JP2008211878A - Design method for superconducting cable line and superconducting cable line - Google Patents

Design method for superconducting cable line and superconducting cable line Download PDF

Info

Publication number
JP2008211878A
JP2008211878A JP2007044680A JP2007044680A JP2008211878A JP 2008211878 A JP2008211878 A JP 2008211878A JP 2007044680 A JP2007044680 A JP 2007044680A JP 2007044680 A JP2007044680 A JP 2007044680A JP 2008211878 A JP2008211878 A JP 2008211878A
Authority
JP
Japan
Prior art keywords
case
conductor
connection portion
superconducting
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007044680A
Other languages
Japanese (ja)
Other versions
JP4826797B2 (en
Inventor
Masayuki Hirose
正幸 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007044680A priority Critical patent/JP4826797B2/en
Publication of JP2008211878A publication Critical patent/JP2008211878A/en
Application granted granted Critical
Publication of JP4826797B2 publication Critical patent/JP4826797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting cable line and a design method therefor wherein damage in joints can be reduced and favorable installation workability is achieved. <P>SOLUTION: When coolant is guided into a line L, the amount of movement of each conductor joint of intermediate coupling structure J is determined based on stress generated in the joint by thermal shrinkage in a superconducting cable. It is thereby determined whether or not each joint should be fixed on a case. The amount of movement of each joint is computed on the assumption that all the conductor joints of intermediate coupling structure J contained in the line L are movable relative to the case. Using the results of comparison of the multiple obtained amounts of movement with a threshold value, it is determined whether each conductor joint should be fixed or movable. The number of fixed joints can be reduced by this determination. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超電導ケーブルの超電導導体同士を接続する導体接続部を複数具える超電導ケーブル線路の設計方法、及び超電導ケーブル線路に関する。特に、冷却時に超電導ケーブルが熱収縮することで接続箇所などが移動した際に線路構成部材の損傷を抑制することができ、布設作業性に優れる超電導ケーブル線路の設計方法に関する。   The present invention relates to a design method for a superconducting cable line having a plurality of conductor connection portions for connecting superconducting conductors of a superconducting cable, and a superconducting cable line. In particular, the present invention relates to a design method for a superconducting cable line that can suppress damage to a line constituent member when a connection location or the like moves due to thermal contraction of the superconducting cable during cooling, and is excellent in laying workability.

近年、フォーマと、超電導導体と、電気絶縁層とを具えるケーブルコアを断熱管内に具えた超電導ケーブルが実用されつつある。超電導ケーブルは、断熱管内に充填した冷媒でケーブルコアを冷却し、超電導導体を超電導状態にして電力供給に利用される。   In recent years, a superconducting cable including a cable core including a former, a superconducting conductor, and an electric insulating layer in a heat insulating tube is being put into practical use. A superconducting cable is used for power supply by cooling a cable core with a refrigerant filled in a heat insulating tube and placing the superconducting conductor in a superconducting state.

超電導ケーブルを用いて長距離に亘る電力供給線路を構築する場合、隣り合うケーブル同士を接続する中間接続構造を線路途中に設ける必要がある。中間接続構造は、ケーブルコア同士を接続するケーブル接続部と、この接続部を収納するケースとを具える(特許文献1,2参照)。図6は、ケーブル接続部の概略構成図である。ケーブル接続部140は、接続する一対のケーブルコア101A,101Bにそれぞれ具える超電導導体102A,102B同士を接続する導体接続部120と、導体接続部120の外周に設けられる補強絶縁部130とを具える(特許文献1参照)。導体接続部120は、代表的には、超電導導体102の端部と、超電導導体102の端部同士を接続する接続部材110とを具える。補強絶縁部130は、代表的には、合成紙やクラフト紙といった絶縁材を導体接続部120の外周に巻回して形成する。   When constructing a power supply line over a long distance using a superconducting cable, it is necessary to provide an intermediate connection structure for connecting adjacent cables in the middle of the line. The intermediate connection structure includes a cable connection portion that connects the cable cores and a case that stores the connection portion (see Patent Documents 1 and 2). FIG. 6 is a schematic configuration diagram of the cable connecting portion. The cable connecting portion 140 includes a conductor connecting portion 120 that connects the superconducting conductors 102A and 102B provided to the pair of cable cores 101A and 101B to be connected, and a reinforcing insulating portion 130 that is provided on the outer periphery of the conductor connecting portion 120. (See Patent Document 1). The conductor connecting portion 120 typically includes an end portion of the superconducting conductor 102 and a connecting member 110 that connects the end portions of the superconducting conductor 102 to each other. The reinforcing insulating part 130 is typically formed by winding an insulating material such as synthetic paper or kraft paper around the outer periphery of the conductor connecting part 120.

ケーブルコア、特に、フォーマや超電導導体といった金属含有部材は、液体窒素といった冷媒により冷却されると、最大で0.3%程度熱収縮する。この熱収縮により、超電導導体に繋がる導体接続部が移動しようとする。特許文献1に記載の中間接続構造は、この移動によりケースに対する導体接続部の位置がずれないようにするために、導体接続部をケースに固定する構成である。一方、特許文献2に記載の中間接続構造は、ケース内を摺動できる保持具によりケーブルコアを支持し、かつケーブル接続部をケースに固定しない構成である。この構成により、導体接続部は、超電導ケーブルの冷却時の熱収縮に伴ってケース内を移動できる。   The cable core, particularly metal-containing members such as formers and superconducting conductors, when cooled by a refrigerant such as liquid nitrogen, thermally contracts by a maximum of about 0.3%. Due to this heat shrinkage, the conductor connecting portion connected to the superconducting conductor tends to move. The intermediate connection structure described in Patent Document 1 has a configuration in which the conductor connection portion is fixed to the case so that the position of the conductor connection portion with respect to the case does not shift due to this movement. On the other hand, the intermediate connection structure described in Patent Document 2 has a configuration in which the cable core is supported by a holder that can slide in the case, and the cable connection portion is not fixed to the case. With this configuration, the conductor connecting portion can move in the case with heat shrinkage during cooling of the superconducting cable.

特開2005-210834号公報JP 2005-210834 A 特開2005-32698号公報JP 2005-32698 A

長距離の超電導ケーブル線路には、複数の中間接続構造の構築が必要である。しかし、従来、複数の中間接続構造を具える線路を構築するための設計手法が十分に検討されていない。特許文献1,2は、中間接続構造の具体的な構成を開示しているものの、複数の中間接続構造を具える線路を構築する場合に各中間接続構造をそれぞれどのような構成にするかを検討していない。   For long-distance superconducting cable lines, it is necessary to construct a plurality of intermediate connection structures. However, conventionally, a design technique for constructing a track having a plurality of intermediate connection structures has not been sufficiently studied. Although Patent Documents 1 and 2 disclose a specific configuration of the intermediate connection structure, when constructing a track having a plurality of intermediate connection structures, the configuration of each intermediate connection structure is described. Not considering.

例えば、線路に具える全ての中間接続構造を特許文献1に記載されるような構成、即ち、導体接続部をケースに固定する構成(以下、この構成を固定構造と呼ぶ)とすることが考えられる。或いは、全ての中間接続構造を特許文献2に記載されるような構成、即ち、導体接続部をケースに固定しない構成(以下、この構成を可動構造と呼ぶ)とすることが考えられる。   For example, all the intermediate connection structures provided in the track may be configured as described in Patent Document 1, that is, a configuration in which the conductor connection portion is fixed to the case (hereinafter, this configuration is referred to as a fixed structure). It is done. Alternatively, all the intermediate connection structures may be configured as described in Patent Document 2, that is, a configuration in which the conductor connection portion is not fixed to the case (hereinafter, this configuration is referred to as a movable structure).

可動構造は、固定構造よりも比較的簡易な構成であり、比較的短時間で組み立てられることから、布設作業性に優れる。しかし、線路に設ける全ての中間接続構造を可動構造とすると、超電導ケーブルの冷却時の熱収縮により、必要以上に大きく移動する導体接続部が生じる恐れがある。導体接続部が大きく移動すると、その外周に設けられた補強絶縁部などが損傷する可能性がある。特に、電気性能の劣化を招くような大きな損傷を生じる可能性もある。   The movable structure has a relatively simple structure as compared with the fixed structure, and is assembled in a relatively short time. However, if all the intermediate connection structures provided on the track are movable structures, there is a possibility that a conductor connection part that moves more than necessary may be generated due to thermal contraction during cooling of the superconducting cable. If the conductor connecting portion moves greatly, there is a possibility that the reinforcing insulating portion provided on the outer periphery thereof will be damaged. In particular, there is a possibility of causing great damage that causes deterioration of electrical performance.

図6に示すケーブル接続部140のように、合成紙や絶縁紙などの絶縁材を導体接続部120の外周に巻回してなる補強絶縁部130は、超電導ケーブルの冷却時の熱収縮に伴う導体接続部120の移動に追従し難い。そのため、導体接続部120が移動することで、特に、超電導導体102と補強絶縁部130との境界近傍(図6中、破線の小丸印で示す箇所)やケーブルコア101(電気絶縁層)と補強絶縁部130との境界近傍(図6中、破線の大丸印で示す箇所)で補強絶縁部130がずれたりして損傷し、電気絶縁性能が劣化する恐れがある。   Like the cable connection part 140 shown in FIG. 6, the reinforced insulation part 130 formed by winding an insulating material such as synthetic paper or insulating paper around the outer periphery of the conductor connection part 120 is a conductor due to thermal contraction during cooling of the superconducting cable. It is difficult to follow the movement of the connecting part 120. Therefore, when the conductor connecting part 120 moves, in particular, the vicinity of the boundary between the superconducting conductor 102 and the reinforcing insulating part 130 (the part indicated by a small circle in the broken line in FIG. 6) and the cable core 101 (electrical insulating layer) and the reinforcing There is a risk that the reinforcing insulating portion 130 may be displaced and damaged near the boundary with the insulating portion 130 (a portion indicated by a broken large circle in FIG. 6) to deteriorate the electrical insulating performance.

特に、線路全体を冷却する時間を短縮するために冷却速度を大きくする場合、冷媒の導入側と未導入側との温度勾配が大きくなることから、大きく移動する導体接続部が生じ易く、接続箇所を損傷する可能性が高くなる。このような損傷を防止するために導体接続部の移動量を低減する、或いは導体接続部を実質的に移動しないように冷却速度を小さくすると、線路全体を冷却するまでに非常に時間が掛かり、現実的には難しい。   In particular, when the cooling rate is increased in order to shorten the time for cooling the entire track, the temperature gradient between the refrigerant introduction side and the non-introduction side becomes large, so that a conductor connection portion that moves greatly is likely to occur. The possibility of damage is increased. To reduce the amount of movement of the conductor connection part to prevent such damage, or to reduce the cooling rate so as not to substantially move the conductor connection part, it takes a very long time to cool the entire line, Realistically difficult.

仮に補強絶縁部などが導体接続部の移動に追従してずれなどが生じなくても、導体接続部の移動量が大きいと、ケーブル接続部がケースに当たって損傷する恐れがある。ケースを大きくすればケーブル接続部がケースに当たることを防止できるが、ケースは、マンホールなどの大きさが限られた箇所に設置されることがあり、このような場合、大型なケースは好ましくない。   Even if the reinforcing insulation portion or the like follows the movement of the conductor connection portion and does not shift, if the movement amount of the conductor connection portion is large, the cable connection portion may hit the case and be damaged. If the case is enlarged, the cable connection portion can be prevented from hitting the case, but the case may be installed in a place with a limited size such as a manhole. In such a case, a large case is not preferable.

ここで、断熱管にケーブルコアを複数条具える多心超電導ケーブルでは、熱収縮代を有するようにコアを撓ませて撚り合わせることで、ケーブルの冷却時の熱収縮に伴う導体接続部の移動量を低減できる。そのため、線路の全ての中間接続構造を可動構造としても、接続箇所の損傷を抑制できる可能性がある。しかし、断熱管内にケーブルコアを1条具える単心超電導ケーブルでは、撚り合わせにより熱収縮代を採れない。そのため、線路の全ての中間接続構造を可動構造とすると、移動量が大きな中間接続構造が生じて、接続箇所が損傷したりケースに当たる恐れがある。   Here, in a multi-core superconducting cable having a plurality of cable cores in a heat insulating tube, the conductor connection part moves due to thermal contraction during cooling of the cable by bending and twisting the core so as to have a heat contraction allowance. The amount can be reduced. Therefore, even if all the intermediate connection structures of the track are movable structures, there is a possibility that damage to the connection points can be suppressed. However, a single core superconducting cable with one cable core in a heat insulating tube cannot take heat shrinkage by twisting. Therefore, if all the intermediate connection structures of the track are movable structures, an intermediate connection structure with a large amount of movement is generated, and there is a risk that the connection location may be damaged or hit the case.

一方、固定構造は、超電導ケーブルの冷却時の熱収縮に伴う導体接続部の移動が規制されることから、上述のような補強絶縁部の損傷などの問題が生じない。しかし、固定構造は、可動構造よりも比較的複雑であり、組立に時間が掛かるため、数が多いと布設作業性の低下を招く。   On the other hand, since the fixed structure restricts the movement of the conductor connection portion due to the thermal contraction during cooling of the superconducting cable, the above-described problem such as damage to the reinforcing insulating portion does not occur. However, the fixed structure is relatively more complicated than the movable structure, and it takes time to assemble. Therefore, if the number is large, the laying workability is deteriorated.

以上から、複数の中間接続構造を具える線路を構築するにあたり、線路全体としての布設作業性と、冷却時の熱収縮に伴う移動による線路構成部材の損傷の低減とを考慮した線路の設計方法を開発することが望まれる。   From the above, in constructing a track having a plurality of intermediate connection structures, a track design method that takes into account the installation workability of the entire track and the reduction of damage to the track components due to movement caused by thermal contraction during cooling It is desirable to develop.

そこで、本発明の目的の一つは、複数の中間接続構造を具える超電導ケーブル線路において、布設作業性に優れ、線路構成部材の損傷を低減することができる線路の設計方法を提供することにある。また、本発明の他の目的は、上記設計方法に基づき構築した超電導ケーブル線路を提供することにある。   Accordingly, one of the objects of the present invention is to provide a line design method that is excellent in laying workability and can reduce damage to line components in a superconducting cable line having a plurality of intermediate connection structures. is there. Another object of the present invention is to provide a superconducting cable line constructed based on the above design method.

本発明超電導ケーブル線路の設計方法は、超電導ケーブルの冷却時の熱収縮に伴って導体接続部に生じる応力に基づいて、固定構造の最小数を決定することで上記目的を達成する。   The design method of the superconducting cable line according to the present invention achieves the above-mentioned object by determining the minimum number of the fixing structures based on the stress generated in the conductor connecting portion due to the thermal contraction during cooling of the superconducting cable.

具体的には、本発明超電導ケーブル線路の設計方法は、冷媒によって冷却される超電導導体を有する複数の超電導ケーブルと、隣接するケーブルの超電導導体同士を接続する複数の導体接続部と、各導体接続部を収納する複数のケースとを具える線路を設計する設計方法であり、以下の工程を具える。
1. 各導体接続部がそれぞれケースに対して相対的に移動可能な状態と仮定した場合に、冷却により超電導ケーブルが熱収縮する際に各導体接続部が移動する移動量を演算する工程。
上記各導体接続部の移動量の演算は、当該線路への冷媒の導入方向に応じて各接続部に生じる応力に基づいて行う。
2. 得られた複数の移動量と閾値との比較結果を利用して、各導体接続部を固定接続部とするか移動接続部とするかを決定する工程。
上記固定接続部は、冷却により超電導ケーブルが熱収縮する際、ケースに対して相対的に移動不可能にケースに固定される導体接続部とし、上記移動接続部は、冷却により超電導ケーブルが熱収縮する際、ケースに対して相対的に移動可能にケースに収納される導体接続部とする。
Specifically, the design method of the superconducting cable line of the present invention includes a plurality of superconducting cables having superconducting conductors cooled by a refrigerant, a plurality of conductor connecting portions connecting the superconducting conductors of adjacent cables, and each conductor connection. This is a design method for designing a track including a plurality of cases that house a section, and includes the following steps.
1. A step of calculating the amount of movement of each conductor connecting portion when the superconducting cable is thermally contracted by cooling, assuming that each conductor connecting portion is movable relative to the case.
The calculation of the amount of movement of each conductor connecting portion is performed based on the stress generated in each connecting portion according to the direction in which the refrigerant is introduced into the line.
2. A step of determining whether each conductor connection portion is a fixed connection portion or a movement connection portion by using a comparison result between the obtained plurality of movement amounts and a threshold value.
When the superconducting cable is thermally contracted by cooling, the fixed connecting part is a conductor connecting part that is fixed to the case so that the superconducting cable cannot be moved relative to the case. In this case, the conductor connecting portion is accommodated in the case so as to be movable relative to the case.

本発明設計方法は、当該線路に冷媒を導入した際、超電導ケーブルが冷却されて熱収縮するときに各導体接続部に生じる応力に基づいて各接続部の移動量を算出し、得られた各移動量と閾値との比較により、各接続部をそれぞれケースに固定するか固定しないかを決定する。この構成により、本発明設計方法は、線路に具える複数の中間接続構造において、比較的組立に時間がかかる構造、即ち導体接続部をケースに固定する構造の数を低減できる。かつ、本発明設計方法は、上記移動量を閾値と比較することで、移動量が大きいと思われる導体接続部を固定接続部に選別し易く、接続部の移動に伴う補強絶縁部の損傷などを抑制できる。従って、本発明設計方法を利用することで、線路の布設作業性に優れ、かつ線路構成部材の損傷による電気性能の劣化を低減し、電気性能に優れる超電導ケーブル線路を提供することができる。以下、本発明をより詳しく説明する。   The design method of the present invention calculates the amount of movement of each connecting portion based on the stress generated in each conductor connecting portion when the superconducting cable is cooled and thermally contracted when the refrigerant is introduced into the line. By comparing the movement amount and the threshold value, it is determined whether each connection portion is fixed to the case or not. With this configuration, the design method of the present invention can reduce the number of structures that take a relatively long time to assemble, that is, the structure that fixes the conductor connection portion to the case, in the plurality of intermediate connection structures provided in the track. In addition, the design method of the present invention makes it easy to sort the conductor connection portion that is considered to have a large movement amount into a fixed connection portion by comparing the movement amount with a threshold value, and damage of the reinforcing insulating portion due to the movement of the connection portion. Can be suppressed. Therefore, by using the design method of the present invention, it is possible to provide a superconducting cable line that is excellent in the laying workability of the line, reduces the deterioration of the electric performance due to the damage of the line constituting member, and is excellent in the electric performance. Hereinafter, the present invention will be described in more detail.

本発明設計方法は、超電導ケーブル及び導体接続部を収納するケースの設置位置及び数が予め決められた状態で、即ち、線路の概略形状が決められた状態で、個々の接続部を移動接続部にするか固定接続部にするかを決定する。従って、本発明設計方法を利用するにあたり、予め、線路を構築する現場の地理的状況(布設レイアウト)に応じて、線路を構築する経路(ルート)を決定しておく。そして、経路に則って、線路に利用する超電導ケーブルの長さや数、ケースの数、及びこれらの設置位置を決定して、線路の概略形状を形成しておく。   In the design method of the present invention, each connection portion is moved and connected in a state where the installation position and number of cases for housing the superconducting cable and the conductor connection portion are determined in advance, that is, in a state where the schematic shape of the line is determined. Or a fixed connection. Therefore, when using the design method of the present invention, the route (route) for constructing the track is determined in advance according to the geographical situation (laying layout) of the site for constructing the track. Then, in accordance with the route, the length and number of superconducting cables used for the line, the number of cases, and the installation positions thereof are determined to form a schematic shape of the line.

そして、線路中に具える各導体接続部をそれぞれ移動接続部及び固定接続部のいずれにするかの決定は、超電導ケーブルが主に冷却時に熱収縮する際に各接続部が移動するときの移動量、特に、ケーブルの長手方向の移動量を求め、この移動量を用いて行う。この移動量は、線路に冷媒を導入する方向により変化する。例えば、超電導ケーブル線路の一端側から冷媒を導入して冷却していく場合、一端側(導入側)と他端側との間で温度勾配が生じ、冷媒で先に冷却される導入側が他端側よりも先に収縮する。このとき、導体接続部は、先に収縮する導入側に引っ張られるように移動する。そして、温度差が大きな箇所に位置する導体接続部は、移動量が大きくなる。このように冷媒の導入方向によって、導体接続部の挙動が異なり、移動量も変化する。そこで、本発明設計方法は、線路に冷媒を導入する方向を考慮して移動量を求める。   The determination of whether each conductor connection provided in the line is either a moving connection or a fixed connection is determined by the movement of each connection when the superconducting cable is thermally contracted mainly during cooling. The amount, in particular, the amount of movement in the longitudinal direction of the cable is obtained, and this amount of movement is used. The amount of movement varies depending on the direction in which the refrigerant is introduced into the track. For example, when cooling is performed by introducing a refrigerant from one end side of the superconducting cable line, a temperature gradient occurs between one end side (introduction side) and the other end side, and the introduction side cooled first by the refrigerant is the other end Shrinks before the side. At this time, the conductor connection portion moves so as to be pulled toward the introduction side that contracts first. And the conductor connection part located in a location with a large temperature difference becomes large. In this way, the behavior of the conductor connecting portion varies depending on the direction of introduction of the refrigerant, and the amount of movement also changes. Therefore, the design method of the present invention determines the amount of movement in consideration of the direction in which the refrigerant is introduced into the track.

また、移動量は、布設レイアウトによっても変化する。例えば、線路のルートプロフィールには、曲がり箇所や高低差など様々な状態が考えられる。一般に、電力ケーブルの曲がり箇所近傍は、熱収縮などでの移動が大きく、電力ケーブルに高低差のある場合は、重力によって高所側部分が低所側に向かって滑落しようとする。このようにルートプロフィールによっても移動量が変化することから、上記冷媒の導入方向に加えて、ルートプロフィールに基づく布設レイアウトをも考慮して移動量を求めることが好ましい。具体的には、布設レイアウトに依存する物性値、例えば、ケーブルの曲がり部分の曲率、重力などを考慮して、移動量を求める。更に、移動量の演算は、超電導ケーブルの仕様、特にケーブルコアと断熱管との摩擦や、ケースや導体接続部といった中間接続構造の仕様などといった設計条件を考慮して行うことが好ましい。   The amount of movement also varies depending on the laying layout. For example, the route profile of the track may have various states such as a bent part and a height difference. Generally, the vicinity of the bent portion of the power cable is largely moved due to heat shrinkage or the like, and when there is a difference in height between the power cables, the high-side portion tends to slide down toward the low-side due to gravity. Since the amount of movement also varies depending on the route profile in this way, it is preferable to obtain the amount of movement in consideration of the laying layout based on the route profile in addition to the refrigerant introduction direction. Specifically, the amount of movement is determined in consideration of physical property values that depend on the laying layout, for example, the curvature of the bent portion of the cable, gravity, and the like. Furthermore, it is preferable to calculate the amount of movement in consideration of design conditions such as the specifications of the superconducting cable, particularly the friction between the cable core and the heat insulating tube, and the specifications of the intermediate connection structure such as the case and the conductor connection portion.

本発明設計方法の詳しい手順は後述し、概要を以下に述べる。
まず、各導体接続部の移動量をそれぞれ演算する。
線路に設ける全ての導体接続部を固定接続部と仮定すると、各接続部はそれぞれ、超電導ケーブルの冷却時の熱収縮に伴う移動が規制される。そのため、各導体接続部にはそれぞれ上記熱収縮に伴う応力が生じる。この応力は、冷却時の温度変化の大きさに応じて異なり、演算により求められる。そして、全ての導体接続部を移動接続部と仮定して、各導体接続部に加わる応力を解放した場合の移動量も演算により求められる。
Detailed procedures of the design method of the present invention will be described later, and an outline will be described below.
First, the amount of movement of each conductor connection portion is calculated.
Assuming that all conductor connection portions provided on the track are fixed connection portions, movement of each connection portion due to thermal contraction during cooling of the superconducting cable is restricted. Therefore, the stress accompanying the said heat contraction arises in each conductor connection part, respectively. This stress varies depending on the magnitude of temperature change during cooling, and is obtained by calculation. Then, assuming that all the conductor connection portions are moving connection portions, the amount of movement when the stress applied to each conductor connection portion is released is also obtained by calculation.

次に、得られた移動量を利用して、固定接続部か移動接続部かの決定を行う。
得られた移動量が許容範囲内であれば、この導体接続部は、ケースに対して相対的に移動可能にケースに収納しても性能劣化の恐れが少なく、許容範囲外であれば、ケースに対して相対的に移動不可能にケースに固定することが望まれる。そこで、本発明設計方法は、得られた移動量と閾値とを比較し、この比較結果を用いて、固定接続部か移動接続部かを決定する。例えば、閾値未満のとき、その導体接続部を移動接続部とし、閾値以上のとき、固定接続部と決定する。閾値は、ケースの大きさなどを考慮して予め設定する。
Next, using the obtained movement amount, it is determined whether it is a fixed connection part or a mobile connection part.
If the obtained amount of movement is within the allowable range, this conductor connection part is less likely to deteriorate in performance even when housed in the case so that it can be moved relative to the case. It is desirable to fix it to the case so that it cannot move relatively. Therefore, the design method of the present invention compares the obtained movement amount with a threshold value, and uses this comparison result to determine whether it is a fixed connection portion or a movement connection portion. For example, when it is less than the threshold value, the conductor connection portion is determined as a moving connection portion, and when it is equal to or greater than the threshold value, it is determined as a fixed connection portion. The threshold is set in advance in consideration of the case size and the like.

具体的には、移動量が最も大きい導体接続部を移動接続部及び固定接続部のいずれかを判定する。移動量が最大の導体接続部が移動接続部と判定された場合、その他の全ての導体接続部も移動接続部としても損傷などの問題がないと考えられる。従って、この場合、線路に具える全ての導体接続部を移動接続部に決定する。一方、移動量が最大の導体接続部が固定接続部と判定された場合、次に、この固定接続部が存在する状態の線路を仮定し、この固定接続部を除く各導体接続部の移動量を改めて演算し、同様に移動量が最大の導体接続部について移動接続部か固定接続部かの判定を行う。このように固定接続部を一つ決定したら、順次移動か固定かの判定を行う。そして、移動量が最大の導体接続部が移動接続部と判定されるまで、固定接続部の選別を繰り返し行う。このような判定を行うことで、本発明設計方法は、効率よく固定接続部を選別し、固定接続部の数を低減することができる。   Specifically, the conductor connection part having the largest movement amount is determined as one of the movement connection part and the fixed connection part. When the conductor connection portion having the maximum movement amount is determined to be the movement connection portion, it is considered that there is no problem such as damage even if all other conductor connection portions are also movement connection portions. Therefore, in this case, all the conductor connection portions included in the track are determined as the moving connection portions. On the other hand, if it is determined that the conductor connection portion having the maximum movement amount is a fixed connection portion, then, assuming a line in a state where this fixed connection portion exists, the movement amount of each conductor connection portion excluding this fixed connection portion Similarly, it is determined whether the conductor connection portion having the largest movement amount is the moving connection portion or the fixed connection portion. When one fixed connection portion is determined in this way, it is determined whether it is sequentially moved or fixed. The selection of the fixed connection portion is repeated until the conductor connection portion having the maximum movement amount is determined to be the movement connection portion. By making such a determination, the design method of the present invention can efficiently sort out the fixed connection portions and reduce the number of fixed connection portions.

なお、各移動量と閾値とをそれぞれ比較し、移動量が閾値以上である全ての導体接続部を固定接続部としてもよい。この場合、固定接続部の数が多くなるものの、接続箇所の損傷を確実に防止することができる。   In addition, it is good also considering each movement amount and a threshold value as a fixed connection part by comparing each movement amount and a movement amount more than a threshold value. In this case, although the number of fixed connection portions increases, damage to the connection portion can be reliably prevented.

固定接続部の決定により、その設置位置が自動的に決定されるが、移動量が大きくケースへの固定が望まれる場合でも、布設レイアウトによっては固定接続部の構築が難しいことが考えられる。例えば、導体接続部を固定するケースの布設スペースや施工スペースが設置位置に十分に無い場合が考えられる。このような場合、当該固定接続部の近傍の導体接続部を固定接続部にしてもよい。また、高所と低所との双方に固定接続部を具える線路の場合、冷却時の熱収縮に伴う移動量が少なくても高所側の導体接続部を固定接続部とすれば、高所側の導体接続部が重力により低所側に落下することを防止し易い。このように冷却時の熱収縮に伴う移動だけでなく、布設レイアウトをも加味することで、良好な布設作業性や接続箇所の損傷低減をより確実に図ることができる。   Although the installation position is automatically determined by the determination of the fixed connection portion, it may be difficult to construct the fixed connection portion depending on the laying layout even when the movement amount is large and the fixing to the case is desired. For example, there may be a case where there is not enough installation space or construction space for the case for fixing the conductor connection portion. In such a case, the conductor connection portion in the vicinity of the fixed connection portion may be a fixed connection portion. Also, in the case of a track with fixed connection parts at both high and low places, even if the amount of movement due to heat shrinkage during cooling is small, if the high-side conductor connection part is used as a fixed connection part, It is easy to prevent the conductor connection part on the side from falling to the low side due to gravity. Thus, not only the movement accompanying the thermal contraction at the time of cooling but also the laying layout can be taken into consideration, so that a favorable laying workability and a reduction in damage to the connected portion can be more reliably achieved.

本発明設計方法により構築された線路に具える各導体接続部は、固定接続部及び移動接続部の少なくとも一方である。即ち、本発明線路は、冷媒によって冷却される超電導導体を有する複数の超電導ケーブルと、隣接するケーブルの超電導導体同士を接続する複数の導体接続部と、各導体接続部を収納する複数のケースとを具える線路であり、固定接続部と移動接続部とが混在する線路である。なお、本発明設計方法により形成された線路は、全ての導体接続部が移動接続部である線路或いは固定接続部である場合を許容する。   Each conductor connecting portion provided in the track constructed by the designing method of the present invention is at least one of a fixed connecting portion and a moving connecting portion. That is, the track according to the present invention includes a plurality of superconducting cables having superconducting conductors cooled by a refrigerant, a plurality of conductor connecting portions that connect the superconducting conductors of adjacent cables, and a plurality of cases that store the conductor connecting portions. The track includes a fixed connection portion and a movable connection portion. In addition, the line formed by the design method of the present invention allows the case where all the conductor connection parts are lines or fixed connection parts which are moving connection parts.

超電導ケーブルは、例えば、Bi系酸化物超電導材料といった超電導材料からなる超電導導体と、その外周に設けられる電気絶縁層とを具えるケーブルコアを断熱管内に収納した構成が代表的である。ケーブルコアは、単心でも複数心でもよい。複数心のケーブルコアを具える多心ケーブルは、コアを撚り合わせることで各コアが曲がりを有し、この曲がった状態で断熱管に収納される。このため、各ケーブルコアは、冷却による熱収縮時、断熱管との間の摩擦によりケーブルの長手方向の移動がある程度抑制されることで、接続箇所の損傷が生じ難くなる。特に、ケーブルコアを撓ませて、この撓みを熱収縮の吸収代とすると、冷却による熱収縮時、ケーブルコアがケーブルの長手方向に移動することをより規制できる。これに対し、単心のケーブルコアを具える単心ケーブルでは、撚り合わせられないため、例えば、断熱管内で曲がりを有するように(スネーク状に)断熱管内に収納させることが考えられる。しかし、供給電力の容量の増大に伴い、導体径が大きくなると、スネーク状の収納では、十分な吸収代を有することが難しい。そのため、単心超電導ケーブル線路では、固定接続部が必須となることから、本発明線路の設計方法は、特に、単心ケーブルを具える線路に有用である。   The superconducting cable typically has a configuration in which a cable core including a superconducting conductor made of a superconducting material such as a Bi-based oxide superconducting material and an electric insulating layer provided on the outer periphery thereof is housed in a heat insulating tube. The cable core may be a single core or a plurality of cores. In a multi-core cable including a plurality of cable cores, the cores are bent by twisting the cores, and the bent cores are accommodated in the heat-insulated pipe. For this reason, at the time of thermal contraction due to cooling, each cable core is restrained from moving in the longitudinal direction of the cable to some extent due to friction with the heat insulating tube, so that it is difficult for damage to the connection portion. In particular, if the cable core is bent and this bending is used as the heat shrinkage absorption allowance, the cable core can be further restricted from moving in the longitudinal direction of the cable during the heat shrinkage due to cooling. On the other hand, since a single-core cable having a single-core cable core cannot be twisted together, for example, it can be considered to be accommodated (in a snake shape) in the heat insulation pipe so as to have a bend in the heat insulation pipe. However, if the conductor diameter increases with an increase in the capacity of the supplied power, it is difficult to have a sufficient absorption margin in the snake-like storage. For this reason, in a single-core superconducting cable line, a fixed connection portion is essential, and the line design method of the present invention is particularly useful for a line including a single-core cable.

導体接続部は、超電導ケーブルの端部から引き出したケーブルコアの端部を段剥ぎして超電導導体を露出し、接続部材を用いて超電導導体の端部同士を接続して構築する。この外周に設けられる補強絶縁部は、エポキシユニットといった樹脂の一体成形体からなる固体絶縁部を利用したり、合成紙やクラフト紙といった絶縁材を導体接続部の外周に巻回してなる積層絶縁部を利用したり、双方を組み合わせた構成を利用することができる。一体成形体は、接続部材に予め一体に設けておくと、導体接続部の組立作業性に優れる。   The conductor connecting portion is constructed by stepping off the end portion of the cable core drawn from the end portion of the superconducting cable to expose the superconducting conductor, and connecting the end portions of the superconducting conductors using a connecting member. The reinforcing insulation provided on the outer periphery uses a solid insulation made of an integrally molded resin such as an epoxy unit, or a laminated insulation formed by winding an insulating material such as synthetic paper or kraft paper around the conductor connection. Can be used, or a combination of both can be used. When the integrally formed body is provided integrally with the connection member in advance, the assembly workability of the conductor connection portion is excellent.

ケーブルコアを収納する断熱管や導体接続部を収納するケースは、冷媒が充填される内管又は内ケースと、その外周を覆う外管又は外ケースとを具える二重構造のものが挙げられる。内外管又は内外ケース間は、断熱材を配置したり、真空にして断熱構造とする。冷媒は、例えば、液体窒素が挙げられる。   Examples of the case for accommodating the heat insulating tube for storing the cable core and the conductor connecting portion include a double structure having an inner tube or inner case filled with a refrigerant and an outer tube or outer case covering the outer periphery thereof. . Between the inner and outer pipes or the inner and outer cases, a heat insulating material is arranged or a vacuum is formed to provide a heat insulating structure. An example of the refrigerant is liquid nitrogen.

移動接続部は、超電導ケーブルが冷却により熱収縮する際、ケースに対して相対的に移動できるように収納する。例えば、ケース内を摺動可能な保持具であって、超電導ケーブルの長手方向に移動できるものでケーブルコアや導体接続部を支持することで、導体接続部は、ケース内をケーブルの長手方向に移動できる。このとき、ケースは、大地に固定させてもよいし、ケース自体が実質的に移動しない場合、例えば、ケースが水平な箇所に設置される場合などでは、大地に固定させなくてもよく、単に大地に置くだけでもよい。ケースの設置箇所の状態に応じて、ケース自体の大地への固定、非固定を決定することができる。   The moving connection portion is accommodated so that it can move relative to the case when the superconducting cable is thermally contracted by cooling. For example, a holder that is slidable in the case and can move in the longitudinal direction of the superconducting cable, and supports the cable core and the conductor connecting portion. Can move. At this time, the case may be fixed to the ground, or when the case itself does not move substantially, for example, when the case is installed in a horizontal place, it may not be fixed to the ground. You can just place it on the ground. Whether the case itself is fixed to the ground or not can be determined according to the state of the case installation location.

固定接続部は、超電導ケーブルの冷却による熱収縮時、当該ケースに対して相対的に移動できないように収納する。例えば、導体接続部をケースに固定して移動できないようにする。具体的には、導体接続部の外周に設けられた上述の固体絶縁部や積層絶縁部といった補強絶縁部をケースに固定することが挙げられる。固体絶縁部は、それ自体が強度に優れるため、ケースに直接固定してもよい。例えば、固体絶縁部を保持する保持部材をケースに固定し、この保持部材に固体絶縁部を固定することで、固体絶縁部をケースに固定する。積層絶縁部は、固体絶縁部よりも強度が弱いため、ケースに直接固定すると損傷する恐れがある。そこで、積層絶縁部の外周にステンレスやFRPといった強度に優れる材料で構成した補強支持部を設けておき、この補強支持部をケースに固定する。ケースには、補強支持部を固定するための支持片を設けておく。保持部材や支持片は、導体接続部が移動しようとする際の力に十分耐え得る強度を有するように構成する。例えば、ステンレスやFRPで構成する。また、保持部材や支持片は、ケースに一体に形成してもよい。   The fixed connection portion is accommodated so as not to move relative to the case when the superconducting cable is thermally contracted by cooling. For example, the conductor connection portion is fixed to the case so that it cannot be moved. Specifically, it is possible to fix a reinforcing insulating part such as the above-described solid insulating part or laminated insulating part provided on the outer periphery of the conductor connecting part to the case. Since the solid insulating part itself is excellent in strength, it may be directly fixed to the case. For example, the solid insulating part is fixed to the case by fixing the holding member holding the solid insulating part to the case and fixing the solid insulating part to the holding member. Since the laminated insulating portion is weaker than the solid insulating portion, there is a risk of damage if fixed directly to the case. Therefore, a reinforcing support portion made of a material having excellent strength such as stainless steel or FRP is provided on the outer periphery of the laminated insulating portion, and the reinforcing support portion is fixed to the case. A support piece for fixing the reinforcing support portion is provided in the case. The holding member and the support piece are configured to have a strength that can sufficiently withstand the force when the conductor connection portion is about to move. For example, it is made of stainless steel or FRP. Further, the holding member and the support piece may be formed integrally with the case.

保持部材や支持片は、ケース内の冷媒の流通を妨げない構成とすることができる。例えば、保持部材は、流通孔を有する板状材としたり、複数の支持片を支持片間に隙間ができるようにケース内に配置し、これら隙間を冷媒の流通に利用することが挙げられる。   A holding member and a support piece can be set as the structure which does not prevent the distribution | circulation of the refrigerant | coolant in a case. For example, the holding member may be a plate-like material having a circulation hole, or a plurality of support pieces may be arranged in the case so that gaps are formed between the support pieces, and these gaps may be used for refrigerant circulation.

或いは、保持部材は、ケース内の冷媒を流通させない構成とすることができる。ここで、複数のケースを具えた線路において、冷媒を供給する区間(以下、冷媒区間と呼ぶ)を一つにする、つまり、線路の一端側から冷媒を導入し、超電導ケーブルやケースを経て、他端側から冷媒を排出する構成を考える。このとき、線路の一部、特に、導入側近傍には、所望の冷却能力を持つ冷媒が供給されても、線路の他部、特に、排出側近傍には、高い冷却能力を持つ冷媒が十分に供給されない恐れがある。長尺な線路では、ケースや断熱管とケーブルコアなどとの摩擦による流通圧力の低下、侵入熱による冷媒温度の上昇などにより、所望の冷却能力を持つ冷媒が流通され難くなる。このような線路では、一つの線路において冷媒区間を複数に区切ることが望まれる。そこで、このような線路には冷媒区間の区切りを少なくとも一つ設け、冷媒区間を複数にする。例えば、保持部材を、流通孔を有さない板状材とし、この部材を冷媒の流通を遮る仕切部に利用することで冷媒区間を区切ることができる。   Or a holding member can be set as the structure which does not distribute | circulate the refrigerant | coolant in a case. Here, in the line having a plurality of cases, the section for supplying the refrigerant (hereinafter referred to as the refrigerant section) is made one, that is, the refrigerant is introduced from one end side of the line, through the superconducting cable and the case, Consider a configuration in which the refrigerant is discharged from the other end side. At this time, even if a coolant having a desired cooling capacity is supplied to a part of the line, particularly in the vicinity of the introduction side, a refrigerant having a high cooling capacity is sufficient in the other part of the line, particularly in the vicinity of the discharge side. There is a risk that it will not be supplied to. In a long line, a refrigerant having a desired cooling capacity is difficult to be circulated due to a decrease in circulation pressure due to friction between the case, the heat insulating pipe and the cable core, an increase in refrigerant temperature due to intrusion heat, and the like. In such a line, it is desirable to divide the refrigerant section into a plurality of lines in one line. Therefore, at least one refrigerant section is provided on such a track, and a plurality of refrigerant sections are provided. For example, a refrigerant | coolant area can be divided by making a holding member into the plate-shaped material which does not have a flow hole, and utilizing this member for the partition part which interrupts | blocks the distribution | circulation of a refrigerant | coolant.

なお、積層絶縁部は、冷媒が浸漬するのに対し、固体絶縁部は、冷媒が浸漬しない。そのため、固体絶縁部を有する導体接続部を収納するケースに冷媒区間の区切りを設ける場合、冷媒の流通を完全に分断することができ、各区間の冷媒の圧力を調整し易い。従って、冷媒区間の区切りは、固体絶縁部を有する導体接続部を収納するケースに適用することが好ましい。   The laminated insulating part is immersed in the refrigerant, whereas the solid insulating part is not immersed in the refrigerant. For this reason, when the refrigerant section is provided in the case that houses the conductor connection part having the solid insulating part, the refrigerant flow can be completely divided, and the refrigerant pressure in each section can be easily adjusted. Therefore, it is preferable to apply the partition of the refrigerant section to the case that houses the conductor connection portion having the solid insulating portion.

固定接続部は、ケースに固定されるため、冷却時の熱収縮以外の場合も移動が規制される。これに対し、移動接続部は、常に、ケース内を移動可能であるが、この移動をある程度規制することが望まれる場合がある。例えば、高低差や曲がりなどを有する布設レイアウトである場合、導体接続部が一時的に移動する恐れがある。このような一時的な移動を規制するために、移動接続部を一時的に固定可能な構成を具える線路とすることが好ましい。例えば、一時的に移動する恐れがある移動接続部を収納するケース内に充填される冷媒を固化可能な冷却装置を線路に具えておく。そして、ケース内の冷媒を固化することで、導体接続部の移動を規制することが挙げられる。この移動規制は、固化した冷媒を昇温して溶かすことで簡単に解除することができる。このように冷媒の状態を変化させることで、一時的な移動の規制及び解除を容易に行える。一時的な固定が望まれる導体接続部の選別は、布設レイアウトや設計条件に基づいて決定できる。上記冷却装置は、線路に少なくとも一つ具えるとよい。   Since the fixed connection portion is fixed to the case, movement is also restricted in cases other than heat shrinkage during cooling. On the other hand, the moving connection part can always move within the case, but there are cases where it is desired to restrict this movement to some extent. For example, in the case of a laying layout having a height difference, a bend, etc., there is a possibility that the conductor connecting portion may temporarily move. In order to restrict such temporary movement, it is preferable to use a track having a configuration in which the moving connection portion can be temporarily fixed. For example, the line is provided with a cooling device capable of solidifying the refrigerant filled in the case that houses the moving connection portion that may move temporarily. And the movement of a conductor connection part is mentioned by solidifying the refrigerant | coolant in a case. This movement restriction can be easily released by heating and melting the solidified refrigerant. By changing the state of the refrigerant in this way, temporary movement can be easily restricted and released. The selection of the conductor connection portion that is desired to be temporarily fixed can be determined based on the laying layout and design conditions. It is preferable that at least one cooling device is provided on the track.

本発明超電導ケーブル線路の設計方法は、ケーブルの冷却時の熱収縮に伴う接続箇所の損傷を抑制でき、かつ固定接続部の数を少なくして布設作業性に優れる線路を設計することができる。また、本発明超電導ケーブル線路は、電気性能及び布設作業性に優れる。   The method for designing a superconducting cable line of the present invention can design a line that can suppress damage to connection points due to thermal contraction during cooling of the cable and that has excellent laying workability by reducing the number of fixed connection parts. Moreover, the superconducting cable line of the present invention is excellent in electrical performance and installation workability.

以下、超電導ケーブル線路を設計し、この設計に従い線路を構築する手順を具体的に説明する。
<設計例1>
図1の中央の図は、複数の中間接続構造を具える超電導ケーブル線路の概略形状を模式的に示す平面図、図1の上方のグラフは、この線路に沿った温度分布を示すグラフ、図1の下方のグラフは、この線路に沿った応力分布を示すグラフである。この例では、説明を簡単にするために、布設レイアウトとして、曲がり及び高低差がない直線状のルートを利用する。
Hereinafter, a procedure for designing a superconducting cable line and constructing the line according to this design will be described in detail.
<Design example 1>
1 is a plan view schematically showing a schematic shape of a superconducting cable line having a plurality of intermediate connection structures, and an upper graph in FIG. 1 is a graph showing a temperature distribution along the line. The graph below 1 is a graph showing the stress distribution along this line. In this example, in order to simplify the description, a straight route having no bending and no height difference is used as the laying layout.

(1) 線路の概略形状の形成
まず、線路を構築する経路に基づき、線路を設ける箇所に必要とされる所定長の超電導ケーブルの数、中間接続構造の数、及びこれらの設置位置を検討し、線路の概略形状を決定する。ここでは、A地点からB地点に及ぶ線路Lを6条の超電導ケーブルCと5箇所の中間接続構造Jとで構築し、図1に示すように設置する場合を考える。線路Lの両端部(A地点及びB地点)には、終端接続構造Ta,Tbを設ける。終端接続構造Ta,Tbは、通常、大地に固定する。各中間接続構造Jは、隣接する超電導ケーブルCの端部から引き出したケーブルコア(図示せず)に具える超電導導体(図示せず)同士を接続する導体接続部(図示せず)と、この導体接続部を収納するケース(図示せず)とを具える。
(1) Formation of the approximate shape of the track First, based on the path for constructing the track, the number of superconducting cables of a predetermined length required at the location where the track is to be installed, the number of intermediate connection structures, and their installation positions are examined. Determine the approximate shape of the track. Here, consider a case where a line L extending from point A to point B is constructed with six superconducting cables C and five intermediate connection structures J and installed as shown in FIG. Termination connection structures T a and T b are provided at both ends (point A and point B) of the line L. The termination connection structures T a and T b are usually fixed to the ground. Each intermediate connection structure J includes a conductor connecting portion (not shown) for connecting superconducting conductors (not shown) provided in a cable core (not shown) drawn from the end of the adjacent superconducting cable C, and this And a case (not shown) for housing the conductor connection portion.

(2) 温度分布と応力分布の検討
次に、線路の一端側から冷媒を導入した場合の線路の温度分布及び応力分布を検討する。ここでは、線路L全体を一つの冷媒区間とし、A地点から冷媒を導入する場合を考える。即ち、冷媒導入方向をA地点からB地点に向かう方向とする。冷媒導入方向に加えて、冷媒の温度、流量、流速といった冷媒導入条件、及び超電導ケーブルCの仕様(超電導導体、ケーブルコアや断熱管などの物性値や大きさなど)や中間接続構造Jの仕様(導体接続部の物性値や大きさ、ケースの大きさなど)に応じて、時間毎の温度分布が求められる。
(2) Examination of temperature distribution and stress distribution Next, we examine the temperature distribution and stress distribution of the line when refrigerant is introduced from one end of the line. Here, a case is considered where the entire line L is set as one refrigerant section, and the refrigerant is introduced from the point A. That is, the refrigerant introduction direction is a direction from point A to point B. In addition to the refrigerant introduction direction, refrigerant introduction conditions such as refrigerant temperature, flow rate, flow velocity, specifications of superconducting cable C (physical properties and sizes of superconducting conductors, cable cores, heat insulation pipes, etc.) and specifications of intermediate connection structure J The temperature distribution for each time is determined according to the physical property value and size of the conductor connection part, the size of the case, and the like.

ここで、超電導導体や導体接続部の収縮量は温度により異なる。そのため、線路の冷却時の温度勾配(温度差)が大きいほど、線路の各地点での収縮量が異なり、導体接続部が高温側から低温側に移動する量が大きくなる。そこで、得られた複数の温度分布のうち、温度勾配が最も大きいときの温度分布を選択する。選択した温度分布は、図1の上グラフに示すようにA地点に近いほど、冷媒温度(冷媒が液体窒素の場合、77K近傍)に近く、B地点に近いほど、常温に近くなり、B地点近傍は、常温である。   Here, the amount of shrinkage of the superconducting conductor and the conductor connecting portion varies depending on the temperature. Therefore, as the temperature gradient (temperature difference) during the cooling of the line is larger, the amount of contraction at each point of the line is different, and the amount by which the conductor connecting portion moves from the high temperature side to the low temperature side increases. Therefore, a temperature distribution when the temperature gradient is the largest is selected from the obtained plurality of temperature distributions. As shown in the upper graph of Figure 1, the selected temperature distribution is closer to the refrigerant temperature (around 77K when the refrigerant is liquid nitrogen) as it is closer to point A. The neighborhood is normal temperature.

線路を構成する全てのケーブル及び全ての中間接続構造Jについて、ケーブルコア及び導体接続部が断熱管及びケースに対して相対的に移動不可能な構成であると仮定すると、上記選択した温度分布に基づく線路の応力分布は、図1の下グラフのように表わされる。図1に示すように応力は、冷媒による冷却により線路の各地点に負荷され、A地点に近いほど大きく、B地点に近いほど小さく、常温であるB地点近傍は、冷媒の冷却による影響を実質的に受けないため、負荷されない。線路の各地点に働く応力は、冷媒導入条件や超電導ケーブルCの仕様に応じて求められる。   Assuming that all cables and all intermediate connection structures J constituting the track have a structure in which the cable core and the conductor connection portion are relatively immovable with respect to the heat insulating tube and the case, the above temperature distribution is selected. The stress distribution of the line based is represented as in the lower graph of FIG. As shown in Fig. 1, the stress is applied to each point on the track by cooling with the refrigerant, and the closer to point A, the larger the stress is.The closer to point B, the smaller the stress is. Because it is not received, it is not loaded. The stress acting on each point on the track is determined according to the refrigerant introduction conditions and the specifications of the superconducting cable C.

(3) 移動量の演算
線路を構成する全てのケーブル及び全ての中間接続構造Jについて、ケーブルコア及び導体接続部が断熱管及びケースに対して相対的に移動可能な構成であり、摩擦係数を0と仮定する。このとき、線路に負荷されていた上記応力が解放されて、各導体接続部がそれぞれ移動する。移動量は、応力によって異なり、例えば、中間接続構造J1の導体接続部が最も大きい。ここでは、摩擦係数を考慮しなかったが、厳密には摩擦係数を考慮して応力を演算する。なお、図1の応力分布グラフにおいて、左側のハッチング領域S1と右側のハッチング領域S2は、同面積であり、領域S1が収縮量、領域S2は伸び量に相当する。
(3) Calculation of travel distance For all cables and all intermediate connection structures J that make up the track, the cable core and conductor connection are movable relative to the heat insulation pipe and case, and the friction coefficient is Assume 0. At this time, the stress applied to the line is released, and each conductor connection portion moves. Amount of movement depends on stress, for example, a conductor connecting portion of the intermediate connection arrangement J 1 is the largest. Although the friction coefficient is not considered here, strictly speaking, the stress is calculated in consideration of the friction coefficient. Note that, in the stress distribution graph in Fig. 1, the hatched area S 1 and the right side of the hatched region S 2 on the left side is the same area, region S 1 is the amount of shrinkage, the area S 2 corresponds to the elongation amount.

ここで、温度差Δtによって対象物に負荷される応力Fは、対象物のヤング率をE、断面積をA、線膨張係数をαとするとき、F=E×A×α×(Δt)で表わされる。α×(Δt)は、熱収縮量であり、この熱収縮量により、導体接続部の移動量が求められる。   Here, the stress F applied to the object due to the temperature difference Δt is F = E × A × α × (Δt), where E is the Young's modulus of the object, A is the cross-sectional area, and α is the linear expansion coefficient. It is represented by α × (Δt) is the amount of heat shrinkage, and the amount of movement of the conductor connecting portion is obtained from this amount of heat shrinkage.

従って、各導体接続部に負荷される応力と、各導体接続部のヤング率及び断面積とを用い、摩擦係数を考慮して熱収縮量をそれぞれ求め、得られた熱収縮量により、各導体接続部の移動量(超電導ケーブルの長手方向における移動量)を求める。摩擦係数を考慮することでより現実的な移動量が求められる。   Therefore, using the stress applied to each conductor connection part and the Young's modulus and cross-sectional area of each conductor connection part, the amount of heat shrinkage is obtained in consideration of the friction coefficient. The amount of movement of the connecting portion (the amount of movement of the superconducting cable in the longitudinal direction) is obtained. A more realistic amount of movement can be obtained by considering the friction coefficient.

(4) 移動接続部又は固定接続部の決定
得られた導体接続部の移動量が許容できる場合、例えば、ケースが十分な大きさを有しており、導体接続部がこの移動量分だけケース内を移動してもケースに当たらない場合などでは、導体接続部をケースに対して相対的に移動可能な状態に収納していても問題ないと考えられる。そこで、この導体接続部は、ケースに対して相対的に移動可能にケースに収納される移動接続部とする。
(4) Determination of moving connection or fixed connection If the amount of movement of the obtained conductor connection can be tolerated, for example, the case has a sufficient size, and the conductor connection is equivalent to this amount of movement. If the case does not hit the case even if it moves inside, it is considered that there is no problem even if the conductor connecting portion is housed in a state in which it can move relative to the case. Therefore, the conductor connecting portion is a moving connecting portion that is accommodated in the case so as to be relatively movable with respect to the case.

一方、得られた導体接続部の移動量が許容できない場合、即ち、導体接続部がこの移動量分だけケース内を移動するとケースに当たったり、接続箇所が損傷する恐れがある場合などでは、導体接続部をケースに対して移動不可能に収納する必要がある。そこで、この導体接続部は、ケースに対して相対的に移動不可能にケースに固定される固定接続部とする。   On the other hand, when the amount of movement of the obtained conductor connection part is unacceptable, that is, when the conductor connection part moves in the case by this amount of movement, it may hit the case or damage the connection part. It is necessary to store the connection part so that it cannot move with respect to the case. Therefore, the conductor connection portion is a fixed connection portion that is fixed to the case so as not to move relative to the case.

各導体接続部のそれぞれを移動接続部にするか固定接続部にするかの判定は、以下のように行う。まず、各中間接続構造の移動量を比較し、最大の移動量を選び出す。次に、ケースの大きさなどを考慮して、予め設定しておいた閾値と最大の移動量とを比較する。例えば、この移動量が閾値以上の場合、移動量が最大である当該導体接続部は、固定接続部とし、移動量が閾値未満の場合、当該接続部は、移動接続部とする。   The determination as to whether each conductor connection portion is a moving connection portion or a fixed connection portion is performed as follows. First, the movement amount of each intermediate connection structure is compared, and the maximum movement amount is selected. Next, considering a case size and the like, a preset threshold value is compared with the maximum movement amount. For example, when the amount of movement is equal to or greater than a threshold value, the conductor connection portion having the maximum movement amount is a fixed connection portion. When the amount of movement is less than the threshold value, the connection portion is a movement connection portion.

上記当該導体接続部が移動接続部と決定された場合、他の導体接続部も移動接続部でよいと考えられる。従って、この場合、線路に具える全ての導体接続部を移動接続部に決定する。一方、上記当該導体接続部が固定接続部と決定された場合、この固定接続部が存在する状態の線路を仮定し、線路に具える導体接続部のうち、この固定接続部を除く各導体接続部の移動量を改めて演算する。即ち、固定接続部が一つ存在する線路において、各導体接続部の移動量を改めて演算する。そして、上記と同様に最大の移動量と閾値とを比較して、移動量が最大である当該導体接続部を固定接続部とするか移動接続部とするかを判定する。このように固定接続部を順次決定してき、この決定により固定接続部が存在する線路を仮定して最大の移動量を改めて演算し、最大の移動量が閾値未満となるまで、この手順を繰り返す。閾値は、同じものを使用し続けてもよいし、適宜、補正を加えてもよい。   When the said conductor connection part is determined as a movement connection part, it is thought that another conductor connection part may be a movement connection part. Therefore, in this case, all the conductor connection portions included in the track are determined as the moving connection portions. On the other hand, when the said conductor connection part is determined as a fixed connection part, the line of the state where this fixed connection part exists is assumed, and each conductor connection except this fixed connection part is provided among the conductor connection parts provided in the line. The amount of movement of the part is calculated again. In other words, the amount of movement of each conductor connection portion is calculated again on a line having one fixed connection portion. In the same manner as described above, the maximum movement amount is compared with the threshold value, and it is determined whether the conductor connection portion having the maximum movement amount is a fixed connection portion or a movement connection portion. In this way, the fixed connection portion is sequentially determined, and by this determination, the maximum movement amount is calculated again assuming the line where the fixed connection portion exists, and this procedure is repeated until the maximum movement amount becomes less than the threshold value. The same threshold value may be used continuously, or correction may be added as appropriate.

なお、施工スペースが十分に取れないなどの事情があり、固定接続部とすることが困難な導体接続構造については、予め移動接続部と決定して上述の手順を行ってもよい。   In addition, about the conductor connection structure which has the situation that construction space cannot fully be taken and it is difficult to set it as a fixed connection part, it may determine in advance as a movement connection part and may perform the above-mentioned procedure.

上記の手順は、記憶手段、演算手段、比較手段、判定手段などを具えるコンピュータを用いて行うことができる。例えば、以下のようにコンピュータの各手段を動作させる。   The above procedure can be performed using a computer including storage means, calculation means, comparison means, determination means, and the like. For example, each means of the computer is operated as follows.

まず、冷媒の温度、流量、流速といった冷媒導入条件、超電導導体や断熱管の物性値(ヤング率、線膨張係数、断熱管とケーブルコアとの間の摩擦係数など)や大きさ(断面積、長さ、容積)といった超電導ケーブルの仕様、導体接続部の物性値(ヤング率、線膨張係数など)や大きさ、ケースの大きさといった中間接続構造の仕様をデータ記憶手段に予め入力しておく。また、線路の概略形状(布設レイアウトに沿った超電導ケーブルの長さ及び数、中間接続構造の数)も、データ記憶手段に予め入力しておく。   First, refrigerant introduction conditions such as refrigerant temperature, flow rate, flow velocity, physical properties of the superconducting conductor and heat insulating tube (Young's modulus, coefficient of linear expansion, coefficient of friction between the heat insulating tube and cable core, etc.) and size (cross-sectional area, Preliminary input of superconducting cable specifications such as length and volume, intermediate connection structure specifications such as physical properties (such as Young's modulus and linear expansion coefficient) and size of the conductor connection part, and case size . Further, the schematic shape of the line (the length and number of superconducting cables along the laying layout, the number of intermediate connection structures) is also input in advance to the data storage means.

温度演算手段は、上記データ記憶手段から呼び出したデータを利用して温度分布を演算し、応力演算手段は、得られた温度分布と、上記データ記憶手段から呼び出したデータとを利用して、各導体接続部に負荷される応力を演算する。第1移動量演算手段は、得られた応力と、上記データ記憶手段から呼び出したデータとを利用して、冷却時の熱収縮に伴う各導体接続部の移動量を演算する。移動量は、ケーブルコアと断熱管との間の摩擦係数を考慮して演算することが好ましい。   The temperature calculation means calculates the temperature distribution using the data called from the data storage means, and the stress calculation means uses the obtained temperature distribution and the data called from the data storage means to Calculate the stress applied to the conductor connection. The first movement amount calculation means calculates the movement amount of each conductor connection part due to thermal contraction during cooling, using the obtained stress and the data called from the data storage means. The amount of movement is preferably calculated in consideration of the coefficient of friction between the cable core and the heat insulating tube.

第1移動量比較手段は、得られた移動量の大小関係を比較し、最大移動量を選出する。ケースの大きさなどを考慮して設定した閾値を閾値記憶手段に入力しておき、第1閾値比較手段は、最大移動量と閾値記憶手段から呼び出した閾値とを比較し、第1ケース判定手段は、最大移動量が閾値以上のとき、この導体接続部を固定接続部と判定し、最大移動量が閾値未満のとき、移動接続部と判定する。当該導体接続部が移動接続部と判定されたら、第1ケース判定手段は、全ての導体接続部を移動接続部と判定する。   The first movement amount comparison means compares the obtained movement amounts and selects a maximum movement amount. A threshold value set in consideration of the size of the case is input to the threshold value storage means, the first threshold value comparison means compares the maximum movement amount with the threshold value called from the threshold value storage means, and the first case determination means Determines that the conductor connection portion is a fixed connection portion when the maximum movement amount is equal to or greater than a threshold value, and determines that the conductor connection portion is a movement connection portion when the maximum movement amount is less than the threshold value. If it is determined that the conductor connection portion is a moving connection portion, the first case determination means determines that all conductor connection portions are movement connection portions.

固定接続部と判定されたら、第2移動量演算手段は、この固定接続部を除く各導体接続部の移動量を演算する。このとき、第2移動量演算手段は、上記固定接続部が存在する線路を想定して各導体接続部の移動量を演算するように構成しておく。第2移動量比較手段は、改めて得られた移動量から最大移動量を選出し、第2閾値比較手段は、選出された最大移動量と閾値とを比較し、第2ケース判定手段は、最大移動量である導体接続部を固定接続部とするか移動接続部とするかを判定し、決定する。以下、ケース判定手段が移動接続部と判定するまで(最大移動量が閾値未満になるまで)、同様に繰り返す。このようにコンピュータを利用することで、線路の設計を簡単に行える。   If it is determined that the connection portion is a fixed connection portion, the second movement amount calculation means calculates the movement amount of each conductor connection portion excluding the fixed connection portion. At this time, the second moving amount calculating means is configured to calculate the moving amount of each conductor connecting portion assuming the line where the fixed connecting portion exists. The second movement amount comparison means selects the maximum movement amount from the newly obtained movement amount, the second threshold value comparison means compares the selected maximum movement amount and the threshold value, and the second case determination means determines the maximum movement amount. It is determined and determined whether the conductor connection portion, which is the amount of movement, is a fixed connection portion or a movement connection portion. Hereinafter, the same is repeated until the case determination unit determines that the mobile connection unit is used (until the maximum movement amount becomes less than the threshold). By using a computer in this way, it is possible to easily design a track.

(5) 線路の構築
上記設計に基づき、超電導ケーブルを布設すると共に、中間接続構造を構築し、超電導ケーブル線路を構築する。構築された線路は、例えば、固定接続部と移動接続部とが混在する線路となる。
(5) Construction of the track Based on the above design, the superconducting cable will be laid and the intermediate connection structure will be built to construct the superconducting cable track. The constructed line is, for example, a line in which a fixed connection part and a moving connection part are mixed.

上述した設計方法に基づけば、超電導ケーブル線路に設ける固定接続部や移動接続部の適切な数を簡単に求められる。従って、この設計方法は、冷却時の熱収縮により接続箇所が損傷して電気性能が劣化することを抑制できると共に、比較的複雑な構成である固定接続部を具える中間接続構造の数を低減できるため、線路の布設作業性に優れる。   Based on the design method described above, an appropriate number of fixed connection portions and movable connection portions provided in the superconducting cable line can be easily obtained. Therefore, this design method can suppress the deterioration of electrical performance due to thermal contraction during cooling, and reduce the number of intermediate connection structures having a fixed connection portion having a relatively complicated configuration. As a result, the track laying workability is excellent.

特に、この設計方法は、固定接続部を一つずつ決定していくことで、固定接続部の数を最小限にすることができる。また、固定接続部に繋がる超電導導体は冷却時の熱収縮に伴う移動が規制されるため、固定接続部の近傍、特に冷媒導入方向から見て固定接続部の上流側に位置する導体接続部は、上記超電導導体の移動規制により冷却時の熱収縮に伴う移動が少なくなる。従って、選出した固定接続部近傍の導体接続部は、移動量が少なくなることから、移動接続部と判定される可能性が高められる。そのため、この設計方法は、固定接続部の数を効果的に低減できる。   In particular, this design method can minimize the number of fixed connections by determining the fixed connections one by one. In addition, since the superconducting conductor connected to the fixed connection part is restricted from moving due to thermal contraction during cooling, the conductor connection part located in the vicinity of the fixed connection part, particularly on the upstream side of the fixed connection part when viewed from the refrigerant introduction direction, is The movement of the superconducting conductor due to the heat shrinkage during cooling is reduced by the restriction of movement of the superconducting conductor. Accordingly, since the selected conductor connection portion in the vicinity of the fixed connection portion has a small amount of movement, the possibility of being determined as the movement connection portion is increased. Therefore, this design method can effectively reduce the number of fixed connection portions.

<設計例2 布設レイアウトの利用>
《曲がり、高低差》
図2(I)は、曲がりを有する超電導ケーブル線路の模式平面図、(II)は、高低差を有する超電導ケーブル線路の模式側面図である。上記設計例1では、簡易な布設レイアウトで検討したが、実際には、図2に示すように曲がりBや高低差を有する場合がある。このような布設レイアウトの場合、導体接続部の移動量が増える。
<Use of design example 2 installation layout>
《Bending, height difference》
FIG. 2 (I) is a schematic plan view of a superconducting cable line having a bend, and (II) is a schematic side view of the superconducting cable line having a height difference. In the above design example 1, although a simple laying layout has been studied, in practice, there may be a bend B or a height difference as shown in FIG. In the case of such a layout, the amount of movement of the conductor connection portion increases.

例えば、図2(I)に示すように布設レイアウトが曲がりBを有する場合、冷却により超電導ケーブルが熱収縮すると、曲がり部Bから中間接続構造J2に向かってケーブルコアが送り出され、その分コアの移動量が大きくなる。従って、冷媒導入方向から見て、曲がりBの上流側に位置する中間接続構造J2の導体接続部は、移動量が大きくなり、固定接続部と判定される可能性が高くなる。 For example, if having a B bend laying layout as shown in FIG. 2 (I), when the superconducting cable is thermally contracted, the cable core toward the bent portion B in the intermediate connection arrangement J 2 fed out by cooling, that amount core The amount of movement increases. Thus, viewed from the refrigerant introduction direction, bending the conductor connection portions of the intermediate connection arrangement J 2 located on the upstream side of B, the amount of movement is increased, likely to be determined to the fixed connecting part is increased.

或いは、図2(II)に示すように布設レイアウトに高低差がある場合、高所側に存在する中間接続構造J3の導体接続部は、冷却により超電導ケーブルが熱収縮すると、この熱収縮により低所側に移動すると共に、重力により低所側に移動しようとする。従って、中間接続構造J3の導体接続部は、移動量が大きくなり、固定接続部と判定される可能性が高くなる。 Alternatively, if there is a height difference in laying layout as shown in FIG. 2 (II), the conductor connection section of the intermediate connection arrangement J 3 present in high altitude side, when the superconducting cable is thermally contracted by cooling, the heat shrinkable While moving to the low side, it tries to move to the low side due to gravity. Therefore, the conductor connecting portion of the intermediate connection arrangement J 3 is, the amount of movement is increased, the more likely it is determined that the fixed connection.

そこで、冷媒導入方向に加えて布設レイアウトをも考慮して、導体接続部の移動量を求めることで、固定接続部の数をより適切に選出することができる。   Therefore, the number of fixed connection portions can be more appropriately selected by determining the amount of movement of the conductor connection portions in consideration of the laying layout in addition to the refrigerant introduction direction.

なお、この設計例において移動量の演算をコンピュータで行う場合、布設レイアウトを利用して移動量の演算が行えるように、曲がりの曲率や落差などの布設レイアウト条件をデータ記憶手段に予め入力しておく。そして、呼び出したデータを利用して移動量を演算するように演算手段を構成する。   In this design example, when the movement amount is calculated by a computer, the laying layout conditions such as a curvature of curvature and a head are input to the data storage means in advance so that the moving amount can be calculated using the laying layout. deep. And a calculating means is comprised so that a movement amount may be calculated using the called data.

《その他》
固定接続部と決定した場合であっても、布設レイアウトによって、例えば、布設スペースの不足などで固定接続部を構築することが難しいことが考えられる。そこで、固定接続部と判定した場合、更に、布設レイアウトを参照して、固定接続部を構築可能か否かを判定する構成を付加してもよい。例えば、以下のように構成する。
<Others>
Even when it is determined as the fixed connection portion, it may be difficult to construct the fixed connection portion due to, for example, a shortage of the installation space due to the installation layout. Therefore, when it is determined that the fixed connection unit is used, a configuration may be added in which it is determined whether or not the fixed connection unit can be constructed with reference to the laying layout. For example, the configuration is as follows.

まず、設計例1で説明した手順に従い、固定接続部と判定した場合、布設レイアウトを参照し、固定接続部を構築可能か否かを判定し、構築可能な場合、固定接続部と決定する。固定接続部が構築困難な場合、移動接続部と決定し、この移動接続部近傍の導体接続部、例えば、冷媒導入方向から見て上流側の導体接続部を固定接続部にできるか否かを判定し、固定接続部が構築できる導体接続部が選出されるまで、この判定を行う。或いは、上記決定した移動接続部の近傍に固定接続部が存在するか否かを判定してもよい。このように本来固定接続部が望ましいと判定された導体接続部の近傍に固定接続部が存在するようにすることで、当該導体接続部の移動量を低減することができる。   First, according to the procedure described in the design example 1, when it is determined that the connection portion is a fixed connection portion, it is determined whether or not the fixed connection portion can be constructed by referring to the laying layout. If it is difficult to construct a fixed connection part, it is determined as a moving connection part, and whether or not a conductor connection part in the vicinity of this moving connection part, for example, an upstream conductor connection part when viewed from the refrigerant introduction direction can be used as a fixed connection part. This determination is performed until a conductor connection portion that can be constructed and a fixed connection portion can be constructed is selected. Alternatively, it may be determined whether there is a fixed connection in the vicinity of the determined mobile connection. As described above, the fixed connection portion is present in the vicinity of the conductor connection portion that is originally determined to be desirable, so that the movement amount of the conductor connection portion can be reduced.

なお、この設計例において上記手順をコンピュータで行う場合、各導体接続部の構築箇所の状態などといった布設レイアウト条件をデータ記憶手段に予め入力しておく。そして、ケース判定手段により、固定接続部と判定されたら、第1構築判定手段は、呼び出したデータを参照して、固定接続部の構築が可能か否かを判定し、可能な場合、固定接続部と決定し、不可能な場合、移動接続部と決定する。そして、第2構築判定手段は、移動接続部と判定された導体接続部の近傍の導体接続部を固定接続部とすることが可能か否かを判定する。   In this design example, when the above procedure is performed by a computer, the laying layout conditions such as the state of the construction location of each conductor connection portion are input to the data storage means in advance. Then, when the case determination unit determines that the connection is a fixed connection unit, the first construction determination unit refers to the called data and determines whether or not the fixed connection unit can be built. If it is impossible, it is determined as a mobile connection unit. Then, the second construction determination means determines whether or not the conductor connection portion in the vicinity of the conductor connection portion determined to be the moving connection portion can be a fixed connection portion.

<設計例3 冷媒区間の区切り>
設計例1では、一つの線路全体を一つの冷媒区間とする構成を説明した。一つの線路が複数の冷媒区間を有していてもよい。冷媒区間の区切りは、固体接続部を収納するケースに設ける。
<Design Example 3 Separation of refrigerant section>
In the design example 1, the configuration in which one entire line is used as one refrigerant section has been described. One track may have a plurality of refrigerant sections. The division of the refrigerant section is provided in the case that houses the solid connection portion.

例えば、設計例1に則って固体接続部を決定した後、この固体接続部を収納するケースに冷媒区間の区切りを設けるか否かを判定する。固体接続部が複数有る場合は、それぞれのケースについて冷媒区間の区切りの有無を判定する。区切られた各冷媒区間にはそれぞれ、冷媒供給システム(冷媒貯留槽や冷凍機、ポンプなど)を構築する。   For example, after determining the solid connection part in accordance with the design example 1, it is determined whether or not a refrigerant section break is provided in the case housing the solid connection part. When there are a plurality of solid connection parts, the presence or absence of a refrigerant section break is determined for each case. Refrigerant supply systems (refrigerant storage tanks, refrigerators, pumps, etc.) are constructed in each divided refrigerant section.

この判定をコンピュータで行う場合、固定接続部が決定した後、冷媒区間判定手段は、この固定接続部を収納するケースに冷媒区間の区切りを設けるか否かを判定する。冷媒区間が区切られると、線路全体として冷媒の導入状態(冷媒導入方向など)が変化し、この変化に伴い、線路全体の温度分布も変化する。即ち、新たな冷媒区間ができることで、先に冷媒区間を一つとしていた場合と導体接続部の移動量が異なる。そこで、冷媒区間を区切ると判定した場合、第n移動量演算手段は(nは2以上の任意の自然数)、新たな冷媒区間に対して、各導体接続部の移動量を演算する。即ち、複数の区間ごとに導体接続部の移動量を演算する。このとき、新たな冷媒区間に関する情報(冷媒の温度、流量、流速、冷媒導入方向、区間の範囲など)をデータ記憶手段に入力する。   When this determination is performed by a computer, after the fixed connection portion is determined, the refrigerant section determination means determines whether or not to provide a partition of the refrigerant section in the case that houses the fixed connection section. When the refrigerant section is divided, the refrigerant introduction state (such as the refrigerant introduction direction) changes as the entire line, and the temperature distribution of the entire line also changes with this change. That is, since a new refrigerant section is formed, the amount of movement of the conductor connecting portion is different from that in the case where there is one refrigerant section first. Therefore, when it is determined that the refrigerant section is divided, the n-th movement amount calculation means (n is an arbitrary natural number equal to or greater than 2) calculates the movement amount of each conductor connection portion for a new refrigerant section. That is, the movement amount of the conductor connecting portion is calculated for each of a plurality of sections. At this time, information on the new refrigerant section (refrigerant temperature, flow rate, flow rate, refrigerant introduction direction, section range, etc.) is input to the data storage means.

<設計例4 経時的移動>
上述した設計例1〜3では、移動接続部の移動を許容する。しかし、布設レイアウトに曲がりや高低差がある場合、経時的に導体接続部の移動量が多くなることが考えられ、移動量がある程度大きい場合、一時的に導体接続部を固定することが望まれる。そこで、移動接続部と決定された場合に、更に、布設レイアウトを参照して、経時的な移動の有無を判定すると共にその移動量を演算し、一時的な固定が必要な場合は、一時的な固定が可能な構成を設ける。一時的な固定には、例えば、ケース内の冷媒を固化することが挙げられる。そこで、このような移動接続部が存在する場合、冷媒を固化するための冷却装置を設置しておく。
<Design Example 4 Movement over time>
In the above-described design examples 1 to 3, the movement of the moving connection portion is allowed. However, if there is a bend or height difference in the laying layout, it is considered that the amount of movement of the conductor connection portion increases over time. If the amount of movement is large to some extent, it is desirable to temporarily fix the conductor connection portion. . Therefore, when it is determined that the moving connection portion is determined, it is further determined by referring to the laying layout whether or not there is a movement over time, and the movement amount is calculated. Provide a structure that can be fixed securely. Temporary fixing includes, for example, solidifying the refrigerant in the case. Therefore, when such a moving connection portion exists, a cooling device for solidifying the refrigerant is installed.

この判定をコンピュータで行う場合、移動接続部が決定した後、経時移動判定手段は、布設レイアウトを参照して、経時的な移動の有無を判定し、移動がある場合、経時移動演算手段は、布設レイアウトに基づくデータを利用して、移動量を演算する。そして、経時固定比較手段は、演算した移動量と予め設定した閾値とを比較し、経時固定判定手段は、移動量が閾値以上の場合、一時的な固定が必要であると判定する。   When this determination is performed by a computer, after the movement connecting unit is determined, the temporal movement determination means refers to the laying layout to determine the presence or absence of movement over time. The amount of movement is calculated using data based on the laying layout. The temporal fixed comparison means compares the calculated movement amount with a preset threshold value, and the temporal fixed determination means determines that temporary fixation is necessary when the movement amount is equal to or greater than the threshold value.

このように本発明設計方法は、線路運転前の冷却時における導体接続部の移動だけでなく、線路運転時における導体接続部の移動も抑制可能な線路を設計することができる。   Thus, the design method of the present invention can design a line that can suppress not only the movement of the conductor connection part during cooling before the line operation but also the movement of the conductor connection part during line operation.

<超電導ケーブル>
線路に利用する超電導ケーブルは、断熱管内に単心又は複数心のケーブルコアが収納された単心ケーブル、多心ケーブルのいずれも利用することができる。ケーブルコアは、中心から順にフォーマ、超電導導体、電気絶縁層を具える構成が挙げられる。電気絶縁層の内側に内部半導電層、外側に外部半導電層を具える構成でもよい。
<Superconducting cable>
As the superconducting cable used for the track, either a single-core cable or a multi-core cable in which a single-core or multiple-core cable core is housed in a heat insulating tube can be used. The cable core includes a configuration including a former, a superconducting conductor, and an electrical insulating layer in order from the center. A configuration in which an internal semiconductive layer is provided inside the electrical insulating layer and an external semiconductive layer is provided outside is also possible.

フォーマは、例えば、銅撚り線で構成する。超電導導体は、例えば、銀シース中にBi系酸化物超電導材料が内包されたテープ線材をフォーマ上に1層以上巻回して形成する。超電導導体を多層にする場合、層間にクラフト紙などの絶縁材からなる層間絶縁層を設けてもよい。電気絶縁層は、例えば、PPLP(登録商標)などの半合成絶縁紙やクラフト紙などの絶縁紙を巻回して構成する。更に、電気絶縁層の外周に上記テープ線材などからなる外部超電導層を具えたり、外部超電導層の外周にクラフト紙などからなる保護層を具えるケーブルコアとしてもよい。   The former is composed of, for example, a copper stranded wire. The superconducting conductor is formed, for example, by winding one or more layers of a tape wire in which a Bi-based oxide superconducting material is encapsulated in a silver sheath on the former. When the superconducting conductor is a multilayer, an interlayer insulating layer made of an insulating material such as kraft paper may be provided between the layers. The electrical insulating layer is formed by, for example, winding semi-synthetic insulating paper such as PPLP (registered trademark) or insulating paper such as kraft paper. Furthermore, it is good also as a cable core which equips the outer periphery of an electrical insulation layer with the external superconducting layer which consists of the said tape wire material, or provides the protective layer which consists of kraft paper etc. in the outer periphery of an external superconducting layer.

断熱管は、例えば、SUSコルゲート管からなる内管と外管とからなる二重構造管が利用できる。内管は、ケーブルコアを収納すると共に、コアを冷却する冷媒を充填する。両管の間は、真空にしたり、スーパーインシュレーションなどの断熱材を配置させた断熱構造とする。冷媒は、液体窒素が代表的である。断熱管の外周にポリ塩化ビニルなどからなる防食層を設けてもよい。   As the heat insulating pipe, for example, a double structure pipe made of an inner pipe made of SUS corrugated pipe and an outer pipe can be used. The inner tube accommodates the cable core and is filled with a coolant that cools the core. Between the two tubes, a heat insulating structure in which a vacuum or a heat insulating material such as a super insulation is arranged is adopted. The refrigerant is typically liquid nitrogen. You may provide the anti-corrosion layer which consists of polyvinyl chloride etc. in the outer periphery of a heat insulation pipe | tube.

<中間接続構造>
図3は、超電導ケーブル線路に具える中間接続構造の概略構成図である。以下、図において同一符号は同一物を示す。図3では、3心超電導ケーブルを示すが、単心でもよい。
<Intermediate connection structure>
FIG. 3 is a schematic configuration diagram of an intermediate connection structure provided in the superconducting cable line. In the drawings, the same reference numerals denote the same items. In FIG. 3, a three-core superconducting cable is shown, but a single core may be used.

線路に設けられる中間接続構造は、隣接する超電導ケーブル100A,100B同士を接続するものであり、例えば、以下のようにして構築される。接続する一対の超電導ケーブル100A,100Bの端部からケーブルコア101A,101Bを引き出し、コア101A,101Bの端部を段剥ぎして超電導導体102A,102Bを露出させ、銅やアルミニウムといった良導電性材料からなる接続部材110を介して両導体102A,102Bの端部を接続し、導体接続部120を構成する。接続部材110は、例えば、中実の棒状材で、両端に超電導導体及びフォーマ(図示せず)が挿入可能な穴(図示せず)を有する構成であり、各穴に超電導導体及びフォーマをそれぞれ挿入し、例えば、ハンダで超電導導体を接合する。導体接続部120の外周には、合成紙といった絶縁材を巻回して、補強絶縁部130を構築する。適宜、外部超電導層(図示せず)の短絡処理や接続を行ってケーブル接続部140を構築することができる。   The intermediate connection structure provided on the track connects adjacent superconducting cables 100A and 100B, and is constructed as follows, for example. Pull out the cable cores 101A and 101B from the ends of the pair of superconducting cables 100A and 100B to be connected, step off the ends of the cores 101A and 101B to expose the superconducting conductors 102A and 102B, and a highly conductive material such as copper or aluminum The end portions of the two conductors 102A and 102B are connected through a connecting member 110 made of the above, thereby forming a conductor connecting portion 120. The connecting member 110 is, for example, a solid rod-like material having a hole (not shown) into which a superconducting conductor and a former (not shown) can be inserted at both ends, and the superconducting conductor and the former are respectively inserted into the holes. Insert the superconducting conductor with solder, for example. A reinforcing insulating part 130 is constructed by winding an insulating material such as synthetic paper around the outer periphery of the conductor connecting part 120. As appropriate, the cable connection portion 140 can be constructed by short-circuiting or connecting an external superconducting layer (not shown).

ケース200に導入したケーブルコア101や、導体接続部120及び補強絶縁部130を有するケーブル接続部140は、ケース200(内ケース201)に接触して損傷したりしないように保持具150にて保持する。保持具150は、3心のケーブルコア101を離間した状態で保持する構成である。移動接続部を保持する保持具150は、ケース200内でケーブルの長手方向に移動可能な構成のものを利用する。   The cable core 101 introduced into the case 200 and the cable connection part 140 having the conductor connection part 120 and the reinforcing insulation part 130 are held by the holder 150 so as not to be damaged by contact with the case 200 (inner case 201). To do. The holder 150 is configured to hold the three-core cable core 101 in a separated state. As the holder 150 that holds the moving connection portion, a holder that can move in the longitudinal direction of the cable in the case 200 is used.

上記ケーブル接続部140の外周にケース200を組み立てることで中間接続構造を構築することができる。ケース200は、例えば、SUS製の内ケース201と外ケース202とからなる二重構造であり、上述した超電導ケーブルの断熱管と同様に断熱構造を有するものが利用できる。特に、ケース200は、ケーブルの長手方向に分離可能な一対の分割片を組み合わせて一体になる構成であり、接続部などを組み立て易い。また、ケース200は、3心超電導ケーブルのケーブル接続部を一括して収納する構成であり、接続部を収納するケースの数が最小限である。   An intermediate connection structure can be constructed by assembling the case 200 on the outer periphery of the cable connection portion 140. The case 200 has, for example, a double structure composed of an inner case 201 and an outer case 202 made of SUS, and a case having a heat insulating structure similar to the heat insulating pipe of the superconducting cable described above can be used. In particular, the case 200 has a configuration in which a pair of split pieces that can be separated in the longitudinal direction of the cable are combined and integrated, and a connecting portion and the like can be easily assembled. The case 200 is configured to collectively store the cable connection portions of the three-core superconducting cable, and the number of cases storing the connection portions is minimal.

《固定接続部 固体絶縁部を具える構造》
導体接続部を固定接続部とする場合、ケースに固定できるようにケーブル接続部を構成する。例えば、強度に優れる固体絶縁部を具えるケーブル接続部の場合、以下のようにして導体接続部をケースに固定する。
《Structure with fixed connection and solid insulation》
When the conductor connection portion is a fixed connection portion, the cable connection portion is configured so as to be fixed to the case. For example, in the case of a cable connecting portion having a solid insulating portion having excellent strength, the conductor connecting portion is fixed to the case as follows.

図4は、固体絶縁部を具えるケーブル接続部の概略構成図である。図4では、単心超電導ケーブルを示すが、多心でもよい。この点は、図5に示す例についても同様である。このケーブル接続部141は、接続部材111の外周にエポキシ樹脂からなる固体絶縁部(ストレスコーンエポキシユニット)11を一体に具えており、後述する板状材(保持部材)13に固体絶縁部11を固定し、この板状材13をケース200(内ケース201)に固定することで、導体接続部121をケース201に固定する。   FIG. 4 is a schematic configuration diagram of a cable connecting portion including a solid insulating portion. Although FIG. 4 shows a single-core superconducting cable, it may be multi-core. This also applies to the example shown in FIG. The cable connecting portion 141 is integrally provided with a solid insulating portion (stress cone epoxy unit) 11 made of an epoxy resin on the outer periphery of the connecting member 111, and the solid insulating portion 11 is provided on a plate-like material (holding member) 13 described later. By fixing the plate member 13 to the case 200 (inner case 201), the conductor connecting portion 121 is fixed to the case 201.

接続部材111は、接続部材110と類似の構成であり、外周に固体絶縁部11を具える。固体絶縁部11は、中央部から両端部に向かって先細りした紡錘状材であり、その中央部に外方に突出するリング状のフランジ12を具える。板状材13は、SUS製で内ケース201の内周に沿った外形を有しており、中央部に貫通孔を有しており、固体絶縁部11がこの貫通孔に挿通配置される。この板状材13の一面にフランジ12を接させて、板状材13とリング状の押さえ材14とでフランジ12を挟み、板状材13と押さえ材14とをボルト・ナットで締め付けることで、固体絶縁部11は、板状材13に固定される。この板状材13は、内ケース201に溶接により固定される。この固定により、導体接続部121は、内ケース201に固定される。なお、超電導導体102A,102B、接続部材111、固体絶縁部11の外周には、適宜、絶縁材を巻回した積層絶縁部131を形成する。   The connection member 111 has a configuration similar to that of the connection member 110, and includes the solid insulating portion 11 on the outer periphery. The solid insulating portion 11 is a spindle-shaped material that is tapered from the central portion toward both ends, and includes a ring-shaped flange 12 that protrudes outward at the central portion. The plate-like material 13 is made of SUS and has an outer shape along the inner periphery of the inner case 201. The plate-like member 13 has a through hole at the center, and the solid insulating portion 11 is inserted into the through hole. The flange 12 is brought into contact with one surface of the plate-like material 13, the flange 12 is sandwiched between the plate-like material 13 and the ring-shaped holding material 14, and the plate-like material 13 and the holding material 14 are tightened with bolts and nuts. The solid insulating part 11 is fixed to the plate-like material 13. This plate-like material 13 is fixed to the inner case 201 by welding. By this fixing, the conductor connecting portion 121 is fixed to the inner case 201. In addition, on the outer circumferences of the superconducting conductors 102A and 102B, the connecting member 111, and the solid insulating portion 11, a laminated insulating portion 131 in which an insulating material is wound is appropriately formed.

板状材13は、導体接続部が移動しようとするときの力を受けるため、この力に十分耐え得ることができるように構成する。また、板状材13には、冷媒を流通するための流通孔13hを設けている。このケース200に冷媒区間の区切りを設ける場合、板状材に流通孔を設ける必要はない。   Since the plate-like material 13 receives a force when the conductor connecting portion tries to move, the plate-like material 13 is configured to be able to sufficiently withstand this force. Further, the plate-like material 13 is provided with a circulation hole 13h for circulating the refrigerant. When the refrigerant section is provided in the case 200, there is no need to provide a flow hole in the plate-like material.

《固定接続部 積層絶縁部を具える構造》
固体絶縁部を具えていないケーブル接続部の場合、以下のようにして導体接続部をケースに固定する。図5は、補強支持部を具えるケーブル接続部の概略構成図である。ケーブル接続部142は、接続部材110及び絶縁材を巻回して積層させてなる補強絶縁部130を具える点は、図3に示すケーブル接続部140と同様であり、異なる点は、補強絶縁部130の外周に補強支持部160を具える点にある。
<Structure with fixed connection and laminated insulation>
In the case of a cable connection part that does not have a solid insulation part, the conductor connection part is fixed to the case as follows. FIG. 5 is a schematic configuration diagram of a cable connecting portion including a reinforcing support portion. The cable connection part 142 is the same as the cable connection part 140 shown in FIG. 3 in that the connection member 110 and the insulating material are wound and laminated, and the cable connection part 142 is the same as the cable connection part 140 shown in FIG. The reinforcing support portion 160 is provided on the outer periphery of 130.

補強支持部160は、FRP製で、補強絶縁部130の外周を覆う筒状部161と、筒状部161の外周面から外方に突出するフランジ部161fとを具える。筒状部161は、補強絶縁部130に沿った形状であり、中央部から両端部に向かって先細りしており、ケーブルの長手方向に分割可能な一対の分割片を組み合わせて一体になる構成である。各分割片の両縁にフランジ部161fを具えており、補強絶縁部130の外周に両分割片を配置し、両分割片のフランジ部161fを接合させてボルト・ナットで締め付けることで、筒状部161は、補強絶縁部130の外周に固定される。内ケース201の内周面には、支持片201aが突出しており、フランジ部161fをボルト・ナットで固定することで、補強支持部160を内ケース201に固定する。この固定により、ケーブル接続部142が内ケース201に固定され、導体接続部120が内ケース201に固定される。   The reinforcing support portion 160 is made of FRP, and includes a cylindrical portion 161 that covers the outer periphery of the reinforcing insulating portion 130, and a flange portion 161f that protrudes outward from the outer peripheral surface of the cylindrical portion 161. The cylindrical portion 161 has a shape along the reinforcing insulating portion 130, which is tapered from the central portion toward both ends, and is configured by combining a pair of divided pieces that can be divided in the longitudinal direction of the cable. is there. The flanges 161f are provided on both edges of each split piece, both split pieces are arranged on the outer periphery of the reinforcing insulating part 130, the flange portions 161f of both split pieces are joined, and tightened with bolts and nuts to form a cylindrical shape The part 161 is fixed to the outer periphery of the reinforcing insulating part 130. A support piece 201a protrudes from the inner peripheral surface of the inner case 201, and the reinforcing support portion 160 is fixed to the inner case 201 by fixing the flange portion 161f with bolts and nuts. With this fixing, the cable connecting portion 142 is fixed to the inner case 201, and the conductor connecting portion 120 is fixed to the inner case 201.

支持片は、導体接続部120が移動しようとするときの力を受けるため、この力に十分耐え得ることができるように構成する。また、支持片は、内ケース201の内周面の全周に亘って一体に設けられる構成としてもよいが、複数の支持片が内周面に設けられる構成としてもよい。特に、支持片間に隙間を有するように各支持片を設けることで、この隙間を利用して冷媒を流通させることができる。   Since the support piece receives a force when the conductor connecting portion 120 tries to move, the support piece is configured to be able to withstand this force sufficiently. In addition, the support piece may be configured to be integrally provided over the entire inner peripheral surface of the inner case 201, or may be configured to have a plurality of support pieces provided on the inner peripheral surface. In particular, by providing each support piece so as to have a gap between the support pieces, the refrigerant can be circulated using this gap.

上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration.

本発明超電導ケーブル線路の設計方法は、交流送電用又は直流送電用の電力供給路の設計に好適に利用することができる。また、本発明超電導ケーブル線路は、交流送電用又は直流送電用の電力供給路に好適に利用することができる。   The method for designing a superconducting cable line of the present invention can be suitably used for designing a power supply path for AC power transmission or DC power transmission. Moreover, the superconducting cable line of the present invention can be suitably used for a power supply path for AC power transmission or DC power transmission.

超電導ケーブル線路の設計方法の説明に用いる説明図であり、図の中央は、線路の概略形状を模式的に示す平面図、図の上方のグラフは、この線路に沿った温度分布のグラフ、図の下方のグラフは、この線路に沿った応力分布のグラフである。It is explanatory drawing used for description of the design method of a superconducting cable line, the center of a figure is a top view which shows the outline shape of a line typically, the upper graph of a figure is the graph of the temperature distribution along this line, a figure The graph below is a graph of the stress distribution along this line. (I)は、曲がりを有する超電導ケーブル線路の模式平面図、(II)は、高低差を有する超電導ケーブル線路の模式側面図である。(I) is a schematic plan view of a superconducting cable line having a bend, and (II) is a schematic side view of a superconducting cable line having a height difference. 超電導ケーブル線路に具える中間接続構造の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the intermediate connection structure provided in a superconducting cable track. 固体絶縁部を具えるケーブル接続部の部分概略構成図である。It is a partial schematic block diagram of the cable connection part which provides a solid insulation part. 補強支持部を具えるケーブル接続部の部分概略構成図である。It is a partial schematic block diagram of the cable connection part which provides a reinforcement support part. ケーブル接続部の部分概略構成図である。It is a partial schematic block diagram of a cable connection part.

符号の説明Explanation of symbols

11 固体絶縁部 12 フランジ 13 板状材 13h 流通孔 14 押さえ材
100A,100B 超電導ケーブル 101,101A,101B ケーブルコア
102,102A,102B 超電導導体 110,111 接続部材 120,121 導体接続部
130 補強絶縁部 131 積層絶縁部 140,141,142 ケーブル接続部
150 保持具 160 補強支持部 161 筒状部 161f フランジ部
200 ケース 201 内ケース 201a 支持片 202 外ケース
11 Solid insulation 12 Flange 13 Plate 13h Flow hole 14 Holding material
100A, 100B Superconducting cable 101,101A, 101B Cable core
102,102A, 102B Superconducting conductor 110,111 Connection member 120,121 Conductor connection
130 Reinforced insulation 131 Laminated insulation 140, 141, 142 Cable connection
150 Holder 160 Reinforcement support part 161 Cylindrical part 161f Flange part
200 Case 201 Inner case 201a Support piece 202 Outer case

Claims (7)

冷媒によって冷却される超電導導体を有する複数の超電導ケーブルと、隣接するケーブルの超電導導体同士を接続する複数の導体接続部と、各導体接続部を収納する複数のケースとを具える線路を設計する超電導ケーブル線路の設計方法であって、
各導体接続部がそれぞれケースに対して相対的に移動可能な状態と仮定した場合に、冷却により超電導ケーブルが熱収縮する際に各導体接続部が移動する移動量を演算する工程と、
得られた複数の移動量と閾値との比較結果を利用して、各導体接続部を固定接続部とするか移動接続部とするかを決定する工程とを具え、
前記各導体接続部の移動量は、当該線路への冷媒の導入方向に応じて各接続部に生じる応力に基づいて演算し、
前記固定接続部は、冷却により超電導ケーブルが熱収縮する際、ケースに対して相対的に移動不可能にケースに固定される導体接続部であり、
前記移動接続部は、冷却により超電導ケーブルが熱収縮する際、ケースに対して相対的に移動可能にケースに収納される導体接続部であることを特徴とする超電導ケーブル線路の設計方法。
Designing a track comprising a plurality of superconducting cables having superconducting conductors cooled by a refrigerant, a plurality of conductor connecting portions for connecting the superconducting conductors of adjacent cables, and a plurality of cases for storing the respective conductor connecting portions. A method of designing a superconducting cable line,
Assuming that each conductor connection portion is movable relative to the case, a step of calculating the amount of movement of each conductor connection portion when the superconducting cable is thermally contracted by cooling,
Using the obtained comparison results of the plurality of movement amounts and threshold values, the step of determining whether each conductor connection portion is a fixed connection portion or a movement connection portion,
The amount of movement of each conductor connection portion is calculated based on the stress generated in each connection portion according to the direction of introduction of the refrigerant to the line,
The fixed connection portion is a conductor connection portion that is fixed to the case so as not to move relative to the case when the superconducting cable is thermally contracted by cooling,
The method of designing a superconducting cable line, wherein the moving connecting portion is a conductor connecting portion that is accommodated in the case so as to be relatively movable with respect to the case when the superconducting cable is thermally contracted by cooling.
前記各導体接続部の移動量は、線路の布設レイアウトに基づいて演算することを特徴とする請求項1に記載の超電導ケーブル線路の設計方法。   2. The method of designing a superconducting cable line according to claim 1, wherein the amount of movement of each conductor connecting portion is calculated based on a laying layout of the line. 冷媒によって冷却される超電導導体を有する複数の超電導ケーブルと、隣接するケーブルの超電導導体同士を接続する複数の導体接続部と、各導体接続部を収納する複数のケースとを具える超電導ケーブル線路であって、
各導体接続部は、固定接続部及び移動接続部の少なくとも一方であり、
前記固定接続部は、冷却により超電導ケーブルが熱収縮する際、ケースに対して相対的に移動不可能にケースに固定される導体接続部であり、
前記移動接続部は、冷却により超電導ケーブルが熱収縮する際、ケースに対して相対的に移動可能にケースに収納される導体接続部であることを特徴とする超電導ケーブル線路。
A superconducting cable line comprising a plurality of superconducting cables having superconducting conductors cooled by a refrigerant, a plurality of conductor connecting portions for connecting the superconducting conductors of adjacent cables, and a plurality of cases for storing the respective conductor connecting portions. There,
Each conductor connection portion is at least one of a fixed connection portion and a movable connection portion,
The fixed connection portion is a conductor connection portion that is fixed to the case so as not to move relative to the case when the superconducting cable is thermally contracted by cooling,
The superconducting cable line, wherein the moving connecting portion is a conductor connecting portion that is accommodated in the case so as to be relatively movable with respect to the case when the superconducting cable is thermally contracted by cooling.
前記固定接続部の外周には、一体成形体からなる固体絶縁部が設けられており、
前記固体絶縁部がケースに固定されることで、前記固定接続部はケースに固定されることを特徴とする請求項3に記載の超電導ケーブル線路。
On the outer periphery of the fixed connection part, a solid insulating part made of an integrally molded body is provided,
4. The superconducting cable line according to claim 3, wherein the solid connection portion is fixed to the case by fixing the solid insulating portion to the case.
前記固定接続部の外周には、絶縁材を巻回してなる積層絶縁部が設けられ、この積層絶縁部の外周に更に補強支持部が設けられており、
前記補強支持部がケースに固定されることで、前記固定接続部はケースに固定されることを特徴とする請求項3に記載の超電導ケーブル線路。
On the outer periphery of the fixed connection portion, a laminated insulating portion formed by winding an insulating material is provided, and a reinforcing support portion is further provided on the outer periphery of the laminated insulating portion,
4. The superconducting cable line according to claim 3, wherein the fixed connecting portion is fixed to the case by fixing the reinforcing support portion to the case.
線路は、固定接続部を収納するケース内に充填された冷媒を固化する冷却装置を具え、
前記固定接続部は、冷却装置により固化した冷媒によりケースに固定されることを特徴とする請求項3に記載の超電導ケーブル線路。
The track includes a cooling device that solidifies the refrigerant filled in the case that houses the fixed connection portion,
4. The superconducting cable line according to claim 3, wherein the fixed connection portion is fixed to the case by a refrigerant solidified by a cooling device.
固定接続部を収納するケース内に線路内の冷媒区間を線路の長手方向に区切る仕切部を具えることを特徴とする請求項3又は4に記載の超電導ケーブル線路。   5. The superconducting cable line according to claim 3, further comprising a partition part that divides a refrigerant section in the line in a longitudinal direction of the line in a case that accommodates the fixed connection part.
JP2007044680A 2007-02-23 2007-02-23 Superconducting cable line design method and superconducting cable line Expired - Fee Related JP4826797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044680A JP4826797B2 (en) 2007-02-23 2007-02-23 Superconducting cable line design method and superconducting cable line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044680A JP4826797B2 (en) 2007-02-23 2007-02-23 Superconducting cable line design method and superconducting cable line

Publications (2)

Publication Number Publication Date
JP2008211878A true JP2008211878A (en) 2008-09-11
JP4826797B2 JP4826797B2 (en) 2011-11-30

Family

ID=39787722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044680A Expired - Fee Related JP4826797B2 (en) 2007-02-23 2007-02-23 Superconducting cable line design method and superconducting cable line

Country Status (1)

Country Link
JP (1) JP4826797B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070617A (en) * 2010-08-31 2012-04-05 Nexans Method for controlling thermal shrinkage of superconducting cable and apparatus for implementing the same
KR101142604B1 (en) 2005-09-22 2012-05-10 스미토모 덴키 고교 가부시키가이샤 Method for assembling interconnecting structure for superconducting cable
JP5981414B2 (en) * 2011-03-17 2016-08-31 古河電気工業株式会社 Superconducting cable fixing structure and superconducting cable line fixing structure
EP2615614A4 (en) * 2010-09-07 2017-09-13 Chubu University Educational Foundation Superconducting power transmission system
KR101798659B1 (en) * 2011-04-27 2017-11-16 엘에스전선 주식회사 Super-conducting cable device
CN108232482A (en) * 2018-01-31 2018-06-29 广州电力设计院有限公司 Press earthing or grounding means and electric power tunnel
JP2021050776A (en) * 2019-09-25 2021-04-01 株式会社前川製作所 Corrugated piping, and cooling piping with thermal contraction relaxation mechanism

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846227U (en) * 1981-05-21 1983-03-29 財団法人電力中央研究所 Expansion joint device for cryogenic cables
JPS62221815A (en) * 1986-03-19 1987-09-29 住友電気工業株式会社 Joint of steel pipe covered power cable
JPH01109237U (en) * 1988-01-08 1989-07-24
JPH08130823A (en) * 1994-11-01 1996-05-21 Sumitomo Electric Ind Ltd Cryogenic cable line
JP2005033964A (en) * 2003-07-11 2005-02-03 Furukawa Electric Co Ltd:The Terminal connection portion for extremely low temperature cable
JP2005032698A (en) * 2003-06-19 2005-02-03 Sumitomo Electric Ind Ltd Superconducting cable, and superconducting cable line using the same
JP2005210834A (en) * 2004-01-22 2005-08-04 Sumitomo Electric Ind Ltd Connection structure of polyphase superconductive cable
JP2006014547A (en) * 2004-06-29 2006-01-12 Tokyo Electric Power Co Inc:The Superconductive cable connecting apparatus
JP2006038631A (en) * 2004-07-27 2006-02-09 Tokyo Electric Power Co Inc:The Cable conductor temperature estimation method in consideration of cooling effect, cable conductor temperature estimation system, and cable conductor temperature estimation program
JP2006197702A (en) * 2005-01-12 2006-07-27 Sumitomo Electric Ind Ltd Method for assembling joint of superconducting cable

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846227U (en) * 1981-05-21 1983-03-29 財団法人電力中央研究所 Expansion joint device for cryogenic cables
JPS62221815A (en) * 1986-03-19 1987-09-29 住友電気工業株式会社 Joint of steel pipe covered power cable
JPH01109237U (en) * 1988-01-08 1989-07-24
JPH08130823A (en) * 1994-11-01 1996-05-21 Sumitomo Electric Ind Ltd Cryogenic cable line
JP2005032698A (en) * 2003-06-19 2005-02-03 Sumitomo Electric Ind Ltd Superconducting cable, and superconducting cable line using the same
JP2005033964A (en) * 2003-07-11 2005-02-03 Furukawa Electric Co Ltd:The Terminal connection portion for extremely low temperature cable
JP2005210834A (en) * 2004-01-22 2005-08-04 Sumitomo Electric Ind Ltd Connection structure of polyphase superconductive cable
JP2006014547A (en) * 2004-06-29 2006-01-12 Tokyo Electric Power Co Inc:The Superconductive cable connecting apparatus
JP2006038631A (en) * 2004-07-27 2006-02-09 Tokyo Electric Power Co Inc:The Cable conductor temperature estimation method in consideration of cooling effect, cable conductor temperature estimation system, and cable conductor temperature estimation program
JP2006197702A (en) * 2005-01-12 2006-07-27 Sumitomo Electric Ind Ltd Method for assembling joint of superconducting cable

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101142604B1 (en) 2005-09-22 2012-05-10 스미토모 덴키 고교 가부시키가이샤 Method for assembling interconnecting structure for superconducting cable
JP2012070617A (en) * 2010-08-31 2012-04-05 Nexans Method for controlling thermal shrinkage of superconducting cable and apparatus for implementing the same
KR101912842B1 (en) 2010-08-31 2018-10-30 넥쌍 Method of managing thermal contraction of a superconductor cable and arrangement for implementing this method
EP2615614A4 (en) * 2010-09-07 2017-09-13 Chubu University Educational Foundation Superconducting power transmission system
JP5981414B2 (en) * 2011-03-17 2016-08-31 古河電気工業株式会社 Superconducting cable fixing structure and superconducting cable line fixing structure
KR101798659B1 (en) * 2011-04-27 2017-11-16 엘에스전선 주식회사 Super-conducting cable device
CN108232482A (en) * 2018-01-31 2018-06-29 广州电力设计院有限公司 Press earthing or grounding means and electric power tunnel
CN108232482B (en) * 2018-01-31 2023-08-22 广州电力设计院有限公司 Equal-voltage grounding device and power tunnel
JP2021050776A (en) * 2019-09-25 2021-04-01 株式会社前川製作所 Corrugated piping, and cooling piping with thermal contraction relaxation mechanism
JP7274388B2 (en) 2019-09-25 2023-05-16 株式会社前川製作所 Corrugated piping and cooling piping with thermal contraction relaxation mechanism

Also Published As

Publication number Publication date
JP4826797B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4826797B2 (en) Superconducting cable line design method and superconducting cable line
US7243716B2 (en) Heated windable rigid duct for transporting fluids, particularly hydrocarbons
ES2956239T3 (en) Charging system for electrical energy storage
EP1848063A1 (en) Intermediate joint structure of superconductive cable
JP4928565B2 (en) Superconducting cable
US20130165326A1 (en) Superconducting cable line
KR101798659B1 (en) Super-conducting cable device
JP2019129583A (en) Terminal structure of superconductor cable
US11978572B2 (en) Superconductive cable
US20110160063A1 (en) Superconducting cable system
EP1441367A2 (en) Superconducting cable
KR20150051141A (en) Superconducting power system and installing method of superconducting cable
KR102005584B1 (en) Superconducting cable
KR102011151B1 (en) Superconducting cable
KR102351544B1 (en) Superconducting cable and superconducting power system having the same
JP2013069585A (en) Superconducting cable manufacturing method
JP2005341767A (en) Terminal structure of superconducting cable
JP5273572B2 (en) Laying the superconducting cable
JP6697677B2 (en) Intermediate connection structure of superconducting cable
JP5252323B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
KR20110091929A (en) Superconducting power cable which is cooled by multiple cryogen
KR102608511B1 (en) Vacuum Insulation Part Dividing Device And Superconducting Cable Having The Same
JP6140377B2 (en) Superconducting cable and method of manufacturing superconducting cable
KR102573476B1 (en) Connecting Structure For Superconductive Cable
EP0807938A1 (en) A duct structure for the mechanical containment and thermal insulation of electrical superconductors cooled with cryogenic fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees