JP2008213051A - Switching valve device for vacuum - Google Patents

Switching valve device for vacuum Download PDF

Info

Publication number
JP2008213051A
JP2008213051A JP2007049938A JP2007049938A JP2008213051A JP 2008213051 A JP2008213051 A JP 2008213051A JP 2007049938 A JP2007049938 A JP 2007049938A JP 2007049938 A JP2007049938 A JP 2007049938A JP 2008213051 A JP2008213051 A JP 2008213051A
Authority
JP
Japan
Prior art keywords
valve
port
vacuum
switching valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007049938A
Other languages
Japanese (ja)
Inventor
Kosuke Umeda
浩輔 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroda Pneumatics Ltd
Original Assignee
Kuroda Pneumatics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroda Pneumatics Ltd filed Critical Kuroda Pneumatics Ltd
Priority to JP2007049938A priority Critical patent/JP2008213051A/en
Publication of JP2008213051A publication Critical patent/JP2008213051A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Manipulator (AREA)
  • Details Of Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly discharge pressure air from an atmospheric releasing port when separating a workpiece by supplying air pressure for vacuum breaking to a suction part for workpiece holding. <P>SOLUTION: A three-port switching valve 30 for vacuum breaking communicates a supply port 31G with a pressure air supply port P1 of a device main body 10, passes through internal passages 10a and 10e of the device main body 10, passes through an internal passage 21G of a valve main body 21 of a three-port switching valve 20 for vacuum supply, is communicated with an output port P2 connected to a suction side via a valve member 23, and opens a discharge port P4 to a side surface on the same side as the pressure air supply port P1 of the device main body 10 to be opened in the atmosphere. A three-port switching valve 20 for vacuum supply opens a vacuum supply port P3 and the output port P2 to be connected to a vacuum source V to a side surface on the same side as the pressure air supply port P1 of the device main body 10 and a discharge port P4 of the three-port switching valve 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体製造分野における真空搬送装置に用いる真空用切換弁装置に関する。   The present invention relates to a vacuum switching valve device used in a vacuum transfer device in the field of semiconductor manufacturing.

従来、この種の真空用切換弁装置として、特許文献1(特開2003−311671号公報)、特許文献2(特許第3866025号公報)に記載されたものが知られている。
特許文献1は、本出願人によるものであるが、このような真空用切換弁装置を搬送装置に用いた場合、所定位置まで半導体のようなワークを搬送し、ワーク保持用吸着部へ真空破壊用空気圧を供給してワークを離脱した後、吸着部から真空破壊用切換弁に至る内部通路内に圧力空気が残存しているため、吸着部がその位置に留まっていると、残留している内部の圧力空気はこの吸着部から大気中へ排出されるので、折角搬送して離脱した半導体などのワーク位置がその圧力でずれてしまったり、場合によっては吹き飛ばされたりするおそれがあり、また搬送装置が元の位置に戻った場合でも残存している圧力空気によって搬送するワークの位置がずれて所定位置を保持できなかったり、あるいは吹き飛ばしたりするおそれがあった。
Conventionally, as this type of switching valve device for vacuum, those described in Patent Document 1 (Japanese Patent Laid-Open No. 2003-311671) and Patent Document 2 (Japanese Patent No. 3866025) are known.
Patent document 1 is based on the applicant, but when such a vacuum switching valve device is used in a transfer device, a workpiece such as a semiconductor is transferred to a predetermined position and is vacuum-ruptured to a workpiece holding suction portion. After the work air pressure is supplied and the workpiece is detached, pressurized air remains in the internal passage from the suction part to the vacuum break switching valve, so if the suction part remains in that position, it remains. Since the internal pressure air is discharged from the adsorption part to the atmosphere, there is a risk that the position of workpieces such as semiconductors that have been separated after being transported at an angle may be displaced by the pressure, or may be blown off in some cases. Even when the apparatus returns to the original position, the position of the workpiece to be transported is shifted by the remaining pressurized air, and the predetermined position cannot be held or blown away.

一方、特許文献2においては、ワーク保持用吸着部へ真空破壊用空気圧を供給してワークを離脱する際、圧力空気の一部が排気ポートから常時排出される構造をしているので、ワークを離脱した後、特許文献1の構造よりは短い時間で大気圧まで下降するが、吸着部から真空破壊用切換弁に至る内部通路が長い場合には、やはり前者と同様な問題点を有するものであった。   On the other hand, in Patent Document 2, when the vacuum breaking air pressure is supplied to the workpiece holding suction portion and the workpiece is detached, a part of the pressure air is constantly discharged from the exhaust port. After the separation, the pressure drops to atmospheric pressure in a shorter time than the structure of Patent Document 1, but when the internal passage from the suction part to the vacuum break switching valve is long, it still has the same problems as the former. there were.

そのため、全体として作業時間、即ちタクトタイムが長くかかってしまい、全体として生産性に寄与できない。また、特許文献2の構造においては、真空破壊用切換弁が作用している間は排気ポートから圧力空気の一部を排出しており、エネルギーの無駄な消費に繋がるという問題点もあった。
特開2003−311671号公報 特許第3866025号公報
Therefore, the work time, that is, the takt time as a whole takes a long time and cannot contribute to productivity as a whole. Further, the structure of Patent Document 2 has a problem in that a part of the pressure air is discharged from the exhaust port while the vacuum break switching valve is operating, leading to a wasteful consumption of energy.
JP 2003-31671 A Japanese Patent No. 3866025

前述したように、従来の構造では、真空搬送したワークを離脱した際、吸着部へ導入した真空破壊用の圧力空気が、吸着部に至る配管通路内に残存しているため、その残存圧力空気がワーク離脱後も同じ吸着部から流出するため、その圧力空気が前述したような悪影響を与えるという問題があった。
本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、ワーク保持用吸着部へ真空破壊用空気圧を供給してワークを離脱した際、圧力空気が排気ポートから速やかに排気することができる真空用切換弁装置を提供することにある。
As described above, in the conventional structure, when the vacuum-conveyed workpiece is detached, the pressure air for vacuum break introduced into the adsorption part remains in the pipe passage leading to the adsorption part. However, since the air flows out from the same adsorbing portion even after the workpiece is detached, there is a problem in that the pressure air has an adverse effect as described above.
The present invention has been made in order to solve such a conventional problem. The purpose of the present invention is to supply a vacuum breaking air pressure to the workpiece holding suction portion and release the workpiece from the exhaust port. An object of the present invention is to provide a vacuum switching valve device that can be quickly evacuated.

また、本発明の別の目的は、特許文献2の従来例に示すような、真空破壊時に大気中へ常時圧力空気の一部を排出して空気消費するのではなく、真空破壊用圧力空気が有効に作用する真空用切換弁装置を提供することにある。   Another object of the present invention is not to exhaust a part of the pressure air to the atmosphere at the time of vacuum break and consume the air as shown in the conventional example of Patent Document 2, but to use the pressure air for vacuum break. An object of the present invention is to provide a vacuum switching valve device that operates effectively.

請求項1に係る発明は、圧力空気源と接続する圧力空気供給ポートを有する装置本体と、前記装置本体の一方の側面に装着される真空破壊用3ポート切換弁と、前記装置本体の他方の側面に装着される真空供給用3ポート切換弁とを有する真空用切換弁装置において、前記真空破壊用3ポート切換弁は、供給通口を前記装置本体の圧力空気供給ポートへ連通させるとともに、前記装置本体の内部通路を通って、前記真空供給用3ポート切換弁の弁本体の内部通路を通り、弁部材を介して吸着側に接続する出力ポートへ連通し、排気ポートを前記装置本体の圧力空気供給ポートとは同じ側の側面へ開口して大気中へ開放し、前記真空供給用3ポート切換弁は、真空源へ接続する真空供給ポートと前記出力ポートとを、前記装置本体の圧力空気供給ポートおよび前記真空破壊用3ポート切換弁の排気ポートと同じ側の側面へ開口したことを特徴とする。   According to the first aspect of the present invention, there is provided an apparatus main body having a pressure air supply port connected to a pressure air source, a vacuum breaking three-port switching valve mounted on one side surface of the apparatus main body, and the other of the apparatus main body. In the vacuum switching valve device having a vacuum supply three-port switching valve mounted on a side surface, the vacuum breaker three-port switching valve communicates a supply passage to the pressure air supply port of the device body, and Through the internal passage of the apparatus main body, through the internal passage of the valve body of the three-port switching valve for vacuum supply, and through the valve member to the output port connected to the adsorption side, the exhaust port is connected to the pressure of the apparatus main body. The air supply port opens to the side surface on the same side and opens to the atmosphere. The three-port switching valve for vacuum supply connects the vacuum supply port connected to a vacuum source and the output port to the pressure air of the apparatus main body. Serving Characterized in that an opening to the port and the same side of the side surface and the exhaust port of the vacuum-breaking 3-port switch valve.

請求項2に係る発明は、請求項1記載の真空用切換弁装置において、前記装置本体に有する圧力空気供給ポートと前記真空破壊用3ポート切換弁の供給通口とを連通する通路途中へ流量制御弁を装着し、真空破壊用圧力空気の供給量を調整可能に構成してなることを特徴とする。
請求項3に係る発明は、請求項1記載の真空用切換弁装置において、前記装置本体に有する圧力空気供給ポートと前記真空破壊用3ポート切換弁の供給通口とを連通する通路途中へ圧力制御弁を装着し、真空破壊用圧力空気の圧力を調整可能に構成してなることを特徴とする。
According to a second aspect of the present invention, in the vacuum switching valve device according to the first aspect, a flow rate is provided in the middle of the passage communicating the pressurized air supply port of the device main body with the supply port of the vacuum breaking three-port switching valve. A control valve is mounted, and the supply amount of the vacuum breaking pressure air can be adjusted.
According to a third aspect of the present invention, in the vacuum switching valve device according to the first aspect, the pressure is applied in the middle of the passage communicating the pressurized air supply port of the device main body and the supply port of the vacuum breaking three-port switching valve. A control valve is mounted, and the pressure of the vacuum break pressure air can be adjusted.

請求項4に係る発明は、請求項3記載の真空用切換弁装置において、前記圧力制御弁が減圧弁であることを特徴とする。
請求項5に係る発明は、圧力空気源と接続する圧力空気供給ポートを有する装置本体と、前記装置本体の一方の側面に装着される真空破壊用3ポート切換弁と、前記装置本体の他方の側面に装着される真空供給用3ポート切換弁とを有する真空用切換弁装置において、前記装置本体は、前記圧力空気供給ポートと、前記圧力空気供給ポートと接続し、前記真空破壊用3ポート切換弁側に開口する通口と、前記圧力空気供給ポートと直交する方向に貫通する内部通路とを有し、前記真空供給用3ポート切換弁は、弁本体と、前記弁本体の側面に取り付けられるソレノイドと、吸着側に接続するために前記弁本体の底面側に開口する出力ポートと、真空源に接続するために前記弁本体の底面側に開口する供給ポートと、前記出力ポートと接続するとともに前記弁本体の前記装置本体側の側面に開口するように前記弁本体に設けた内部通路と、前記出力ポートと接続するために前記弁本体の前記装置本体側の側面に設けた弁用開口と、前記供給ポートと接続するために前記弁本体の前記ソレノイド側の側面に設けた開口と、前記出力ポートと前記供給ポートとを接続するために前記弁本体に設けた連通穴と、前記連通穴を介して前記弁用開口と前記開口とに配される弁部材と、前記弁部材を前記開口方向へ押圧するバネと、前記弁部材を前記ソレノイドの可動鉄心を介して前記弁用開口方向へ押圧するバネとを有し、前記真空破壊用3ポート切換弁は、弁本体と、前記弁本体の側面に取り付けられるソレノイドと、前記真空用切換装置内を大気側と接続するために前記弁本体の底面側に開口する排気ポートと、前記排気ポートと接続するために前記弁本体に設けた弁用開口と、前記弁用開口と接続するとともに前記弁本体の前記装置本体側に開口するように前記弁本体に設けた出力口と、前記弁本体の前記ソレノイド側の側面に設けた開口と、前記通口と接続するとともに前記弁本体の前記装置本体側の側面に開口するように前記弁本体に設けた供給通口と、前記弁用開口と前記開口とを接続するために前記弁本体に設けた連通穴と、前記連通穴を介して前記弁用開口と前記開口とに配される弁部材と、前記弁部材を前記開口方向へ押圧するバネと、前記弁部材を前記ソレノイドの可動鉄心を介して前記弁用開口方向へ押圧するバネとを有し、前記装置本体の通口は、前記真空破壊用3ポート切換弁の供給通口と接続し、前記装置本体の内部通路は、前記真空破壊用3ポート切換弁の出力口と接続し、前記装置本体の内部通路は、前記真空供給用3ポート切換弁の内部通路と接続し、前記真空供給用3ポート切換弁のソレノイドのON時に、前記可動鉄心が吸引され、前記真空供給ポートが前記真空供給用3ポート切換弁の開口、前記連通穴および前記弁用開口を介して前記出力ポートと接続され、前記真空供給用3ポート切換弁のソレノイドのOFF時に、前記出力ポートは前記真空供給用3ポート切換弁の内部通路、前記装置本体の内部通路、前記真空破壊用3ポート切換弁の出力口および前記真空破壊用3ポート切換弁の弁用開口を介して前記排気ポートと接続され、前記真空破壊用3ポート切換弁のソレノイドのON時に、前記可動鉄心が吸引され、前記真空破壊用3ポート切換弁の開口が前記連通穴を介して前記弁用開口と接続され、前記出力口、前記装置本体の内部通路および前記真空供給用3ポート切換弁の弁用開口を介して前記出力ポートと接続されることを特徴とする。
According to a fourth aspect of the present invention, in the vacuum switching valve device according to the third aspect, the pressure control valve is a pressure reducing valve.
According to a fifth aspect of the present invention, there is provided an apparatus main body having a pressure air supply port connected to a pressure air source, a vacuum breaking three-port switching valve mounted on one side surface of the apparatus main body, and the other of the apparatus main body. In a vacuum switching valve device having a vacuum supply three-port switching valve mounted on a side surface, the device main body is connected to the pressure air supply port and the pressure air supply port, and the vacuum break three-port switching is performed. The three-port switching valve for vacuum supply is attached to a valve main body and a side surface of the valve main body. A solenoid, an output port that opens to the bottom side of the valve body to connect to the suction side, a supply port that opens to the bottom side of the valve body to connect to a vacuum source, and the output port Both the internal passage provided in the valve main body so as to open on the side of the valve main body on the side of the device main body, and the valve opening provided on the side of the valve main body on the side of the device main body for connection to the output port An opening provided in the solenoid-side side surface of the valve body for connection to the supply port, a communication hole provided in the valve body for connecting the output port and the supply port, and the communication A valve member disposed in the valve opening and the opening through a hole; a spring that presses the valve member in the opening direction; and the valve member in the valve opening direction through a movable iron core of the solenoid. The vacuum breaking three-port switching valve includes a valve main body, a solenoid attached to a side surface of the valve main body, and the valve for connecting the inside of the vacuum switching device to the atmosphere side. Open on the bottom side of the main unit An exhaust port to be connected, a valve opening provided in the valve body for connection to the exhaust port, and a valve opening provided in the valve body so as to be connected to the valve opening and open to the device body side of the valve body. An output port provided on the side of the valve body on the solenoid side, and a supply passage provided on the valve body so as to be connected to the opening and open on the side of the valve body on the device body side. A valve, a communication hole provided in the valve main body to connect the valve opening and the opening, a valve member disposed in the valve opening and the opening through the communication hole, and the valve A spring that presses the member in the opening direction; and a spring that presses the valve member in the opening direction for the valve via the movable iron core of the solenoid. Connected to the supply port of the port switching valve, An internal passage of the main body is connected to an output port of the vacuum breaking three-port switching valve, and an internal passage of the apparatus main body is connected to an internal passage of the three-port switching valve for vacuum supply, and the three ports for vacuum supply When the solenoid of the switching valve is ON, the movable iron core is sucked, and the vacuum supply port is connected to the output port through the opening of the vacuum supply 3-port switching valve, the communication hole, and the valve opening, When the solenoid of the 3-port switching valve for vacuum supply is OFF, the output port is an internal passage of the 3-port switching valve for vacuum supply, an internal passage of the apparatus body, an output port of the 3-port switching valve for vacuum breaking, and the vacuum It is connected to the exhaust port through the valve opening of the three-port switching valve for breaking, and when the solenoid of the three-port switching valve for vacuum breaking is turned on, the movable iron core is sucked and the vacuum breaking The opening of the three-port switching valve is connected to the valve opening through the communication hole, and the output is supplied through the output port, the internal passage of the apparatus body, and the valve opening of the vacuum supply three-port switching valve. It is connected to a port.

1.ワーク保持用吸着部へ真空破壊用空気圧を供給してワークを離脱した際、圧力空気が排気ポートから速やかに排気することができ、短時間で次の吸着動作に移行していくことができ、タクトタイムを短くすることが可能となった。
2.真空破壊時に大気中へ常時圧力空気の一部を排出して空気消費するのでなく、ワークの離脱時のみ大気中へ圧力空気を排出するように構成しているので、真空破壊用圧力空気が有効に作用するよう構成することができる。
1. When the vacuum break air pressure is supplied to the workpiece holding suction part and the workpiece is detached, the pressure air can be quickly exhausted from the exhaust port, and the next suction operation can be made in a short time. It has become possible to shorten the tact time.
2. Since it is configured to discharge pressure air to the atmosphere only when the workpiece is detached, instead of exhausting a part of the pressure air to the atmosphere at the time of vacuum break, the pressure air for vacuum break is effective. It can comprise so that it may act on.

3.真空破壊用切換弁において、供給破壊空気の流入量を有効に制御できるので、ワークの形状等、目的に合わせて対応することができるという実用面での効果が期待できる。   3. In the switching valve for vacuum break, since the inflow amount of the supply break air can be controlled effectively, it is possible to expect a practical effect that it can cope with the purpose such as the shape of the workpiece.

以下、本発明を図面に示す実施形態に基づいて説明する。
図1〜図3は、本発明の第一実施形態に係る真空用切換弁装置を示す。
本実施形態に係る真空用切換弁装置は、概略直方体状の装置本体10の両側に、2ポジション3ポート方式の電磁弁から成る真空供給用切換弁20と真空破壊用切換弁30とを配置することによって構成されている。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
1 to 3 show a vacuum switching valve device according to a first embodiment of the present invention.
In the vacuum switching valve device according to the present embodiment, a vacuum supply switching valve 20 and a vacuum breaking switching valve 30 comprising two-position three-port electromagnetic valves are arranged on both sides of a substantially rectangular parallelepiped device body 10. Is made up of.

真空供給用切換弁20は、弁本体21とソレノイド22とを有しており、弁本体21の中央部両側面方向から夫々底面を有する弁用通口21A、21Bが形成してあり、夫々の弁用通口21A、21Bの底面に弁座21C、21Dが形成してある。そして、この底面間には弁座21C、21Dの周固複数個所に所定の大きさの連通穴21Eが貫通形成してある。   The vacuum supply switching valve 20 includes a valve body 21 and a solenoid 22, and valve openings 21 </ b> A and 21 </ b> B each having a bottom surface from both sides of the central part of the valve body 21 are formed. Valve seats 21C and 21D are formed on the bottom surfaces of the valve openings 21A and 21B. Between the bottom surfaces, communication holes 21E having a predetermined size are formed through a plurality of circumferentially fixed positions of the valve seats 21C and 21D.

弁用通口21Aには、装置本体10の真空供給用切換弁20側の側面に形成された環状突起部10Aが嵌合してあり、この環状突起部10Aと弁用通口21Aとによる空間には弁部材23が配置され、この弁部材23と装置本体10の真空供給用切換弁20側の側面との間にはコイルバネ24が装着してある。環状突起部10Aの中心部に座ぐリ穴10Bが形成され、コイルバネ24の真空供給用切換弁20側の端部が挿入配置されている。また、弁部材23は、その外周部を弁支持部材25で保持している。この弁支持部材25は、図2に示すように、弁部材23を支持する円環部25Bと、周囲が複数個の長手方向に突出する脚部25Aとを有しており、この脚部25Aが前述した弁本体21の連通穴21E内を通過して伸び、コイルバネ24の押圧力で弁部材23によりソレノイド22方向へ押圧され、先端がソレノイド22の可動鉄心(プランジャー)22A端面へ当接している。さらに、このソレノイド22の可動鉄心22Aは、常時コイルバネ22Bにより装置本体10方向へ押圧支持されている。そして、この時、支持部材25の両側にコイルバネ24とコイルバネ22Bとの押圧力が作用するが、通常ソレノイド22がOFF状態で可動鉄心22Aの端面の弁シート22Cが弁座21Dを密閉するように、コイルバネ22Bをコイルバネ24より押圧力を強く設定してある。   An annular projection 10A formed on the side surface of the apparatus main body 10 on the side of the switching valve 20 for vacuum supply is fitted to the valve passage 21A, and a space defined by the annular projection 10A and the valve passage 21A. A valve member 23 is disposed, and a coil spring 24 is mounted between the valve member 23 and the side surface of the apparatus main body 10 on the side of the switching valve 20 for vacuum supply. A hole 10B that sits in the center of the annular protrusion 10A is formed, and the end of the coil spring 24 on the vacuum supply switching valve 20 side is inserted and disposed. Further, the valve member 23 holds its outer peripheral portion with a valve support member 25. As shown in FIG. 2, the valve support member 25 includes an annular portion 25B that supports the valve member 23 and a plurality of leg portions 25A that protrude in the longitudinal direction. The leg portions 25A Passes through the communication hole 21 </ b> E of the valve body 21, and is pressed toward the solenoid 22 by the valve member 23 by the pressing force of the coil spring 24, and the tip abuts against the end surface of the movable iron core (plunger) 22 </ b> A of the solenoid 22. ing. Further, the movable iron core 22A of the solenoid 22 is always pressed and supported toward the apparatus main body 10 by a coil spring 22B. At this time, the pressing force of the coil spring 24 and the coil spring 22B acts on both sides of the support member 25, but the valve seat 22C on the end surface of the movable iron core 22A normally seals the valve seat 21D when the solenoid 22 is OFF. The pressing force of the coil spring 22B is set stronger than that of the coil spring 24.

一方、真空破壊用切換弁30は、弁本体31とソレノイド32とを有しており、弁本体31の中央部両側面方向から夫々底面を有する弁用通口31A、31Bが形成してあり、夫々の穴の底面に弁座31C、31Dが形成してある。そして、この底面間には弁座31C、31Dの周囲複数個所に所定の大きさの連通穴31Eが貫通形成してある。
弁用通口31Aには、装置本体10の真空破壊用切換弁30側の側面に形成された環状突起部10Cが嵌合してあり、環状突起部10Cと弁用通口31Aとによる空間には弁部材33が配置され、この弁部材33と装置本体10の真空破壊用切換弁30側の側面との間にはコイルバネ34が装着してある。環状突起部10Cの中心部に座ぐり穴10Dが形成され、コイルバネ34の左端部が挿入配置されている。また、弁部材33は、その外周部を弁支持部材35で保持している。この弁支持部材35は、図2に示すように、真空供給用切換弁20と同様に、弁部材33を支持する円環部35Bと、周囲が複数個の長手方向に突出する脚部35Aとを有しており、この脚部35Aが前述した弁本体31の連通穴31E内を通過して伸び、コイルバネ34の押圧力で弁部材33をソレノイド32方向へ押圧し、先端がソレノイド32の可動鉄心(プランジャー)32A端面へ当接している。さらに、このソレノイド32の可動鉄心32Aは、常時コイルバネ32Bにより装置本体10方向へ押圧支持されている。そしてこの時、弁支持部材35の両側にコイルバネ34とコイルバネ32Bとの押圧力が作用するが、通常ソレノイド32がOFF状態で可動鉄心32Aの瑞面の弁シート32Cが弁座31Dを密閉するように、コイルバネ32Bをコイルバネ34より押圧力を強く設定してある。なお、図中26、36は手動切換弁を示す。
On the other hand, the vacuum break switching valve 30 includes a valve body 31 and a solenoid 32, and valve openings 31A and 31B each having a bottom surface from both sides of the central portion of the valve body 31 are formed. Valve seats 31C and 31D are formed on the bottom surfaces of the respective holes. Between the bottom surfaces, communication holes 31E having a predetermined size are formed through a plurality of locations around the valve seats 31C and 31D.
An annular projection 10C formed on the side surface of the apparatus main body 10 on the side of the switching valve for vacuum break 30 is fitted to the valve passage 31A, and a space formed by the annular projection 10C and the valve passage 31A is formed. A valve member 33 is arranged, and a coil spring 34 is mounted between the valve member 33 and the side surface of the apparatus main body 10 on the vacuum break switching valve 30 side. A counterbore 10D is formed at the center of the annular protrusion 10C, and the left end of the coil spring 34 is inserted and arranged. Further, the valve member 33 holds its outer peripheral portion with a valve support member 35. As shown in FIG. 2, the valve support member 35 includes an annular portion 35B that supports the valve member 33 and a plurality of leg portions 35A that protrude in the longitudinal direction. The leg portion 35A extends through the communication hole 31E of the valve body 31 described above, presses the valve member 33 toward the solenoid 32 by the pressing force of the coil spring 34, and the tip is movable by the solenoid 32. It is in contact with the end surface of the iron core (plunger) 32A. Further, the movable iron core 32A of the solenoid 32 is always pressed and supported in the direction of the apparatus main body 10 by a coil spring 32B. At this time, the pressing force of the coil spring 34 and the coil spring 32B acts on both sides of the valve support member 35. Normally, the valve seat 32C on the surface of the movable iron core 32A seals the valve seat 31D when the solenoid 32 is OFF. Further, the pressing force of the coil spring 32B is set stronger than that of the coil spring 34. In the figure, reference numerals 26 and 36 denote manual switching valves.

次に、これらの2つの切換弁構造における開口と通路の構成について説明する。
図1において、装置本体10の底面には圧力空気源へ接続される圧力供給ポートPlが開口し、装置本体10の内部を垂直に形成され、途中に縮径部10aを有し、上端から開口するネジ穴10bへ連通させている。そして、ネジ穴10b底面近くから真空破壊用切換弁30側へ接続する通口10cが開口している。また、この主弁本体10の真空破壊用切換弁30側の側面の下方へ形成した内部通路10dは、主弁本体10の内部を通って真空供給用切換弁20側の上方に開口する内部通路10eと繋がっている。
Next, the structure of the opening and passage in these two switching valve structures will be described.
In FIG. 1, a pressure supply port Pl connected to a pressure air source opens on the bottom surface of the apparatus main body 10, the inside of the apparatus main body 10 is formed vertically, has a reduced diameter portion 10 a in the middle, and opens from the upper end. It communicates with the screw hole 10b. And the through-opening 10c connected to the switching valve 30 side for vacuum breaking from near the screw hole 10b bottom face is opened. The internal passage 10d formed below the side surface of the main valve body 10 on the vacuum break switching valve 30 side passes through the main valve body 10 and opens upward on the vacuum supply switching valve 20 side. 10e is connected.

一方、真空供給用切換井20の弁本体21の底面部には、間隔をおいて2つのポートが開口しており、装置本体10に近い方が、吸着パッドなどの真空機器へ接続される出力ポートP2、ソレノイド22側に近い方が、真空供給源である真空発生機器(真空ポンプ等)Vへ接続される真空供給ポートP3である。出力ポートP2は弁用通口21Aへ連通し、真空供給ポートP3は、弁座21Dの中心へ弁口21Fとして開口している。また、装置本体10の真空供給用切換弁20側の端面に開口する内部通路10eと連通する内部通路21Gが、弁座21Cの中心部へ21として開口する。   On the other hand, two ports are opened at intervals in the bottom surface of the valve body 21 of the switching well 20 for vacuum supply, and the output closer to the apparatus body 10 is connected to a vacuum device such as a suction pad. The side closer to the port P2 and the solenoid 22 side is a vacuum supply port P3 connected to a vacuum generator (such as a vacuum pump) V that is a vacuum supply source. The output port P2 communicates with the valve port 21A, and the vacuum supply port P3 opens as a valve port 21F to the center of the valve seat 21D. Further, an internal passage 21G that communicates with the internal passage 10e that opens on the end face of the apparatus main body 10 on the vacuum supply switching valve 20 side opens as 21 at the center of the valve seat 21C.

また、真空破壊用切換弁30の弁本体31の底面部には、排気ポートP4が開口し、弁座31Cの中心へ弁口31Fとして開口している。
さらに、装置本体10において、上端から開口するネジ穴10bには流量制御弁40が装着されており、その内部に長手方向に移動する弁機能が内蔵され、先端の円錐部分41が縮径部10aと係合して、圧力供給ポートPlから流入する真空破壊用圧縮空気(正圧)の量を制御可能に構成している。即ち、通口10cから供給通口31Gを通って破壊用切換弁30側へ流入する流量が制御される。また、弁用通口31Aは出力口31Jを介して装置本体10の開口10dに連通している。
Further, an exhaust port P4 is opened on the bottom surface of the valve body 31 of the vacuum break switching valve 30, and is opened as a valve port 31F to the center of the valve seat 31C.
Furthermore, in the apparatus main body 10, a flow rate control valve 40 is mounted in a screw hole 10b that opens from the upper end, and a valve function that moves in the longitudinal direction is incorporated therein, and a conical portion 41 at the tip is a reduced diameter portion 10a. The amount of compressed air for vacuum breaking (positive pressure) flowing from the pressure supply port Pl is controllable. That is, the flow rate that flows from the communication port 10c to the destruction switching valve 30 through the supply communication port 31G is controlled. Further, the valve opening 31A communicates with the opening 10d of the apparatus main body 10 through the output port 31J.

図3は、本実施形態に係る真空用切換弁装置の回路構成を示す。
図3に基づいて本実施形態に係る真空用切換弁装置の動作を説明する。
先ず、真空吸着時の動きを説明する。図1および図3において、真空供給用切換弁20のソレノイド22をONする。すると、可動鉄心22Aがソレノイド22方向へ吸引され、従って弁座21Dが開き、真空供給ポートP3が弁口21F、穴21B、連通穴21Eから弁用通口21Aと連通して、出力ポートP2と接続される。従って、真空源Vは、真空供給用切換弁20内を通って真空吸着装置SAへ連通し、ワークWが吸着保持される。
FIG. 3 shows a circuit configuration of the vacuum switching valve device according to the present embodiment.
The operation of the vacuum switching valve device according to this embodiment will be described with reference to FIG.
First, the movement during vacuum suction will be described. 1 and 3, the solenoid 22 of the vacuum supply switching valve 20 is turned ON. Then, the movable iron core 22A is attracted toward the solenoid 22, so that the valve seat 21D is opened, and the vacuum supply port P3 communicates with the valve port 21A from the valve port 21F, the hole 21B, and the communication hole 21E. Connected. Therefore, the vacuum source V communicates with the vacuum suction device SA through the vacuum supply switching valve 20, and the workpiece W is sucked and held.

図示していないが、これらの切換弁が搬送装置に一体化されていて保持したワークWは所定の場所へ搬送される。
次に、所定位置に搬送されたワークWを離脱する場合を説明する。
前述したように、真空供給用切換弁20が作動してワークWが所定位置に到達すると、真空供給用切換弁20がOFFする。すると、図3の状態にもどる。コイルバネ22Bの押圧力により可動鉄心22Aとさらに弁部材23が装置本体10方向へ移動し、弁口21Fは閉鎖し、弁口21Hが開口し、出力ポートP2は内部通路21G、10e、10d、出力口3lJ、弁用通口31A、弁口31Fを通じて排気ポートP4と連通し、真空吸着装置内の真空が大気側と連通し、大気が流入して真空が破壊されていく。
Although not shown, these switching valves are integrated with the transfer device, and the workpiece W held is transferred to a predetermined place.
Next, a case where the workpiece W transported to a predetermined position is detached will be described.
As described above, when the vacuum supply switching valve 20 operates and the workpiece W reaches a predetermined position, the vacuum supply switching valve 20 is turned OFF. Then, it returns to the state of FIG. Due to the pressing force of the coil spring 22B, the movable iron core 22A and further the valve member 23 move toward the apparatus body 10, the valve port 21F is closed, the valve port 21H is opened, and the output port P2 has internal passages 21G, 10e, 10d, output The exhaust port P4 communicates with the exhaust port P4 through the port 3lJ, the valve communication port 31A, and the valve port 31F, and the vacuum in the vacuum adsorption device communicates with the atmosphere side, and the atmosphere flows in and the vacuum is broken.

真空供給用切換弁20がOFFして僅かな時間経過後、さらに真空破壊用切換弁30がONする。すると、可動鉄心32Aにより密閉していた弁口孔31Hが開口し、連通穴31Eを通じて弁用通口31Aと連通する。従って、これまで排気ポートP4に連通していた弁用通口31A部は、圧力空気源側と連通し、真空破壊用圧力空気が急激に真空供給装置SAへ流入し、吸着していたワークWは離脱される。   After a short time has elapsed after the vacuum supply switching valve 20 is turned off, the vacuum break switching valve 30 is further turned on. Then, the valve port hole 31H sealed by the movable iron core 32A is opened, and communicates with the valve port 31A through the communication hole 31E. Accordingly, the valve port 31A portion that has been in communication with the exhaust port P4 so far communicates with the pressure air source side, and the vacuum break pressure air suddenly flows into the vacuum supply device SA and is adsorbed. Is withdrawn.

ワークWの所定位置への離脱が完了すると、真空破壊用切換弁30がOFFする。それにより、また図1の状態にもどる。すると、圧力供給ポートPlは可動鉄心32Aによって閉鎖される。そして、真空供給装置SAへ流入していた圧力空気は、排気ポートP4から流出し、これらの内部通路内を大気圧へ戻していく。
図4および図5は、本発明の第二実施形態に係る真空用切換弁装置を示す。
When the separation of the workpiece W to the predetermined position is completed, the vacuum break switching valve 30 is turned OFF. Thereby, the state shown in FIG. 1 is restored. Then, the pressure supply port Pl is closed by the movable iron core 32A. The pressurized air that has flowed into the vacuum supply device SA flows out from the exhaust port P4 and returns to the atmospheric pressure in these internal passages.
4 and 5 show a vacuum switching valve device according to a second embodiment of the present invention.

本実施形態に係る真空用切換弁装置は、図4に示すように、図1における流量制御弁40の代りに、レギュレータ(減圧弁)140を装着している。
このレギュレータ140の機能は、通常一般的な構造でよく、空気圧源からの圧力を2次側へ所定の圧力にして選出するものである。
このレギュレータ140は、装置本体110に内蔵されたカートリッジ式のものを示しており、装置本体110のポートP1と通口110cとを結ぶ垂直通路へ形成した穴110Aへ、レギュレータ本体141が挿着される。このレギュレータ本体141の上部には調圧機構が内蔵され、下方には逆止弁機構が内蔵される。調圧機構はピストン142と、ピストン142を下方に押圧するバネ143と、ネジ144とから構成され、ネジ144を操作することでバネ143を介してピストン142を上下方向へ作動させる。
As shown in FIG. 4, the vacuum switching valve device according to the present embodiment is equipped with a regulator (pressure reducing valve) 140 instead of the flow rate control valve 40 in FIG. 1.
The function of the regulator 140 may be generally a general structure, and is selected by setting the pressure from the air pressure source to a predetermined pressure on the secondary side.
The regulator 140 is a cartridge type built in the apparatus main body 110, and the regulator main body 141 is inserted into a hole 110A formed in a vertical passage connecting the port P1 of the apparatus main body 110 and the passage 110c. The A pressure regulating mechanism is built in the upper part of the regulator body 141, and a check valve mechanism is built in the lower part. The pressure adjusting mechanism includes a piston 142, a spring 143 that presses the piston 142 downward, and a screw 144. By operating the screw 144, the piston 142 is operated in the vertical direction via the spring 143.

逆止弁機構は、球体145と、この球体145を上方へ押圧するバネ146からなり、ピストン142の先端小径部142aが常時球体145へ当接している。
装置本体110の下方には、通口141aが形成され、上方には通口141bが半径方向に形成され、ピストン143の先端小径部142aが通る穴142cを通して連通するように構成されている。
The check valve mechanism includes a sphere 145 and a spring 146 that presses the sphere 145 upward, and the tip small diameter portion 142 a of the piston 142 is always in contact with the sphere 145.
A communication port 141 a is formed below the apparatus main body 110, and a communication port 141 b is formed in the radial direction above the device main body 110, and is configured to communicate through a hole 142 c through which the small diameter portion 142 a of the piston 143 passes.

従って、ネジ144を回転操作することで、ピストン142の先端小径部142aで球体145を押し下げることになり、球体145と装置本体110の穴142aの隙間量を制御することで、供給ポートP1から真空破壊用切換弁130を介して真空吸着側へ流入する破壊用空気圧力を所定の圧力に制御することができる。
その他の構造は、第一実施形態と同じであり、詳細な説明は省く。
Therefore, by rotating the screw 144, the sphere 145 is pushed down by the small-diameter portion 142a of the piston 142, and by controlling the gap amount between the sphere 145 and the hole 142a of the apparatus main body 110, the vacuum is supplied from the supply port P1. The breaking air pressure flowing into the vacuum suction side via the breaking switching valve 130 can be controlled to a predetermined pressure.
Other structures are the same as those of the first embodiment, and detailed description thereof is omitted.

本実施形態に係る真空用切換弁装置は、可変絞り弁40に代えてレギュレーク(減圧弁)140を装置本体110内へ内蔵して、圧力供給ポートPlからの圧力空気を真空破壊用切換弁130へ供給させるよう構成したので、以下のような新しい効果をさらに生むことができる。
通常、減圧弁は空気圧源と弁装置の間へ接続し、後続する機器の圧力を一定にしているが、多くの空気圧機器を使用する場合、他の機器の動作によって本発明の真空切換弁装置における真空破壊用空気圧が低下したりして圧力変動の影響を受けかねないので、このように切換弁の近くへ減圧弁を配置することで前述したような圧力変動の影響を受けにくくすることができ、従って半導体等の搬送において、常時一定した条件で搬送件業が実施できる。
The vacuum switching valve device according to the present embodiment includes a regulator (pressure reducing valve) 140 instead of the variable throttle valve 40 in the device main body 110, and the pressure air from the pressure supply port Pl is supplied to the vacuum breaking switching valve 130. The following new effects can be further produced.
Normally, the pressure reducing valve is connected between the pneumatic source and the valve device, and the pressure of the subsequent device is made constant. However, when many pneumatic devices are used, the vacuum switching valve device of the present invention is operated by the operation of other devices. Since the air pressure for vacuum breakage at this time may be affected by pressure fluctuations, disposing the pressure reducing valve near the switching valve in this way makes it less susceptible to the pressure fluctuations described above. Therefore, in the transportation of semiconductors and the like, the transportation work can be carried out under constant conditions at all times.

なお、本実施形態では、レギュレータ(減圧弁)140をカートリッジ式にして装置本体110へ組み込んだが、例えば、装置本体110の下部にサブベースを設け、このサブタンクへ内蔵して、空気圧源と接続するようにしても、同様な効果が得られる。   In the present embodiment, the regulator (pressure reducing valve) 140 is cartridge-type and incorporated in the apparatus main body 110. For example, a sub-base is provided in the lower part of the apparatus main body 110, and is built in the sub-tank and connected to the air pressure source. Even if it does, the same effect is acquired.

本発明の第一実施形態を示す真空用切換弁装置の部分断面正面図である。It is a partial section front view of the switching valve device for vacuum which shows a first embodiment of the present invention. 図1に示す弁支持部材の外観形状の斜視図である。It is a perspective view of the external appearance shape of the valve support member shown in FIG. 図1の回路説明図である。It is a circuit explanatory drawing of FIG. 本発明の第二実施形態を示す真空用切換弁装置の部分断面正面図である。It is a partial cross section front view of the switching valve apparatus for vacuum which shows 2nd embodiment of this invention. 図4の回路説明図である。FIG. 5 is a circuit explanatory diagram of FIG. 4.

符号の説明Explanation of symbols

10、110 装置本体
10A、10C 環状突起
10B 座ぐり穴
20 真空供給用切換弁
21、31 弁本体
21A、21B、31A、31B 弁用通口
21C、21D、31C、31D 弁座
21E、31E 連通穴
22、32 ソレノイド
22A、32A 可動鉄心(プランジャー)
22B、24、32B、34 コイルバネ
23、33 弁部材
25、35 弁支持部材
30 真空破壊用切換弁
31G 供給口
31J 出力口
40 流量制御弁
140 レギュレータ(減圧弁)
P 圧力空気源
P1 圧力供給ポート
P2 出力ポート
P3 真空供給ポート
P4 排気ポート
V 真空源
SA 真空吸着装置
W ワーク
10, 110 Device body 10A, 10C Annular projection 10B Counterbore 20 Vacuum supply switching valve 21, 31 Valve body 21A, 21B, 31A, 31B Valve port 21C, 21D, 31C, 31D Valve seat 21E, 31E Communication hole 22, 32 Solenoid 22A, 32A Movable iron core (plunger)
22B, 24, 32B, 34 Coil springs 23, 33 Valve members 25, 35 Valve support member 30 Vacuum break switching valve 31G Supply port 31J Output port 40 Flow control valve 140 Regulator (pressure reducing valve)
P Pressure air source P1 Pressure supply port P2 Output port P3 Vacuum supply port P4 Exhaust port V Vacuum source SA Vacuum suction device W Workpiece

Claims (5)

圧力空気源(P)と接続する圧力空気供給ポート(P1)を有する装置本体(10)と、前記装置本体(10)の一方の側面に装着される真空破壊用3ポート切換弁(30)と、前記装置本体(10)の他方の側面に装着される真空供給用3ポート切換弁(20)とを有する真空用切換弁装置において、
前記真空破壊用3ポート切換弁(30)は、供給通口(31G)を前記装置本体(10)の圧力空気供給ポート(P1)へ連通させるとともに、前記装置本体(10)の内部通路(10a、10e)を通って、前記真空供給用3ポート切換弁(20)の弁本体(21)の内部通路(21G)を通り、弁部材(23)を介して吸着側に接続する出力ポート(P2)へ連通し、排気ポート(P4)を前記装置本体(10)の圧力空気供給ポート(P1)とは同じ側の側面へ開口して大気中へ開放し、
前記真空供給用3ポート切換弁(20)は、真空源(V)へ接続する真空供給ポート(P3)と前記出力ポート(P2)とを、前記装置本体(10)の圧力空気供給ポート(P1)および前記真空破壊用3ポート切換弁(30)の排気ポート(P4)と同じ側の側面へ開口した
ことを特徴とする真空用切換弁装置。
An apparatus main body (10) having a pressure air supply port (P1) connected to a pressure air source (P), and a vacuum break three-port switching valve (30) mounted on one side surface of the apparatus main body (10) A vacuum switching valve device having a vacuum supply three-port switching valve (20) mounted on the other side surface of the device body (10),
The vacuum break three-port switching valve (30) communicates the supply passage (31G) to the pressure air supply port (P1) of the apparatus main body (10), and the internal passage (10a) of the apparatus main body (10). 10e), through the internal passage (21G) of the valve body (21) of the vacuum supply three-port switching valve (20), and connected to the suction side via the valve member (23) (P2 ), The exhaust port (P4) is opened to the side surface on the same side as the pressure air supply port (P1) of the apparatus body (10), and is opened to the atmosphere.
The three-port switching valve (20) for vacuum supply connects a vacuum supply port (P3) connected to a vacuum source (V) and the output port (P2) to a pressure air supply port (P1) of the apparatus body (10). And a vacuum switching valve device that opens to the side surface on the same side as the exhaust port (P4) of the vacuum break three-port switching valve (30).
前記装置本体(10)に有する圧力空気供給ポート(P1)と前記真空破壊用3ポート切換弁(30)の供給通口(31G)とを連通する通路途中へ流量制御弁(40)を装着し、真空破壊用圧力空気の供給量を調整可能に構成してなることを特徴とする請求項1記載の真空用切換弁装置。   A flow control valve (40) is mounted in the middle of the passage communicating the pressurized air supply port (P1) of the apparatus body (10) and the supply port (31G) of the vacuum breaker 3 port switching valve (30). 2. The vacuum switching valve device according to claim 1, wherein the supply amount of the vacuum break pressure air is adjustable. 前記装置本体(10)に有する圧力空気供給ポート(P1)と前記真空破壊用3ポート切換弁(30)の供給通口(31G)とを連通する通路途中へ圧力制御弁(140)を装着し、真空破壊用圧力空気の圧力を調整可能に構成してなることを特徴とする請求項1記載の真空用切換弁装置。   A pressure control valve (140) is mounted in the middle of the passage communicating the pressure air supply port (P1) of the apparatus body (10) and the supply port (31G) of the vacuum breaker 3 port switching valve (30). 2. The vacuum switching valve device according to claim 1, wherein the pressure of the vacuum breaking pressure air is adjustable. 前記圧力制御弁(140)が減圧弁であることを特徴とする請求項3記載の真空用切換弁装置。   The vacuum switching valve device according to claim 3, wherein the pressure control valve (140) is a pressure reducing valve. 圧力空気源(P)と接続する圧力空気供給ポート(P1)を有する装置本体(10)と、前記装置本体(10)の一方の側面に装着される真空破壊用3ポート切換弁(30)と、前記装置本体(10)の他方の側面に装着される真空供給用3ポート切換弁(20)とを有する真空用切換弁装置において、
前記装置本体(10)は、前記圧力空気供給ポート(P1)と、前記圧力空気供給ポート(P1)と接続し、前記真空破壊用3ポート切換弁(30)側に開口する通口(10c)と、前記圧力空気供給ポート(P1)と直交する方向に貫通する内部通路(10d,10e)とを有し、
前記真空供給用3ポート切換弁(20)は、弁本体(21)と、前記弁本体(21)の側面に取り付けられるソレノイド(22)と、吸着側に接続するために前記弁本体(21)の底面側に開口する出力ポート(P2)と、真空源(V)に接続するために前記弁本体(21)の底面側に開口する供給ポート(P3)と、前記出力ポート(P2)と接続するとともに前記弁本体(21)の前記装置本体(10)側の側面に開口するように前記弁本体(21)に設けた内部通路(21G)と、前記出力ポート(P2)と接続するために前記弁本体(21)の前記装置本体(10)側の側面に設けた弁用開口(21A)と、前記供給ポート(P3)と接続するために前記弁本体(21)の前記ソレノイド(22)側の側面に設けた開口(21B)と、前記出力ポート(P2)と前記供給ポート(P3)とを接続するために前記弁本体(21)に設けた連通穴(21E)と、前記連通穴(21E)を介して前記弁用開口(21A)と前記開口(21B)とに配される弁部材(23,25)と、前記弁部材(23,25)を前記開口(21B)方向へ押圧するバネ(24)と、前記弁部材(23,25)を前記ソレノイド(22)の可動鉄心(22A)を介して前記弁用開口(21A)方向へ押圧するバネ(22B)とを有し、
前記真空破壊用3ポート切換弁(30)は、弁本体(31)と、前記弁本体(31)の側面に取り付けられるソレノイド(32)と、前記真空用切換装置内を大気側と接続するために前記弁本体(31)の底面側に開口する排気ポート(P4)と、前記排気ポート(P4)と接続するために前記弁本体(31)に設けた弁用開口(31A)と、前記弁用開口(31A)と接続するとともに前記弁本体(31)の前記装置本体(10)側に開口するように前記弁本体(31)に設けた出力口(31J)と、前記弁本体(31)の前記ソレノイド(32)側の側面に設けた開口(31B)と、前記通口(31B)と接続するとともに前記弁本体(31)の前記装置本体(10)側の側面に開口するように前記弁本体(31)に設けた供給通口(31G)と、前記弁用開口(31A)と前記開口(31B)とを接続するために前記弁本体(31)に設けた連通穴(31E)と、前記連通穴(31E)を介して前記弁用開口(31A)と前記開口(31B)とに配される弁部材(33,35)と、前記弁部材(33,35)を前記開口(31B)方向へ押圧するバネ(34)と、前記弁部材(33,35)を前記ソレノイド(32)の可動鉄心(32A)を介して前記弁用開口(31A)方向へ押圧するバネ(32B)とを有し、
前記装置本体(10)の通口(10c)は、前記真空破壊用3ポート切換弁(30)の供給通口(31G)と接続し、前記装置本体(10)の内部通路(10d)は、前記真空破壊用3ポート切換弁(30)の出力口(31J)と接続し、前記装置本体(10)の内部通路(10e)は、前記真空供給用3ポート切換弁(20)の内部通路(21G)と接続し、
前記真空供給用3ポート切換弁(20)のソレノイド(22)のON時に、前記可動鉄心(22A)が吸引され、前記真空供給ポート(P3)が前記真空供給用3ポート切換弁(20)の開口(22B)、前記連通穴(21E)および前記弁用開口(21A)を介して前記出力ポート(P2)と接続され、
前記真空供給用3ポート切換弁(20)のソレノイド(22)のOFF時に、前記出力ポート(P2)は前記真空供給用3ポート切換弁(20)の内部通路(21G)、前記装置本体(10)の内部通路(10e、10d)、前記真空破壊用3ポート切換弁(30)の出力口(31J)および前記真空破壊用3ポート切換弁(30)の弁用開口(31A)を介して前記排気ポート(P4)と接続され、
前記真空破壊用3ポート切換弁(30)のソレノイド(32)のON時に、前記可動鉄心(32A)が吸引され、前記真空破壊用3ポート切換弁(30)の開口(31B)が前記連通穴(31E)を介して前記弁用開口(31A)と接続され、前記出力口(31J)、前記装置本体(10)の内部通路(10d、10e)および前記真空供給用3ポート切換弁(20)の弁用開口(21A)を介して前記出力ポート(P2)と接続される
ことを特徴とする真空用切換弁装置。
An apparatus main body (10) having a pressure air supply port (P1) connected to a pressure air source (P), and a vacuum break three-port switching valve (30) mounted on one side surface of the apparatus main body (10) A vacuum switching valve device having a vacuum supply three-port switching valve (20) mounted on the other side surface of the device body (10),
The apparatus main body (10) is connected to the pressurized air supply port (P1) and the pressurized air supply port (P1), and has an opening (10c) that opens to the vacuum breaker 3 port switching valve (30) side. And internal passages (10d, 10e) penetrating in a direction orthogonal to the pressurized air supply port (P1),
The three-port switching valve for vacuum supply (20) includes a valve body (21), a solenoid (22) attached to a side surface of the valve body (21), and the valve body (21) for connection to the suction side. An output port (P2) that opens to the bottom side of the valve, a supply port (P3) that opens to the bottom side of the valve body (21) for connection to the vacuum source (V), and a connection to the output port (P2) In order to connect to the output port (P2) and the internal passage (21G) provided in the valve body (21) so as to open to the side surface of the valve body (21) on the device body (10) side. A valve opening (21A) provided on a side surface of the valve body (21) on the device body (10) side and the solenoid (22) of the valve body (21) for connection with the supply port (P3). Opening (21B) provided on the side surface A communication hole (21E) provided in the valve body (21) for connecting the output port (P2) and the supply port (P3), and the valve opening (21A) via the communication hole (21E). ) And the opening (21B), a valve member (23, 25), a spring (24) for pressing the valve member (23, 25) in the direction of the opening (21B), and the valve member (23 , 25) and a spring (22B) that presses the solenoid (22) through the movable iron core (22A) toward the valve opening (21A),
The three-port switching valve for vacuum break (30) connects the valve body (31), a solenoid (32) attached to the side surface of the valve body (31), and the vacuum switching device to the atmosphere side. An exhaust port (P4) opened on the bottom surface side of the valve body (31), a valve opening (31A) provided in the valve body (31) for connection to the exhaust port (P4), and the valve An output port (31J) provided in the valve body (31) so as to be connected to the opening (31A) and open to the device body (10) side of the valve body (31), and the valve body (31) The opening (31B) provided on the side surface on the solenoid (32) side of the valve and the opening (31B) and the valve body (31) so as to open on the side surface on the device body (10) side. Supply port (3) provided in the valve body (31) G), a communication hole (31E) provided in the valve body (31) for connecting the valve opening (31A) and the opening (31B), and the valve via the communication hole (31E). A valve member (33, 35) disposed in the opening (31A) for use and the opening (31B), a spring (34) for pressing the valve member (33, 35) in the direction of the opening (31B), A spring (32B) for pressing the valve member (33, 35) in the direction of the valve opening (31A) through the movable iron core (32A) of the solenoid (32);
The passage (10c) of the apparatus body (10) is connected to the supply passage (31G) of the vacuum breaker 3 port switching valve (30), and the internal passage (10d) of the apparatus body (10) is The internal passage (10e) of the apparatus body (10) is connected to the output port (31J) of the vacuum break 3-port switching valve (30), and the internal passage (10e) of the vacuum supply 3-port switching valve (20) ( 21G),
When the solenoid (22) of the vacuum supply 3-port switching valve (20) is turned on, the movable iron core (22A) is sucked, and the vacuum supply port (P3) is connected to the vacuum supply 3-port switching valve (20). Connected to the output port (P2) through the opening (22B), the communication hole (21E) and the valve opening (21A);
When the solenoid (22) of the vacuum supply three-port switching valve (20) is OFF, the output port (P2) is connected to the internal passage (21G) of the vacuum supply three-port switching valve (20), the device body (10). ) Through the internal passages (10e, 10d), the output port (31J) of the vacuum breaking three-port switching valve (30) and the valve opening (31A) of the vacuum breaking three-port switching valve (30). Connected to the exhaust port (P4),
When the solenoid (32) of the vacuum break three-port switching valve (30) is turned on, the movable iron core (32A) is sucked, and the opening (31B) of the vacuum break three-port switching valve (30) is the communication hole. (31E) and connected to the valve opening (31A), the output port (31J), the internal passages (10d, 10e) of the apparatus body (10), and the vacuum supply 3-port switching valve (20) A switching valve device for vacuum, which is connected to the output port (P2) through a valve opening (21A).
JP2007049938A 2007-02-28 2007-02-28 Switching valve device for vacuum Withdrawn JP2008213051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049938A JP2008213051A (en) 2007-02-28 2007-02-28 Switching valve device for vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049938A JP2008213051A (en) 2007-02-28 2007-02-28 Switching valve device for vacuum

Publications (1)

Publication Number Publication Date
JP2008213051A true JP2008213051A (en) 2008-09-18

Family

ID=39833714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049938A Withdrawn JP2008213051A (en) 2007-02-28 2007-02-28 Switching valve device for vacuum

Country Status (1)

Country Link
JP (1) JP2008213051A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102991746A (en) * 2012-12-05 2013-03-27 成都海科机械设备制造有限公司 Vacuum line system
CN105257891A (en) * 2015-11-09 2016-01-20 无锡泰格气动技术有限公司 Dual-pressure valve
US10493637B2 (en) 2018-02-20 2019-12-03 Fanuc Corporation Suction pad and method of suction release of suction pad
CN111664267A (en) * 2020-06-16 2020-09-15 杭州依技设备成套工程有限公司 Gas differential pressure automatic switching valve
CN118025811A (en) * 2024-04-12 2024-05-14 四川天丰节能板材有限公司 Overturning and transverse moving switching conveying device of stacker crane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102991746A (en) * 2012-12-05 2013-03-27 成都海科机械设备制造有限公司 Vacuum line system
CN102991746B (en) * 2012-12-05 2014-09-17 成都海科机械设备制造有限公司 Vacuum line system
CN105257891A (en) * 2015-11-09 2016-01-20 无锡泰格气动技术有限公司 Dual-pressure valve
US10493637B2 (en) 2018-02-20 2019-12-03 Fanuc Corporation Suction pad and method of suction release of suction pad
CN111664267A (en) * 2020-06-16 2020-09-15 杭州依技设备成套工程有限公司 Gas differential pressure automatic switching valve
CN118025811A (en) * 2024-04-12 2024-05-14 四川天丰节能板材有限公司 Overturning and transverse moving switching conveying device of stacker crane

Similar Documents

Publication Publication Date Title
US6584999B2 (en) Fluid pressure controller
JP2008213051A (en) Switching valve device for vacuum
JP5741979B2 (en) Two stage air control valve
US6691740B2 (en) Self-holding type solenoid-operated valve
JP2005262351A (en) Vacuum suction unit
JP2000297876A (en) Valve
JP4853795B2 (en) Valve device
JP4569343B2 (en) IC carrier and contactor
JP4794483B2 (en) Component mounter
KR20110136303A (en) Device mounter head and device mounting method using the same
JP2002079483A (en) Suction conveyance device
EP2518332A1 (en) Supply and discharge adjusting apparatus and supply and discharge adjusting system
JP2008045666A (en) Solenoid proportional control valve
JP2000185890A (en) Attracting device
US20220055513A1 (en) Pump Valve Module and Method for Operating the Same, Solenoid Valve-based Pump Valve Module for Providing Massage Function for Vehicle Seat, and Vehicle Seat
JP2003004154A (en) Vacuum control valve and pressure control method
JP4495366B2 (en) Vacuum generator
KR101640707B1 (en) Power Locking Device for Mold Clamping
JP2004322240A (en) Vacuum valve unit
JP2008032087A (en) Diaphragm type solenoid valve with back pressure shut-off function
KR101042476B1 (en) Switch valve device
KR102616159B1 (en) Valve assembly for vacuum system
JP2017160999A (en) Workpiece holding device
JP2531933Y2 (en) Valve device
JP6556676B2 (en) Pneumatic valve and concentrator equipped with the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511