段と、該加熱手段により高温側が加熱される熱発電素子とを備える熱源機であって、暖房端末に接続されて前記加熱手段により加熱された暖房用水が循環する暖房回路と、前記加熱手段により加熱された給湯用水を給湯端末に送る給湯回路とを設け、前記暖房回路と前記給湯回路とに、暖房回路の一部を構成する暖房用水路と給湯回路の一部を構成する給湯用水路とが互いに熱伝達可能に接して前記熱発電素子の低温側を冷却する素子冷却部を設けたことを特徴とする。   In order to solve such a problem, the present invention is a heat source device including a heating unit and a thermoelectric generator that is heated at a high temperature side by the heating unit, and is connected to a heating terminal and heated by the heating unit. A heating circuit in which heating water circulates, and a hot water supply circuit that sends hot water supply water heated by the heating means to a hot water supply terminal, and a heating water channel that forms part of the heating circuit in the heating circuit and the hot water supply circuit; An element cooling section for cooling the low temperature side of the thermoelectric power generation element is provided in contact with a hot water supply channel constituting a part of the hot water supply circuit so that heat can be transferred to each other.

本発明によれば、暖房回路の暖房用水と給湯回路の給湯用水とが前記加熱手段により加熱され、その際に熱発電素子による発電が行える。そして、熱発電素子は、暖房用水路と給湯用水路とが互いに熱伝達可能に接する素子冷却部によって、暖房用水と給湯用水との両方により低温側が十分に冷却されるので、極めて高い冷却効果が得られ、高温側と低温側との間に著しい温度差を付与することができるので、効率よく発電することができる。そして、暖房運転のみを行っている際には、給湯用水の水流が停止するが、循環する暖房用水によって暖房用水路による熱発電素子の冷却が確実に行える。給湯運転のみを行っている際には、暖房用水の水流が停止していても、暖房用水路内に生じている給湯用水の水流により熱発電素子の冷却が確実に行える。   According to the present invention, the heating water in the heating circuit and the hot water supply water in the hot water supply circuit are heated by the heating means, and at that time, power generation by the thermoelectric generator can be performed. The thermoelectric generator is sufficiently cooled at the low temperature side by both the heating water and the hot water supply by the element cooling section in which the heating water channel and the hot water supply channel are in contact with each other so that heat can be transferred to each other, so that an extremely high cooling effect is obtained. Since a significant temperature difference can be imparted between the high temperature side and the low temperature side, power can be generated efficiently. When only the heating operation is performed, the flow of hot water supply water is stopped, but the thermoelectric power generation element can be reliably cooled by the heating water channel using the circulating heating water. When only the hot water supply operation is performed, the thermoelectric generator can be reliably cooled by the hot water flow generated in the heating channel even if the water flow of the heating water is stopped.

また、素子冷却部では、暖房用水路と給湯用水路とが互いに熱伝達可能に接しているので、一方の水管が水流の停止した状態で加熱されても、水流のある他方の水管により冷却されて温度上昇が抑制され、例えば、暖房運転のみを行っているときの給湯用水路内の給湯用水の沸騰が防止できる。また、従来の液々熱交換器を用いたものとは異なり、給湯運転のみを行っているときに暖房回路に設けられている循環ポンプの駆動が不要であるので、無駄な電力消費が防止できる。   Further, in the element cooling section, the heating water channel and the hot water supply channel are in contact with each other so that heat can be transferred to each other, so that even if one water pipe is heated in a state where the water flow is stopped, it is cooled by the other water pipe having the water flow and the temperature is reduced. The rise is suppressed, and for example, boiling of hot water in the hot water channel when only heating operation is performed can be prevented. Also, unlike the conventional liquid-liquid heat exchanger, it is not necessary to drive the circulation pump provided in the heating circuit when only the hot water supply operation is performed, so that wasteful power consumption can be prevented. .

また、本発明においては、前記素子冷却部における前記暖房用水路の保有水量が、該素子冷却部における前記給湯用水路の保有水量より大とされていることが好ましい。   In the present invention, it is preferable that the amount of water held in the heating water channel in the element cooling section is larger than the amount of water held in the hot water supply water channel in the element cooling section.

これによれば、暖房回路から戻ってきた水温が高い場合(40℃〜60℃)でも、素子冷却部の暖房用水路による冷却効果を高めることができる。そしてまた、特に、給湯運転を行った直後に熱発電素子に蓄熱された余熱を暖房用水路内の暖房用水に多く逃がすことができるので、熱発電素子の余熱による給湯用水路内の給湯用水の温度上昇を抑えることができる。これによれば、例えば、給湯運転直後に再度給湯運転を行っても、給湯端末から過剰に高い温度の湯が供給される事態を回避することができる。   According to this, even when the water temperature returned from the heating circuit is high (40 ° C. to 60 ° C.), the cooling effect by the heating water channel of the element cooling unit can be enhanced. In addition, in particular, since the remaining heat stored in the thermoelectric generator immediately after the hot water supply operation can be released to the heating water in the heating channel, the temperature rise of the hot water in the hot water channel due to the residual heat of the thermoelectric device Can be suppressed. According to this, for example, even if the hot water supply operation is performed again immediately after the hot water supply operation, it is possible to avoid a situation where hot water having an excessively high temperature is supplied from the hot water supply terminal.

また、本発明における一態様としては、前記加熱手段は、バーナと、該バーナの排気流動方向に延びる燃焼室とを備え、該燃焼室は、前記熱発電素子の低温側を該燃焼室の外側に向け高温側をバーナに臨ませて熱発電素子を保持する素子保持部と、該素子保持部の下流側に配設され、該燃焼室の内部に臨んで吸熱する吸熱フィンとを備え、前記暖房回路と前記給湯回路とは、前記暖房用水路と前記給湯用水路とが互いに熱伝達可能に接し且つ前記吸熱フィンを介して加熱される熱交換部を備えることが好ましい。   Further, as one aspect of the present invention, the heating means includes a burner and a combustion chamber extending in the exhaust flow direction of the burner, and the combustion chamber has a low temperature side of the thermoelectric generator element outside the combustion chamber. An element holding portion that holds the thermoelectric generator with the high temperature side facing the burner, and a heat absorbing fin that is disposed on the downstream side of the element holding portion and absorbs heat toward the inside of the combustion chamber, It is preferable that the heating circuit and the hot water supply circuit include a heat exchanging portion in which the heating water channel and the hot water supply channel are in contact with each other so as to be capable of transferring heat and are heated via the heat absorption fins.

これによれば、素子冷却部だけでなくバーナから加熱を受ける熱交換部においても暖房用水路と給湯用水路とが互いに密着しているので、暖房用水路と給湯用水路との間での熱伝達経路を形成することができる。これにより、一方の水管内の水流が停止していても、他方の水流の形成されている水管に熱を逃がすことができるので、例えば、暖房運転のみを行っても、熱交換部における給湯用水路が過剰に加熱されることが防止され、給湯用水路内の給湯用水の沸騰を防止することができる。   According to this, since the heating water channel and the hot water supply water channel are in close contact with each other not only in the element cooling unit but also in the heat exchange unit that receives heat from the burner, a heat transfer path is formed between the heating water channel and the hot water supply water channel. can do. Thus, even if the water flow in one water pipe is stopped, heat can be released to the water pipe in which the other water flow is formed. For example, even if only heating operation is performed, the hot water supply water channel in the heat exchange section Is prevented from being heated excessively, and boiling of hot water in the hot water supply channel can be prevented.

更に、前記吸熱フィンは、前記素子保持部の下流側に隣接して配設することが好ましい。これによれば、素子冷却部と熱交換部とが隣接し、素子冷却部から熱交換部にわたって暖房用水路と給湯用水路とが互いに熱伝達可能に接した状態で設けられるので、加熱手段の構造を簡単としてコンパクトに構成することができる。   Furthermore, it is preferable that the endothermic fin is disposed adjacent to the downstream side of the element holding portion. According to this, the element cooling part and the heat exchange part are adjacent to each other, and the heating water channel and the hot water supply water channel are provided in contact with each other so as to be able to transfer heat from the element cooling part to the heat exchange part. It can be configured as simple and compact.

本発明の一実施形態を図面に基づいて説明する。図1は本実施形態の熱源機の概略構成を示す説明図、図2は吸熱フィンの形状を示す部分的説明図、図3は加熱手段の素子冷却部及び熱交換部の一部を拡大して示す説明図、図4は素子冷却部の他の例を示す説明図、図5は加熱手段の素子冷却部及び熱交換部の構成の他の例を示す説明図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a schematic configuration of the heat source apparatus of the present embodiment, FIG. 2 is a partial explanatory view showing the shape of a heat absorption fin, and FIG. FIG. 4 is an explanatory diagram showing another example of the element cooling unit, and FIG. 5 is an explanatory diagram showing another example of the configuration of the element cooling unit and the heat exchange unit of the heating means.

本実施形態の熱源機1は、図1に示すように、暖房用水(水或いは不凍液等)が循環する暖房回路2と、給湯用水(水道水等)が流通する給湯回路3とを備えると共に、暖房用水と給湯用水とを加熱する加熱手段4を備えている。   As shown in FIG. 1, the heat source unit 1 of the present embodiment includes a heating circuit 2 through which heating water (water or antifreeze liquid or the like) circulates and a hot water supply circuit 3 through which hot water supply water (tap water or the like) flows, Heating means 4 for heating the water for heating and the water for hot water supply is provided.

暖房回路2は、加熱手段4と暖房端末5との間で暖房用水を循環させ、加熱手段4により加熱された暖房用水を暖房端末5に送る往き側暖房用水管6と、暖房端末5を通過した暖房用水を加熱手段4に戻す戻り側暖房用水管7とを備えている。   The heating circuit 2 circulates the heating water between the heating means 4 and the heating terminal 5, passes the heating water pipe 6 that sends the heating water heated by the heating means 4 to the heating terminal 5, and the heating terminal 5. And a return-side heating water pipe 7 for returning the heated heating water to the heating means 4.

戻り側暖房用水管7には、膨張タンク8と、膨張タンク8の下流側のポンプ9とが介設され、ポンプ9の作動で暖房回路2の暖房用水が循環される。そして、往き側暖房用水管6には、膨張タンク8の上流側の戻り側暖房用水管7と接続するバイパス管10が設けられている。   The return side heating water pipe 7 is provided with an expansion tank 8 and a pump 9 on the downstream side of the expansion tank 8, and the heating water of the heating circuit 2 is circulated by the operation of the pump 9. The forward-side heating water pipe 6 is provided with a bypass pipe 10 connected to the upstream-side return-side heating water pipe 7 of the expansion tank 8.

給湯回路3は、その上流端が図示しない水道管等に接続されて給湯用水(水道水等)が加熱手段4に向かって流動する上流側給湯用水管12と、下流端に出湯カラン等の給湯端末13が接続されて加熱手段4により加熱された給湯用水(湯)が給湯端末13に向かって流動する下流側給湯用水管14とを備えている。   The hot water supply circuit 3 has an upstream end connected to a water pipe or the like (not shown) and hot water supply water (tap water or the like) flows toward the heating means 4, and a hot water supply such as a tapping hot water at the downstream end. A hot water supply water (hot water) heated by the heating means 4 with the terminal 13 connected is provided with a downstream hot water supply water pipe 14 that flows toward the hot water supply terminal 13.

加熱手段4は、バーナ15と、該バーナ15を収容してその下方に延びる筒状の燃焼室16と、該燃焼室16の下端に接続された排気ダクト17とを備えている。バーナ15は図示しないガス供給管から供給するガス燃料を燃焼させてその火炎を側壁に形成する。バーナ15の燃焼による排気ガスは燃焼室16の内部を下方に流動して排気ダクト17へ向かう。   The heating means 4 includes a burner 15, a cylindrical combustion chamber 16 that accommodates the burner 15 and extends downward, and an exhaust duct 17 connected to the lower end of the combustion chamber 16. The burner 15 burns gas fuel supplied from a gas supply pipe (not shown) to form a flame on the side wall. Exhaust gas generated by the combustion of the burner 15 flows downward in the combustion chamber 16 toward the exhaust duct 17.

加熱手段4は、熱発電素子18を備えている。熱発電素子18は、燃焼室16の上端側を貫通して形成された素子保持部19によって、バーナ15の火炎に高温側20が対向し、低温側21が燃焼室16の外側に露出するように保持されている。熱発電素子18は、高温側20と低温側21とに温度差を付与することにより起電力が得られるものであり、熱発電素子18から得られた電力を送るリード線22は蓄電池23に接続されている。なお、熱発電素子18から得られた電力は、蓄電池23に充電する以外に、図示しない制御装置や他の電気部品を駆動するために用いることもできる。   The heating unit 4 includes a thermoelectric generator 18. In the thermoelectric generator 18, the high temperature side 20 faces the flame of the burner 15 and the low temperature side 21 is exposed to the outside of the combustion chamber 16 by an element holding portion 19 formed through the upper end side of the combustion chamber 16. Is held in. The thermoelectric generator 18 is an element in which an electromotive force is obtained by giving a temperature difference between the high temperature side 20 and the low temperature side 21, and the lead wire 22 that sends the electric power obtained from the thermoelectric element 18 is connected to the storage battery 23. Has been. Note that the electric power obtained from the thermoelectric generator 18 can be used to drive a control device (not shown) and other electrical components, in addition to charging the storage battery 23.

更に、燃焼室16の内面側には、素子保持部19の下方に隣接して吸熱フィン24が設けられ、燃焼室16の内部には、バーナ15からの排気ガスを燃焼室16の中央位置から吸熱フィン24に沿って案内する案内部材25が設けられている。   Further, on the inner surface side of the combustion chamber 16, an endothermic fin 24 is provided adjacent to the lower side of the element holding portion 19, and the exhaust gas from the burner 15 is introduced into the combustion chamber 16 from the central position of the combustion chamber 16. A guide member 25 for guiding along the heat absorbing fins 24 is provided.

吸熱フィン24は、図2に示すように、燃焼室16の内面に沿って金属製(アルミニウムやステンレス等)の薄板を波型に形成したものであり、バーナ15側から遠くなるに従って排気ガスへの接触面積を次第に大きくしている。なお、吸熱フィン24は、熱伝導率の高い材質であればよく、ここで挙げたもの以外に鋳物等によって形成してもよい。   As shown in FIG. 2, the heat absorption fins 24 are formed by corrugating metal (aluminum, stainless steel, etc.) thin plates along the inner surface of the combustion chamber 16. The contact area is gradually increased. The endothermic fins 24 may be made of a material having high thermal conductivity, and may be formed of a casting or the like other than those listed here.

熱発電素子18の低温側21には、図3に示すように、暖房回路2の一部を構成する暖房用水管26(暖房用水路)と給湯回路3の一部を構成する給湯用水管27(給湯用水路)とによって形成された素子冷却部28が設けられている。素子冷却部28は、暖房用水管26と給湯用水管27とが交互に配設されて互いに熱伝達可能に密着して形成されている。熱発電素子18は、高温側20がバーナ15の火炎により高温に加熱され、低温側21が暖房用水管26と給湯用水管27とに流れる暖房用水と給湯用水とにより高温側20よりも低い温度に冷却される。これによって、熱発電素子18の高温側20と低温側21とに確実に温度差が生じるので効率よく発電することができる。   On the low temperature side 21 of the thermoelectric generator 18, as shown in FIG. 3, a heating water pipe 26 (heating water channel) that forms a part of the heating circuit 2 and a hot water supply water pipe 27 ( An element cooling section 28 formed by a hot water supply channel) is provided. The element cooling section 28 is formed in such a manner that heating water pipes 26 and hot water supply water pipes 27 are alternately arranged and are in close contact with each other so as to be able to transfer heat. In the thermoelectric generator 18, the high temperature side 20 is heated to a high temperature by the flame of the burner 15, and the low temperature side 21 has a lower temperature than the high temperature side 20 due to the heating water and hot water supply water flowing through the heating water pipe 26 and the hot water supply water pipe 27. To be cooled. As a result, a temperature difference is surely generated between the high temperature side 20 and the low temperature side 21 of the thermoelectric generator 18, so that power can be generated efficiently.

また、熱発電素子18の下方に隣接する吸熱フィン24に対応する燃焼室16の外面には、素子冷却部28から連続する暖房用水管26(暖房用水路)と給湯用水管27(給湯用水路)とが交互に配設されて互いに熱伝達可能に密着して巻回した熱交換部29が設けられている。これにより、燃焼室16の排気ガスからの熱が吸熱フィン24を介して暖房用水管26と給湯用水管27とに回収され暖房用水管26と給湯用水管27とに流れる暖房用水と給湯用水とが加熱される。このように、素子冷却部28と熱交換部29とが互いに隣接して設けられていることにより、加熱手段4がコンパクトに構成される。   Further, on the outer surface of the combustion chamber 16 corresponding to the heat sink fin 24 adjacent to the lower side of the thermoelectric generator 18, a heating water pipe 26 (heating water channel) and a hot water supply water pipe 27 (hot water supply water channel) continuous from the element cooling unit 28 are provided. Are arranged alternately and are provided in close contact with each other so as to be able to transfer heat. Thereby, the heat from the exhaust gas in the combustion chamber 16 is recovered to the heating water pipe 26 and the hot water supply water pipe 27 via the heat absorption fins 24, and the heating water and the hot water supply water flowing through the heating water pipe 26 and the hot water supply water pipe 27. Is heated. As described above, the element cooling unit 28 and the heat exchange unit 29 are provided adjacent to each other, whereby the heating unit 4 is configured in a compact manner.

以上のように構成された本実施形態の熱源機1において、暖房運転を行ったときには、図1を参照して、暖房回路2の暖房用水が暖房端末5と加熱手段4との間でポンプ9によって循環され、加熱手段4では、熱発電素子18による発電と同時に熱交換部29を介して暖房用水が加熱される。同じように、給湯運転を行ったときには、給湯回路3の給湯用水が加熱手段4により熱交換部29で加熱されて給湯端末13から給湯でき、同時に加熱手段4によって熱発電素子18の発電が行われる。   In the heat source apparatus 1 of the present embodiment configured as described above, when the heating operation is performed, the heating water in the heating circuit 2 is pumped between the heating terminal 5 and the heating means 4 with reference to FIG. In the heating unit 4, the heating water is heated through the heat exchanging unit 29 simultaneously with the power generation by the thermoelectric generator 18. Similarly, when a hot water supply operation is performed, hot water for the hot water supply circuit 3 is heated by the heat exchange unit 29 by the heating means 4 and can be supplied from the hot water supply terminal 13, and at the same time, the thermoelectric generator 18 generates power by the heating means 4. Is called.

そして、暖房運転を単独で行った場合には、暖房回路2の暖房用水が循環して給湯回路3の給湯用水の流動が停止された状態となる。このとき、図3を参照して、素子冷却部28の暖房用水管26における暖房用水が流動して熱発電素子18の低温側21を冷却することができ、熱発電素子18による発電を確実に行うことができる。しかも、熱交換部29においては、暖房用水管26と給湯用水管27とが密着していることにより、同時に加熱される給湯用水管27の熱が暖房用水管26に吸熱され、給湯用水の流動が停止していても、給湯用水管27内での給湯用水の沸騰を防止することができる。更に、往き側暖房用水管6と膨張タンク8の上流側の戻り側暖房用水管7との間には、バイパス管10が設けられており、万一暖房回路2側の通水が突然停止してもバイパス管10を介して一定の水が流れるので、熱交換部29や熱発電素子18の冷却が停止することなく過加熱を防止することができる。   And when heating operation is performed independently, the water for heating of the heating circuit 2 will circulate, and the flow of the water for hot water supply of the hot water supply circuit 3 will be stopped. At this time, referring to FIG. 3, the heating water in the heating water pipe 26 of the element cooling unit 28 can flow to cool the low temperature side 21 of the thermoelectric generator 18, and the power generation by the thermoelectric generator 18 is ensured. It can be carried out. In addition, in the heat exchanging unit 29, the heating water pipe 26 and the hot water supply water pipe 27 are in close contact with each other, so that the heat of the hot water supply water pipe 27 that is heated at the same time is absorbed by the heating water pipe 26, and the flow of hot water supply water Even when is stopped, boiling of hot water supply water in the hot water supply water pipe 27 can be prevented. Furthermore, a bypass pipe 10 is provided between the forward heating water pipe 6 and the return heating water pipe 7 upstream of the expansion tank 8, and water flow on the heating circuit 2 side suddenly stops. However, since constant water flows through the bypass pipe 10, overheating can be prevented without stopping cooling of the heat exchanging section 29 and the thermoelectric generator 18.

また、給湯運転を単独で行った場合には、給湯回路3の給湯用水が流動して暖房回路2の暖房用水の循環が停止された状態となる。このとき、素子冷却部28の給湯用水管27における給湯用水が流動して熱発電素子18の低温側21を冷却することができ、熱発電素子18による発電を確実に行うことができる。しかも、熱交換部29においては、暖房用水管26と給湯用水管27とが密着していることにより、同時に加熱される暖房用水管26の熱が給湯用水管27に吸熱され、暖房用水の流動が停止していても、暖房用水管26内での暖房用水の沸騰を防止することができる。   In addition, when the hot water supply operation is performed alone, the hot water supply water in the hot water supply circuit 3 flows and the circulation of the heating water in the heating circuit 2 is stopped. At this time, hot-water supply water in the hot-water supply water pipe 27 of the element cooling unit 28 flows to cool the low-temperature side 21 of the thermoelectric generator 18, and power generation by the thermoelectric generator 18 can be reliably performed. In addition, in the heat exchanging unit 29, the heating water pipe 26 and the hot water supply water pipe 27 are in close contact with each other, so that the heat of the heating water pipe 26 that is heated at the same time is absorbed by the hot water supply water pipe 27, and the flow of the heating water Even if is stopped, boiling of the heating water in the heating water pipe 26 can be prevented.

また、上述した実施形態においては、素子冷却部28の暖房用水管26と給湯用水管27とが同一の内径とされているものについて説明したが、それ以外に、図4に示すように、暖房用水管26の内径を給湯用水管27の内径より大としてもよい。こうすることにより、素子冷却部28においては、暖房回路2の保有水量が給湯回路3の保有水量より大となり、素子冷却部28の暖房用水管26による冷却効果を高めることができる。これによって、暖房運転が停止されたことにより暖房用水管26の暖房用水の流動が停止しても、熱発電素子18の低温側の冷却効果を得ることができ、しかも、給湯用水管27から暖房用水管26への吸熱作用も向上させることができるので、給湯用水管27の過剰な温度上昇を抑えることができる。また、給湯運転を行った直後に熱発電素子18に蓄熱された余熱を暖房用水管26の暖房用水に吸熱させることができ、熱発電素子18の余熱による給湯用水管27の給湯用水の温度上昇を抑えることができる。これによって、例えば、給湯運転直後に再度給湯運転を行っても、給湯端末13から過剰に高い温度の湯が供給されることが防止できる。   In the above-described embodiment, the heating water pipe 26 and the hot water supply water pipe 27 of the element cooling unit 28 have the same inner diameter. However, as shown in FIG. The inner diameter of the water pipe 26 may be larger than the inner diameter of the hot water supply water pipe 27. By doing so, in the element cooling unit 28, the amount of water held in the heating circuit 2 becomes larger than the amount of water held in the hot water supply circuit 3, and the cooling effect by the heating water pipe 26 of the element cooling unit 28 can be enhanced. Thus, even if the heating water flow in the heating water pipe 26 stops due to the heating operation being stopped, the cooling effect on the low temperature side of the thermoelectric generator 18 can be obtained, and the heating water pipe 27 is heated. Since the endothermic effect on the water pipe 26 can also be improved, an excessive temperature rise in the hot water supply water pipe 27 can be suppressed. Further, the residual heat stored in the thermoelectric generator 18 immediately after the hot water supply operation can be absorbed by the heating water in the heating water pipe 26, and the temperature rise of the hot water in the hot water supply pipe 27 due to the residual heat of the thermoelectric generator 18 is increased. Can be suppressed. Thereby, for example, even if the hot water supply operation is performed again immediately after the hot water supply operation, it is possible to prevent the hot water at an excessively high temperature from being supplied from the hot water supply terminal 13.

また、上述した実施形態の素子冷却部28及び熱交換部29においては、暖房用水路を暖房用水管26により構成し、給湯用水路を給湯用水管27によって構成したものを示したが、それ以外に、素子冷却部28及び熱交換部29における暖房用水路と給湯用水路との何れか一方を燃焼室16と一体に形成してもよい。即ち、図5に示すように、燃焼室16の外側に、螺旋波状の金属板によるジャケット30を一体に設け、該ジャケット30の内側に形成された流路空間を暖房用水路31とし、更に、該ジャケット30の谷部に給湯用水管32を密着保持させてもよい。これによれば、給湯用水管32の外周面がジャケット30の谷部外面に覆われて一層効率のよい熱伝達経路を形成することができる。   Moreover, in the element cooling unit 28 and the heat exchange unit 29 of the above-described embodiment, the heating water channel is configured by the heating water pipe 26, and the hot water supply channel is configured by the hot water supply water tube 27. Any one of the heating water channel and the hot water supply water channel in the element cooling unit 28 and the heat exchange unit 29 may be formed integrally with the combustion chamber 16. That is, as shown in FIG. 5, a jacket 30 made of a spiral metal plate is integrally provided outside the combustion chamber 16, and a flow path space formed inside the jacket 30 is used as a heating water channel 31. The hot water supply water pipe 32 may be held in close contact with the valley of the jacket 30. According to this, the outer peripheral surface of the hot water supply water pipe 32 is covered with the outer surface of the valley portion of the jacket 30, and a more efficient heat transfer path can be formed.

また、上述した実施形態のバーナ15は火炎を側壁に形成するものであり、具体的には、円筒形の周壁を備えて周壁外面に火炎を形成するものや、対向する矩形状の側壁外面に火炎を形成するものが挙げられる。この場合には、バーナ15の形状に合わせて燃焼室16の形状も円筒形状や角筒形状に形成されることは言うまでもない。また、このような形状のバーナ15に替えて、図示しないが、底壁に平坦な火炎を形成するバーナや一方側壁においてのみ火炎を形成するバーナを採用しても良い。   Further, the burner 15 of the above-described embodiment forms a flame on the side wall. Specifically, the burner 15 has a cylindrical peripheral wall and forms a flame on the outer peripheral wall surface, or on the opposing rectangular side wall outer surface. Those that form a flame. In this case, it goes without saying that the shape of the combustion chamber 16 is also formed in a cylindrical shape or a rectangular tube shape in accordance with the shape of the burner 15. Further, in place of the burner 15 having such a shape, although not shown, a burner that forms a flat flame on the bottom wall or a burner that forms a flame only on one side wall may be adopted.

更に、上述した実施形態の熱交換部29は、暖房用水管26と給湯用水管27とが吸熱フィン24の外周に位置するものを示したが、本発明における熱交換部の形状はこれに限るものではない。例えば、図示しないが、互いに密着させた暖房用水管と給湯用水管とを複数のフィンに貫通させて熱交換部を構成し、燃焼室の排気流路を横切るようにして燃焼室に設けることもできる。更にこの場合には、一方側壁に火炎を形成して火力の異なる少なくとも3つのバーナを一体的に連設して大中小の加熱量が選択的に得られるようにし、最も弱い火力を有するバーナに熱発電素子の高温側を対向させるように構成してもよい。この場合にも、燃焼室の形状は、バーナの形状と排気流路の形状とに応じて設計させるものであり、上述したように、密着する暖房用水管と給湯用水管とが複数のフィンに貫通して形成された熱交換部を、燃焼室の排気流路を横切るようにして設けることができる。   Furthermore, although the heat exchange part 29 of embodiment mentioned above showed what the heating water pipe 26 and the hot water supply water pipe 27 were located in the outer periphery of the heat sink fin 24, the shape of the heat exchange part in this invention is restricted to this. It is not a thing. For example, although not shown, a heating water pipe and a hot water supply water pipe that are in close contact with each other are penetrated through a plurality of fins to form a heat exchanging portion, and may be provided in the combustion chamber so as to cross the exhaust passage of the combustion chamber. it can. Furthermore, in this case, a flame is formed on one side wall, and at least three burners having different heating powers are integrally connected so that large, medium and small heating amounts can be selectively obtained. You may comprise so that the high temperature side of a thermoelectric generation element may be made to oppose. Also in this case, the shape of the combustion chamber is designed in accordance with the shape of the burner and the shape of the exhaust passage, and as described above, the heating water pipe and the hot water supply water pipe that are in close contact with each other are formed into a plurality of fins. A heat exchanging portion formed so as to penetrate can be provided so as to cross the exhaust passage of the combustion chamber.

本発明の一実施形態の熱源機の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the heat-source equipment of one Embodiment of this invention. 吸熱フィンの形状を示す部分的説明図。Partial explanatory drawing which shows the shape of an endothermic fin. 加熱手段の素子冷却部及び熱交換部の一部を拡大して示す説明図。Explanatory drawing which expands and shows a part of element cooling part and heat exchange part of a heating means. 素子冷却部の他の例を示す説明図。Explanatory drawing which shows the other example of an element cooling part. 加熱手段の素子冷却部及び熱交換部の構成の他の例を示す説明図。Explanatory drawing which shows the other example of a structure of the element cooling part of a heating means, and a heat exchange part.

符号の説明Explanation of symbols

1…熱源機、2…暖房回路、3…給湯回路、4…加熱手段、5…暖房端末、13…給湯端末、15…バーナ、16…燃焼室、18…熱発電素子、19…素子保持部、24…吸熱フィン、26…暖房用水管(暖房用水路)、27…給湯用水管(給湯用水路)、28…素子冷却部、29…熱交換部。   DESCRIPTION OF SYMBOLS 1 ... Heat source machine, 2 ... Heating circuit, 3 ... Hot water supply circuit, 4 ... Heating means, 5 ... Heating terminal, 13 ... Hot water supply terminal, 15 ... Burner, 16 ... Combustion chamber, 18 ... Thermoelectric power generation element, 19 ... Element holding part , 24 ... heat absorption fins, 26 ... heating water pipe (heating water channel), 27 ... hot water supply water pipe (hot water supply water channel), 28 ... element cooling unit, 29 ... heat exchange unit.

Claims (4)

加熱手段と、該加熱手段により高温側が加熱される熱発電素子とを備える熱源機であって、
暖房端末に接続されて前記加熱手段により加熱された暖房用水が循環する暖房回路と、前記加熱手段により加熱された給湯用水を給湯端末に送る給湯回路とを設け、
前記暖房回路と前記給湯回路とに、暖房回路の一部を構成する暖房用水路と給湯回路の一部を構成する給湯用水路とが互いに熱伝達可能に接して前記熱発電素子の低温側を冷却する素子冷却部を設けたことを特徴とする熱源機。
A heat source device comprising a heating means and a thermoelectric generator that is heated on the high temperature side by the heating means,
A heating circuit connected to the heating terminal and circulating the heating water heated by the heating means, and a hot water supply circuit for sending the hot water heated by the heating means to the hot water supply terminal,
A heating water channel constituting a part of the heating circuit and a hot water water channel constituting a part of the hot water supply circuit are in contact with the heating circuit and the hot water supply circuit so that heat can be transferred to each other, thereby cooling the low temperature side of the thermoelectric generator. A heat source machine provided with an element cooling section.
前記素子冷却部における前記暖房用水路の保有水量は、該素子冷却部における前記給湯用水路の保有水量より大とされていることを特徴とする請求項1記載の熱源機。   The heat source device according to claim 1, wherein the amount of water held in the heating channel in the element cooling unit is larger than the amount of water held in the hot water supply channel in the element cooling unit. 前記加熱手段は、バーナと、該バーナの排気流動方向に延びる燃焼室とを備え、
該燃焼室は、前記熱発電素子の低温側を該燃焼室の外側に向け高温側をバーナに臨ませて熱発電素子を保持する素子保持部と、該素子保持部の下流側に配設され、該燃焼室の内部に臨んで吸熱する吸熱フィンとを備え、
前記暖房回路と前記給湯回路とは、前記暖房用水路と前記給湯用水路とが互いに熱伝達可能に接し且つ前記吸熱フィンを介して加熱される熱交換部を備えることを特徴とする請求項1又は2記載の熱源機。
The heating means includes a burner and a combustion chamber extending in the exhaust flow direction of the burner,
The combustion chamber is disposed on the downstream side of the element holding portion, an element holding portion for holding the thermoelectric generation element with the low temperature side of the thermoelectric generation element facing the outside of the combustion chamber and the high temperature side facing the burner. And an endothermic fin that absorbs heat toward the inside of the combustion chamber,
The said heating circuit and the said hot water supply circuit are provided with the heat exchange part which the said water channel for heating and the said water channel for hot water supply contact mutually so that heat transfer is possible, and it is heated via the said heat sink fin. The heat source machine described.
前記吸熱フィンは、前記素子保持部の下流側に隣接して配設されており、素子冷却部と熱交換部とが隣接して設けられることを特徴とする請求項3記載の熱源機。   4. The heat source apparatus according to claim 3, wherein the heat-absorbing fin is disposed adjacent to the downstream side of the element holding unit, and an element cooling unit and a heat exchanging unit are disposed adjacent to each other.
JP2007053709A 2007-03-05 2007-03-05 Heat source machine Expired - Fee Related JP4550077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007053709A JP4550077B2 (en) 2007-03-05 2007-03-05 Heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007053709A JP4550077B2 (en) 2007-03-05 2007-03-05 Heat source machine

Publications (2)

Publication Number Publication Date
JP2008215711A true JP2008215711A (en) 2008-09-18
JP4550077B2 JP4550077B2 (en) 2010-09-22

Family

ID=39835954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053709A Expired - Fee Related JP4550077B2 (en) 2007-03-05 2007-03-05 Heat source machine

Country Status (1)

Country Link
JP (1) JP4550077B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045929A (en) * 2011-08-25 2013-03-04 Science Park Corp Temperature difference power generator
JP2018041775A (en) * 2016-09-05 2018-03-15 株式会社テックスイージー Thermoelectric conversion module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512080B (en) * 2013-10-27 2016-06-22 王涛 A kind of stack boiler residual heat semiconductor temperature differential generating heating water heater system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519345U (en) * 1974-07-08 1976-01-23
JPS6298127A (en) * 1985-10-22 1987-05-07 Matsushita Electric Works Ltd Heating apparatus
JPH11201546A (en) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd Heat conveying apparatus
JP2003259671A (en) * 2002-02-26 2003-09-12 Ntt Power & Building Facilities Inc Power supply method and power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519345U (en) * 1974-07-08 1976-01-23
JPS6298127A (en) * 1985-10-22 1987-05-07 Matsushita Electric Works Ltd Heating apparatus
JPH11201546A (en) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd Heat conveying apparatus
JP2003259671A (en) * 2002-02-26 2003-09-12 Ntt Power & Building Facilities Inc Power supply method and power supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045929A (en) * 2011-08-25 2013-03-04 Science Park Corp Temperature difference power generator
JP2018041775A (en) * 2016-09-05 2018-03-15 株式会社テックスイージー Thermoelectric conversion module

Also Published As

Publication number Publication date
JP4550077B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4023472B2 (en) Thermoelectric generator
JP2006177265A (en) Thermoelectric power generation device
US20200251644A1 (en) Thermoelectric generator comprising liquid metal heat exchange unit
KR102005413B1 (en) Thermoelectric generator for boiler
JP4550077B2 (en) Heat source machine
JP2007051332A (en) Hardening device, and method for recovering exhaust heat of coolant
KR20110132678A (en) Thermoelectric generating system and control methode thereof
JP6043635B2 (en) Heat source machine
JP2017503138A (en) Heat exchanger, heating device, heating system, and method for heating water
KR101654748B1 (en) Self Cooling type PrOx using Thermoelectric Module and Portable Fuel Cell Generator thereby
JP4388253B2 (en) Latent heat storage device
JP2007064548A (en) Heat-storage and hot-water-storage type water heater
JP2016023608A (en) Generating set using heat of exhaust gas of internal combustion engine
JP4879227B2 (en) Hot water heater
JP6229484B2 (en) Cogeneration system
RU177847U1 (en) WATER BOILER
JP2011096983A (en) Cooling device
JP2008034700A (en) Heat treatment device
KR100817266B1 (en) Thermoelectric element used for heating apparatus
JP6171699B2 (en) Exhaust heat recovery unit
KR101542199B1 (en) Heat-recovery boiler using the water-tank
JP7153608B2 (en) hydrogen torch
JP2010021061A (en) Fuel cell power generation system
JP2009250569A (en) Heat exchanger and water heater using the same
WO2016121117A1 (en) Heat storing waste heat recovering device, combustion device using same, and cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Ref document number: 4550077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees