JP2008214111A - Manufacturing method of tricalcium phosphate containing silicon and tricalcium phosphate containing silicon - Google Patents

Manufacturing method of tricalcium phosphate containing silicon and tricalcium phosphate containing silicon Download PDF

Info

Publication number
JP2008214111A
JP2008214111A JP2007050465A JP2007050465A JP2008214111A JP 2008214111 A JP2008214111 A JP 2008214111A JP 2007050465 A JP2007050465 A JP 2007050465A JP 2007050465 A JP2007050465 A JP 2007050465A JP 2008214111 A JP2008214111 A JP 2008214111A
Authority
JP
Japan
Prior art keywords
tricalcium phosphate
silicon
containing silicon
phosphate containing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007050465A
Other languages
Japanese (ja)
Inventor
Masanobu Kamitakahara
理暢 上高原
Chikara Otsuki
主税 大槻
Masao Tanihara
正夫 谷原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007050465A priority Critical patent/JP2008214111A/en
Publication of JP2008214111A publication Critical patent/JP2008214111A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of tricalcium phosphate containing silicon as a material for an artificial bone for providing the artificial bones which promote a bone reproduction while being absorbed, by involving silicon that promotes a bone production into the tricalcium phosphate that exhibits bioabsorptivity, and to provide tricalcium phosphate containing silicon. <P>SOLUTION: The method is characterized by synthesizing tricalcium phosphate containing silicon by reacting a calcium compound, phosphoric acid and a silicon compound in an aqueous solution, followed by heating them. The resultant tricalcium phosphate containing silicon is characterized in that it is excellent in sinterability and in that the sintered material has a smaller dissolving rate in vivo. Artificial bones comprised of the tricalcium phosphate containing silicon are expected to promote a bone reproduction while being absorbed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、人工骨材料としての、ケイ素含有リン酸三カルシウムの製造方法とそれを用いて製造されたケイ素含有リン酸三カルシウムに関するものである。   The present invention relates to a method for producing silicon-containing tricalcium phosphate as an artificial bone material and a silicon-containing tricalcium phosphate produced using the method.

リン酸三カルシウム(Ca3(PO4)2)は、生体吸収性の人工骨として利用されている。一方、ケイ素は骨形成を促進することが知られている。これまでに、リン酸カルシウムとシリカとを混合し、これを焼成することでケイ素含有リン酸三カルシウムの合成が試みられている(例えば、非特許文献1参照)。しかしながら、このような固相法では、限られた組成域でしか単相のTCPが得られていない。他の組成域では、リン酸三カルシウム以外のリン酸カルシウムも生成してしまう。 Tricalcium phosphate (Ca 3 (PO 4 ) 2 ) is used as a bioabsorbable artificial bone. On the other hand, silicon is known to promote bone formation. So far, synthesis of silicon-containing tricalcium phosphate has been attempted by mixing calcium phosphate and silica and firing the mixture (see, for example, Non-Patent Document 1). However, in such a solid-phase method, single-phase TCP is obtained only in a limited composition range. In other composition ranges, calcium phosphates other than tricalcium phosphate are also generated.

これまでに、リン酸三カルシウムに添加する可能性のある元素としてケイ素が示されている(例えば、特許文献1参照)。しかしながら、特許文献1には実際の製造方法についての記述が無い。   So far, silicon has been shown as an element that may be added to tricalcium phosphate (see, for example, Patent Document 1). However, Patent Document 1 does not describe an actual manufacturing method.

また、湿式法を用いて、ケイ素含有水酸アパタイト(Ca10(PO4)6(OH)2)の合成が報告されている(例えば、非特許文献2参照)。しかし、湿式法で、リン酸三カルシウムにケイ素を含有させようとした報告は無い。 In addition, the synthesis of silicon-containing hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) has been reported using a wet method (see, for example, Non-Patent Document 2). However, there is no report of trying to contain silicon in tricalcium phosphate by a wet method.

J. W. Reid, L. Tuck, M. Sayer, K. Fargo, J. A. Hendry, “Synthesis and characterization of single-phase silicon-substituted α-tricalcium phosphate”, Biomaterials,2006,27,p.2916-2925J. W. Reid, L. Tuck, M. Sayer, K. Fargo, J. A. Hendry, “Synthesis and characterization of single-phase silicon-substituted α-tricalcium phosphate”, Biomaterials, 2006, 27, p.2916-2925 国際公開第03/035576号パンフレットInternational Publication No. 03/035576 pamphlet I. R. Gibson, S. M. Best, W. Bonfield, “Chemical characterization of silicon-substituted hydroxyapatite”, Journal of Biomedical Materials Research,1999,44,p.422-428I. R. Gibson, S. M. Best, W. Bonfield, “Chemical characterization of silicon-substituted hydroxyapatite”, Journal of Biomedical Materials Research, 1999, 44, p.422-428

本発明の目的は、生体吸収性を示すリン酸三カルシウムに骨形成を促進するケイ素を含有させることで、吸収されながら骨再生を促す人工骨を提供するために、その人工骨の材料としてのケイ素含有リン酸三カルシウムの製造方法およびケイ素含有リン酸三カルシウムを提供することにある。   An object of the present invention is to provide an artificial bone that promotes bone regeneration while being absorbed by adding silicon that promotes bone formation to tricalcium phosphate that exhibits bioabsorbability. The object is to provide a method for producing silicon-containing tricalcium phosphate and silicon-containing tricalcium phosphate.

本発明によれば、上述の課題を解決するために、水溶液中で、カルシウム化合物、リン酸およびケイ素化合物を混合し、得られた沈殿物を、加熱処理することにより、ケイ素含有リン酸三カルシウムを合成することに特徴がある。得られたケイ素含有リン酸三カルシウムは、焼結性に優れ、その焼結体は、生体内での溶解速度が小さいことに特徴がある。ケイ素含有リン酸三カルシウムからなる人工骨は、吸収されながら骨再生を促すと期待される。   According to the present invention, in order to solve the above-mentioned problems, a calcium compound, phosphoric acid and a silicon compound are mixed in an aqueous solution, and the resulting precipitate is subjected to a heat treatment to obtain a silicon-containing tricalcium phosphate. Is characterized by the synthesis. The obtained silicon-containing tricalcium phosphate is excellent in sinterability, and the sintered body is characterized by a low dissolution rate in vivo. Artificial bone made of silicon-containing tricalcium phosphate is expected to promote bone regeneration while being absorbed.

また、本発明によれば、炭酸カルシウムを加熱冷却して得られる酸化カルシウム(CaO)を出発原料として、CaO に純水を加えCa(OH)2懸濁液とし、該懸濁液を恒温槽中で一定温度に保持・撹拌しながら、モル比組成がCa/(P+Si)=1.4〜1.7になるように、このCa(OH)2懸濁液にリン酸水溶液と、シリコンアセテートを懸濁させた水を混合し、混合後、さらに所定時間撹拌し、その間、pHが低下したら、NH4OH水を滴下し、pHを6.00〜6.20となるように調整し、得られた沈殿物を回収し、純水で洗浄し、これを60℃で乾燥する粉末製造工程と、得られた粉末を800〜1000℃で仮焼し、該仮焼粉末を金型に入れ加圧し成形体を作製し、該成形体を大気中1200〜1400℃で1〜12時間保持し、焼結する工程とを、有することを特徴とするケイ素含有リン酸三カルシウムの製造方法が得られる。 Further, according to the present invention, calcium oxide (CaO) obtained by heating and cooling calcium carbonate is used as a starting material, pure water is added to CaO to form a Ca (OH) 2 suspension, and the suspension is kept in a thermostatic bath. In this Ca (OH) 2 suspension, a phosphoric acid aqueous solution and silicon acetate were suspended so that the molar ratio composition was Ca / (P + Si) = 1.4 to 1.7 while maintaining and stirring at a constant temperature. Mix the turbid water, stir for a predetermined time after mixing, and when the pH drops during that time, add NH 4 OH water dropwise, adjust the pH to 6.00-6.20, the precipitate obtained Collecting, washing with pure water, drying this at 60 ° C, and then calcining the obtained powder at 800-1000 ° C, placing the calcined powder in a mold and pressurizing to produce a compact And holding the molded body in the atmosphere at 1200 to 1400 ° C. for 1 to 12 hours, and sintering the silicon-containing tricalcium phosphate, Obtained.

さらに、本発明によれば、前記の製造方法で製造される粉末または焼結体から成り、化学式Ca3(P1-xSixO4-x/2)2で与えられるケイ素含有リン酸三カルシウムが得られる。 Furthermore, according to the present invention, the silicon-containing triphosphate composed of the powder or sintered body produced by the above production method and given by the chemical formula Ca 3 (P 1-x Si x O 4-x / 2 ) 2 is used. Calcium is obtained.

本発明による製造方法を用いれば、広い組成域で単相のケイ素含有リン酸三カルシウムを製造できる。得られたケイ素含有リン酸三カルシウムは、ケイ素を含まないリン酸三カルシウムよりも焼結しやすい。しかも、その焼結体は体液環境下での溶解速度が小さい。さらに、ケイ素含有リン酸三カルシウムは、骨再生を促進するとともに、ケイ素を含まないリン酸三カルシウムよりも骨との親和性が高いと期待される。   By using the production method according to the present invention, single-phase silicon-containing tricalcium phosphate can be produced in a wide composition range. The resulting silicon-containing tricalcium phosphate is easier to sinter than silicon-free tricalcium phosphate. Moreover, the sintered body has a low dissolution rate in a body fluid environment. Furthermore, silicon-containing tricalcium phosphate is expected to promote bone regeneration and have higher affinity with bone than tricalcium phosphate not containing silicon.

本発明によるケイ素含有リン酸三カルシウムの特徴は、組成のCa/(P+Si)のモル比が1.4〜1.7(好ましくは1.5)、Si/(P+Si)のモル比が0.01〜0.2(好ましくは0.05〜0.1)である点にある。   The silicon-containing tricalcium phosphate according to the present invention is characterized by a Ca / (P + Si) molar ratio of the composition of 1.4 to 1.7 (preferably 1.5) and a Si / (P + Si) molar ratio of 0.01 to 0.2 ( Preferably it is 0.05-0.1).

本発明によるケイ素含有リン酸三カルシウムの製造に際しては、Ca(OH)2懸濁液を恒温槽中で20〜40℃(好ましくは30℃)に保持・撹拌しながら、モル比組成がCa/(P+Si)=1.4〜1.7(好ましくは1.5)、Si/(P+Si)=0.01〜0.2(好ましくは0.05〜0.1)になるように、このCa(OH)2懸濁液にリン酸水溶液と、シリコンアセテートを懸濁させた水を混合し、混合後、さらに1〜6時間(好ましくは3時間)撹拌し、その間、pHが低下したら、NH4OH水を滴下し、pHを6.00〜6.20となるように調整し、得られた沈殿物を回収し、純水で洗浄し、これを60℃で乾燥する粉末製造工程と、得られた粉末を800〜1000℃で仮焼し、該仮焼粉末を金型に入れ、10〜100MPaで加圧し成形体を作製し、該成形体を大気中1200〜1400℃で1〜12時間保持し、焼結する。 In the production of silicon-containing tricalcium phosphate according to the present invention, while maintaining and stirring the Ca (OH) 2 suspension at 20 to 40 ° C. (preferably 30 ° C.) in a thermostatic bath, the molar ratio composition is Ca / Phosphoric acid is added to the Ca (OH) 2 suspension so that (P + Si) = 1.4 to 1.7 (preferably 1.5) and Si / (P + Si) = 0.01 to 0.2 (preferably 0.05 to 0.1). The aqueous solution and water in which silicon acetate is suspended are mixed. After mixing, the mixture is further stirred for 1 to 6 hours (preferably 3 hours). During this period, when the pH drops, NH 4 OH water is added dropwise to adjust the pH to 6.00. Adjust to be -6.20, collect the resulting precipitate, wash with pure water, dry this at 60 ° C, and calcine the resulting powder at 800-1000 ° C, The calcined powder is put into a mold and pressed at 10 to 100 MPa to produce a molded body. The molded body is held at 1200 to 1400 ° C. in the atmosphere for 1 to 12 hours and sintered.

多孔体を製造する際には、800〜1000℃で仮焼した粉末と熱分解性の物質とを混合し、ついで1200〜1400℃で焼成する。仮焼温度が800℃未満だと、低結晶性の水酸アパタイトからリン酸三カルシウム相転移が十分に進行しない。また、仮焼温度が1000℃を超えると、焼結の際の反応性が低下し、焼結密度が得られなくなる。   When manufacturing a porous body, the powder calcined at 800 to 1000 ° C. and a thermally decomposable substance are mixed, and then fired at 1200 to 1400 ° C. When the calcination temperature is less than 800 ° C., the tricalcium phosphate phase transition does not proceed sufficiently from the low crystalline hydroxyapatite. On the other hand, if the calcining temperature exceeds 1000 ° C., the reactivity during sintering is lowered, and the sintered density cannot be obtained.

炭酸カルシウム(CaCO3, Nacalai Tesque Inc.)をアルミナるつぼに入れ、SiC電気炉(SC-2025D, Motoyama Co.)で、空気中にて5°
C/minの昇温速度で1100°
Cまで昇温し、この温度で保持した。3時間経過後、炉内にて自然放冷して酸化カルシウム(CaO)を得た。得られたCaO 0.30molを400mlの超純水に入れ、Ca(OH)2懸濁液を得た。恒温槽中で30°
Cに保持し撹拌しながら、このCa(OH)2懸濁液に0.17、0.18、0.19、0.20molのリン酸 (85%H3PO4, Nacalai Tesque Inc.)を含む200mlの水溶液と、0.00、0.01、0.02、0.03molのシリコンアセテート(Si(OCOCH3)4, Aldrich)を懸濁させた400mlの超純水を混合した。P+Siの物質量を0.20molに固定した。図1に製造工程、表1に組成と試料名とを示す。なお、リンをケイ素に置き換えた割合(%)を試料名に用いた。
Calcium carbonate (CaCO 3 , Nacalai Tesque Inc.) is put in an alumina crucible, and it is 5 ° in the air in a SiC electric furnace (SC-2025D, Motoyama Co.).
1100 ° at a heating rate of C / min
The temperature was raised to C and held at this temperature. After 3 hours, the mixture was naturally cooled in a furnace to obtain calcium oxide (CaO). The obtained CaO 0.30 mol was put into 400 ml of ultrapure water to obtain a Ca (OH) 2 suspension. 30 ° in a constant temperature bath
While maintaining at C and stirring, 200 ml of an aqueous solution containing 0.17, 0.18, 0.19, 0.20 mol of phosphoric acid (85% H 3 PO 4 , Nacalai Tesque Inc.) and 0.005 in this Ca (OH) 2 suspension, , 0.01, 0.02, and 0.03 mol of silicon acetate (Si (OCOCH 3 ) 4 , Aldrich) were mixed with 400 ml of ultrapure water. The substance amount of P + Si was fixed at 0.20 mol. FIG. 1 shows the production process, and Table 1 shows the composition and sample name. The ratio (%) in which phosphorus was replaced with silicon was used as the sample name.

混合後、さらに3時間撹拌した。その間、pHが6.10になった時点で3%NH4OH水を滴下し、pHを6.00〜6.20となるように調整した。得られた沈殿物を吸引ろ過により回収した。超純水で洗浄し、これを60°
Cで12時間乾燥した。
After mixing, the mixture was further stirred for 3 hours. Meanwhile, when the pH reached 6.10, 3% NH 4 OH water was added dropwise to adjust the pH to 6.00 to 6.20. The resulting precipitate was collected by suction filtration. Wash with ultrapure water and remove it by 60 °
Dried for 12 hours at C.

得られた試料を種々の温度で加熱処理し、それに伴う結晶相の変化を粉末X線回折(Powder-XRD, RINT2200V/PC-LR, Rigaku Inc.)で調べた。結果を図2に示す。図2(a)に示すように、Si0において、焼成前は低結晶性の水酸アパタイト(HA)であった。種々の温度で焼成すると、700°
Cでは低結晶性のHAとβ型リン酸三カルシウム(β-TCP)、800および1000°
Cではβ-TCP、1200°
Cではα型リン酸三カルシウム(α-TCP)に帰属されるピークを検出した。図2(b)に示すように、Si5においては、焼成に伴う変化はSi0と同じであった。しかし、図2(c)に示すように、Si10では、焼成前は低結晶性のHAであることはSi0やSi5と同じであったものの、焼成すると、700°
Cでは低結晶性のHAとα-TCP、800および1000°
Cではα-TCPとβ-TCP、1200°
Cではα-TCPに帰属されるピークのみを検出した。図2(d)に示すように、Si15では、700°
Cでは低結晶性HAとα-TCP、800および1000°
Cでは、α-TCPの強いピークとβ-TCPの弱いピーク、1200°
Cではα-TCPに帰属されるピークのみを検出した。ケイ素添加量が多いSi10とSi15では、700°
Cでもα-TCPのピークが見られた。さらに、Si15では、700°
Cですでにα-TCPのピークが鋭くなり、結晶性が高くなっていた。
The obtained sample was heat-treated at various temperatures, and the change of the crystal phase accompanying the heat treatment was examined by powder X-ray diffraction (Powder-XRD, RINT2200V / PC-LR, Rigaku Inc.). The results are shown in FIG. As shown in FIG. 2 (a), Si0 was low crystalline hydroxyapatite (HA) before firing. 700 ° when fired at various temperatures
For C, low crystalline HA and β-tricalcium phosphate (β-TCP), 800 and 1000 °
In C, β-TCP, 1200 °
In C, a peak attributed to α-type tricalcium phosphate (α-TCP) was detected. As shown in FIG. 2B, in Si5, the change accompanying firing was the same as in Si0. However, as shown in FIG. 2 (c), Si10 had a low crystalline HA before firing, although it was the same as Si0 and Si5.
C with low crystallinity HA and α-TCP, 800 and 1000 °
In C, α-TCP and β-TCP, 1200 °
In C, only peaks attributed to α-TCP were detected. As shown in Fig. 2 (d), 700 ° for Si15
In C, low crystalline HA and α-TCP, 800 and 1000 °
In C, α-TCP strong peak and β-TCP weak peak, 1200 °
In C, only peaks attributed to α-TCP were detected. 700 ° for Si10 and Si15 with high silicon addition
The peak of α-TCP was also seen in C. Furthermore, for Si15, 700 °
In C, the α-TCP peak was already sharp and the crystallinity was high.

得られた粉末試料をアルミナるつぼに入れ、マッフル炉(KDS S-70, Denken Co.)で、空気中にて5°
C/minの昇温速度で800°
Cまで昇温し、この温度で3時間保持し、炉内にて自然放冷し、仮焼した。800°
C仮焼後の試料を1g秤量し金型に入れ、5×107Paで一軸加圧し、ニュートンプレスを用いて、16mmφ×3mmの成形体を作製した。成形体をアルミナプレートに乗せ、SiC電気炉で、空気中にて5°
C/minの昇温速度、1400°
Cまで昇温し、この温度で12時間保持し、炉内にて自然放冷した。焼結体表面の結晶構造を薄膜X線回折(TF-XRD, RINT2200V/PC-LR, Rigaku Inc.)で、形状を走査型電子顕微鏡(SEM,S-4800, Hitachi, Ltd)で調べた。
The obtained powder sample is put in an alumina crucible, and 5 ° in air in a muffle furnace (KDS S-70, Denken Co.).
800 ° at a heating rate of C / min
The temperature was raised to C, held at this temperature for 3 hours, allowed to cool naturally in the furnace, and calcined. 800 °
1 g of the C calcined sample was weighed and placed in a mold, uniaxially pressed at 5 × 10 7 Pa, and a 16 mmφ × 3 mm compact was produced using a Newton press. Place the compact on an alumina plate and in a SiC electric furnace, 5 ° in air
C / min heating rate, 1400 °
The temperature was raised to C, kept at this temperature for 12 hours, and allowed to cool naturally in the furnace. The crystal structure of the sintered body surface was examined by thin film X-ray diffraction (TF-XRD, RINT2200V / PC-LR, Rigaku Inc.), and the shape was examined by a scanning electron microscope (SEM, S-4800, Hitachi, Ltd).

TF-XRDパターンを図3に示す。いずれの試料においても、α-TCPに帰属されるピークのみを検出した。このことから、焼結体はケイ素含有α-TCPからなることがわかる。図4に焼結体表面のSEM写真を示す。Si5、Si10およびSi15は、Si0と比較すると、気孔が縮小し、気孔数は減少した。Si0では粒子を確認できなかったため、粒子径も測定できなかったが、Si5、Si10およびSi15を比較すると、ケイ素添加量に伴い粒子は小さくなる傾向が見られた。ケイ素を添加した試料は、ケイ素を添加していない試料に比べ、緻密化が進行していることを示している。   The TF-XRD pattern is shown in FIG. In any sample, only the peak attributed to α-TCP was detected. This indicates that the sintered body is composed of silicon-containing α-TCP. FIG. 4 shows an SEM photograph of the surface of the sintered body. Si5, Si10, and Si15 had smaller pores and fewer pores than Si0. Since particles could not be confirmed with Si0, the particle size could not be measured. However, when Si5, Si10 and Si15 were compared, there was a tendency for the particles to become smaller with the amount of silicon added. The sample to which silicon was added shows that the densification has progressed compared to the sample to which silicon is not added.

Kokuboらの報告(Journal of Biomedical Materials Research,24,721-734(1990))にならい、ヒトの体液とほぼ等しい無機イオン濃度を有する擬似体液(SBF)を調製した。各溶液の濃度を表2に示す。   Following a report by Kokubo et al. (Journal of Biomedical Materials Research, 24, 721-734 (1990)), a simulated body fluid (SBF) having an inorganic ion concentration almost equal to that of human body fluid was prepared. Table 2 shows the concentration of each solution.

pH調節の際、トリスヒドロキシアミノメタンが0.05kmol/m-3となるように、トリスヒドロキシアミノメタンを加え、ここに1kmol/m-3のHClを加えていくことでpHを7.25に調製した。得られた焼結体を、30mlのSBFに浸漬し、36.5℃に保持した。種々の期間(7, 14日)浸漬後、焼結体を取り出し、超純水で洗浄し、風乾した。浸漬前および各時間浸漬後の焼結体の重量を測定し、重量変化を調べた。さらに、焼結体表面の形状を、SEMで調べた。 During pH adjustment, as tris (hydroxymethyl) aminomethane is 0.05 kmol / m -3, was added trishydroxyaminomethane, the pH was adjusted to 7.25 by here go HCl was added 1 kmol / m -3. The obtained sintered body was immersed in 30 ml of SBF and maintained at 36.5 ° C. After immersion for various periods (7, 14 days), the sintered body was taken out, washed with ultrapure water, and air-dried. The weight of the sintered body was measured before immersion and after each time immersion, and the change in weight was examined. Further, the shape of the sintered body surface was examined by SEM.

図5に、7または14日間SBFに浸漬した焼結体の重量変化を示す。図5に示すように、Si0においては、Si5、Si10およびSi15と比較すると、より重量が減少していた。ケイ素添加量に伴い、SBF中での重量減少が小さくなる傾向が見られた。これは、ケイ素を添加することで、生体内での溶解速度を制御できる可能性を示す。図6に、14日間SBF浸漬前後の焼結体表面のSEM写真を示す。図6に示すように、14日間浸漬後、Si0には変化が見られなかったが、Si5、Si10およびSi15では、焼結体表面に新たに鱗片状の析出物が見られた。この析出物は、過去に報告されている骨結合性を示す材料にSBF中で析出する結晶と形状が類似していることから、水酸アパタイトであると考えられる。これまでに、SBF中で水酸アパタイトを形成する材料は、生体内でもその表面に水酸アパタイト層を形成し、それを介して骨と結合する可能性が高いことが報告されているので、ケイ素を含有したTCPは、骨と結合する能力が高い可能性が示唆される。   FIG. 5 shows the change in weight of the sintered body immersed in SBF for 7 or 14 days. As shown in FIG. 5, the weight of Si0 was further reduced as compared with Si5, Si10, and Si15. There was a tendency for the weight loss in SBF to become smaller with the addition of silicon. This indicates the possibility that the dissolution rate in vivo can be controlled by adding silicon. FIG. 6 shows SEM photographs of the surface of the sintered body before and after SBF immersion for 14 days. As shown in FIG. 6, no change was observed in Si0 after immersion for 14 days. However, in Si5, Si10 and Si15, new scaly precipitates were observed on the surface of the sintered body. This precipitate is considered to be hydroxyapatite because it is similar in shape to the crystals that have been reported in the past, and crystals that precipitate in SBF. So far, it has been reported that the material that forms hydroxyapatite in SBF is highly likely to form a hydroxyapatite layer on its surface in vivo and bind to bone via it. It is suggested that TCP containing silicon may have a high ability to bind to bone.

本発明の実施の形態のケイ素含有リン酸三カルシウムの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the silicon containing tricalcium phosphate of embodiment of this invention. 本発明の実施の形態のケイ素含有リン酸三カルシウムの粉末試料を、種々の温度で加熱処理したときのPowder-XRDパターン図である。It is a Powder-XRD pattern figure when the powder sample of the silicon containing tricalcium phosphate of embodiment of this invention is heat-processed at various temperature. 本発明の実施の形態のケイ素含有リン酸三カルシウムの焼結体のTF-XRDパターン図である。It is a TF-XRD pattern figure of the sintered compact of silicon containing tricalcium phosphate of an embodiment of the invention. 図3に示すケイ素含有リン酸三カルシウムの焼結体表面のSEM写真である。It is a SEM photograph of the sintered compact surface of the silicon containing tricalcium phosphate shown in FIG. 図3に示すケイ素含有リン酸三カルシウムの焼結体を、SBFに浸漬したときの重量変化を示すグラフである。It is a graph which shows a weight change when the sintered compact of the silicon containing tricalcium phosphate shown in FIG. 3 is immersed in SBF. 図3に示すケイ素含有リン酸三カルシウムの焼結体表面の、SBF浸漬前後のSEM写真である。It is the SEM photograph before and behind SBF immersion of the sintered compact surface of the silicon containing tricalcium phosphate shown in FIG.

Claims (3)

水溶液中で、カルシウム化合物、リン酸およびケイ素化合物を混合し、得られた沈殿物を、加熱処理することを、特徴とするケイ素含有リン酸三カルシウムの製造方法。   A method for producing silicon-containing tricalcium phosphate, which comprises mixing a calcium compound, phosphoric acid and a silicon compound in an aqueous solution, and subjecting the resulting precipitate to heat treatment. 炭酸カルシウムを加熱冷却して得られる酸化カルシウム(CaO)を出発原料として、CaO に純水を加えCa(OH)2懸濁液とし、該懸濁液を恒温槽中で一定温度に保持・撹拌しながら、モル比組成がCa/(P+Si)=1.4〜1.7になるように、このCa(OH)2懸濁液にリン酸水溶液と、シリコンアセテートを懸濁させた水を混合し、混合後、さらに所定時間撹拌し、その間、pHが低下したら、NH4OH水を滴下し、pHを6.00〜6.20となるように調整し、得られた沈殿物を回収し、純水で洗浄し、これを60℃で乾燥する粉末製造工程と、得られた粉末を800〜1000℃で仮焼し、該仮焼粉末を金型に入れ加圧し成形体を作製し、該成形体を大気中1200〜1400℃で1〜12時間保持し、焼結する工程とを、有することを特徴とする請求項1記載のケイ素含有リン酸三カルシウムの製造方法。 Using calcium oxide (CaO) obtained by heating and cooling calcium carbonate as a starting material, pure water is added to CaO to form a Ca (OH) 2 suspension, and the suspension is maintained at a constant temperature in a constant temperature bath and stirred. While, so that the molar ratio composition is Ca / (P + Si) = 1.4 to 1.7, this Ca (OH) 2 suspension is mixed with an aqueous phosphoric acid solution and water in which silicon acetate is suspended, After mixing, the mixture is further stirred for a predetermined time. When the pH drops during that time, NH 4 OH water is added dropwise, the pH is adjusted to 6.00 to 6.20, and the resulting precipitate is recovered and washed with pure water. , A powder manufacturing process for drying this at 60 ° C., and calcining the obtained powder at 800 to 1000 ° C., placing the calcined powder in a mold and pressurizing to produce a molded body, The method for producing silicon-containing tricalcium phosphate according to claim 1, further comprising a step of holding at 1200 to 1400 ° C. for 1 to 12 hours and sintering. 請求項1または2に記載の製造方法で製造される粉末または焼結体から成り、化学式Ca3(P1-xSixO4-x/2)2で与えられることを、特徴とするケイ素含有リン酸三カルシウム。
A silicon characterized by comprising a powder or a sintered body produced by the production method according to claim 1 or 2 and given by the chemical formula Ca 3 (P 1-x Si x O 4-x / 2 ) 2. Contains tricalcium phosphate.
JP2007050465A 2007-02-28 2007-02-28 Manufacturing method of tricalcium phosphate containing silicon and tricalcium phosphate containing silicon Pending JP2008214111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007050465A JP2008214111A (en) 2007-02-28 2007-02-28 Manufacturing method of tricalcium phosphate containing silicon and tricalcium phosphate containing silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050465A JP2008214111A (en) 2007-02-28 2007-02-28 Manufacturing method of tricalcium phosphate containing silicon and tricalcium phosphate containing silicon

Publications (1)

Publication Number Publication Date
JP2008214111A true JP2008214111A (en) 2008-09-18

Family

ID=39834609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050465A Pending JP2008214111A (en) 2007-02-28 2007-02-28 Manufacturing method of tricalcium phosphate containing silicon and tricalcium phosphate containing silicon

Country Status (1)

Country Link
JP (1) JP2008214111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584203A (en) * 2012-03-16 2012-07-18 中国科学院上海硅酸盐研究所 Bioactive ceramic material and preparation method thereof
JP2013500935A (en) * 2009-08-04 2013-01-10 バイオマトセル・エービー Ion-substituted calcium phosphate particles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287406A (en) * 1985-10-11 1987-04-21 Agency Of Ind Science & Technol Production of beta-tricalcium phosphate
JPS63103809A (en) * 1986-10-22 1988-05-09 Agency Of Ind Science & Technol Production of porous calcium phosphate sphere
JPS6424009A (en) * 1987-07-17 1989-01-26 Kanto Kagaku Production of beta-type calcium tertiary phosphate
JPH0848518A (en) * 1994-02-28 1996-02-20 Rhone Poulenc Inc Production of calcium salt having low aluminum content
JPH09255418A (en) * 1996-03-21 1997-09-30 Ngk Spark Plug Co Ltd Production of calcium phosphate-based ceramic
JP2000517281A (en) * 1996-08-30 2000-12-26 アボネティックス・リミテッド Silicon-substituted apatite and its production method
WO2003035576A1 (en) * 2001-10-21 2003-05-01 National Institute Of Advanced Industrial Science And Technology Porous article of sintered calcium phosphate, process for producing the same and artificial bone and histomorphological scaffold using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287406A (en) * 1985-10-11 1987-04-21 Agency Of Ind Science & Technol Production of beta-tricalcium phosphate
JPS63103809A (en) * 1986-10-22 1988-05-09 Agency Of Ind Science & Technol Production of porous calcium phosphate sphere
JPS6424009A (en) * 1987-07-17 1989-01-26 Kanto Kagaku Production of beta-type calcium tertiary phosphate
JPH0848518A (en) * 1994-02-28 1996-02-20 Rhone Poulenc Inc Production of calcium salt having low aluminum content
JPH09255418A (en) * 1996-03-21 1997-09-30 Ngk Spark Plug Co Ltd Production of calcium phosphate-based ceramic
JP2000517281A (en) * 1996-08-30 2000-12-26 アボネティックス・リミテッド Silicon-substituted apatite and its production method
WO2003035576A1 (en) * 2001-10-21 2003-05-01 National Institute Of Advanced Industrial Science And Technology Porous article of sintered calcium phosphate, process for producing the same and artificial bone and histomorphological scaffold using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500935A (en) * 2009-08-04 2013-01-10 バイオマトセル・エービー Ion-substituted calcium phosphate particles
CN102584203A (en) * 2012-03-16 2012-07-18 中国科学院上海硅酸盐研究所 Bioactive ceramic material and preparation method thereof

Similar Documents

Publication Publication Date Title
Tas et al. Chemical processing of CaHPO4· 2H2O: its conversion to hydroxyapatite
WO1995023775A1 (en) TYPE α TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
Ramesh et al. The effect of manganese oxide on the sinterability of hydroxyapatite
Cicek et al. Alpha-tricalcium phosphate (α-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity
Sureshbabu et al. In situ formation of hydroxyapatite–αlpha tricalcium phosphate biphasic ceramics with higher strength and bioactivity
Savino et al. Thermal stability of electrochemical–hydrothermal hydroxyapatite coatings
JPS6287406A (en) Production of beta-tricalcium phosphate
US20030235622A1 (en) Method of preparing alpha-and-beta-tricalcium phosphate powders
Safronova et al. Densification additives for hydroxyapatite ceramics
JP2008214111A (en) Manufacturing method of tricalcium phosphate containing silicon and tricalcium phosphate containing silicon
JP6035627B2 (en) Biomaterial composed of β-type tricalcium phosphate
JP2006025915A (en) Production method for calcium phosphate-based bone prosthetic material
Pu et al. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics
Nakahira et al. Synthesis and evaluation of calcium-deficient hydroxyapatite with SiO2
JP6109773B2 (en) Biomaterial ceramic sintered body and method for producing the same
Somers et al. Mg2+, Sr2+, Ag+, and Cu2+ co‐doped β‐tricalcium phosphate: Improved thermal stability and mechanical and biological properties
JP6035623B2 (en) Control of solubility and sinterability of biomaterial ceramics made of tricalcium phosphate by the amount of trivalent metal ions dissolved
Mandić et al. Addressing of different synthetic and shaping approaches for β-tri calcium phosphate macro-microporous scaffold fabrication
KR20160091034A (en) Artificial bones containing nano TCP by wet chemical method and preparation method thereof
Matsumoto et al. Preparation of Beta‐Tricalcium Phosphate Powder Substituted with Na/Mg Ions by Polymerized Complex Method
JP5162749B2 (en) Apatite composite and production method thereof
JP5898877B2 (en) Biomaterial ceramics comprising β-type tricalcium phosphate and method for producing the same
JP3933716B2 (en) Method for producing α-tricalcium phosphate ceramic
Ryu et al. New type of bioactive materials: Hydroxyapatite/α-wollastonite composites
Evis Microstructural investigation of Cu2+ doped nanohydroxyapatites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025