JP2008212884A - Liquid concentrator - Google Patents

Liquid concentrator Download PDF

Info

Publication number
JP2008212884A
JP2008212884A JP2007056532A JP2007056532A JP2008212884A JP 2008212884 A JP2008212884 A JP 2008212884A JP 2007056532 A JP2007056532 A JP 2007056532A JP 2007056532 A JP2007056532 A JP 2007056532A JP 2008212884 A JP2008212884 A JP 2008212884A
Authority
JP
Japan
Prior art keywords
liquid
tube
concentrator
pipe
discharge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007056532A
Other languages
Japanese (ja)
Other versions
JP4867722B2 (en
Inventor
Zen Ito
禅 伊東
Kiju Endo
喜重 遠藤
Hidekazu Tsuru
英一 津留
Hiroshi Konagayoshi
弘 小永吉
Fumiaki Numajiri
文晶 沼尻
Hiroshi Iwata
博 岩田
Tetsuya Komori
徹矢 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007056532A priority Critical patent/JP4867722B2/en
Publication of JP2008212884A publication Critical patent/JP2008212884A/en
Application granted granted Critical
Publication of JP4867722B2 publication Critical patent/JP4867722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently concentrate a liquid in a short time with a simple and compact-sized device. <P>SOLUTION: A liquid concentrator 1 evaporates volatile components from a liquid surface to concentrate the liquid. The concentrator has a structure in which three pipes 10, 18 and 16, different in diameter from one another, are stacked in a three-layer form, and a cylindrical space 31 is formed between the outermost layer pipe 10 and the intermediate layer pipe 18. A heated fluid, which heats the cylindrical space to a high temperature, is introduced from a warm water-feeding pipe 13. A vacuum pump, which makes a vacuum between the intermediate layer pipe 18 and the innermost layer pipe 16, is connected. Many microgrooves 23, which extend axially, are formed in the inner surface of the intermediate layer pipe. A liquid of thin membrane state 24, which drops down along the grooves and is evaporated in a low temperature, and the generated steam is introduced into the innermost layer pipe to separate volatile components. Consequently, the liquid is concentrated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液面からの蒸発により液体を濃縮する液体濃縮器に関する。   The present invention relates to a liquid concentrator that concentrates a liquid by evaporation from a liquid surface.

液体を濃縮する従来技術が、特許文献1に開示されている。この公報に記載の減圧蒸発濃縮装置においては、蒸発凝縮水側に被処理液中の非揮発性成分が混入しないように、被処理液の蒸気を発生させる蒸発沸騰缶部の上方に蒸発沸騰缶部から供給される蒸気を冷却及び凝縮する冷却凝縮室部を設けている。そして、蒸発沸騰缶部の液体あるいは固体が冷却凝縮室部に到達しないように、ミスト除去手段を蒸気通路に設けている。   A conventional technique for concentrating a liquid is disclosed in Patent Document 1. In the vacuum evaporation and concentration apparatus described in this publication, the evaporative boiling can is disposed above the evaporative boiling can portion that generates the vapor of the liquid to be processed so that the non-volatile components in the liquid to be processed are not mixed on the evaporation condensed water side. A cooling condensing chamber for cooling and condensing steam supplied from the unit is provided. And the mist removal means is provided in the vapor | steam passage so that the liquid or solid of an evaporative boiling can part may not reach a cooling condensation chamber part.

液体濃縮の他の例が、特許文献2に記載されている。この公報に記載の加熱気化装置では、内筒及び外筒からなる2重円筒において、内筒の外周部に液体浸透板を設けている。この液体浸透板は、多孔質材により形成され、上部に設けた液体供給位置の下方に水平方向に延びた空隙が形成されている。そして内筒内を加熱することにより、液体浸透板の上部に供給された液体を気化している。   Another example of liquid concentration is described in US Pat. In the heating and vaporizing apparatus described in this publication, in a double cylinder including an inner cylinder and an outer cylinder, a liquid permeation plate is provided on the outer periphery of the inner cylinder. The liquid permeation plate is formed of a porous material, and a gap extending in the horizontal direction is formed below the liquid supply position provided at the top. And the liquid supplied to the upper part of the liquid osmosis | permeation board is vaporized by heating the inside of an inner cylinder.

特開2004−344700号公報JP 2004-344700 A 特開2004−167433号公報JP 2004-167433 A

液体を濃縮する際には、加熱効率の向上と濃縮時間の短縮化が要求される。上記特許文献1に記載の減圧蒸発濃縮装置では、ヒータを導入する容器壁面近傍などに周囲に比べて温度が高いホットスポットが形成されるおそれがある。ホットスポットが形成されると、容器内を均一に加熱することができず、加熱効率が低下する。   When concentrating a liquid, it is required to improve heating efficiency and shorten the concentration time. In the vacuum evaporation and concentration apparatus described in Patent Document 1, a hot spot having a temperature higher than that of the surrounding area may be formed near the wall surface of the container in which the heater is introduced. When a hot spot is formed, the inside of the container cannot be heated uniformly, and the heating efficiency decreases.

また、均一に加熱するためには容器を小さくしなければならないが、容器を小さくすると液体が蒸発するのに必要な気液界面の面積が縮小し、蒸発量が低減し濃縮に要する時間が増大する。つまり、加熱効率の向上と濃縮時間の短縮を同時に達成することが困難であった。   In order to heat uniformly, the container must be made smaller. However, if the container is made smaller, the area of the gas-liquid interface necessary for the liquid to evaporate is reduced, the amount of evaporation is reduced, and the time required for concentration is increased. To do. That is, it has been difficult to simultaneously improve the heating efficiency and shorten the concentration time.

上記特許文献2に記載の加熱気化装置では、多孔質の液体浸透板を外表面に設けた内筒の内部から加熱して、気化効率を向上させている。しかしながら、多孔質の液体浸透板では、一度気化した被分離物質が供給管から供給された液状の被分離物質と混じりあい、凝縮して再度液体に変化し、分離効率を低下させるという不具合が発生するおそれがある。   In the heating and vaporization apparatus described in Patent Document 2, the vaporization efficiency is improved by heating the porous liquid permeation plate from the inside of the inner cylinder provided on the outer surface. However, in the porous liquid permeation plate, the material to be separated once vaporized mixes with the liquid material to be separated supplied from the supply pipe, condenses and changes to liquid again, resulting in a decrease in separation efficiency. There is a risk.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、簡素で小型な装置で液体を濃縮することにある。本発明の他の目的は、液体を短時間で効率よく濃縮することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to concentrate a liquid with a simple and small device. Another object of the present invention is to efficiently concentrate a liquid in a short time.

上記目的を達成する本発明の特徴は、外管と内管とを有する二重円筒構造であって、円筒軸が鉛直軸方向に配置された液体濃縮器において、外管と内管間に加温された流体の流通する円筒空間を形成し、内管の内周面に軸方向に延びる多数の溝が形成されており、内管の内部に形成された処理空間に一端部が突出し他端部がこの内管から外部に延びる中空の蒸気吐出管を内管下部に配置し、内管の上部にこの内管の溝部に被処理液体を供給する供給管を形成し、内管下方であって蒸気吐出管が配置された位置とは異なる位置に、分離された濃縮液を排出する濃縮液吐出管を設けたことにある。   A feature of the present invention that achieves the above object is a double cylindrical structure having an outer tube and an inner tube, in a liquid concentrator in which the cylinder axis is arranged in the vertical axis direction, and is added between the outer tube and the inner tube. A cylindrical space in which a heated fluid flows is formed, and a plurality of axially extending grooves are formed on the inner peripheral surface of the inner tube. One end protrudes into the processing space formed inside the inner tube, and the other end A hollow steam discharge pipe with a portion extending from the inner pipe to the outside is arranged at the lower part of the inner pipe, and a supply pipe for supplying the liquid to be processed to the groove of the inner pipe is formed at the upper part of the inner pipe. Thus, a concentrated liquid discharge pipe for discharging the separated concentrated liquid is provided at a position different from the position where the vapor discharge pipe is disposed.

そしてこの特徴において、内管の上端部と嵌合する溝付き管上フタを設け、内管の外周部と外管内周間を埋める多数の空隙が形成されたリング状の抵抗体を内管の上端部に配置するのがよい。また、溝付き管上フタの上面に皿状のバッファー部を形成するのがよく、処理空間を減圧環境下にする真空ポンプを、この液体濃縮器に付設するのが好ましい。さらに、濃縮液吐出管に制御弁を介して濃縮液タンクを接続し、蒸気吐出管に熱交換器を介して蒸発液タンクを接続し、濃縮液タンクおよび蒸発液タンクの双方が接続される真空ポンプを設けてもよく、円筒空間の上部に連通する温水吐出管と円筒空間の下部に連通する温水供給管とを設けてもよい。   And in this feature, a ring-shaped resistor having a grooved tube upper cover that fits with the upper end of the inner tube is formed, and a large number of gaps are formed between the outer periphery of the inner tube and the inner periphery of the outer tube. It is good to arrange at the upper end. Further, it is preferable to form a dish-shaped buffer section on the upper surface of the upper lid of the grooved tube, and it is preferable to attach a vacuum pump for making the processing space under a reduced pressure environment to the liquid concentrator. Furthermore, the concentrate tank is connected to the concentrate discharge pipe via a control valve, the vapor tank is connected to the vapor discharge pipe via a heat exchanger, and both the concentrate tank and the evaporation tank are connected to the vacuum. A pump may be provided, and a hot water discharge pipe communicating with the upper part of the cylindrical space and a hot water supply pipe communicating with the lower part of the cylindrical space may be provided.

上記目的を達成する本発明の他の特徴は、液面から揮発成分を蒸発させて濃縮する液体濃縮器において、直径の異なる3本の管を三層に重ねた構造とし、最外層の管と中間層の管の間に円筒空間を形成してこの円筒空間を高温にする加熱流体を導くことを可能にしている。そして、中間層の管と最内層の管の間を真空にする真空発生手段を接続し、中間層の管の内面には軸方向に延びる微細な溝を多数形成し、この溝を伝わり落ちる薄膜状の液体を低温蒸発させ、発生した蒸気を最内層の管に導いて揮発成分を分離して液体を濃縮することにある。そして、中間層の管の上端に被処理液体を受ける溝付き管上フタを配置し、この溝付き管上フタにバッファーとなる皿状の凹みを形成し、溝付き管上フタの周囲に多数の空隙が形成された抵抗体を保持し、被処理液体を中間層の管の内周部であって上部に送液し、この中間層の管の内周面に形成した微細な溝に薄膜を形成するようにするのが好ましい。   Another feature of the present invention that achieves the above object is to provide a liquid concentrator that evaporates and concentrates volatile components from the liquid surface, wherein three tubes having different diameters are stacked in three layers, and the outermost tube and A cylindrical space is formed between the tubes of the intermediate layer, and it is possible to guide a heated fluid that makes the cylindrical space hot. Then, a vacuum generating means for evacuating between the intermediate layer tube and the innermost layer tube is connected, and a number of fine grooves extending in the axial direction are formed on the inner surface of the intermediate layer tube. The liquid is evaporated at a low temperature, and the generated vapor is led to the innermost tube to separate volatile components to concentrate the liquid. Then, a grooved tube upper lid for receiving the liquid to be treated is disposed at the upper end of the intermediate layer tube, and a dish-shaped recess serving as a buffer is formed in the grooved tube upper lid, and a large number of grooves are formed around the grooved tube upper lid. The liquid to be treated is fed to the upper part of the intermediate layer tube and the upper part, and a thin film is formed in a fine groove formed on the inner peripheral surface of the intermediate layer tube. Is preferably formed.

本発明によれば、減圧環境下で原料を滴下させる流路を管内壁面に形成し、管外壁面を加熱するようにしたので、熱の伝達が向上するとともに原料と蒸気との混合を回避でき、簡素で小型の装置で、液体を濃縮できる。また、加熱効率が向上するとともに濃縮時間を短縮できる。   According to the present invention, since the flow path for dropping the raw material in a reduced pressure environment is formed on the inner wall surface of the pipe and the outer wall surface of the pipe is heated, heat transfer is improved and mixing of the raw material and steam can be avoided. The liquid can be concentrated with a simple and small device. Further, the heating efficiency is improved and the concentration time can be shortened.

以下、本発明に係る液体濃縮器の実施例を、図面を用いて説明する。図1に、液体濃縮器1を用いた液体濃縮システムの一実施例を、ブロック図で示す。液体濃縮器1は、この液体濃縮器1に供給された液体から揮発性成分を蒸発させて、液体を濃縮する。そして、液体濃縮器1には、この液体濃縮器1に供給される液体の供給流量を調整する原料調整バルブ91を介して、濃縮する液体を収容した原料タンク90が接続されている。   Hereinafter, embodiments of a liquid concentrator according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a liquid concentration system using the liquid concentrator 1. The liquid concentrator 1 evaporates volatile components from the liquid supplied to the liquid concentrator 1 to concentrate the liquid. The liquid concentrator 1 is connected to a raw material tank 90 containing a liquid to be concentrated via a raw material adjusting valve 91 that adjusts the supply flow rate of the liquid supplied to the liquid concentrator 1.

液体濃縮器1には、温水循環装置92から温水が供給される。液体濃縮器1を加熱した温水は、温水循環装置92に戻される。液体濃縮器1で濃縮された液体は、この液体濃縮器1の下部と接続する濃縮液ライン81の端部に配置された濃縮液タンク97に貯蔵される。濃縮液ライン81には、濃縮液ライン81の圧力損失を調整して蒸気が濃縮液ライン81に逆流することを防止する濃縮ライン調整バルブ96が介在している。   Hot water is supplied to the liquid concentrator 1 from the hot water circulation device 92. The hot water that has heated the liquid concentrator 1 is returned to the hot water circulation device 92. The liquid concentrated by the liquid concentrator 1 is stored in a concentrate tank 97 disposed at the end of a concentrate line 81 connected to the lower part of the liquid concentrator 1. A concentrated line adjustment valve 96 that adjusts the pressure loss of the concentrated liquid line 81 and prevents the vapor from flowing back to the concentrated liquid line 81 is interposed in the concentrated liquid line 81.

液体濃縮器1から吐出された揮発性成分の蒸気は、蒸気ライン82に流入し、熱交換器93に導かれる。そして、熱交換器93で露点以下にまで冷却されて液化する。熱交換器93では、冷却水循環装置94で発生した冷却水と、揮発性成分の蒸気とが熱交換する。熱交換器93で液化した揮発性成分の蒸気は、蒸発液タンク95に貯蔵される。なお、濃縮液タンク97および蒸発液タンク95は、真空ライン83a,83bを介して真空ポンプ98に接続されている。真空ポンプ98は、原料タンク90から蒸発液タンク95および濃縮液タンク97までに形成された連通路を、下流側から減圧し液体を移動させるとともに減圧環境を形成する。   The vapor of the volatile component discharged from the liquid concentrator 1 flows into the vapor line 82 and is guided to the heat exchanger 93. And it cools to below a dew point with the heat exchanger 93, and liquefies. In the heat exchanger 93, heat is exchanged between the cooling water generated by the cooling water circulation device 94 and the vapor of the volatile component. The vapor of the volatile component liquefied by the heat exchanger 93 is stored in the evaporation tank 95. The concentrated liquid tank 97 and the evaporated liquid tank 95 are connected to a vacuum pump 98 through vacuum lines 83a and 83b. The vacuum pump 98 depressurizes the communication path formed from the raw material tank 90 to the evaporating liquid tank 95 and the concentrated liquid tank 97 from the downstream side to move the liquid and form a depressurizing environment.

真空ポンプ98を作動させると、濃縮対象である液体は、真空ポンプ98が発生する圧力差で、原料タンク90から液体濃縮器1へと移動する。このとき、原料調整バルブ91を適宜開閉して、所望の流量を得る。図示しないが、真空ポンプ98による圧力差だけでは所望の流量が満たされないときは、チューブポンプなどの補助送液手段を使用する。   When the vacuum pump 98 is operated, the liquid to be concentrated moves from the raw material tank 90 to the liquid concentrator 1 due to a pressure difference generated by the vacuum pump 98. At this time, the raw material adjustment valve 91 is appropriately opened and closed to obtain a desired flow rate. Although not shown, auxiliary liquid feeding means such as a tube pump is used when a desired flow rate is not satisfied only by the pressure difference by the vacuum pump 98.

液体濃縮器1は真空ポンプ98で減圧され、温水循環装置92から供給される温水で加熱されるので、100℃以下の温度で、液体中の揮発性成分を蒸発できる状態が形成される。本実施例では、液体濃縮器1を減圧環境下で作動させているので、大気圧で液体を沸騰させるのに比べ、少ないエネルギーで済む。つまり、通常の大気圧下で水を沸騰させる場合、100℃もの高温環境が必要になり、高い熱エネルギーが必要となるとともに、原料の変性を招く恐れがある。   Since the liquid concentrator 1 is depressurized by the vacuum pump 98 and heated by the hot water supplied from the hot water circulation device 92, a state in which volatile components in the liquid can be evaporated at a temperature of 100 ° C. or lower is formed. In this embodiment, since the liquid concentrator 1 is operated in a reduced pressure environment, less energy is required compared to boiling the liquid at atmospheric pressure. That is, when boiling water under normal atmospheric pressure, a high temperature environment as high as 100 ° C. is required, high heat energy is required, and the raw material may be denatured.

これに対して本実施例では、液体濃縮器1の濃縮液および揮発性成分の出口側から真空ポンプ98で排気して減圧しているので、沸点が低下し低圧蒸発が可能になっている。なお、本実施例では液体濃縮器1の加熱源に温水を使用しているが、より高い熱エネルギーが必要な場合には、温水の代わりに高温蒸気あるいは減圧した低温蒸気を用いるのがよい。   On the other hand, in the present embodiment, since the vacuum pump 98 exhausts and depressurizes from the concentrated liquid and volatile component outlet side of the liquid concentrator 1, the boiling point decreases and low-pressure evaporation is possible. In this embodiment, hot water is used as the heating source of the liquid concentrator 1. However, when higher thermal energy is required, high temperature steam or reduced pressure low temperature steam may be used instead of hot water.

液体濃縮器1内では、詳細を後述するように、蒸発した揮発性成分と液体のままの濃縮液が分離する。分離した気体と液体は、真空ポンプ98により減圧されて、後段に運ばれる。上述したように、分離した気体は、気化した揮発性成分として熱交換器93へ移動し、熱交換器93で冷却されて液体となり、蒸発液タンク95に貯蔵される。一方、分離した液体は濃縮液として、濃縮液タンク97に貯蔵される。   In the liquid concentrator 1, as will be described in detail later, the evaporated volatile component and the liquid concentrate are separated. The separated gas and liquid are depressurized by the vacuum pump 98 and conveyed to the subsequent stage. As described above, the separated gas moves to the heat exchanger 93 as a vaporized volatile component, is cooled by the heat exchanger 93, becomes a liquid, and is stored in the evaporation liquid tank 95. On the other hand, the separated liquid is stored in the concentrate tank 97 as a concentrate.

濃縮液を濃縮液タンク97に貯蔵するときに、濃縮ライン調整バルブ96を適宜開閉すれば、蒸気の流れるライン82よりも濃縮液の流れるライン81の抵抗が大きくなり、蒸気の逆流が防止される。これにより、確実に気液分離することができる。なお、本実施例では原液から特定の揮発性成分を取り出し濃縮する場合を説明するが、濃縮する液体としては、沸点の異なる液体同士の混合液であってもよい。この場合、沸点の低い液体が揮発性成分で、沸点の高い液体が非揮発性成分になる。   When the concentrate is stored in the concentrate tank 97, if the concentration line adjustment valve 96 is appropriately opened and closed, the resistance of the line 81 through which the concentrate flows is larger than the line 82 through which the steam flows, and the backflow of steam is prevented. . Thereby, gas-liquid separation can be ensured. In the present embodiment, the case where a specific volatile component is extracted from the stock solution and concentrated is described. However, the liquid to be concentrated may be a mixed liquid of liquids having different boiling points. In this case, the liquid having a low boiling point is a volatile component, and the liquid having a high boiling point is a non-volatile component.

図1に示した液体濃縮システムに用いる液体濃縮器1の詳細を、図2ないし図6を用いて説明する。図2に、液体濃縮器1の外観を斜視図で示す。液体濃縮器1は、パイプ状の外管10に、上フタ11と下フタ12をネジで取り付けて密閉した円筒容器である。この液体濃縮機1を使用するときは、円筒軸を鉛直軸方向に配置する。   Details of the liquid concentrator 1 used in the liquid concentrating system shown in FIG. 1 will be described with reference to FIGS. In FIG. 2, the external appearance of the liquid concentrator 1 is shown with a perspective view. The liquid concentrator 1 is a cylindrical container in which an upper lid 11 and a lower lid 12 are attached to a pipe-like outer tube 10 with screws. When this liquid concentrator 1 is used, the cylindrical axis is arranged in the vertical axis direction.

外管10の側部であって下部には、温水の入口である温水供給管13が取り付けられている。外管10の側部であって上部には、温水の出口である温水吐出管14が取り付けられている。温水循環装置92(図1参照)から供給された温水は、側下部に取り付けた温水供給管13から外管10の内部に導かれ、液体濃縮器1内を循環して原料を加熱する。   A hot water supply pipe 13 that is an inlet of hot water is attached to the lower side of the outer pipe 10. A hot water discharge pipe 14, which is an outlet of the hot water, is attached to the upper side of the outer pipe 10. The hot water supplied from the hot water circulation device 92 (see FIG. 1) is guided into the outer pipe 10 from the hot water supply pipe 13 attached to the lower part of the side, and circulates in the liquid concentrator 1 to heat the raw material.

上フタ11には、原料供給管15が取り付けられている。原料タンク90に貯えられ濃縮対象の原料(液体)は、原料供給管15を経て液体濃縮器1内に供給される。下フタ
12には、蒸気吐出管16と濃縮液吐出管17が取り付けられている。液体濃縮器1内において分離された蒸気は蒸気吐出管16から、濃縮液は濃縮液吐出管17から後段へと導かれる。各管の先端には管用ネジを形成し、他の機器との接続を容易にしている。
A raw material supply pipe 15 is attached to the upper lid 11. The raw material (liquid) to be concentrated stored in the raw material tank 90 is supplied into the liquid concentrator 1 through the raw material supply pipe 15. A steam discharge pipe 16 and a concentrate discharge pipe 17 are attached to the lower lid 12. The vapor separated in the liquid concentrator 1 is led from the vapor discharge pipe 16 and the concentrated liquid is led from the concentrate discharge pipe 17 to the subsequent stage. A tube screw is formed at the tip of each tube to facilitate connection with other devices.

図3に、液体濃縮器1の縦断面図を示す。この図3は、図2のA−A矢視断面図である。液体濃縮器1は、外管10および液体が蒸発する溝付き管18,蒸気吐出管16を備えている。これら3つの管10,18,16は、同心状に配置された三重管構造となっている。蒸気吐出管16は、下フタ12のほぼ中央部に固定されており、溝付き管18の内部であって上下方向真ん中よりやや下方まで上端部が突出している。   In FIG. 3, the longitudinal cross-sectional view of the liquid concentrator 1 is shown. 3 is a cross-sectional view taken along arrow AA in FIG. The liquid concentrator 1 includes an outer tube 10, a grooved tube 18 through which liquid evaporates, and a vapor discharge tube 16. These three tubes 10, 18 and 16 have a triple tube structure arranged concentrically. The steam discharge pipe 16 is fixed substantially at the center of the lower lid 12, and the upper end projects from the middle of the grooved pipe 18 to slightly below the middle in the vertical direction.

外管10は、上端部及び下端部の内径が中間部の内径よりも小径に形成されており、この小径部に当接して溝付き管18が保持されている。下フタ12は上下にフランジを有する断面I字型に形成されており、上部フランジで溝付き管18の下端を保持している。溝付き管18の上端は、上フタ11の下方に配置され外管10の内周面に当接する溝付き管上フタ19で保持されている。   The outer tube 10 is formed such that the inner diameters of the upper end portion and the lower end portion are smaller than the inner diameter of the intermediate portion, and the grooved tube 18 is held in contact with the smaller diameter portion. The lower lid 12 is formed in an I-shaped section having a flange on the upper and lower sides, and holds the lower end of the grooved tube 18 with the upper flange. The upper end of the grooved tube 18 is held by a grooved tube upper lid 19 that is disposed below the upper lid 11 and contacts the inner peripheral surface of the outer tube 10.

これにより、液体濃縮器1の内部には、外管10の内周面と溝付き管18の外周面間に上下方向に延びる円筒空間31が形成される。また、溝付き管18内部には、原料液体が濃縮および分離される処理空間32が形成される。円筒空間31には、温水供給管13および温水吐出管14が連通している。蒸気吐出管16の内部空間33は、処理空間32と連通している。   Thereby, a cylindrical space 31 extending in the vertical direction is formed between the inner peripheral surface of the outer tube 10 and the outer peripheral surface of the grooved tube 18 inside the liquid concentrator 1. A processing space 32 in which the raw material liquid is concentrated and separated is formed inside the grooved tube 18. A hot water supply pipe 13 and a hot water discharge pipe 14 communicate with the cylindrical space 31. The internal space 33 of the vapor discharge pipe 16 communicates with the processing space 32.

なお、外管10と溝付き管18とは、当接部に配置したOリング20でシールされており、処理空間32内の流体が円筒空間31内に流入するのを防止している。円筒空間31では、図中鎖線矢印で示すように、下部から上部に向けて温水が循環している。これにより溝付き管18は均一に加熱され、原料液体の蒸発に必要な熱エネルギーが与えられる。ここで、温水の出入り口を上下逆にすることも可能であるが、温水を空間内に均等に行き渡らせるためには、対向流効果が期待できる本実施例の配置のほうが望ましい。   The outer tube 10 and the grooved tube 18 are sealed by an O-ring 20 disposed in the contact portion, and prevent the fluid in the processing space 32 from flowing into the cylindrical space 31. In the cylindrical space 31, hot water circulates from the lower part toward the upper part as indicated by the chain line arrow in the figure. As a result, the grooved tube 18 is heated uniformly, and heat energy necessary for evaporation of the raw material liquid is given. Here, the hot water outlet / inlet can be turned upside down. However, in order to distribute the hot water evenly in the space, the arrangement of this embodiment that can expect the counterflow effect is more desirable.

原料供給部である上フタ11部の詳細を、図4に示す。図4は、図3のB部拡大図である。後述するように、溝付き管18で効率的に液体を蒸発させるためには、溝付き管18の円周上に均一に液体を送液する必要がある。そこで本実施例では、溝付き管18の上端部に、この溝付き管に嵌合する溝付き管上フタ19を配置し、この溝付き管上フタ19の上面に皿状のバッファー部21を形成した。皿状のバッファー部21の外周部には、外管10に当接し空隙を有する抵抗体22がリング状に配置されている。   FIG. 4 shows details of the upper lid 11 part which is a raw material supply part. FIG. 4 is an enlarged view of a portion B in FIG. As will be described later, in order to efficiently evaporate the liquid with the grooved tube 18, it is necessary to feed the liquid uniformly on the circumference of the grooved tube 18. Therefore, in this embodiment, a grooved tube upper cover 19 that fits into the grooved tube is disposed at the upper end of the grooved tube 18, and a dish-shaped buffer portion 21 is provided on the upper surface of the grooved tube upper cover 19. Formed. On the outer peripheral portion of the dish-shaped buffer portion 21, a resistor 22 that is in contact with the outer tube 10 and has a gap is arranged in a ring shape.

抵抗体22は、目の細かいスチールウールや金属メッシュ,樹脂フィルターから構成されている。抵抗体22は、溝付き管上フタ19と外管10の隙間を埋めるように詰め込まれている。なお、抵抗体22および溝付き管上フタ19と上フタ11間には、上下方向に隙間空間34が形成されており、上フタ11に固定された原料供給管15の先端部がこの空間34に突出している。   The resistor 22 is made of fine steel wool, metal mesh, or resin filter. The resistor 22 is packed so as to fill a gap between the grooved tube upper lid 19 and the outer tube 10. A gap space 34 is formed in the vertical direction between the resistor 22 and the grooved tube upper lid 19 and the upper lid 11, and the tip of the raw material supply tube 15 fixed to the upper lid 11 is the space 34. Protruding.

このように原料供給部を構成すると、原料供給管15から吐出された液体は、図中に矢印線で示すように皿状のバッファー部21に、一次的に溜められる。原料液体の供給が継続すると、バッファー部21の液位が上昇し、ついにはバッファー部21からあふれ出る。あふれ出た液体は、抵抗体22に形成された多数の空隙を通り抜け、溝付き管18の内周部上面に導かれる。   When the raw material supply unit is configured in this manner, the liquid discharged from the raw material supply pipe 15 is temporarily stored in the dish-shaped buffer unit 21 as indicated by an arrow line in the drawing. When the supply of the raw material liquid is continued, the liquid level in the buffer unit 21 rises and eventually overflows from the buffer unit 21. The overflowing liquid passes through a large number of gaps formed in the resistor 22 and is guided to the upper surface of the inner peripheral portion of the grooved tube 18.

ここで、抵抗体は溝付き管上フタ19と外管10の隙間に詰め込まれているので、原料液体の流動抵抗が増大し、流量が周方向に均一に分布する。なお、原料液体を抵抗体22の円周状に均一に送液するために、バッファー部21の上面を水平にすることが望ましい。そのため、液体濃縮器1を垂直に配置するのが最もよい。円周上に均一に送り出された原料液体は、溝付き管の内壁面を伝って落下する。   Here, since the resistor is packed in the gap between the grooved tube upper lid 19 and the outer tube 10, the flow resistance of the raw material liquid increases and the flow rate is uniformly distributed in the circumferential direction. It is desirable that the upper surface of the buffer unit 21 be horizontal in order to feed the raw material liquid uniformly around the circumference of the resistor 22. Therefore, it is best to arrange the liquid concentrator 1 vertically. The raw material liquid sent out uniformly on the circumference falls along the inner wall surface of the grooved tube.

溝付き管18の詳細を、図5に示す。図5(a)は、溝付き管18の上端部の斜視図であり、同図(b)は上面図である。溝付き管18は、内周面に多数の微細溝23がほぼ等間隔で形成されている。本実施例で用いる溝付き管18では、溝23を区画するフィン
27は、ほぼ三角形状をしており、その厚さは、平均0.4mm 程度である。また、溝付き管18の、直径(外径)は48mmで、軸方向長さ184mm、溝23の深さは4mm、溝の幅は1.4mm、溝23の数は72個である。
Details of the grooved tube 18 are shown in FIG. FIG. 5A is a perspective view of the upper end portion of the grooved tube 18, and FIG. 5B is a top view thereof. The grooved tube 18 has a large number of fine grooves 23 formed at substantially equal intervals on the inner peripheral surface. In the grooved tube 18 used in the present embodiment, the fins 27 that define the groove 23 have a substantially triangular shape, and the average thickness is about 0.4 mm. The grooved tube 18 has a diameter (outer diameter) of 48 mm, an axial length of 184 mm, a groove 23 depth of 4 mm, a groove width of 1.4 mm, and a number of grooves 23 of 72.

抵抗体22を通って溝付き管18に達した原料液体は、表面張力により各溝23およびフィン27の壁面にトラップされて薄膜24を形成する。そして、溝付き管18の下部に溝付き管18の内壁面を伝わって落下する。微細溝23の断面形状は薄膜24の形成されやすさ(液体を溝内に保持するに足る表面張力を持つ形)と、蒸発に必要な熱エネルギーを十分に伝えることが可能な熱伝達性を備えていればよく、方形,三角形,半円形,台形などが用いられる。本実施例では、表面張力が十分に高く薄膜24が形成されやすいよう、上述したように深さ方向に長い長方形とした。   The raw material liquid that has reached the grooved tube 18 through the resistor 22 is trapped on the walls of the grooves 23 and the fins 27 by surface tension to form a thin film 24. Then, it falls along the inner wall surface of the grooved tube 18 to the lower part of the grooved tube 18. The cross-sectional shape of the fine groove 23 is such that the thin film 24 is easily formed (having a surface tension sufficient to hold the liquid in the groove) and heat transferability that can sufficiently transmit the heat energy necessary for evaporation. As long as it is provided, a square, a triangle, a semicircle, a trapezoid, or the like is used. In this embodiment, the rectangular shape is long in the depth direction as described above so that the surface tension is sufficiently high and the thin film 24 is easily formed.

溝付き管18は、外周面側から温水によって加熱されている。液体が薄膜化しているので、微細溝23内の液体は温度に対する反応性が高い。さらに、処理空間32を減圧しているので、常圧時より低い温度で蒸発が開始される。その結果、原料液体に含まれる揮発成分は、溝付き管18の下端に至る間に蒸発する。蒸発量は、液体の供給量と温水温度を制御して、決定される。   The grooved tube 18 is heated by warm water from the outer peripheral surface side. Since the liquid is thinned, the liquid in the fine groove 23 is highly reactive to temperature. Furthermore, since the processing space 32 is decompressed, evaporation starts at a temperature lower than that at normal pressure. As a result, the volatile component contained in the raw material liquid evaporates while reaching the lower end of the grooved tube 18. The evaporation amount is determined by controlling the liquid supply amount and the hot water temperature.

本実施例によれば、各微細溝23で各個別に揮発成分が蒸発するので、液体の処理量は溝23の数に比例する。つまり、一度ある条件下で1個の微細溝23の蒸発量を把握すれば、溝23の数を増減するだけで容易に異なる処理量の濃縮器が得られる。例えば、溝
23の数を20個として毎分50mlの液体を10倍濃縮できるという結果が得られているときに、温度等の条件を等しくすれば、溝23の数を40個に増やすと毎分100mlの液体を10倍濃縮することができる。なお、蒸発条件を等しくするためには、各溝23への供給液量を均一にしなければならない。そのため、本実施例ではバッファー部21や抵抗体22を設けて、溝付き管18内面を流れる液量の周方向均一化を図っている。
According to the present embodiment, since the volatile component evaporates individually in each fine groove 23, the liquid processing amount is proportional to the number of grooves 23. That is, once the amount of evaporation of one fine groove 23 is ascertained under a certain condition, it is possible to easily obtain concentrators having different processing amounts simply by increasing or decreasing the number of grooves 23. For example, when the number of grooves 23 is 20 and 50 ml of liquid can be concentrated 10 times per minute, if the conditions such as temperature are made equal, the number of grooves 23 is increased to 40 every time. A 100 ml minute liquid can be concentrated 10 times. In order to equalize the evaporation conditions, the amount of liquid supplied to each groove 23 must be uniform. For this reason, in the present embodiment, the buffer portion 21 and the resistor 22 are provided to equalize the amount of liquid flowing on the inner surface of the grooved tube 18 in the circumferential direction.

揮発成分を蒸発させ液体のままである濃縮液は、図3で実線の矢印で示すように、溝
23を形成する溝付き管18の内周面を下降し、溝23部から溝付き管18と下フタ12の間に形成された濃縮液バッファー部25に移動する。濃縮液バッファー部25に導かれた濃縮液は、濃縮液吐出管17を経て濃縮液タンク97に貯蔵される。
As shown by the solid line arrow in FIG. 3, the concentrated liquid that has evaporated the volatile components and remains in the liquid descends on the inner peripheral surface of the grooved tube 18 that forms the groove 23, and the grooved tube 18 starts from the groove 23. And move to the concentrated buffer portion 25 formed between the lower lid 12 and the lower lid 12. The concentrated liquid led to the concentrated liquid buffer unit 25 is stored in the concentrated liquid tank 97 through the concentrated liquid discharge pipe 17.

蒸発した揮発成分は、図3で点線の矢印で示すように、処理空間32に連通する蒸気吐出管16の内部の空間33に流入する。蒸気吐出管16に流入した揮発成分は、熱交換器93で凝縮され、液化した状態で蒸発液タンク95に貯蔵される。このとき、濃縮液が流れるライン81には濃縮ライン調整バルブ96を設けられており、このバルブ96を調整して蒸気が濃縮液吐出管17へ逆流するのを防止する。   The evaporated volatile component flows into the space 33 inside the vapor discharge pipe 16 communicating with the processing space 32 as indicated by the dotted arrow in FIG. Volatile components flowing into the steam discharge pipe 16 are condensed in the heat exchanger 93 and stored in the vapor tank 95 in a liquefied state. At this time, the line 81 through which the concentrate flows is provided with a concentration line adjustment valve 96, and this valve 96 is adjusted to prevent the vapor from flowing back to the concentrate discharge pipe 17.

この蒸気の濃縮液ライン81への逆流を、蒸気吐出管16を溝付き管18内部の処理空間32に突出させる突出量を調整して、防止する。本実施例では、液体供給量等に合わせて位置を変更できるように蒸気吐出管16の処理空間32への突出量を可変にしている。そのため、蒸気吐出管16を下フタ12に保持したOリング20bで下フタ12に保持し、下フタ12に半径方向から係止する図示しない止めネジで固定した。   This reverse flow of steam to the concentrate line 81 is prevented by adjusting the amount of protrusion that causes the steam discharge pipe 16 to protrude into the processing space 32 inside the grooved pipe 18. In the present embodiment, the amount of protrusion of the vapor discharge pipe 16 into the processing space 32 is variable so that the position can be changed according to the liquid supply amount or the like. Therefore, the vapor discharge pipe 16 was held on the lower lid 12 by an O-ring 20b held on the lower lid 12, and fixed to the lower lid 12 with a set screw (not shown) that is locked in the radial direction.

本実施例によれば、液体濃縮器が可動部分を有しないスタティックな構造であるから、可動部のあるものよりも信頼性が高い。また、原料液体をフロー処理で連続的に供給して濃縮するので、処理能力が向上する。また、原料液体を加熱した際に生じる揮発成分が溝付き管の内部に形成される処理空間側に流動し、揮発しない液状の濃縮液が溝部を薄膜化されて流下するので、揮発成分が濃縮液と再結合することがなく、処理効率が向上する。さらに、液体濃縮器の下部ほど溝付き管の温度が高いので、揮発成分は下部になればなるほど凝縮するおそれがなく、濃縮液との再結合を防止できる。   According to the present embodiment, since the liquid concentrator has a static structure having no movable part, the reliability is higher than that with a movable part. Further, since the raw material liquid is continuously supplied and concentrated by the flow process, the processing capacity is improved. In addition, volatile components generated when the raw material liquid is heated flow toward the processing space formed inside the grooved tube, and the liquid concentrate that does not volatilize flows down into the groove, so the volatile components are concentrated. Processing efficiency is improved without recombination with the liquid. Furthermore, since the temperature of the grooved tube is higher at the lower part of the liquid concentrator, the volatile components are less likely to be condensed at the lower part, and recombination with the concentrated liquid can be prevented.

図6に、本発明に係る液体濃縮器1に用いる溝付き管18の変形例を示す。本変形例は上記実施例と、溝の断面形状が異なっている。処理流量が少ないなど薄膜の形成が容易な条件、すなわち小さい表面張力でも液体を微細溝26内に保持できる条件では、V字型微細溝26を備えた溝付き管18でも濃縮が可能になる。本変形例で示すV字型微細溝26は、一辺の長さが1.62mm の正三角である。本変形例によれば、溝加工が容易になり、短時間および低コストで溝付き管18を製作できる。   FIG. 6 shows a modification of the grooved tube 18 used in the liquid concentrator 1 according to the present invention. This modification differs from the above embodiment in the cross-sectional shape of the groove. Concentration is possible even with the grooved tube 18 provided with the V-shaped fine groove 26 under the condition that the thin film can be easily formed, such as a small processing flow rate, that is, the condition that the liquid can be held in the fine groove 26 even with a small surface tension. The V-shaped fine groove 26 shown in this modification is a regular triangle having a side length of 1.62 mm. According to this modification, grooving is facilitated, and the grooved tube 18 can be manufactured in a short time and at a low cost.

以上、本発明に係る実施例および変形例によれば、原料液体の濃縮が短縮される。また、液体を微細な溝に送液する動力だけあれば、安定した濃縮を実行できる。微細な溝底に液体の薄膜を形成したので、溝付き管の外周部からの熱の伝達が容易になり、加熱効率が向上するとともに濃縮時間が短縮される。さらに、溝付き管の溝を円周上にほぼ等間隔で配置したので、液体濃縮器の体積辺りの処理量が増加し、装置を小型化できる。液体は各溝で独立して濃縮されるので、一度、各溝での濃縮条件を把握すれば、溝の数を増減するだけで容易に処理量の異なる濃縮器が得られる。   As mentioned above, according to the Example and modification which concern on this invention, concentration of a raw material liquid is shortened. In addition, stable concentration can be carried out with only the power to feed the liquid into the fine groove. Since the liquid thin film is formed on the fine groove bottom, the heat transfer from the outer periphery of the grooved tube is facilitated, the heating efficiency is improved, and the concentration time is shortened. Further, since the grooves of the grooved tube are arranged on the circumference at almost equal intervals, the processing amount per volume of the liquid concentrator increases, and the apparatus can be miniaturized. Since the liquid is concentrated independently in each groove, once the concentration conditions in each groove are grasped, it is possible to easily obtain concentrators with different throughput by simply increasing or decreasing the number of grooves.

本発明に係る液体濃縮システムの一実施例のブロック図。1 is a block diagram of an embodiment of a liquid concentration system according to the present invention. 図1に示した液体濃縮システムが有する液体濃縮器の斜視図。The perspective view of the liquid concentrator which the liquid concentration system shown in FIG. 1 has. 図2のA−A矢視断面図。AA arrow sectional drawing of FIG. 図3のB部詳細図。B section detail drawing of FIG. 図2に示した液体濃縮機に用いる溝付き管の上面図および斜視図。The top view and perspective view of the grooved pipe | tube used for the liquid concentrator shown in FIG. 図2に示した液体濃縮機に用いる溝付き管の他の実施例の上面図。The top view of the other Example of the grooved pipe | tube used for the liquid concentrator shown in FIG.

符号の説明Explanation of symbols

1 液体濃縮器
10 外管
11 上フタ
12 下フタ
13 温水供給管
14 温水吐出管
15 原料供給管
16 蒸気吐出管
17 濃縮液吐出管
18 溝付き管(内管)
19 溝付き管上フタ
20 Oリング
21 バッファー部
22 抵抗体
23 (微細)溝
24 薄膜
25 濃縮液バッファー部
26 V字型微細溝
90 原料タンク
91 原料調整バルブ
92 温水循環装置
93 熱交換器
94 冷却水循環装置
95 蒸発液タンク
96 濃縮ライン調整バルブ
97 濃縮液タンク
98 真空ポンプ
DESCRIPTION OF SYMBOLS 1 Liquid concentrator 10 Outer pipe 11 Upper cover 12 Lower cover 13 Hot water supply pipe 14 Hot water discharge pipe 15 Raw material supply pipe 16 Steam discharge pipe 17 Concentrated liquid discharge pipe 18 Grooved pipe (inner pipe)
19 Grooved tube top 20 O-ring 21 Buffer part 22 Resistor 23 (Fine) groove 24 Thin film 25 Concentrated liquid buffer part 26 V-shaped fine groove 90 Material tank 91 Material adjustment valve 92 Hot water circulation device 93 Heat exchanger 94 Cooling Water circulation device 95 Evaporate tank 96 Concentration line adjustment valve 97 Concentrate tank 98 Vacuum pump

Claims (8)

外管と内管とを有する二重円筒構造であって、円筒軸が鉛直軸方向に配置された液体濃縮器において、前記外管と内管間に加温された流体の流通する円筒空間を形成し、前記内管の内周面に軸方向に延びる多数の溝が形成されており、前記内管の内部に形成された処理空間に一端部が突出し他端部がこの内管から外部に延びる中空の蒸気吐出管を内管下部に配置し、前記内管の上部にこの内管の溝部に被処理液体を供給する供給管を形成し、内管下方であって前記蒸気吐出管が配置された位置とは異なる位置に、分離された濃縮液を排出する濃縮液吐出管を設けたことを特徴とする液体濃縮器。   In a liquid concentrator having a double cylindrical structure having an outer tube and an inner tube, the cylinder axis being arranged in the vertical axis direction, a cylindrical space through which a heated fluid flows between the outer tube and the inner tube A plurality of grooves extending in the axial direction are formed on the inner peripheral surface of the inner tube, and one end protrudes into the processing space formed inside the inner tube and the other end extends from the inner tube to the outside. An extending hollow steam discharge pipe is arranged at the lower part of the inner pipe, and a supply pipe for supplying the liquid to be processed to the groove portion of the inner pipe is formed at the upper part of the inner pipe, and the steam discharge pipe is arranged below the inner pipe. A liquid concentrator comprising a concentrated liquid discharge pipe for discharging the separated concentrated liquid at a position different from the position where the liquid is separated. 前記内管の上端部と嵌合する溝付き管上フタを設け、前記内管の外周部と外管内周間を埋める多数の空隙が形成されたリング状の抵抗体を前記内管の上端部に配置したことを特徴とする請求項1に記載の濃縮器。   Provided with a grooved tube upper lid that fits with the upper end of the inner tube, and a ring-shaped resistor in which a large number of gaps are formed between the outer periphery of the inner tube and the inner periphery of the outer tube. The concentrator according to claim 1, wherein the concentrator is disposed in 前記溝付き管上フタの上面に皿状のバッファ部を形成したことを特徴とする請求項3に記載の液体濃縮器。   4. The liquid concentrator according to claim 3, wherein a dish-shaped buffer portion is formed on the upper surface of the grooved tube upper lid. 前記処理空間を減圧環境下にする真空ポンプを、この液体濃縮器に付設したことを特徴とする請求項2または3に記載の液体濃縮器。   The liquid concentrator according to claim 2 or 3, wherein a vacuum pump for bringing the processing space under a reduced pressure environment is attached to the liquid concentrator. 前記濃縮液吐出管に制御弁を介して濃縮液タンクを接続し、前記蒸気吐出管に熱交換器を介して蒸発液タンクを接続し、前記濃縮液タンクおよび蒸発液タンクの双方が接続される真空ポンプを設けたことを特徴とする請求項2または3に記載の液体濃縮器。   A concentrate tank is connected to the concentrate discharge pipe via a control valve, an evaporation tank is connected to the vapor discharge pipe via a heat exchanger, and both the concentrate tank and the evaporation tank are connected. 4. The liquid concentrator according to claim 2, further comprising a vacuum pump. 前記円筒空間の上部に連通する温水吐出管と前記円筒空間の下部に連通する温水供給管とを設けたことを特徴とする請求項1に記載の液体濃縮器。   The liquid concentrator according to claim 1, further comprising a hot water discharge pipe communicating with an upper portion of the cylindrical space and a hot water supply pipe communicating with a lower portion of the cylindrical space. 液面から揮発成分を蒸発させて濃縮する液体濃縮器において、直径の異なる3本の管を三層に重ねた構造とし、最外層の管と中間層の管の間に円筒空間を形成してこの円筒空間を高温にする加熱流体を導くことを可能にし、中間層の管と最内層の管の間を真空にする真空発生手段を接続し、前記中間層の管の内面には軸方向に延びる微細な溝を多数形成し、この溝を伝わり落ちる薄膜状の液体を低温蒸発させ、発生した蒸気を最内層の管に導いて揮発成分を分離して液体を濃縮することを特徴とする液体濃縮器。   In a liquid concentrator that evaporates and concentrates volatile components from the liquid surface, three tubes with different diameters are stacked in three layers, and a cylindrical space is formed between the outermost tube and the intermediate tube. It is possible to guide the heated fluid that raises the temperature of the cylindrical space, and a vacuum generating means for connecting a vacuum between the intermediate layer tube and the innermost layer tube is connected to the inner surface of the intermediate layer tube in the axial direction. A liquid characterized by forming a large number of fine grooves extending, evaporating the thin-film liquid passing through the grooves at a low temperature, and concentrating the liquid by separating the volatile components by guiding the generated vapor to the innermost tube. Concentrator. 前記中間層の管の上端に被処理液体を受ける溝付き管上フタを配置し、この溝付き管上フタにバッファーとなる皿状の凹みを形成し、前記溝付き管上フタの周囲に多数の空隙が形成された抵抗体を保持し、被処理液体を中間層の管の内周部であって上部に送液し、この中間層の管の内周面に形成した微細な溝に薄膜を形成することを特徴とする請求項7に記載の液体濃縮器。   A grooved tube upper cover for receiving the liquid to be treated is disposed at the upper end of the intermediate layer tube, and a dish-shaped recess serving as a buffer is formed on the grooved tube upper cover. The liquid to be treated is fed to the upper part of the intermediate layer tube and the upper part, and a thin film is formed in a fine groove formed on the inner peripheral surface of the intermediate layer tube. The liquid concentrator according to claim 7, wherein the liquid concentrator is formed.
JP2007056532A 2007-03-07 2007-03-07 Liquid concentrator Active JP4867722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007056532A JP4867722B2 (en) 2007-03-07 2007-03-07 Liquid concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007056532A JP4867722B2 (en) 2007-03-07 2007-03-07 Liquid concentrator

Publications (2)

Publication Number Publication Date
JP2008212884A true JP2008212884A (en) 2008-09-18
JP4867722B2 JP4867722B2 (en) 2012-02-01

Family

ID=39833563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056532A Active JP4867722B2 (en) 2007-03-07 2007-03-07 Liquid concentrator

Country Status (1)

Country Link
JP (1) JP4867722B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118490A (en) * 2010-01-21 2012-06-21 Ricoh Co Ltd Production method of toner and toner obtained by the method
JP2016059883A (en) * 2014-09-18 2016-04-25 中部電力株式会社 Concentration can system
CN106669213A (en) * 2017-02-04 2017-05-17 深圳市三环再生科技有限公司 Waste lubricating oil regeneration pretreatment device and regeneration pretreatment method
CN114586884A (en) * 2022-03-05 2022-06-07 南通福尔生物制品有限公司 Compound concentrator is used in albumen powder production of silkworm chrysalis immune G type protein

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4116209Y1 (en) * 1964-04-09 1966-07-27
JPS4626271Y1 (en) * 1968-11-28 1971-09-09
JPS5253770A (en) * 1975-10-30 1977-04-30 Babcock Hitachi Kk Multiple effect evaorator for making water
JPS55162304A (en) * 1979-06-06 1980-12-17 Asahi Chem Ind Co Ltd Liquid disperser used for vertical thin-film flowing-down type evaporator
JPS61125595A (en) * 1984-11-20 1986-06-13 Furukawa Electric Co Ltd:The Heat transfer tube for boiling and manufacture thereof
JP2000016801A (en) * 1998-07-03 2000-01-18 Ishikawajima Harima Heavy Ind Co Ltd Evaporator for fuel cell
JP2005503915A (en) * 2001-09-27 2005-02-10 ゲーエーアー・ヴィーガント・ゲーエムベーハー An apparatus for flowing and evaporating liquid material and then condensing the vapor formed

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4116209Y1 (en) * 1964-04-09 1966-07-27
JPS4626271Y1 (en) * 1968-11-28 1971-09-09
JPS5253770A (en) * 1975-10-30 1977-04-30 Babcock Hitachi Kk Multiple effect evaorator for making water
JPS55162304A (en) * 1979-06-06 1980-12-17 Asahi Chem Ind Co Ltd Liquid disperser used for vertical thin-film flowing-down type evaporator
JPS61125595A (en) * 1984-11-20 1986-06-13 Furukawa Electric Co Ltd:The Heat transfer tube for boiling and manufacture thereof
JP2000016801A (en) * 1998-07-03 2000-01-18 Ishikawajima Harima Heavy Ind Co Ltd Evaporator for fuel cell
JP2005503915A (en) * 2001-09-27 2005-02-10 ゲーエーアー・ヴィーガント・ゲーエムベーハー An apparatus for flowing and evaporating liquid material and then condensing the vapor formed

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118490A (en) * 2010-01-21 2012-06-21 Ricoh Co Ltd Production method of toner and toner obtained by the method
JP2016059883A (en) * 2014-09-18 2016-04-25 中部電力株式会社 Concentration can system
CN106669213A (en) * 2017-02-04 2017-05-17 深圳市三环再生科技有限公司 Waste lubricating oil regeneration pretreatment device and regeneration pretreatment method
CN114586884A (en) * 2022-03-05 2022-06-07 南通福尔生物制品有限公司 Compound concentrator is used in albumen powder production of silkworm chrysalis immune G type protein
CN114586884B (en) * 2022-03-05 2024-02-13 南通福尔生物制品有限公司 Composite concentration equipment for producing silkworm chrysalis immune G-type protein powder

Also Published As

Publication number Publication date
JP4867722B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4870165B2 (en) Membrane distillation process and membrane distillation apparatus
US20150129410A1 (en) Systems including a condensing apparatus such as a bubble column condenser
JP4715765B2 (en) Liquid concentrating system and liquid concentrator used therefor
CN109420354B (en) Multistage distillation device
JP5186807B2 (en) Liquid concentration system
JP4867722B2 (en) Liquid concentrator
CN110072817B (en) Distillation device with a cartridge and use thereof for distilling water
JP2008290044A5 (en)
US20100072133A1 (en) Dehydrating apparatus, dehydration system, and dehydration method
US20140367244A1 (en) Controlled Thin Film Vapor Generator for Liquid Volume Reduction
US10350508B2 (en) Controlled thin film vapor generator for liquid volume reduction
WO2018082199A1 (en) Gradient sub-boiling distiller
KR101975720B1 (en) Thin film descent evaporation concentrator
US10723634B1 (en) Systems and methods for gas transport desalination
US8871062B2 (en) Falling film evaporator
JP3986983B2 (en) Concentrator
US10507402B2 (en) System for liquid purification
US351795A (en) Vacuum evaporating apparatus
JP2005177535A (en) Concentration method for water-soluble organic substance and concentration device
CN108779005B (en) Hot water purification system and method for operating said system
JP2008045787A (en) Evaporative cooling device
JP2008289984A (en) System and method for concentrating liquid
US11498017B2 (en) Refining system
WO2022075111A1 (en) Vaporization device, gas supply device and control method for gas supply device
KR101576804B1 (en) Hollow fiber module with multiple cooling channels for air gap membrane distillation and apparatus and method for air gap membrane distillation using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350