JP2008214509A - Pressure medium oil - Google Patents

Pressure medium oil Download PDF

Info

Publication number
JP2008214509A
JP2008214509A JP2007054585A JP2007054585A JP2008214509A JP 2008214509 A JP2008214509 A JP 2008214509A JP 2007054585 A JP2007054585 A JP 2007054585A JP 2007054585 A JP2007054585 A JP 2007054585A JP 2008214509 A JP2008214509 A JP 2008214509A
Authority
JP
Japan
Prior art keywords
pressure medium
medium oil
pressure
solidification
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007054585A
Other languages
Japanese (ja)
Other versions
JP5319071B2 (en
Inventor
Tahei Okada
太平 岡田
Shoji Aoyama
昌二 青山
Keizo Murata
惠三 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Osaka University NUC
Osaka City University
Original Assignee
Idemitsu Kosan Co Ltd
Osaka University NUC
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Osaka University NUC, Osaka City University filed Critical Idemitsu Kosan Co Ltd
Priority to JP2007054585A priority Critical patent/JP5319071B2/en
Priority to PCT/JP2008/053823 priority patent/WO2008108356A1/en
Publication of JP2008214509A publication Critical patent/JP2008214509A/en
Application granted granted Critical
Publication of JP5319071B2 publication Critical patent/JP5319071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/50Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/76Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/04Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
    • C10M2227/045Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • C10M2229/0415Siloxanes with specific structure containing aliphatic substituents used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure medium oil which does not solidify under an ultra-high pressure, especially ≥2.7 GPa at room temperature, free from dissolution trouble of a conductive paste, having low pour point and highly compatible with the material of experimental specimens and an experimental apparatus. <P>SOLUTION: The pressure medium oil contains at least one kind of silicon-containing organic compound having a kinematic viscosity of 2-30 mm<SP>2</SP>/s at 40°C, a viscosity index of ≥100 and a pour point of ≤-50°C, and has a solidification pressure of ≥2.7 GPa at room temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物質に超高圧を印加する際に使用する圧力媒体油に関する。   The present invention relates to a pressure medium oil used when an ultra-high pressure is applied to a substance.

物質に超高圧を印加し、その物質の新しい機能を発掘する研究は、世界的に広く行われている。
例えば、有機伝導体の研究において、有機超伝導体(TMTSF)2PF6は、金属非金属転移圧力依存性の研究からヒントを得て発見され、β-(BEDT-TTF)2I3の8Kの超伝導体は該物質の圧力依存性の研究の結果発見されたものである(例えば、非特許文献1、非特許文献2参照)。これらの物質の新規な超伝導は1GPa以下で超伝導の特性が現れたが、それ以後現れたβ'-(BEDT-TTF)2ICl2の超伝導は8GPaという1桁高い圧力で発見され、有機伝導体ではもっとも高い転移温度14Kを示した。このことから、この高い圧力測定時に耐える圧力媒体が必要になった(例えば、非特許文献3参照)。
このように、有機超伝導体、さらには酸化物伝導体などの固体物質について、温度(極低温)や磁場等とともに、圧力の変化による物性の変化を追及し解明することによって新物質の開発が行われている。
Research that applies ultra-high pressure to materials and discovers new functions of the materials is widely conducted worldwide.
For example, in the study of organic conductors, the organic superconductor (TMTSF) 2 PF 6 was discovered based on a study of the metal-nonmetal transition pressure dependence, and β- (BEDT-TTF) 2 I 3 8K These superconductors were discovered as a result of research on the pressure dependence of the substance (for example, see Non-Patent Document 1 and Non-Patent Document 2). The new superconductivity of these materials showed superconducting properties at 1 GPa or less. However, the superconductivity of β '-(BEDT-TTF) 2 ICl 2 that appeared after that was discovered at a pressure an order of magnitude higher than 8 GPa. The organic conductor showed the highest transition temperature of 14K. For this reason, a pressure medium that can withstand this high pressure measurement is required (for example, see Non-Patent Document 3).
In this way, the development of new materials has been pursued by pursuing and elucidating changes in physical properties due to changes in pressure, as well as temperature (very low temperature) and magnetic fields, for solid materials such as organic superconductors and oxide conductors. Has been done.

このような場合、物質に超高圧を印加する手段として、通常、圧力媒体、特に液状の圧力媒体が使用され、この圧力媒体を介して対象物質を印加する。印加対象物質に、静水圧力、すなわち穏やかにかつ均一に圧力を加える必要があるからである。
したがって、圧力媒体には、広い圧力範囲にわたって液状であることが要求される。実際の印加状態で固化すれば、一軸性圧縮となり、均一な圧縮ができなくなるからである。つまり、圧力媒体には、室温での固化圧力が高いことが第一に要求される。第二に、圧力下での電気伝導測定の場合、導電ペーストが電極に用いられることが多く、このペーストを媒体が溶解しないことが求められる。第三に、圧力媒体は加圧中に液状であっても、室温以下に降温したとき、固化する。この固化時に大きな圧力変化があると脆弱な試料は破壊される。さらに、それ以外に実験に用いる試料や実験装置の材質と適合できることももちろん必要である。
In such a case, a pressure medium, particularly a liquid pressure medium, is usually used as means for applying an ultrahigh pressure to the substance, and the target substance is applied via this pressure medium. This is because it is necessary to apply a hydrostatic pressure, that is, a gentle and uniform pressure to the application target substance.
Therefore, the pressure medium is required to be liquid over a wide pressure range. This is because if it is solidified in an actual application state, it becomes uniaxial compression and uniform compression cannot be performed. That is, the pressure medium is first required to have a high solidification pressure at room temperature. Secondly, in the case of measuring electric conductivity under pressure, a conductive paste is often used for the electrode, and it is required that the medium does not dissolve the paste. Third, even if the pressure medium is liquid during pressurization, it solidifies when the temperature is lowered to room temperature or lower. If there is a large pressure change during this solidification, the fragile sample will be destroyed. In addition to that, it is of course necessary to be compatible with the materials used in the experiment and the materials of the experimental apparatus.

ところで、常温液体の超高圧用圧力媒体としては、従来特定の石油留分(ナフテン系鉱油など)、イソペンタンやポリαオレフィンなどの炭化水素類、メタノールとエタノールの混合液や水とグリセリンの混合液などのアルコール類などが知られている。また、圧力媒体油として市販されているものでは、フロリナート70/77(住友3M社製)がある。   By the way, normal pressure liquids for ultra-high pressure include conventional petroleum fractions (such as naphthenic mineral oil), hydrocarbons such as isopentane and poly-alpha olefins, a mixture of methanol and ethanol, and a mixture of water and glycerin. Alcohols such as are known. Moreover, in what is marketed as a pressure medium oil, there exists Fluorinert 70/77 (made by Sumitomo 3M).

Journal of physical letter, vol40, L-385(1979)Journal of physical letter, vol40, L-385 (1979) Journal of physical society jpn, vol54, (1985)2084Journal of physical society jpn, vol54, (1985) 2084 Journal of Physical Society Japan, vol72, (2003)468.Journal of Physical Society Japan, vol72, (2003) 468.

しかしながら、フロリナート70/77(住友3M社製)は、室温での固化圧力が1GPaと低く、水とグリセリンの混合液の固化圧力はさらに低い。ポリαオレフィンの固化圧力は2.2GPa以上2.7GPa未満であるが、これよりも高い固化圧力の媒体が求められていた。
一方、イソペンタンは降温時の固化温度での圧力変化が激しく、脆弱な試料が破壊されることが頻発した。また、メタノールとエタノールの混合液は固化圧力は10GPaとはるかに高いが、電極材料の導電ペーストを溶解させてしまう問題があった。
そこで、室温における固化圧力が高く、かつ実験に用いる試料や実験装置の材質と適合できる圧力媒体油の開発が要望されていた。
However, Fluorinert 70/77 (manufactured by Sumitomo 3M Co.) has a solidification pressure at room temperature as low as 1 GPa, and a solidification pressure in a mixed solution of water and glycerin is even lower. The solidification pressure of the poly α olefin is 2.2 GPa or more and less than 2.7 GPa, but a medium having a solidification pressure higher than this has been demanded.
On the other hand, with isopentane, the pressure change at the solidification temperature at the time of temperature drop was severe, and fragile samples were frequently destroyed. Moreover, although the solidification pressure of the mixed solution of methanol and ethanol is much higher as 10 GPa, there is a problem that the conductive paste of the electrode material is dissolved.
Accordingly, there has been a demand for the development of a pressure medium oil that has a high solidification pressure at room temperature and can be adapted to the materials used in the experiment and the experimental apparatus.

本発明の目的は、室温で、超高圧、特に2.7GPa以上の超高圧の下でも固化せず、導電ペーストを溶解させる事がなく、さらに流動点が低く、かつ実験に用いる試料や実験装置の材質と適合性が優れた圧力媒体油を提供することである。   It is an object of the present invention to be a sample or an experimental apparatus that does not solidify at room temperature, even under an ultrahigh pressure of 2.7 GPa or higher, does not dissolve the conductive paste, has a low pour point, and is used for experiments. It is to provide a pressure medium oil excellent in compatibility with the material.

前記課題を解決すべく、本発明は、以下のような圧力媒体油を提供するものである。
(1)40℃における動粘度が2〜30mm/s、かつ、粘度指数が100以上、かつ、流動点が−50℃以下である含ケイ素有機化合物からなることを特徴とした圧力媒体油。
In order to solve the above problems, the present invention provides the following pressure medium oil.
(1) A pressure medium oil comprising a silicon-containing organic compound having a kinematic viscosity at 40 ° C. of 2 to 30 mm 2 / s, a viscosity index of 100 or more, and a pour point of −50 ° C. or less.

(2)前記含ケイ素有機化合物は、下記の一般式(1)に示されたオルガノポリシロキサンであることを特徴とした上記(1)に記載の圧力媒体油。

Figure 2008214509
(式中、Xはアルキル基、nは2〜24の整数である。)
(3)前記オルガノポリシロキサンは、ポリジエチルシロキサン、ポリジメチルシロキサンから選ばれる少なくとも1種であることを特徴とした上記(2)に記載の圧力媒体油。
(4)前記オルガノポリシロキサンは、40℃における動粘度が3〜15mm/s、かつ、粘度指数が120以上であることを特徴とした上記(2)または(3)に記載の圧力媒体油。 (2) The pressure medium oil according to (1), wherein the silicon-containing organic compound is an organopolysiloxane represented by the following general formula (1).
Figure 2008214509
(In the formula, X is an alkyl group, and n is an integer of 2 to 24.)
(3) The pressure medium oil as described in (2) above, wherein the organopolysiloxane is at least one selected from polydiethylsiloxane and polydimethylsiloxane.
(4) The pressure medium oil according to (2) or (3) above, wherein the organopolysiloxane has a kinematic viscosity at 40 ° C. of 3 to 15 mm 2 / s and a viscosity index of 120 or more. .

(5)前記含ケイ素有機化合物は、下記の一般式(2)に示されたテトラアルキルシランであることを特徴とした上記(1)に記載の圧力媒体油。

Figure 2008214509
(式中、R、R、R、Rは炭素数2〜12の直鎖アルキル基である。)
(6)前記テトラアルキルシランは、ジエチルオクチルシラン、ジエチルジヘキシルシラン、ジエチルジデシルシラン、トリエチルデシルシラントリヘキシルエチルシラン、トリヘキシルブチルシラン、テトラヘキシルシラン、トリヘキシルオクチルシランから選ばれる少なくとも1種であることを特徴とした上記(5)に記載の圧力媒体油。
(7)前記テトラアルキルシランは、40℃における動粘度が3〜15mm/s、かつ、粘度指数が100以上であることを特徴とした上記(5)または(6)に記載の圧力媒体油。 (5) The pressure medium oil according to (1), wherein the silicon-containing organic compound is a tetraalkylsilane represented by the following general formula (2).
Figure 2008214509
(In the formula, R 1 , R 2 , R 3 and R 4 are linear alkyl groups having 2 to 12 carbon atoms.)
(6) The tetraalkylsilane is at least one selected from diethyloctylsilane, diethyldihexylsilane, diethyldidecylsilane, triethyldecylsilanetrihexylethylsilane, trihexylbutylsilane, tetrahexylsilane, and trihexyloctylsilane. The pressure medium oil as described in (5) above, wherein
(7) The pressure medium oil according to (5) or (6) above, wherein the tetraalkylsilane has a kinematic viscosity at 40 ° C. of 3 to 15 mm 2 / s and a viscosity index of 100 or more. .

(8)室温(25℃)における固化圧力が2.7GPa以上であることを特徴とした上記(1)からの(7)いずれかに記載の圧力媒体油。 (8) The pressure medium oil according to any one of (1) to (7) above, wherein the solidification pressure at room temperature (25 ° C.) is 2.7 GPa or more.

本発明の圧力媒体油によれば、固化圧力が高く、かつ流動点が低いので、室温(25℃)で超高圧(特に2.7GPa以上)の下でも固化せず、印加対象物質等へ均一に圧力を加えることができる。また、含ケイ素有機化合物は、実験に用いる試料や実験装置の材質との適合性が良好であるので、従来の実験試料や実験装置をそのまま使用することができる。   According to the pressure medium oil of the present invention, the solidification pressure is high and the pour point is low. Pressure can be applied. In addition, since the silicon-containing organic compound has good compatibility with the sample used in the experiment and the material of the experimental apparatus, the conventional experimental sample and the experimental apparatus can be used as they are.

本発明の圧力媒体油は少なくとも1種の含ケイ素有機化合物からなるとともに、以下の条件を満たすものである。
含ケイ素有機化合物は、40℃における動粘度が2〜30mm/s、より好ましくは3〜15mm/sである。40℃における動粘度が2mm/s未満では、圧力媒体油の蒸発による損失や引火の恐れがあって不適当であり、30mm/sを超えると、圧力媒体油の固化圧力が低下することがある。
また、含ケイ素有機化合物の粘度指数は100以上、より好ましくは110以上である。粘度指数が100未満であると、固化圧力が低下することがあり好ましくない。
さらに、含ケイ素有機化合物の流動点は−50℃以下である必要がある。流動点が−50℃を超えると、固化圧力が低下し、また、低温実験での実験操作が困難になってしまう。
The pressure medium oil of the present invention comprises at least one silicon-containing organic compound and satisfies the following conditions.
The silicon-containing organic compound has a kinematic viscosity at 40 ° C. of 2 to 30 mm 2 / s, more preferably 3 to 15 mm 2 / s. If the kinematic viscosity at 40 ° C. is less than 2 mm 2 / s, there is a risk of loss due to evaporation of the pressure medium oil or ignition, which is inappropriate, and if it exceeds 30 mm 2 / s, the solidification pressure of the pressure medium oil decreases. There is.
The viscosity index of the silicon-containing organic compound is 100 or more, more preferably 110 or more. When the viscosity index is less than 100, the solidification pressure may decrease, which is not preferable.
Furthermore, the pour point of the silicon-containing organic compound needs to be −50 ° C. or lower. When the pour point exceeds −50 ° C., the solidification pressure decreases, and the experimental operation in the low temperature experiment becomes difficult.

本発明の圧力媒体油に含まれる含ケイ素有機化合物として、以下の一般式(1)で表されるオルガノポリシロキサンを使用することができる。オルガノポリシロキサンは、さらに以下の条件を満たすものである。
オルガノポリシロキサンは、40℃における動粘度が3〜15mm/sで、より好ましくは4〜15mm/sである。40℃における動粘度が3mm/s未満では、圧力媒体油の蒸発による損失や引火の恐れがあって不適当であり、15mm/sを超えると、圧力媒体油の固化圧力が低下することがある。
As the silicon-containing organic compound contained in the pressure medium oil of the present invention, an organopolysiloxane represented by the following general formula (1) can be used. Organopolysiloxane further satisfies the following conditions.
The organopolysiloxane has a kinematic viscosity at 40 ° C. of 3 to 15 mm 2 / s, more preferably 4 to 15 mm 2 / s. If the kinematic viscosity at 40 ° C. is less than 3 mm 2 / s, there is a risk of loss due to evaporation of pressure medium oil or ignition, which is inappropriate. If it exceeds 15 mm 2 / s, the solidification pressure of the pressure medium oil decreases. There is.

また、オルガノポリシロキサンの粘度指数は120以上、より好ましくは130以上、さらに好ましくは150以上である。粘度指数が120未満では、固化圧力が低下することがあり好ましくない。   The viscosity index of the organopolysiloxane is 120 or more, more preferably 130 or more, and still more preferably 150 or more. If the viscosity index is less than 120, the solidification pressure may decrease, which is not preferable.

Figure 2008214509
Figure 2008214509

式中、Xは、炭素数1〜2のアルキル基であり、Xは同じアルキル基でも異なるアルキル基でもよい。また、nは2〜24の整数であり、好ましくは4〜10である。一般式(1)で表されるオルガノポリシロキサンの代表例としては、ポリジエチルシロキサン、ポリジメチルシロキサンなどが挙げられる。   In the formula, X is an alkyl group having 1 to 2 carbon atoms, and X may be the same or different alkyl group. N is an integer of 2 to 24, preferably 4 to 10. Typical examples of the organopolysiloxane represented by the general formula (1) include polydiethylsiloxane and polydimethylsiloxane.

また、本発明の圧力媒体油に含まれる含ケイ素有機化合物は、以下の一般式(2)で表されるテトラアルキルシランであってもよく、テトラアルキルシランは、さらに以下の条件を満たすものである。
テトラアルキルシランは、40℃における動粘度が3〜15mm/sで、より好ましくは4〜15mm/sである。40℃における動粘度が3mm/s未満では、圧力媒体油の蒸発による損失や引火の恐れがあって不適当であり、15mm/sを超えると、圧力媒体油の固化圧力が低下することがある。
また、テトラアルキルシランの粘度指数は100以上、より好ましくは110以上である。粘度指数が100未満では、固化圧力が低下することがあり好ましくない。
Further, the silicon-containing organic compound contained in the pressure medium oil of the present invention may be a tetraalkylsilane represented by the following general formula (2), and the tetraalkylsilane further satisfies the following conditions. is there.
The tetraalkylsilane has a kinematic viscosity at 40 ° C. of 3 to 15 mm 2 / s, more preferably 4 to 15 mm 2 / s. If the kinematic viscosity at 40 ° C. is less than 3 mm 2 / s, there is a risk of loss due to evaporation of pressure medium oil or ignition, which is inappropriate. If it exceeds 15 mm 2 / s, the solidification pressure of the pressure medium oil decreases. There is.
Further, the viscosity index of tetraalkylsilane is 100 or more, more preferably 110 or more. If the viscosity index is less than 100, the solidification pressure may decrease, which is not preferable.

Figure 2008214509
Figure 2008214509

式中、R、R、R、Rで表される炭素数2〜12の一価の炭化水素基としては、炭素数2〜12の直鎖状のアルキル基が好ましい。 In the formula, the monovalent hydrocarbon group having 2 to 12 carbon atoms represented by R 1 , R 2 , R 3 and R 4 is preferably a linear alkyl group having 2 to 12 carbon atoms.

一般式(2)で表されるテトラアルキルシランの代表例としては、ジエチルジオクチルシラン、ジエチルジヘキシルシラン、ジエチルジデシルシラン、トリエチルデシルシラントリヘキシルエチルシラン、トリヘキシルブチルシラン、テトラヘキシルシラン、トリヘキシルオクチルシランなどが挙げられる。   Representative examples of the tetraalkylsilane represented by the general formula (2) include diethyldioctylsilane, diethyldihexylsilane, diethyldidecylsilane, triethyldecylsilanetrihexylethylsilane, trihexylbutylsilane, tetrahexylsilane, and trihexyl. Examples include octylsilane.

このような特性の含ケイ素有機化合物からなる圧力媒体油は、室温における固化圧力が2.7GPa以上であり、より好ましくは3.0GPa以上、さらに好ましくは3.5GPa以上である。固化圧力が2.7GPa未満であると、2.7GPa以上の超高圧を印加した場合に、圧力媒体油が固化してしまい、対象物質に均一に圧力をかけることができない。したがって、本発明の圧力媒体油は、超高圧、特に2.7GPa以上の超高圧であっても液体として存在し、圧力媒体としての役割を十分に発揮できる。   A pressure medium oil composed of a silicon-containing organic compound having such characteristics has a solidification pressure at room temperature of 2.7 GPa or more, more preferably 3.0 GPa or more, and further preferably 3.5 GPa or more. When the solidification pressure is less than 2.7 GPa, when an ultra-high pressure of 2.7 GPa or more is applied, the pressure medium oil is solidified, and the target substance cannot be uniformly applied with pressure. Therefore, the pressure medium oil of the present invention exists as a liquid even at an ultrahigh pressure, particularly at an ultrahigh pressure of 2.7 GPa or more, and can fully exert its role as a pressure medium.

本願発明においては、前記した含ケイ素有機化合物を単独で用いてもよいし、2種以上を混合して用いてもよい。2種以上を混合した場合の混合比も任意に選定することができる。
また、本発明の圧力媒体油には、本発明の目的の範囲内で公知の添加剤を配合することもできる。
In the present invention, the aforementioned silicon-containing organic compound may be used alone or in combination of two or more. The mixing ratio when two or more kinds are mixed can be arbitrarily selected.
The pressure medium oil of the present invention can be blended with known additives within the scope of the object of the present invention.

例えば、コハク酸イミド、ボロン系コハク酸イミドなどの清浄分散剤、フェノール系、アミン系などの酸化防止剤、ベンゾトリアゾール系、チアゾール系などの腐食防止剤、金属スルホネート系、コハク酸エステル系などの錆止め剤、シリコン系、フッ素化シリコン系などの消泡剤、ポリメタアクリレート系、オレフィンコポリマー系などの粘度指数向上剤などが上げられる。   For example, detergent dispersants such as succinimide and boron succinimide, antioxidants such as phenols and amines, corrosion inhibitors such as benzotriazoles and thiazoles, metal sulfonates and succinates Examples include rust inhibitors, antifoaming agents such as silicon and fluorinated silicon, and viscosity index improvers such as polymethacrylates and olefin copolymers.

アミン系酸化防止剤としては、例えば、モノオクチルジフェニルアミン、モノノニルジフェニルアミンなどのモノアルキルジフェニルアミン系、4,4’−ジブチルジフェニルアミン、4,4’−ジペンチルジフェニルアミン、4,4’−ジヘキシルジフェニルアミン、4,4’−ジヘプチルジフェニルアミン、4,4’−ジオクチルジフェニルアミン、4,4’−ジノニルジフェニルアミンなどのジアルキルジフェニルアミン系、テトラブチルジフェニルアミン、テトラヘキシルジフェニルアミン、テトラオクチルジフェニルアミン、テトラノニルジフェニルアミンなどのポリアルキルジフェニルアミン系、α−ナフチルアミン、フェニル−α−ナフチルアミン、ブチルフェニル−α−ナフチルアミン、ペンチルフェニル−α−ナフチルアミン、ヘキシルフェニル−α−ナフチルアミン、ヘプチルフェニル−α−ナフチルアミン、オクチルフェニル−α−ナフチルアミン、ノニルフェニル−α−ナフチルアミンなどのナフチルアミン系を挙げることができ、中でもジアルキルジフェニルアミン系のものが好ましい。   Examples of amine-based antioxidants include monoalkyldiphenylamines such as monooctyldiphenylamine and monononyldiphenylamine, 4,4′-dibutyldiphenylamine, 4,4′-dipentyldiphenylamine, 4,4′-dihexyldiphenylamine, 4, 4'-diheptyldiphenylamine, 4,4'-dioctyldiphenylamine, dialkyldiphenylamines such as 4,4'-dinonyldiphenylamine, polyalkyldiphenylamines such as tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine, tetranonyldiphenylamine , Α-naphthylamine, phenyl-α-naphthylamine, butylphenyl-α-naphthylamine, pentylphenyl-α-naphthylamine , Hexylphenyl -α- naphthylamine, heptylphenyl -α- naphthylamine, octylphenyl -α- naphthylamine, there may be mentioned naphthylamine such as nonylphenyl -α- naphthylamine, among others those of the dialkyl diphenylamine is preferred.

フェノール系酸化防止剤としては、例えば、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノールなどのモノフェノール系、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)などのジフェノール系を挙げることができる。
これらの酸化防止剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
Examples of the phenol-based antioxidant include monophenols such as 2,6-di-tert-butyl-4-methylphenol and 2,6-di-tert-butyl-4-ethylphenol, 4,4′- Examples include diphenols such as methylene bis (2,6-di-tert-butylphenol) and 2,2′-methylene bis (4-ethyl-6-tert-butylphenol).
These antioxidants may be used individually by 1 type, and may be used in combination of 2 or more type.

また、これらの添加剤の配合量は、目的に応じて適宜選定すればよいが、通常、これらの添加剤の合計が組成物基準で10質量%以下であることが好ましい。   Moreover, what is necessary is just to select the compounding quantity of these additives suitably according to the objective, However, It is preferable that the sum total of these additives is 10 mass% or less normally on a composition basis.

次に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制約されるものではない。
実施例1、2および比較例1、2に挙げた化合物からなるサンプルを調整し、以下に示す方法で各種特性を評価した。なお、サンプルには、添加剤等は一切加えていない。
EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all to the content of description of these Examples.
Samples comprising the compounds listed in Examples 1 and 2 and Comparative Examples 1 and 2 were prepared, and various properties were evaluated by the methods described below. In addition, the additive etc. are not added at all to the sample.

[動粘度]
「JIS K 2283」に準拠して測定した。
[Kinematic viscosity]
The measurement was performed according to “JIS K 2283”.

[粘度指数]
「JIS K 2283」に準拠して測定した。
[Viscosity index]
The measurement was performed according to “JIS K 2283”.

[密度]
「JIS K 2249」に準拠して測定した。
[density]
The measurement was performed according to “JIS K 2249”.

[流動点]
「JIS K 2269」に準拠して測定した。
[Pour point]
The measurement was performed according to “JIS K 2269”.

[固化圧力]
立方体状に形成された加圧容器内にストレーンゲージを置き、圧力媒体油を充填した。超高圧を印加するため、加圧容器の6方向から加圧し、このときのストレーンゲージの抵抗値を測定した。圧力と抵抗値との関係をグラフ化し、圧力に対する抵抗値の曲線が不連続に折れ曲がる点を固化圧力点として特定した。
[Solidification pressure]
A strain gauge was placed in a pressurized container formed in a cubic shape and filled with pressure medium oil. In order to apply an ultra-high pressure, pressure was applied from six directions of the pressurized container, and the resistance value of the strain gauge at this time was measured. The relationship between the pressure and the resistance value was graphed, and the point at which the curve of the resistance value against pressure was bent discontinuously was specified as the solidification pressure point.

なお、ストレーンゲージとは、板状の測定素子であり、圧縮されるにしたがい抵抗値が下がる。圧力媒体油が液体であるときには、素子全体が均等に圧縮されて縮むが、圧力媒体油が固化した状態で加圧すると、圧力媒体油の圧縮をも検知するため、ストレーンゲージの圧縮率が高まり、固化圧力点を境にして急激に抵抗値が減少する。このため、グラフ上では、圧力に対する抵抗値の曲線が折れ曲がる点が出現する。   The strain gauge is a plate-like measuring element, and the resistance value decreases as it is compressed. When the pressure medium oil is a liquid, the entire element is compressed evenly and contracts, but when the pressure medium oil is solidified and pressurized, the compression of the pressure medium oil is also detected and the strain gauge compressibility increases. The resistance value suddenly decreases at the solidification pressure point. For this reason, the point where the curve of the resistance value with respect to the pressure bends appears on the graph.

[導電ペーストの溶解]
導電ペーストの溶解の有無を目視で確認した。
[Dissolution of conductive paste]
The presence or absence of dissolution of the conductive paste was confirmed visually.

[固化時の圧力変化]
室温以下に降温したときに圧力媒体油が固化する場合の圧力を測定し、その変化の度合を示した。
[Pressure change during solidification]
The pressure when the pressure medium oil solidified when the temperature was lowered to room temperature or lower was measured, and the degree of change was shown.

実施例1、2および比較例1、2で使用した化合物を以下に示す。
[実施例1]
ジエチルジオクチルシラン
The compounds used in Examples 1 and 2 and Comparative Examples 1 and 2 are shown below.
[Example 1]
Diethyldioctylsilane

[実施例2]
ポリジエチルシロキサン
[Example 2]
Polydiethylsiloxane

[比較例1]
ポリメチルフェニルシロキサン
[Comparative Example 1]
Polymethylphenylsiloxane

[比較例2]
ポリαオレフィン
測定結果を表1に示した。
[Comparative Example 2]
Table 1 shows the measurement results of poly-α-olefin.

Figure 2008214509
Figure 2008214509

表1が示すように、実施例1および実施例2では、3.7GPaという非常に高い室温固化点の結果が得られた。すなわち、実施例1および実施例2の圧力媒体油は、3.7GPaまでは液体で存在しうるということであり、圧力媒体油として超高圧の下でも使用することができる。また、導電ペーストの溶解もなく、室温以下に降温したときに固化する場合の圧力変化も緩やかであった。   As Table 1 shows, in Example 1 and Example 2, the result of a very high room temperature solidification point of 3.7 GPa was obtained. That is, the pressure medium oil of Example 1 and Example 2 can exist in a liquid state up to 3.7 GPa, and can be used as a pressure medium oil even under ultra high pressure. Moreover, there was no dissolution of the conductive paste, and the pressure change when solidifying when the temperature was lowered to room temperature or lower was also gradual.

一方、比較例1では、含ケイ素有機化合物であるポリメチルフェニルシロキサンを使用しているが、40℃における動粘度が外れているため、室温固化点が低い。また、比較例2では、含ケイ素有機化合物ではないポリαオレフィンを使用しているため、室温固化点が低く、本発明の目的を達成していない。   On the other hand, in Comparative Example 1, polymethylphenylsiloxane, which is a silicon-containing organic compound, is used. However, since the kinematic viscosity at 40 ° C. is off, the room temperature solidification point is low. Moreover, in the comparative example 2, since the poly alpha olefin which is not a silicon-containing organic compound is used, the room temperature solidification point is low and the objective of this invention is not achieved.

本発明は、超高圧印加システム、特に、2.7GPa以上の超高圧を印加する超高圧印加システムなどに使用される圧力媒体油として好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a pressure medium oil used in an ultrahigh pressure application system, particularly an ultrahigh pressure application system that applies an ultrahigh pressure of 2.7 GPa or more.

Claims (8)

40℃における動粘度が2〜30mm/s、かつ、
粘度指数が100以上、かつ、
流動点が−50℃以下である含ケイ素有機化合物からなることを特徴とする圧力媒体油。
A kinematic viscosity at 40 ° C. of 2 to 30 mm 2 / s, and
A viscosity index of 100 or more, and
A pressure medium oil comprising a silicon-containing organic compound having a pour point of -50 ° C or lower.
請求項1に記載の圧力媒体油において、
前記含ケイ素有機化合物は、下記の一般式(1)に示されたオルガノポリシロキサンであることを特徴とする圧力媒体油。
Figure 2008214509
(式中、Xはアルキル基、nは2〜24の整数である。)
The pressure medium oil according to claim 1,
The pressure medium oil, wherein the silicon-containing organic compound is an organopolysiloxane represented by the following general formula (1).
Figure 2008214509
(In the formula, X is an alkyl group, and n is an integer of 2 to 24.)
請求項2に記載の圧力媒体油において、
前記オルガノポリシロキサンは、ポリジエチルシロキサン、ポリジメチルシロキサンから選ばれる少なくとも1種であることを特徴とする圧力媒体油。
The pressure medium oil according to claim 2,
The pressure medium oil according to claim 1, wherein the organopolysiloxane is at least one selected from polydiethylsiloxane and polydimethylsiloxane.
請求項2または請求項3に記載の圧力媒体油において、
前記オルガノポリシロキサンは、40℃における動粘度が3〜15mm/s、かつ、粘度指数が120以上であることを特徴とする圧力媒体油。
In the pressure medium oil according to claim 2 or 3,
The above-mentioned organopolysiloxane has a kinematic viscosity at 40 ° C. of 3 to 15 mm 2 / s and a viscosity index of 120 or more.
請求項1に記載の圧力媒体油において、
前記含ケイ素有機化合物は、下記の一般式(2)に示されたテトラアルキルシランであることを特徴とする圧力媒体油。
Figure 2008214509
(式中、R、R、R、Rは炭素数2〜12の直鎖アルキル基である。)
The pressure medium oil according to claim 1,
The pressure medium oil, wherein the silicon-containing organic compound is a tetraalkylsilane represented by the following general formula (2).
Figure 2008214509
(In the formula, R 1 , R 2 , R 3 and R 4 are linear alkyl groups having 2 to 12 carbon atoms.)
請求項5に記載の圧力媒体油において、
前記テトラアルキルシランは、ジエチルオクチルシラン、ジエチルジヘキシルシラン、ジエチルジデシルシラン、トリエチルデシルシラントリヘキシルエチルシラン、トリヘキシルブチルシラン、テトラヘキシルシラン、トリヘキシルオクチルシランから選ばれる少なくとも1種であることを特徴とする圧力媒体油。
In the pressure medium oil according to claim 5,
The tetraalkylsilane is at least one selected from diethyloctylsilane, diethyldihexylsilane, diethyldidecylsilane, triethyldecylsilane, trihexylethylsilane, trihexylbutylsilane, tetrahexylsilane, and trihexyloctylsilane. Feature pressure medium oil.
請求項5または請求項6に記載の圧力媒体油において、
前記テトラアルキルシランは、40℃における動粘度が3〜15mm/s、かつ、粘度指数が100以上であることを特徴とする圧力媒体油。
In the pressure medium oil according to claim 5 or 6,
The tetraalkylsilane is a pressure medium oil having a kinematic viscosity at 40 ° C. of 3 to 15 mm 2 / s and a viscosity index of 100 or more.
請求項1から請求項7のいずれかに記載の圧力媒体油において、
室温(25℃)における固化圧力が2.7GPa以上であることを特徴とする圧力媒体油。
In the pressure medium oil in any one of Claims 1-7,
A pressure medium oil having a solidification pressure of 2.7 GPa or more at room temperature (25 ° C.).
JP2007054585A 2007-03-05 2007-03-05 Pressure medium oil for ultra high pressure application system Expired - Fee Related JP5319071B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007054585A JP5319071B2 (en) 2007-03-05 2007-03-05 Pressure medium oil for ultra high pressure application system
PCT/JP2008/053823 WO2008108356A1 (en) 2007-03-05 2008-03-04 Pressure medium oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054585A JP5319071B2 (en) 2007-03-05 2007-03-05 Pressure medium oil for ultra high pressure application system

Publications (2)

Publication Number Publication Date
JP2008214509A true JP2008214509A (en) 2008-09-18
JP5319071B2 JP5319071B2 (en) 2013-10-16

Family

ID=39738234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054585A Expired - Fee Related JP5319071B2 (en) 2007-03-05 2007-03-05 Pressure medium oil for ultra high pressure application system

Country Status (2)

Country Link
JP (1) JP5319071B2 (en)
WO (1) WO2008108356A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201214475D0 (en) * 2012-08-14 2012-09-26 Dow Corning Lubricant compositions
GB2506974A (en) * 2012-08-14 2014-04-16 Dow Corning Lubricant compositions
EP3192855B1 (en) 2014-09-12 2020-11-04 Idemitsu Kosan Co., Ltd Method for using pressure medium oil
JP2023032849A (en) * 2021-08-27 2023-03-09 出光興産株式会社 Pressure medium and method of using pressure medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2398187A (en) * 1943-06-11 1946-04-09 Corning Glass Works Hydraulic fluid
JPS62127395A (en) * 1985-11-25 1987-06-09 ダウ コ−ニング コ−ポレ−シヨン Hydraulic silicone oil
US4711966A (en) * 1987-03-19 1987-12-08 Ethyl Corporation Preparation of alkyl silanes
JPH0379699A (en) * 1988-06-20 1991-04-04 Tonen Corp Improved-lubricity silicone-based fluid composition and improvement of lubricity of silicone-based fluid
JPH05112788A (en) * 1991-04-02 1993-05-07 Ethyl Corp Phenyltrialkylsilane lubricating composition
JP2000119672A (en) * 1998-10-13 2000-04-25 Hitachi Metals Techno Ltd Hydraulic oil for vibration damper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301078B2 (en) * 2005-11-15 2013-09-25 出光興産株式会社 Pressure medium oil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2398187A (en) * 1943-06-11 1946-04-09 Corning Glass Works Hydraulic fluid
JPS62127395A (en) * 1985-11-25 1987-06-09 ダウ コ−ニング コ−ポレ−シヨン Hydraulic silicone oil
US4711966A (en) * 1987-03-19 1987-12-08 Ethyl Corporation Preparation of alkyl silanes
JPH0379699A (en) * 1988-06-20 1991-04-04 Tonen Corp Improved-lubricity silicone-based fluid composition and improvement of lubricity of silicone-based fluid
JPH05112788A (en) * 1991-04-02 1993-05-07 Ethyl Corp Phenyltrialkylsilane lubricating composition
JP2000119672A (en) * 1998-10-13 2000-04-25 Hitachi Metals Techno Ltd Hydraulic oil for vibration damper

Also Published As

Publication number Publication date
JP5319071B2 (en) 2013-10-16
WO2008108356A1 (en) 2008-09-12

Similar Documents

Publication Publication Date Title
JP5165307B2 (en) Electrical insulating oil and method for producing the same
WO2009006156A1 (en) Electrical insulating oil compositions and preparation thereof
JP5319071B2 (en) Pressure medium oil for ultra high pressure application system
JP5102452B2 (en) Electrical insulation oil
CN104583380A (en) Cable fill composition
ES2926249T3 (en) Lubricant composition containing polyisobutyl methacrylate copolymers
JP5301078B2 (en) Pressure medium oil
JP6639401B2 (en) Pressure medium oil and method of using the pressure medium oil
BR102021025822A2 (en) ACRYLATE-OLEFIN COPOLYMERS AS HIGH VISCOSITY BASE FLUIDS
JP5490434B2 (en) Heat treated oil composition
EP2186871A1 (en) Lubricating composition
JP2015021046A (en) Gear oil composition
JP6055320B2 (en) Hydraulic fluid composition
US20120302480A1 (en) Additive concentrate
KR101525036B1 (en) Lubricant composition having improved low temperature properties
BR112012010683B1 (en) functional fluid composition, and use of a functional fluid composition
JP7040848B2 (en) Mineral oil-based base oil and vacuum pump oil
EP2072610A1 (en) Carrier oil composition
WO2020085478A1 (en) Lubricating oil composition
JP2010215699A (en) Industrial operating fluid composition
JP6018982B2 (en) Poly (meth) acrylate viscosity index improver, and lubricating oil additive and lubricating oil composition containing the viscosity index improver
CA2693557A1 (en) Hydrocarbon fluids with improved pour point
CN105754692A (en) Air compressor oil composition and preparation method thereof
JP2023032849A (en) Pressure medium and method of using pressure medium
JP5467819B2 (en) Rotary compressor oil composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5319071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees