JP2008215262A - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
JP2008215262A
JP2008215262A JP2007056122A JP2007056122A JP2008215262A JP 2008215262 A JP2008215262 A JP 2008215262A JP 2007056122 A JP2007056122 A JP 2007056122A JP 2007056122 A JP2007056122 A JP 2007056122A JP 2008215262 A JP2008215262 A JP 2008215262A
Authority
JP
Japan
Prior art keywords
rotor
chamber
vane
stator
rotor chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007056122A
Other languages
Japanese (ja)
Other versions
JP4791987B2 (en
Inventor
Masaaki Nishikata
政昭 西方
Takeshi Kusakabe
毅 日下部
Tsukasa Hojo
司 法上
Ken Yamamoto
山本  憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007056122A priority Critical patent/JP4791987B2/en
Priority to TW097105317A priority patent/TW200839098A/en
Priority to EP08003181A priority patent/EP1967733A2/en
Priority to US12/073,303 priority patent/US20080219875A1/en
Priority to KR1020080020872A priority patent/KR100965475B1/en
Publication of JP2008215262A publication Critical patent/JP2008215262A/en
Application granted granted Critical
Publication of JP4791987B2 publication Critical patent/JP4791987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C2/3442Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/008Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees

Abstract

<P>PROBLEM TO BE SOLVED: To prevent leak of working fluid, improve pump efficiency, and reduce thickness by perfectly holding a shaft part which is the rotation center of a rotor in a sealed rotor chamber. <P>SOLUTION: This vane pump is provided with; a casing having the rotor chamber 2 holding the rotor 3 therein; a stator 23 arranged at outside of the rotor chamber 2; a plurality of vanes 4 provided on the rotor 3 and having a tip thereof slid on an inner circumference surface of the rotor chamber 2; a working chamber 5 surrounded by an inner surface of the rotor chamber 2 and an outer circumference surface of the rotor 3 and changing volume thereof by rotary drive of the rotor 3; a suction port part 6 making working fluid flow into the working chamber 5 in a process of volume expansion; and a delivery port part 7 discharging working fluid from the working chamber 5 in a process of volume reduction. The stator 23 arranged outside of the rotor chamber 2 and a magnet part 22 arranged in the rotor chamber 2 are arranged at positions overlapping in a view from a radial direction of the rotor 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はベーンポンプに関する。   The present invention relates to a vane pump.

従来のベーンポンプとして例えば図8に示すものが知られている。このベーンポンプ1はケーシング10内に形成したロータ室2の偏心位置にロータ3を収納してあり、ロータ3には先端がロータ室2の内周面2aに摺接されるベーン4を複数設けている。ロータ3を回転駆動すると、各ベーン4の先端部はロータ室2の内周面2aに摺接し、これによりロータ室2の内面とロータ3の外周面とベーン4とで囲まれた作動室5の容積が大小変化し、この作動室5を介して吸入口部6から作動流体を吸入すると共に吐出口部7から作動流体を排出する。   For example, a conventional vane pump shown in FIG. 8 is known. The vane pump 1 houses the rotor 3 at an eccentric position of the rotor chamber 2 formed in the casing 10, and the rotor 3 is provided with a plurality of vanes 4 whose tips are slidably contacted with the inner peripheral surface 2 a of the rotor chamber 2. Yes. When the rotor 3 is rotationally driven, the tip of each vane 4 is brought into sliding contact with the inner peripheral surface 2 a of the rotor chamber 2, whereby the working chamber 5 surrounded by the inner surface of the rotor chamber 2, the outer peripheral surface of the rotor 3, and the vane 4. , The working fluid is sucked from the suction port 6 through the working chamber 5 and discharged from the discharge port 7.

ところで特許文献1にも上記同様の一般的なベーンポンプが開示してある。このベーンポンプはモータによりロータを回転駆動するものであり、モータによって回転駆動する回転軸をケーシング外からロータ室内に挿入し、該回転軸にロータを接続している。   Incidentally, Patent Document 1 also discloses a general vane pump similar to the above. This vane pump rotates a rotor by a motor. A rotating shaft that is rotated by a motor is inserted into the rotor chamber from the outside of the casing, and the rotor is connected to the rotating shaft.

しかし、このようにケーシング外からロータ室内に回転軸を挿入するものにおいては、回転軸とケーシングの間をシール材でシールしてロータ室から作動流体が漏れ出ることを防止する必要がある。また回転駆動する回転軸とケーシングの間を完全にシールすることは難しく、またシール材が磨耗等により劣化しやすく、このため回転軸とケーシングの間から作動流体が漏れ出す恐れがある。
特開昭53−2704号公報
However, in the case where the rotary shaft is inserted into the rotor chamber from outside the casing as described above, it is necessary to seal the space between the rotary shaft and the casing with a sealing material to prevent the working fluid from leaking out of the rotor chamber. Further, it is difficult to completely seal between the rotating shaft and the casing that are driven to rotate, and the sealing material is likely to be deteriorated due to wear or the like, so that the working fluid may leak from between the rotating shaft and the casing.
Japanese Patent Laid-Open No. 53-2704

本発明は上記従来の問題点に鑑みて発明したものであって、ロータの回転中心となる軸部を密閉されたロータ室内に完全に収納することができ、ケーシングから作動流体が漏れ出すことを防止でき、しかも薄型化を図れるベーンポンプを提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and it is possible to completely store the shaft portion serving as the rotation center of the rotor in a sealed rotor chamber, and to prevent the working fluid from leaking from the casing. An object of the present invention is to provide a vane pump that can be prevented and that can be reduced in thickness.

上記課題を解決するために本発明に係るベーンポンプは、内部にロータ室2を形成したケーシング10と、ロータ室2に収納したロータ3と、ロータ3が有するマグネット部22を回転駆動するためのロータ室2外に配置したステータ23と、ロータ3に設けられて先端がロータ室2の内周面に摺接される複数のベーン4を備え、ロータ室2の内面とロータ3の外周面とベーン4とで囲まれてロータ3の回転駆動によりその容積を大小変化させる作動室5と、容積拡大過程の作動室5に作動流体を流入させる吸入口部6と、容積縮小過程の作動室5から作動流体を排出させる吐出口部7を備え、前記ロータ室2外に配置したステータ23とロータ室2内に配置したマグネット部22をロータ3のラジアル方向から見て重複する位置に配置して成ることを特徴とする。このようにロータ3をロータ室2外に配置したステータ23により駆動することで、ロータ3の回転中心となる軸部32を密閉されたロータ室2内に収納でき、ケーシング10から作動流体が漏れ出すことを防止できる。またステータ23とマグネット部22をロータ3のラジアル方向から見て重複する位置に配置したことで、ケーシング10の厚み寸法を小さくできる。   In order to solve the above problems, a vane pump according to the present invention includes a casing 10 in which a rotor chamber 2 is formed, a rotor 3 housed in the rotor chamber 2, and a rotor for rotationally driving a magnet portion 22 of the rotor 3. A stator 23 arranged outside the chamber 2, and a plurality of vanes 4 provided on the rotor 3 and having the tip slidably contacted with the inner peripheral surface of the rotor chamber 2. The inner surface of the rotor chamber 2, the outer peripheral surface of the rotor 3, and the vanes 4, a working chamber 5 that changes its volume by rotating the rotor 3, a suction port 6 that allows the working fluid to flow into the working chamber 5 in the volume expansion process, and a working chamber 5 in the volume reduction process. A discharge port portion 7 for discharging the working fluid is provided, and a stator 23 arranged outside the rotor chamber 2 and a magnet portion 22 arranged inside the rotor chamber 2 are arranged at overlapping positions when viewed from the radial direction of the rotor 3. And wherein the Rukoto. By driving the rotor 3 with the stator 23 arranged outside the rotor chamber 2 in this way, the shaft portion 32 that becomes the rotation center of the rotor 3 can be stored in the sealed rotor chamber 2, and the working fluid leaks from the casing 10. Can be prevented. Moreover, the thickness dimension of the casing 10 can be made small by arrange | positioning the stator 23 and the magnet part 22 in the position which overlaps seeing from the radial direction of the rotor 3. FIG.

またマグネット部22のロータ3のラジアル方向における内側にステータ23を配置することも好ましい。マグネット部22の内側にステータ23を配置することで、薄型化を図りつつコンパクトにできる。   It is also preferable to dispose the stator 23 inside the rotor 3 of the magnet portion 22 in the radial direction. By disposing the stator 23 inside the magnet portion 22, the thickness can be reduced and the size can be reduced.

ロータ3のスラスト方向におけるマグネット部22の中心位置b1とロータ3のスラスト方向におけるステータ23の中心位置b2をずらすことも好ましい。ステータ23によるロータ3の回転駆動時に、ステータ23の電磁力によりマグネット部22に対してロータ3のスラスト方向の力を加えることができ、これによりロータ3をロータ室2の内底面に確実に当接でき、ロータ3のスラスト方向のがたつきを防止できる。   It is also preferable to shift the center position b1 of the magnet portion 22 in the thrust direction of the rotor 3 and the center position b2 of the stator 23 in the thrust direction of the rotor 3. When the rotor 3 is rotationally driven by the stator 23, a force in the thrust direction of the rotor 3 can be applied to the magnet portion 22 by the electromagnetic force of the stator 23, so that the rotor 3 can be reliably applied to the inner bottom surface of the rotor chamber 2. The rotor 3 can be prevented from rattling in the thrust direction.

またケーシング10のロータ室2に軸部32を設けると共にロータ3に前記軸部32によって回転自在に軸支される軸受部材20を設け、該軸受部材20を緩衝材37を介してロータ3に設けることも好ましい。ロータ3の回転駆動時にはロータ3に対してラジアル方向に不規則な力が加わるが、上記緩衝材37を設けることにより、ロータ3のラジアル方向における不規則な力を吸収してロータ3のラジアル方向の振動を防止できる。   In addition, a shaft portion 32 is provided in the rotor chamber 2 of the casing 10, and a bearing member 20 that is rotatably supported by the shaft portion 32 is provided in the rotor 3, and the bearing member 20 is provided in the rotor 3 via a buffer material 37. It is also preferable. When the rotor 3 is rotationally driven, an irregular force is applied to the rotor 3 in the radial direction. However, by providing the cushioning material 37, the irregular force in the radial direction of the rotor 3 is absorbed and the rotor 3 is moved in the radial direction. Can prevent vibration.

また前記ロータ3は、ベーン4をロータ3のラジアル方向にスライド自在に収納するベーン溝19と、ベーン溝19の内側面に設けたストッパ収納溝部40を備え、ベーン4はベーン4の側面から突出して前記ストッパ収納溝部40にベーン4のスライド方向にスライド自在に収納されるストッパ部41を備えることも好ましい。ベーン4のストッパ部41をストッパ収納溝部40に収納することで、ベーン4がロータ3のスラスト方向にがたつくことを防止してベーン4の長寿命化を図れる。   The rotor 3 includes a vane groove 19 that slidably stores the vane 4 in the radial direction of the rotor 3, and a stopper storage groove 40 provided on the inner surface of the vane groove 19. The vane 4 protrudes from the side surface of the vane 4. It is also preferable that the stopper storing groove portion 40 is provided with a stopper portion 41 that is slidably stored in the sliding direction of the vane 4. By storing the stopper portion 41 of the vane 4 in the stopper storage groove portion 40, it is possible to prevent the vane 4 from rattling in the thrust direction of the rotor 3 and to extend the life of the vane 4.

請求項1に係る発明では、ロータの回転中心となる軸部を密閉されたロータ室内に収納でき、ケーシングから作動流体が漏れ出すことを防止できる。またステータとマグネット部をロータのラジアル方向から見て重複する位置に配置したことでベーンポンプを薄型化できる。   In the invention which concerns on Claim 1, the axial part used as the rotation center of a rotor can be accommodated in the sealed rotor chamber, and it can prevent that a working fluid leaks from a casing. Further, the vane pump can be thinned by arranging the stator and the magnet portion at positions overlapping when viewed from the radial direction of the rotor.

また請求項2に係る発明では、請求項1に係る発明の効果に加えて、ベーンポンプの薄型化を図りつつコンパクトにできる。   Further, in the invention according to claim 2, in addition to the effect of the invention according to claim 1, the vane pump can be made compact while reducing the thickness.

また請求項3に係る発明では、請求項1又は請求項2に係る発明の効果に加えて、ステータによるロータの回転駆動時に、ステータの電磁力によりマグネット部にロータのスラスト方向においてステータ側へ吸引する力を加えることができ、これによりロータをロータ室の内底面に確実に当接でき、ロータのスラスト方向のがたつきを防止し、ロータの長寿命化を実現できる。   In the invention according to claim 3, in addition to the effect of the invention according to claim 1 or 2, when the rotor is driven to rotate by the stator, the magnet is attracted to the stator side in the thrust direction of the rotor by the electromagnetic force of the stator. Thus, the rotor can be reliably brought into contact with the inner bottom surface of the rotor chamber, the rattling of the rotor in the thrust direction can be prevented, and the life of the rotor can be extended.

また請求項4に係る発明では、請求項1乃至請求項3のいずれか一項に係る発明の効果に加えて、緩衝材によりロータのラジアル方向における不規則な力を吸収してロータのラジアル方向の振動を防止でき、ロータの長寿命化を実現できる。   In addition, in the invention according to claim 4, in addition to the effect of the invention according to any one of claims 1 to 3, an irregular force in the radial direction of the rotor is absorbed by the cushioning material, so that the radial direction of the rotor is obtained. Vibration can be prevented, and the life of the rotor can be extended.

また請求項5に係る発明では、請求項1乃至請求項4のいずれか一項に係る発明の効果に加えて、ベーンがロータのスラスト方向にがたつくことを防止してベーンの長寿命化を図れる。   In the invention according to claim 5, in addition to the effect of the invention according to any one of claims 1 to 4, the vane can be prevented from rattling in the thrust direction of the rotor, and the life of the vane can be extended. .

以下、本発明を添付図面に示す実施形態に基づいて説明する。図1乃至図3に示す本実施形態の一例のベーンポンプ1は、ケーシング10内に形成したロータ室2にロータ3を偏心させて収納し、先端がロータ室2の内周面2aに摺接される複数のベーン4をロータ3に設け、ケーシング10に吸入口部6及び吐出口部7をロータ室2に至るように設け、ロータ3をステータ23により回転駆動させることでロータ室2の内面とロータ3の外周面とベーン4とで囲まれた作動室5の容積を大小変化させて、作動室5を介して吸入口部6からの作動流体を吐出口部7から排出するものである。なお以下ではロータ3のスラスト方向(ロータ3の軸方向)の一方を上方、反対側の他方を下方として説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings. A vane pump 1 according to an example of the present embodiment shown in FIGS. 1 to 3 stores a rotor 3 eccentrically in a rotor chamber 2 formed in a casing 10, and a tip is slidably contacted with an inner peripheral surface 2 a of the rotor chamber 2. The rotor 3 is provided with a plurality of vanes 4, the suction port 6 and the discharge port 7 are provided in the casing 10 so as to reach the rotor chamber 2, and the rotor 3 is rotationally driven by the stator 23, thereby The volume of the working chamber 5 surrounded by the outer peripheral surface of the rotor 3 and the vane 4 is changed in size, and the working fluid from the suction port portion 6 is discharged from the discharge port portion 7 through the working chamber 5. In the following description, it is assumed that one side in the thrust direction of the rotor 3 (the axial direction of the rotor 3) is the upper side and the other side is the lower side.

ロータ3を収納するケーシング10は上ケース11と下ケース12で構成してある。上ケース11は下方に開口する上凹所15を有し、上凹所15の上部には円環状のリング材17を嵌入している。下ケース12は底部から上方に向けて円筒部24を突設してあり、該円筒部24をOリングからなるパッキン13を介して上凹所15の下部に嵌合することでケーシング10が形成される。図1の14は上ケース11と下ケース12を締結させる締結具用の孔である。   A casing 10 that houses the rotor 3 is composed of an upper case 11 and a lower case 12. The upper case 11 has an upper recess 15 that opens downward, and an annular ring member 17 is fitted in the upper portion of the upper recess 15. The lower case 12 has a cylindrical portion 24 projecting upward from the bottom, and the casing 10 is formed by fitting the cylindrical portion 24 to the lower portion of the upper recess 15 via a packing 13 made of an O-ring. Is done. Reference numeral 14 in FIG. 1 denotes a fastener hole for fastening the upper case 11 and the lower case 12 together.

下ケース12の円筒部24内は上方に開口する下凹所16となっている。下凹所16の底部の中央には下方に開口する有底筒状の突台部25を上方に向けて突設してあり、該突台部25の上底部の中央には下方に向けて軸状突部36を突設している。軸状突部36には上方に開口する有底の中央穴27を形成してあり、中央穴27の底面中央には軸着穴21を形成している。軸着穴21には軸部材32aの下部を嵌入して回転不能に固定してあり、該軸部材32aはリング材17の内側に形成された平面視円形のロータ室2の偏心位置に位置して、ロータ3を回転自在に支持する軸部32を構成する。ロータ室2は、上凹所15の底面と、リング材17の内周面と、下凹所16の内面とで構成されている。   The inside of the cylindrical portion 24 of the lower case 12 is a lower recess 16 that opens upward. At the center of the bottom of the lower recess 16, a bottomed cylindrical projecting portion 25 that opens downward is projected upward, and at the center of the upper bottom of the projecting portion 25, downward. A shaft-like protrusion 36 is provided in a protruding manner. A bottomed central hole 27 that opens upward is formed in the shaft-shaped protrusion 36, and a shaft attachment hole 21 is formed in the center of the bottom surface of the central hole 27. The lower part of the shaft member 32 a is fitted into the shaft attachment hole 21 and fixed so as not to rotate. The shaft member 32 a is located at an eccentric position of the rotor chamber 2 having a circular shape in plan view formed inside the ring member 17. Thus, the shaft portion 32 that rotatably supports the rotor 3 is configured. The rotor chamber 2 includes a bottom surface of the upper recess 15, an inner peripheral surface of the ring material 17, and an inner surface of the lower recess 16.

ロータ3は平面視円形に形成してあり、上部のロータ本体8と下部の永久磁石からなるマグネット部22で構成してある。ロータ3は、ロータ本体8の外周面8aがロータ室2の内周面を構成するリング材17の内周面に対向し、且つロータ3の一方のスラスト面となる上面がロータ室2の内底面を構成する上凹所15の底面に近接対向するようロータ室2に収納される。   The rotor 3 is formed in a circular shape in plan view, and is composed of an upper rotor body 8 and a magnet portion 22 composed of a lower permanent magnet. In the rotor 3, the outer peripheral surface 8 a of the rotor body 8 is opposed to the inner peripheral surface of the ring member 17 constituting the inner peripheral surface of the rotor chamber 2, and the upper surface serving as one thrust surface of the rotor 3 is the inner surface of the rotor chamber 2. The rotor chamber 2 is accommodated so as to face and face the bottom surface of the upper recess 15 constituting the bottom surface.

ロータ本体8にはロータ3のラジアル方向に伸びるベーン溝19を周方向に等間隔で複数条(本例では4条)形成してあり、各ベーン溝19はロータ本体8の外周面8a及びロータ本体8の上面から開口している。各ベーン溝19にはベーン4をロータ3のラジアル方向に摺動自在に収納してあり、これにより各ベーン4はロータ本体8の外周面8aから出入自在となっている。   The rotor body 8 is formed with a plurality of (four in this example) vane grooves 19 extending in the radial direction of the rotor 3 at equal intervals in the circumferential direction, and each vane groove 19 includes the outer peripheral surface 8a of the rotor body 8 and the rotor. It opens from the upper surface of the main body 8. Each vane groove 19 accommodates the vane 4 so as to be slidable in the radial direction of the rotor 3, so that each vane 4 can enter and exit from the outer peripheral surface 8 a of the rotor body 8.

マグネット部22は下方に開口する有底筒状に形成してあり、その周壁部は下凹所16の内周面と突台部25の間に形成された円環状の溝部30内に収納されている。マグネット部22の上底部の中央には下方に向けてマグネット軸部28を突設している。マグネット軸部28は突台部25の中央穴27に回転自在に収納してあり、またマグネット軸部28の先端面はスペーサ33を介して中央穴27の底面上に位置している。ロータ3にはマグネット軸部28の下面からロータ本体8にまで至る軸受用穴29を形成している。軸受用穴29には軸受部材20を嵌入してあり、軸受部材20はロータ3の中心に位置している。管状の軸受部材20には回転自在となるように下ケース12の中央穴27の底面から上方に突出した軸部材32aを挿入してあり、これによりロータ3は軸部材32aを中心に回転自在となっている。   The magnet portion 22 is formed in a bottomed cylindrical shape that opens downward, and its peripheral wall portion is housed in an annular groove portion 30 formed between the inner peripheral surface of the lower recess 16 and the projecting portion 25. ing. A magnet shaft portion 28 projects downward from the center of the upper bottom portion of the magnet portion 22. The magnet shaft portion 28 is rotatably accommodated in the central hole 27 of the projecting portion 25, and the tip surface of the magnet shaft portion 28 is located on the bottom surface of the central hole 27 via the spacer 33. A bearing hole 29 extending from the lower surface of the magnet shaft portion 28 to the rotor body 8 is formed in the rotor 3. The bearing member 20 is fitted into the bearing hole 29, and the bearing member 20 is located at the center of the rotor 3. A shaft member 32a protruding upward from the bottom surface of the central hole 27 of the lower case 12 is inserted into the tubular bearing member 20 so as to be rotatable, whereby the rotor 3 is rotatable about the shaft member 32a. It has become.

上ケース11には作動流体を作動室5に引き込む吸入口部6と作動流体を作動室5から排出する吐出口部7を形成してあり、吸入口部6及び吐出口部7は上ケース11から同一方向に突出している。吸入口部6及び吐出口部7はリング材17の貫通孔17aを介して作動室5となるロータ室2にそれぞれ連通している。   The upper case 11 is formed with a suction port portion 6 for drawing the working fluid into the working chamber 5 and a discharge port portion 7 for discharging the working fluid from the working chamber 5. The suction port portion 6 and the discharge port portion 7 are formed in the upper case 11. Projecting in the same direction. The suction port portion 6 and the discharge port portion 7 communicate with the rotor chamber 2 serving as the working chamber 5 through the through hole 17 a of the ring material 17.

また下ケース12の下面には突台部25の外周壁部と軸状突部36の間に形成された円環状の空所からなるステータ収納凹所34を形成してあり、該ステータ収納凹所34にステータ23を配設している。即ち、ロータ3、各ベーン4、軸部材32aを密閉空間となったロータ室2内に配置しているのに対して、ステータ23をロータ室2外に配置してあり、該ロータ室2外に配置したステータ23の電磁力によりケーシング10を介してロータ室2内に配置されたロータ3を回転駆動する。このように本例ではロータ3をロータ室2外に配置したステータ23により駆動するので、ロータ3の回転中心となる軸部32を密閉されたロータ室2内に完全に収納することができ、これにより従来の回転軸とケーシングの摺動部分から作動流体が漏れ出すという問題を改善できる。また本例のステータ23は突台部25の外周壁部を介してマグネット部22の外周壁部の内側に配置されており、ステータ23とマグネット部22はロータ3のラジアル方向から見て重複する位置に配置されているので、図3(a)のLで示すケーシング10の厚み寸法を小さくしてベーンポンプ1を薄型化できる。   Further, a stator housing recess 34 is formed on the lower surface of the lower case 12, which is an annular space formed between the outer peripheral wall portion of the projecting portion 25 and the shaft-like projection 36. The stator 23 is disposed at the location 34. That is, the rotor 3, the vanes 4, and the shaft member 32 a are disposed in the rotor chamber 2 which is a sealed space, whereas the stator 23 is disposed outside the rotor chamber 2. The rotor 3 disposed in the rotor chamber 2 is rotationally driven through the casing 10 by the electromagnetic force of the stator 23 disposed in the above. Thus, in this example, since the rotor 3 is driven by the stator 23 arranged outside the rotor chamber 2, the shaft portion 32 serving as the rotation center of the rotor 3 can be completely accommodated in the sealed rotor chamber 2, This can improve the problem that the working fluid leaks from the sliding portion of the conventional rotating shaft and casing. In addition, the stator 23 of this example is disposed inside the outer peripheral wall portion of the magnet portion 22 via the outer peripheral wall portion of the projecting portion 25, and the stator 23 and the magnet portion 22 overlap when viewed from the radial direction of the rotor 3. Since it is arrange | positioned in the position, the thickness dimension of the casing 10 shown by L of Fig.3 (a) can be made small, and the vane pump 1 can be thinned.

また上記ステータ23は図3(a)に示すようにロータ3のスラスト方向においてマグネット部22の中心位置b1とステータ23の中心位置b2がずれるように配置してあり、図示例ではマグネット部22の中心位置b1がステータ23の中心位置b2に対して上方にずれている。このためステータ23によるロータ3の回転駆動時には、ステータ23の電磁力によりマグネット部22にステータ23側の下方に吸引する力を加えることができ、これによりロータ3のマグネット軸部28の下端をスペーサ33を介してロータ室2の内底面(実施例では中央穴27の底面)に確実に当接でき、ロータ3のスラスト方向のがたつきを防止でき、ロータ3の長寿命化を実現できる。なお上記ステータ23によるロータ3の駆動は一般的なものと同様、ステータ23とマグネット部22との間の磁気作用によってマグネット部22に回転トルクを発生させ、この回転トルクによりマグネット部22、ひいてはロータ3を回転駆動するものである。なおロータ3の回転駆動方向は図1の矢印aに示す方向である。   Further, the stator 23 is arranged so that the center position b1 of the magnet portion 22 and the center position b2 of the stator 23 are shifted in the thrust direction of the rotor 3 as shown in FIG. The center position b1 is shifted upward with respect to the center position b2 of the stator 23. For this reason, when the rotor 3 is driven to rotate by the stator 23, a force that attracts the magnet portion 22 downward by the electromagnetic force of the stator 23 can be applied to the magnet portion 22 so that the lower end of the magnet shaft portion 28 of the rotor 3 can The inner bottom surface of the rotor chamber 2 (the bottom surface of the central hole 27 in the embodiment) can be reliably brought into contact with the rotor 33, and the rattling of the rotor 3 in the thrust direction can be prevented, and the life of the rotor 3 can be extended. The rotor 3 is driven by the stator 23 in the same manner as a general one, and a rotational torque is generated in the magnet portion 22 by the magnetic action between the stator 23 and the magnet portion 22, and the magnet portion 22 and thus the rotor are driven by this rotational torque. 3 is driven to rotate. The rotational drive direction of the rotor 3 is the direction indicated by the arrow a in FIG.

上記ロータ3をステータ23にて回転駆動させた際には、各ベーン4はロータ3の回転による遠心力の作用を受けてロータ本体8の外周面8aから外方へ突出し、その先端をロータ室2の内周面2aに摺接させるものであり、この時、ロータ室2の内面(内周面2a及び内底面)とロータ本体8の外周面8aとベーン4とで囲まれた複数の作動室5をロータ室2に形成する。ロータ本体8はロータ室2の偏心位置にあるから、ロータ室2の内周面2aとロータ本体8の外周面8aとの距離はロータ3の回転位置に応じて異なると共にベーン4のロータ3からの突出量もロータ3の回転位置に応じて異なるのであり、つまりロータ3を回転駆動させることで各作動室5はロータ3の回転方向に移動しながらその容積を大小に変化させる。即ち、各作動室5は吸入口部6に連通する位置にある時にはロータ3の回転に伴い容積が増大し、吐出口部7に連通する位置にある時にはロータ3の回転に伴い容積が減少するようにされる。従ってロータ3を回転駆動すれば、作動流体が吸入口部6からこれに連通する作動室5内に流入し、この作動室5内で圧縮された後に吐出口部7から吐出されてポンプとして機能する。   When the rotor 3 is rotationally driven by the stator 23, each vane 4 receives the action of centrifugal force due to the rotation of the rotor 3 and protrudes outward from the outer peripheral surface 8a of the rotor body 8, and its tip is in the rotor chamber. In this case, a plurality of operations surrounded by the inner surface (inner peripheral surface 2 a and inner bottom surface) of the rotor chamber 2, the outer peripheral surface 8 a of the rotor body 8, and the vanes 4. The chamber 5 is formed in the rotor chamber 2. Since the rotor body 8 is in the eccentric position of the rotor chamber 2, the distance between the inner circumferential surface 2 a of the rotor chamber 2 and the outer circumferential surface 8 a of the rotor body 8 varies depending on the rotational position of the rotor 3 and from the rotor 3 of the vane 4. The amount of protrusion differs depending on the rotational position of the rotor 3, that is, by rotating the rotor 3, each working chamber 5 changes its volume while moving in the rotational direction of the rotor 3. That is, the volume of each working chamber 5 increases with the rotation of the rotor 3 when it is in a position communicating with the suction port 6, and the volume decreases with the rotation of the rotor 3 when it is in a position communicating with the discharge port 7. To be done. Accordingly, when the rotor 3 is driven to rotate, the working fluid flows into the working chamber 5 communicating with the working fluid from the suction port portion 6 and is compressed in the working chamber 5 and then discharged from the discharge port portion 7 to function as a pump. To do.

なお上記一例のベーンポンプ1においては、図3(a)に示すように軸部32によって回転自在に軸支されるロータ3の軸受部材20とロータ3の軸受用穴29との間に何も設けていないが、図4に示すように軸受部材20の外周面とロータ3の軸受用穴29の内周面との間に緩衝材37を介装し、軸受部材20を緩衝材37を介してロータ3に設けても良い。ロータ3の回転駆動時には、ロータ室2の偏心位置でロータ3が回転することや、各ベーン4のラジアル方向の往復移動等の要因で、ロータ3にはラジアル方向に不規則な力が加わるが、本例では上記緩衝材37によりロータ3のラジアル方向における不規則な力を吸収してロータ3のラジアル方向の振動を防止でき、ロータ3の長寿命化を実現できる。   In the vane pump 1 of the above example, nothing is provided between the bearing member 20 of the rotor 3 rotatably supported by the shaft portion 32 and the bearing hole 29 of the rotor 3 as shown in FIG. However, as shown in FIG. 4, a buffer material 37 is interposed between the outer peripheral surface of the bearing member 20 and the inner peripheral surface of the bearing hole 29 of the rotor 3, and the bearing member 20 is interposed via the buffer material 37. You may provide in the rotor 3. FIG. When the rotor 3 is driven to rotate, an irregular force is applied to the rotor 3 in the radial direction due to the rotation of the rotor 3 at the eccentric position of the rotor chamber 2 and the reciprocation of each vane 4 in the radial direction. In this example, the cushioning material 37 absorbs an irregular force in the radial direction of the rotor 3 to prevent the rotor 3 from vibrating in the radial direction, so that the life of the rotor 3 can be extended.

また各ベーン4がベーン溝19においてロータ3のスラスト方向にがたつくことを防止するために、図5に示すように各ベーン4にストッパ部41を設けることが好ましい。図5の例では、各ベーン溝19の両側の内側面にロータ3のラジアル方向に沿ったストッパ収納溝部40を設けると共に、各ベーン4の両側面にロータ3のラジアル方向に沿ったストッパ部41を突設してあり、各ベーン4のストッパ部41をストッパ収納溝部40にベーン4のスライド方向(ロータ3のラジアル方向)にスライド自在に収納している。このようにベーン4のストッパ部41をストッパ収納溝部40にスライド自在に収納することで、ベーン4がロータ3のスラスト方向にがたつくことを防止してベーン4の長寿命化を図れる。   In order to prevent each vane 4 from rattling in the vane groove 19 in the thrust direction of the rotor 3, it is preferable to provide a stopper portion 41 on each vane 4 as shown in FIG. 5. In the example of FIG. 5, stopper storing groove portions 40 along the radial direction of the rotor 3 are provided on the inner side surfaces on both sides of each vane groove 19, and stopper portions 41 along the radial direction of the rotor 3 are provided on both side surfaces of each vane 4. The stopper portion 41 of each vane 4 is housed in the stopper housing groove portion 40 so as to be slidable in the sliding direction of the vane 4 (the radial direction of the rotor 3). As described above, the stopper portion 41 of the vane 4 is slidably accommodated in the stopper accommodating groove portion 40, whereby the vane 4 can be prevented from rattling in the thrust direction of the rotor 3, and the life of the vane 4 can be extended.

また上記ベーンポンプ1においては、ロータ3を、ロータ本体8と、ロータ本体8とは別体の永久磁石からなるマグネット部22で構成したが、図6及び図7に示すように上記一例のベーンポンプ1におけるマグネット部22を省略すると共にロータ本体8を永久磁石で構成し、該永久磁石からなるロータ本体8単独でロータ3を構成しても良い。なお以下の説明では上記一例のベーンポンプ1と基本的な構成が同じであり、詳細な説明は省略する。   In the vane pump 1, the rotor 3 is composed of the rotor body 8 and the magnet portion 22 made of a permanent magnet separate from the rotor body 8. However, as shown in FIGS. 6 and 7, the vane pump 1 of the above example is used. The rotor 22 may be omitted, and the rotor body 8 may be composed of a permanent magnet, and the rotor 3 may be composed of the rotor body 8 made of the permanent magnet alone. In the following description, the basic configuration is the same as the vane pump 1 of the above example, and a detailed description thereof is omitted.

図6の例では永久磁石からなるロータ3自身がマグネット部22を構成するものであり、ロータ3は一例と同様ロータ室2内に配置されている。ロータ3を駆動するステータ23はロータ室2の外周を囲むように上ケース11に内蔵してあり、該ステータ23はロータ室2外で且つリング材17を介してロータ3のラジアル方向の外側に位置している。本例のロータ3も一例と同様にステータ23とマグネット部22との間の磁気作用によってマグネット部22に回転トルクを発生させるものである。   In the example of FIG. 6, the rotor 3 made of a permanent magnet itself constitutes the magnet portion 22, and the rotor 3 is disposed in the rotor chamber 2 as in the example. A stator 23 for driving the rotor 3 is built in the upper case 11 so as to surround the outer periphery of the rotor chamber 2, and the stator 23 is disposed outside the rotor chamber 2 and outside the rotor 3 in the radial direction via the ring member 17. positioned. The rotor 3 of this example also generates rotational torque in the magnet unit 22 by the magnetic action between the stator 23 and the magnet unit 22 as in the example.

また図7の例では、図6の例と同様に永久磁石からなるロータ3自体でマグネット部22を構成してあり、ロータ3はロータ室2内に配置されている。ロータ3を駆動するステータ23は上ケース11に内蔵してあり、ロータ室2の上部はステータ23の外周を囲むような環状に形成されている。   In the example of FIG. 7, similarly to the example of FIG. 6, the magnet portion 22 is configured by the rotor 3 itself made of a permanent magnet, and the rotor 3 is disposed in the rotor chamber 2. The stator 23 for driving the rotor 3 is built in the upper case 11, and the upper portion of the rotor chamber 2 is formed in an annular shape so as to surround the outer periphery of the stator 23.

上記図6及び図7の例ではロータ3を永久磁石で構成することでベーンポンプ1の更なる薄型化を図ることができる。なお本例のロータ3も一例と同様にステータ23とマグネット部22との間の磁気作用によってマグネット部22に回転トルクを発生させるものである。なお図6及び図7のロータ3では、ロータ3を周方向に複数設けたベーン溝19によって複数に区画し、これらロータ3の周方向に並ぶ区画を交互に異極となるように着磁したものであり、ロータ3はロータ3の周方向に複数設けたコイル42をロータ3の周方向に順に電流を流すことでロータ3を回転駆動する所謂ブラシレスモータ方式である。また図6(a)及び図7(a)で示す「N」「S」は各区画部分の極性を示すものである。   6 and 7, the vane pump 1 can be further reduced in thickness by configuring the rotor 3 with a permanent magnet. Note that the rotor 3 of this example also generates rotational torque in the magnet unit 22 by the magnetic action between the stator 23 and the magnet unit 22 as in the example. 6 and 7, the rotor 3 is divided into a plurality of sections by vane grooves 19 provided in the circumferential direction, and the sections arranged in the circumferential direction of the rotor 3 are alternately magnetized so as to have different polarities. The rotor 3 is a so-called brushless motor system in which the rotor 3 is rotationally driven by causing a plurality of coils 42 provided in the circumferential direction of the rotor 3 to flow current sequentially in the circumferential direction of the rotor 3. Further, “N” and “S” shown in FIGS. 6A and 7A indicate the polarities of the respective partition portions.

また上記各例ではベーン4をロータ3の回転駆動時の遠心力で外方へ突出するようにしたが、ベーン溝19にベーン4を外方へ付勢するようなばね材26(図8参照)を介装してロータ3の回転スピードによらずにベーン4の先端をロータ室2の内周面2aに確実に摺接するようにしてもよい。また、上記各例では軸部32をケーシング10と別体の軸部材32aで構成したがケーシング10と一体に設けても良い。さらに上記各例では軸部32をケーシング10に固定的に設けて該軸部32でロータ3に固定的に設けた軸受部材20からなる軸受けを回転自在に支持したが、図4の例以外のものでは、逆にロータ3に対して軸部を固定的に設け、該軸部をケーシング10に固定的に設けた軸受けに回転自在に軸支しても良い。またベーンポンプ1の作動流体としては水やアルコール、不凍液等の液体が挙げられるが、気体であっても良い。   Further, in each of the above examples, the vane 4 protrudes outward by the centrifugal force when the rotor 3 is driven to rotate, but the spring material 26 that biases the vane 4 outward in the vane groove 19 (see FIG. 8). The tip of the vane 4 may be brought into sliding contact with the inner peripheral surface 2a of the rotor chamber 2 without depending on the rotational speed of the rotor 3. Further, in each of the above examples, the shaft portion 32 is configured by the shaft member 32 a that is separate from the casing 10, but may be provided integrally with the casing 10. Further, in each of the above examples, the shaft portion 32 is fixedly provided on the casing 10 and the bearing made of the bearing member 20 fixedly provided on the rotor 3 by the shaft portion 32 is rotatably supported. On the contrary, the shaft portion may be fixedly provided to the rotor 3, and the shaft portion may be rotatably supported on a bearing fixedly provided on the casing 10. The working fluid of the vane pump 1 includes liquids such as water, alcohol and antifreeze, but may be gas.

本発明の実施の形態の一例を示すベーンポンプの水平断面図である。It is a horizontal sectional view of the vane pump which shows an example of an embodiment of the invention. 同上のベーンポンプの分解斜視図である。It is a disassembled perspective view of a vane pump same as the above. (a)はロータを図1の状態から所定角度回転した時のA−A断面の図であり、(b)は図1のA−A断面図である。(A) is a figure of AA cross section when a rotor rotates a predetermined angle from the state of FIG. 1, (b) is AA sectional drawing of FIG. 軸受部材を緩衝材を介してロータに設けた例を示すベーンポンプの断面図である。It is sectional drawing of the vane pump which shows the example which provided the bearing member in the rotor via the shock absorbing material. ベーンにストッパ部を設けた例を示し、ロータからベーンを取り外した状態を示す斜視図である。It is a perspective view which shows the example which provided the stopper part in the vane, and shows the state which removed the vane from the rotor. 他例のベーンポンプを示し、(a)は水平断面図であり、(b)は(a)のB−B断面図である。The vane pump of another example is shown, (a) is a horizontal sectional view, and (b) is a BB sectional view of (a). 更に他例のベーンポンプを示し、(a)は水平断面図であり、(b)は(a)のC−C断面図である。Furthermore, the vane pump of another example is shown, (a) is a horizontal sectional view, (b) is a CC sectional view of (a). 従来のベーンポンプの断面図である。It is sectional drawing of the conventional vane pump.

符号の説明Explanation of symbols

1 ベーンポンプ
2 ロータ室
3 ロータ
4 ベーン
5 作動室
6 吸入口部
7 吐出口部
10 ケーシング
22 マグネット部
23 ステータ
DESCRIPTION OF SYMBOLS 1 Vane pump 2 Rotor chamber 3 Rotor 4 Vane 5 Actuation chamber 6 Suction port 7 Discharge port 10 Casing 22 Magnet unit 23 Stator

Claims (5)

内部にロータ室を形成したケーシングと、ロータ室に収納したロータと、ロータが有するマグネット部を回転駆動するためのロータ室外に配置したステータと、ロータに設けられて先端がロータ室の内周面に摺接される複数のベーンを備え、ロータ室の内面とロータの外周面とベーンとで囲まれてロータの回転駆動によりその容積を大小変化させる作動室と、容積拡大過程の作動室に作動流体を流入させる吸入口部と、容積縮小過程の作動室から作動流体を排出させる吐出口部を備え、前記ロータ室外に配置したステータとロータ室内に配置したマグネット部をロータのラジアル方向から見て重複する位置に配置して成ることを特徴とするベーンポンプ。   A casing having a rotor chamber formed therein, a rotor housed in the rotor chamber, a stator disposed outside the rotor chamber for rotationally driving the magnet portion of the rotor, and an inner peripheral surface of the rotor chamber provided at the rotor tip A working chamber that is surrounded by the inner surface of the rotor chamber, the outer peripheral surface of the rotor, and the vane, and that changes its volume by rotating the rotor, and a working chamber in the volume expansion process. A suction port portion for allowing fluid to flow in and a discharge port portion for discharging the working fluid from the working chamber in the volume reduction process. The stator disposed outside the rotor chamber and the magnet portion disposed in the rotor chamber are viewed from the radial direction of the rotor. A vane pump characterized by being arranged at overlapping positions. マグネット部のロータのラジアル方向における内側にステータを配置して成ることを特徴とする請求項1に記載のベーンポンプ。   The vane pump according to claim 1, wherein a stator is arranged inside the rotor of the magnet portion in the radial direction. ロータのスラスト方向におけるマグネット部の中心位置とロータのスラスト方向におけるステータの中心位置をずらして成ることを特徴とする請求項1又は請求項2に記載のベーンポンプ。   3. The vane pump according to claim 1, wherein the center position of the magnet portion in the thrust direction of the rotor is shifted from the center position of the stator in the thrust direction of the rotor. ケーシングのロータ室に軸部を設けると共にロータに前記軸部によって回転自在に軸支される軸受部材を設け、該軸受部材を緩衝材を介してロータに設けて成ることを特徴とする請求項1乃至3のいずれか1項に記載のベーンポンプ。   2. A shaft portion is provided in a rotor chamber of the casing, a bearing member rotatably supported by the shaft portion is provided on the rotor, and the bearing member is provided on the rotor via a cushioning material. The vane pump of any one of thru | or 3. 前記ロータは、ベーンをロータのラジアル方向にスライド自在に収納するベーン溝と、ベーン溝の内側面に設けたストッパ収納溝部を備え、ベーンはベーンの側面から突出して前記ストッパ収納溝部にベーンのスライド方向にスライド自在に収納されるストッパ部を備えて成ることを特徴とする請求項1乃至4のいずれか1項に記載のベーンポンプ。   The rotor includes a vane groove that slidably stores a vane in a radial direction of the rotor, and a stopper storage groove portion provided on an inner surface of the vane groove. The vane protrudes from the side surface of the vane and slides into the stopper storage groove portion. The vane pump according to any one of claims 1 to 4, further comprising a stopper portion that is slidable in a direction.
JP2007056122A 2007-03-06 2007-03-06 Vane pump Active JP4791987B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007056122A JP4791987B2 (en) 2007-03-06 2007-03-06 Vane pump
TW097105317A TW200839098A (en) 2007-03-06 2008-02-15 Magnetic drive vane pump
EP08003181A EP1967733A2 (en) 2007-03-06 2008-02-21 Magnet driven vane pump
US12/073,303 US20080219875A1 (en) 2007-03-06 2008-03-04 Magnetic drive vane pump
KR1020080020872A KR100965475B1 (en) 2007-03-06 2008-03-06 Magnetic drive vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007056122A JP4791987B2 (en) 2007-03-06 2007-03-06 Vane pump

Publications (2)

Publication Number Publication Date
JP2008215262A true JP2008215262A (en) 2008-09-18
JP4791987B2 JP4791987B2 (en) 2011-10-12

Family

ID=39672842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056122A Active JP4791987B2 (en) 2007-03-06 2007-03-06 Vane pump

Country Status (5)

Country Link
US (1) US20080219875A1 (en)
EP (1) EP1967733A2 (en)
JP (1) JP4791987B2 (en)
KR (1) KR100965475B1 (en)
TW (1) TW200839098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019530823A (en) * 2016-09-15 2019-10-24 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Compressor mechanism with integrated motor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245961A1 (en) * 2005-04-28 2006-11-02 Tecumseh Products Company Rotary compressor with permanent magnet motor
CN101813085A (en) * 2010-03-22 2010-08-25 黄武源 Self-sucking energy-saving high-efficiency water pump
US20120163997A1 (en) * 2010-12-27 2012-06-28 Charles Shepard Vane compressor with integrated motor
DE102011082705A1 (en) * 2011-09-14 2013-03-14 Robert Bosch Gmbh Pump, in particular oil pump for an internal combustion engine
US20150204327A1 (en) * 2012-08-24 2015-07-23 Clarcor Engine Mobile Solutions, Llc Integrated Brushless Direct Current Motor and Lift Pump
DE102014226347B3 (en) * 2014-12-18 2016-06-23 Magna Powertrain Bad Homburg GmbH Vacuum pump and method for operating the vacuum pump
NL2016728B1 (en) * 2016-05-03 2017-11-10 Actuant Corp Pump unit with integrated piston pump and electric motor.
IT201800003151A1 (en) * 2018-02-28 2019-08-28 Agilent Tech Inc A Delaware Corporation VACUUM PUMPING SYSTEM INCLUDING A VACUUM PUMP AND ITS MOTOR

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145106U (en) * 1974-10-01 1976-04-02
JPS5663268U (en) * 1979-10-19 1981-05-28
JPS6081491A (en) * 1983-10-13 1985-05-09 Honda Motor Co Ltd Pump
JPS6149087U (en) * 1984-09-04 1986-04-02
JPS6267286A (en) * 1985-09-20 1987-03-26 Kayaba Ind Co Ltd Motor-driven vane pump
JPH03119377U (en) * 1990-03-15 1991-12-09
JPH0988822A (en) * 1995-09-20 1997-03-31 Toyota Autom Loom Works Ltd Compressor
JP2002130180A (en) * 2000-10-19 2002-05-09 Matsushita Electric Ind Co Ltd Dc pump device
JP2006070861A (en) * 2004-09-06 2006-03-16 Ishikawajima Harima Heavy Ind Co Ltd Pump unit and fuel cell system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532704A (en) 1976-06-30 1978-01-11 Aisin Seiki Co Ltd Preventing unit of thrust in driving shaft of vane type pump and liquid pressure motor
US4132512A (en) * 1977-11-07 1979-01-02 Borg-Warner Corporation Rotary sliding vane compressor with magnetic vane retractor
DE2938276A1 (en) * 1979-09-21 1981-04-09 Robert Bosch Gmbh, 7000 Stuttgart WING CELL COMPRESSORS
DK160720C (en) * 1979-10-30 1991-09-16 Sulzer Constr Mecan ROTATING HYDRAULIC MACHINE
FR2487446B1 (en) * 1980-07-23 1985-09-27 Cit Alcatel ELECTRIC PUMP GROUP WITH PALLET, OIL SEAL, REDUCED SIZE
JPS58220989A (en) * 1982-06-14 1983-12-22 Diesel Kiki Co Ltd Compressor of variable displacement vane type
JPS6153484A (en) 1984-08-21 1986-03-17 Niles Parts Co Ltd Disk-type brush-less vane pump
JPH02218894A (en) * 1989-02-20 1990-08-31 Matsushita Seiko Co Ltd Blade
US5405251A (en) * 1992-09-11 1995-04-11 Sipin; Anatole J. Oscillating centrifugal pump
CA2132582C (en) * 1993-11-12 1999-01-05 Paul Gergets Magnetically driven positive displacement pump and thrust bearing assembly
US5683229A (en) * 1994-07-15 1997-11-04 Delaware Capital Formation, Inc. Hermetically sealed pump for a refrigeration system
US5562406A (en) * 1995-01-11 1996-10-08 Ansimag Inc. Seal assembly for fluid pumps and method for detecting leaks in fluid pumps or fluid containment devices
US6071093A (en) * 1996-10-18 2000-06-06 Abiomed, Inc. Bearingless blood pump and electronic drive system
JP2001207988A (en) * 2000-01-26 2001-08-03 Nipro Corp Magnetic driving type axial flow pump
JP2003161284A (en) 2001-11-27 2003-06-06 Matsushita Electric Ind Co Ltd Thin vortex pump and cooling system provided therewith
JP2004190562A (en) 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd Small vortex pump
US7229262B2 (en) * 2005-09-15 2007-06-12 1564330 Ontario Inc. Rotary piston pump end pressure regulation system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145106U (en) * 1974-10-01 1976-04-02
JPS5663268U (en) * 1979-10-19 1981-05-28
JPS6081491A (en) * 1983-10-13 1985-05-09 Honda Motor Co Ltd Pump
JPS6149087U (en) * 1984-09-04 1986-04-02
JPS6267286A (en) * 1985-09-20 1987-03-26 Kayaba Ind Co Ltd Motor-driven vane pump
JPH03119377U (en) * 1990-03-15 1991-12-09
JPH0988822A (en) * 1995-09-20 1997-03-31 Toyota Autom Loom Works Ltd Compressor
JP2002130180A (en) * 2000-10-19 2002-05-09 Matsushita Electric Ind Co Ltd Dc pump device
JP2006070861A (en) * 2004-09-06 2006-03-16 Ishikawajima Harima Heavy Ind Co Ltd Pump unit and fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019530823A (en) * 2016-09-15 2019-10-24 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Compressor mechanism with integrated motor
JP7159153B2 (en) 2016-09-15 2022-10-24 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Compressor mechanism with integrated motor

Also Published As

Publication number Publication date
KR20080081862A (en) 2008-09-10
US20080219875A1 (en) 2008-09-11
JP4791987B2 (en) 2011-10-12
TW200839098A (en) 2008-10-01
KR100965475B1 (en) 2010-06-24
EP1967733A2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4791987B2 (en) Vane pump
US8784084B2 (en) Rotary cam ring fluid machine
JP4994971B2 (en) Magnetic bearing, magnetic coupling device, and scroll type fluid machine using the same
JP5391016B2 (en) Electric pump
US7566211B2 (en) Vane pump having vanes with a cutout portion
JP6620680B2 (en) Flow path switching valve
JP2008128201A (en) Vane pump
JP2007231774A (en) Electric motor
TWI390110B (en) Vane pump
JP2008223547A (en) Vane pump
CN105332927A (en) Integrated magnetic pump based on axial dual motor driving
JP2008223546A (en) Vane pump
JP2008128203A (en) Vane pump
JP2008128199A (en) Vane pump
JP2007170199A (en) Pump
JP4811243B2 (en) Vane pump
JP5097041B2 (en) Vane pump
JP2018131919A (en) Compressor
JP4594823B2 (en) Cascade pump
JP4858262B2 (en) Vane pump
JP2008223630A (en) Vane pump
JP2010024954A (en) Vane pump
JP2010024946A (en) Vane pump
JP2009156050A (en) Vane pump
JP2011047322A (en) Vane pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101020

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4791987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151