JP2008211389A - Intercom device - Google Patents

Intercom device Download PDF

Info

Publication number
JP2008211389A
JP2008211389A JP2007044563A JP2007044563A JP2008211389A JP 2008211389 A JP2008211389 A JP 2008211389A JP 2007044563 A JP2007044563 A JP 2007044563A JP 2007044563 A JP2007044563 A JP 2007044563A JP 2008211389 A JP2008211389 A JP 2008211389A
Authority
JP
Japan
Prior art keywords
speaker
air chamber
acoustic tube
rear air
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007044563A
Other languages
Japanese (ja)
Inventor
Shinya Kimoto
進弥 木本
Kosaku Kitada
耕作 北田
Yasushi Arikawa
泰史 有川
Osamu Akasaka
修 赤坂
恵一 ▲吉▼田
Keiichi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007044563A priority Critical patent/JP2008211389A/en
Priority to PCT/JP2007/075351 priority patent/WO2008102516A1/en
Publication of JP2008211389A publication Critical patent/JP2008211389A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0291Door telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Abstract

<P>PROBLEM TO BE SOLVED: To provide a speaker system which is improved in sound quality and efficiency in an audio band by suppressing a standing wave in the audio band generated in a rear air chamber. <P>SOLUTION: The speaker system includes a housing A1; a speaker SP which is accommodated in the housing A1 and configured to provide audio information from one surface side to the outside of the housing A1; and a rear air chamber Br which is defined as a space formed in the housing A1 on the side of the other surface of the speaker SP, wherein each of surfaces surrounding the rear air chamber Br has a distance of 50 mm or less between surfaces facing each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スピーカ装置に関するものである。   The present invention relates to a speaker device.

従来、スピーカをキャビネットに取り付けて、スピーカ(振動板)の表面側から外部空間に向かって音声情報が出力されるスピーカ装置があり、各種音響機器に用いられている。(例えば、特許文献1参照)。
特許第3763682号
2. Description of the Related Art Conventionally, there is a speaker device in which a speaker is attached to a cabinet and audio information is output from the surface side of the speaker (diaphragm) toward an external space, and is used for various acoustic devices. (For example, refer to Patent Document 1).
Japanese Patent No. 3766682

近年、インターホンや携帯電話やハンズフリー通話装置等の通話装置の需要が増えており、これらの通話装置に用いられるスピーカ装置は、一般に通話で使用される音声帯域600Hz〜3KHzでの音質、効率が重要となる。   In recent years, there has been an increasing demand for communication devices such as intercoms, mobile phones, and hands-free communication devices, and speaker devices used in these communication devices generally have sound quality and efficiency in a voice band of 600 Hz to 3 KHz used for calls. It becomes important.

一般に、スピーカ装置のキャビネット内には、スピーカの裏面側に形成された後気室があり、スピーカの裏面から後気室に放射される音波が、後気室を包囲する内面で反射して、互いに対向する内面間の距離が半波長の整数倍に等しくなる周波数の定在波を生じる。後気室内に生じる定在波は、スピーカの振動板の動きを阻害する作用を担うので、スピーカの出力から定在波と同一の周波数成分が低下してしまい、スピーカの音質、効率を劣化させる大きな要因となっている。而して、このような定在波が音声帯域で発生した場合、主に人の音声を出力するスピーカ装置では、音声内容が聞き取り難くなったり、消費電力が大きくなるという問題が生じる。   Generally, in the cabinet of the speaker device, there is a rear air chamber formed on the back surface side of the speaker, and sound waves radiated from the back surface of the speaker to the rear air chamber are reflected by the inner surface surrounding the rear air chamber, A standing wave having a frequency at which the distance between the inner surfaces facing each other is equal to an integral multiple of a half wavelength is generated. The standing wave generated in the rear air chamber has the effect of hindering the movement of the diaphragm of the speaker. Therefore, the same frequency component as the standing wave is reduced from the output of the speaker, which deteriorates the sound quality and efficiency of the speaker. It is a big factor. Thus, when such a standing wave is generated in the voice band, a speaker device that mainly outputs human voice has problems that it is difficult to hear the voice content and power consumption is increased.

本発明は、上記事由に鑑みてなされたものであり、その目的は、後気室内に発生する音声帯域の定在波を抑制して、音声帯域でのスピーカの音質、効率を向上させたスピーカ装置を提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is to suppress the standing wave of the voice band generated in the rear air chamber and improve the sound quality and efficiency of the speaker in the voice band. To provide an apparatus.

請求項1の発明は、ハウジングと、ハウジングに取り付けられて、一方面側からハウジング外へ音声情報を出力するスピーカと、ハウジング内でスピーカの他方面側に形成された空間である後気室とを備え、後気室を包囲する各面は、互いに対向する面間の距離が50mm以下に形成されるとを特徴とする。   The invention of claim 1 includes a housing, a speaker that is attached to the housing and outputs audio information from one side to the outside of the housing, and a rear chamber that is a space formed on the other side of the speaker in the housing. And each surface surrounding the rear air chamber is characterized in that the distance between the opposing surfaces is 50 mm or less.

この発明によれば、後気室内に3KHz以下の定在波が発生することはなく、後気室内に発生する定在波によって音声帯域でのスピーカの音質、効率が悪化することを防止できる。すなわち、後気室内に発生する音声帯域の定在波を抑制して、音声帯域でのスピーカの音質、効率を向上させたスピーカ装置を提供することができる。   According to the present invention, a standing wave of 3 KHz or less is not generated in the rear air chamber, and the sound quality and efficiency of the speaker in the voice band can be prevented from being deteriorated by the standing wave generated in the rear air chamber. That is, it is possible to provide a speaker device that suppresses the standing wave in the voice band generated in the rear air chamber and improves the sound quality and efficiency of the speaker in the voice band.

請求項2の発明は、請求項1において、一端を開口し他端を閉塞した中空に形成され、開口を介して後気室内に連通した音響管を備えることを特徴とする。   According to a second aspect of the present invention, there is provided an acoustic tube according to the first aspect, wherein the acoustic tube is formed in a hollow shape having one end opened and the other end closed, and communicated with the rear air chamber through the opening.

この発明によれば、音響管によって、スピーカの最低共振周波数が低周波数側に移行し、さらにはスピーカの音圧レベルが増加するので、後気室が小容量であっても音声帯域の音質および効率が向上する。   According to the present invention, the acoustic tube shifts the lowest resonance frequency of the speaker to the lower frequency side, and further increases the sound pressure level of the speaker. Therefore, even if the rear air chamber has a small capacity, Efficiency is improved.

請求項3の発明は、請求項2において、前記音響管は、後気室の容量が小さいことによって低下するスピーカ出力の所定周波数の音圧レベルを増大させるために、増大させる周波数の1/4波長に基づく長さに設定されることを特徴とする。   According to a third aspect of the present invention, in the sound pipe according to the second aspect, in order to increase the sound pressure level at a predetermined frequency of the speaker output, which is decreased when the capacity of the rear air chamber is small, the acoustic tube is ¼ of the frequency to be increased. The length is set based on the wavelength.

この発明によれば、音響管の長さを適宜設定することで、所望の周波数の音圧レベルを上げることができる。   According to the present invention, the sound pressure level of a desired frequency can be increased by appropriately setting the length of the acoustic tube.

請求項4の発明は、請求項2または3において、前記音響管は、前記後気室を包囲する各面のうち、複数の面に亘って連続して形成されることを特徴とする。   A fourth aspect of the present invention is characterized in that, in the second or third aspect, the acoustic tube is continuously formed over a plurality of surfaces among the surfaces surrounding the rear air chamber.

この発明によれば、音響管を必要に応じて長くすることができる。   According to this invention, the acoustic tube can be lengthened as necessary.

請求項5の発明は、請求項2乃至4いずれかにおいて、互いに長さが同一である複数の前記音響管を備えることを特徴とする。   According to a fifth aspect of the present invention, in any one of the second to fourth aspects, a plurality of the acoustic tubes having the same length are provided.

この発明によれば、所定周波数の音圧レベルを大幅に向上させることができる。   According to the present invention, the sound pressure level at a predetermined frequency can be greatly improved.

請求項6の発明は、請求項2乃至4いずれかにおいて、互いに長さの異なる複数の前記音響管を備えることを特徴とする。   A sixth aspect of the invention is characterized in that in any one of the second to fourth aspects, a plurality of the acoustic tubes having different lengths are provided.

この発明によれば、複数の周波数の音圧レベルを向上させることができる。   According to the present invention, the sound pressure levels of a plurality of frequencies can be improved.

請求項7の発明は、請求項2乃至6いずれかにおいて、前記音響管の閉塞した他端面の形状を、音響管の軸方向に対して斜めに形成したことを特徴とする。   A seventh aspect of the invention is characterized in that, in any one of the second to sixth aspects, the shape of the closed other end face of the acoustic tube is formed obliquely with respect to the axial direction of the acoustic tube.

この発明によれば、1つの音響管によって向上可能な音圧レベルの周波数帯域を広げることができる。   According to this invention, the frequency band of the sound pressure level that can be improved by one acoustic tube can be expanded.

請求項8の発明は、請求項2乃至7いずれかにおいて、前記後気室内または前記音響管内に吸音材を設けたことを特徴とする。   The invention of claim 8 is characterized in that, in any of claims 2 to 7, a sound absorbing material is provided in the rear air chamber or the acoustic tube.

この発明によれば、音響管によって音圧レベルを向上させたい周波数近傍で発生する音圧レベルの落ち込みを抑制することができる。   According to this invention, it is possible to suppress a drop in the sound pressure level that occurs in the vicinity of the frequency at which the sound pressure level is desired to be improved by the acoustic tube.

請求項9の発明は、請求項2乃至8いずれかにおいて、前記音響管は、屈曲した形状に形成されて後気室内に設けられることを特徴とする。   According to a ninth aspect of the present invention, in any one of the second to eighth aspects, the acoustic tube is formed in a bent shape and provided in the rear air chamber.

この発明によれば、小容量の後気室内に音響管を配置することができる。   According to the present invention, the acoustic tube can be arranged in a small-capacity rear air chamber.

以上説明したように、本発明では、後気室内に発生する音声帯域の定在波を抑制して、音声帯域でのスピーカの音質、効率を向上させることができるという効果がある。   As described above, the present invention has an effect of suppressing the standing wave of the voice band generated in the rear air chamber and improving the sound quality and efficiency of the speaker in the voice band.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本発明のスピーカ装置を用いた一形態として、インターホンの通話装置を例に挙げて以下説明する。
(Embodiment 1)
As an embodiment using the speaker device of the present invention, an interphone communication device will be described below as an example.

本実施形態の通話装置Aは図1〜図3に示され、前面に開口を形成したボディA10と、ボディA10の開口に覆設したカバーA11とでハウジングA1(横寸法X1=40mm、縦寸法X2=90mm、厚さ寸法X3=8mm)を構成し、ハウジングA1に、スピーカSP、マイクロホン基板MB1、通話スイッチSW1、音声処理部10を備え、部屋間で双方向の通話が可能なインターホンとして機能するものである。なお、通話装置Aの電源は、設置場所の近傍に設けたコンセントから供給されるか、あるいは情報線Lsを介して供給されてもよい。   The communication device A according to the present embodiment is shown in FIGS. 1 to 3, and includes a housing A1 (horizontal dimension X1 = 40 mm, vertical dimension) including a body A10 having an opening on the front surface and a cover A11 covering the opening of the body A10. X2 = 90 mm, thickness dimension X3 = 8 mm), and the housing A1 includes a speaker SP, a microphone board MB1, a call switch SW1, and a voice processing unit 10, and functions as an interphone capable of two-way calls between rooms. To do. Note that the power of the communication device A may be supplied from an outlet provided in the vicinity of the installation location or may be supplied via the information line Ls.

まず、スピーカSPは、図1に示すように、図示しないヨークや永久磁石等を設けた支持体20を具備し、ドーム型の振動板21の外周側の縁部が支持体20に固定されている。振動板21は、PET(PolyEthyleneTerephthalate)またはPEI(Polyetherimide)等の熱可塑性プラスチック(例えば、厚み12μm〜50μm)で形成され、振動板21の背面に固定した図示しないボイスコイルに音声信号を入力すると、この音声信号の電流と支持体20の永久磁石の磁界とにより、ボイスコイルに電磁力が発生するため、振動板21が前後方向に振動させられる。このとき、振動板21から音声信号に応じた音が発せられる。すなわち、動電型のスピーカSPが構成される(例えば、直径25mm,厚さ3.6mm)。なお、動電型のスピーカの構成については周知であるので、詳細な説明は省略する。   First, as shown in FIG. 1, the speaker SP includes a support body 20 provided with a yoke, a permanent magnet, etc. (not shown), and an edge portion on the outer peripheral side of a dome-shaped diaphragm 21 is fixed to the support body 20. Yes. The diaphragm 21 is formed of thermoplastic plastic (for example, 12 μm to 50 μm in thickness) such as PET (PolyEthyleneTerephthalate) or PEI (Polyetherimide), and when an audio signal is input to a voice coil (not shown) fixed to the back of the diaphragm 21, The electromagnetic force is generated in the voice coil by the current of the audio signal and the magnetic field of the permanent magnet of the support 20, so that the diaphragm 21 is vibrated in the front-rear direction. At this time, a sound corresponding to the audio signal is emitted from the diaphragm 21. That is, an electrodynamic speaker SP is formed (for example, a diameter of 25 mm and a thickness of 3.6 mm). Since the configuration of the electrodynamic speaker is well known, detailed description thereof is omitted.

そして、カバーA11の内面に等間隔に形成された4箇所の円柱状のボス11に、スピーカSPの支持体20の四隅に設けた取付孔22を各々載置し、ボス11の軸方向に形成されたねじ孔11aに取付ねじ23を螺合することで、振動板21がカバーA11の内面に対向する状態でスピーカSPが固定される。また、カバーA11の振動板21に対向する箇所には複数の音孔12が穿設されている。   The mounting holes 22 provided at the four corners of the support 20 of the speaker SP are placed on the four cylindrical bosses 11 formed at equal intervals on the inner surface of the cover A11, and are formed in the axial direction of the bosses 11. By screwing the attachment screw 23 into the screw hole 11a, the speaker SP is fixed in a state where the diaphragm 21 faces the inner surface of the cover A11. In addition, a plurality of sound holes 12 are drilled at locations facing the diaphragm 21 of the cover A11.

このスピーカSPが固定されたカバーA11をボディA10に取り付けてハウジングA1を組み立てると、ボディA10の底面に立設した隔壁13によって、ハウジングA1内には隔壁13で仕切られた2つの空間A1a,A1bが形成され、スピーカSPは空間A1a内に配置される。この空間A1aは、ハウジングA1の横寸法X1=40mm、縦寸法X2a=30mm、厚さ寸法X3=8mmに対応する空間に形成され、空間A1bは、ハウジングA1の横寸法X1=40mm、縦寸法X2a=60mm、厚さ寸法X3=8mmに対応する空間に形成されている。   When the cover A11 to which the speaker SP is fixed is attached to the body A10 and the housing A1 is assembled, two spaces A1a and A1b partitioned by the partition wall 13 are formed in the housing A1 by the partition wall 13 standing on the bottom surface of the body A10. And the speaker SP is disposed in the space A1a. The space A1a is formed in a space corresponding to the horizontal dimension X1 = 40 mm, the vertical dimension X2a = 30 mm, and the thickness dimension X3 = 8 mm of the housing A1, and the space A1b is the horizontal dimension X1 = 40 mm and the vertical dimension X2a of the housing A1. = 60 mm and a thickness corresponding to a thickness dimension X3 = 8 mm.

そして、空間A1a内では、カバーA11の内面とスピーカSPの表面側(振動板21側)とで囲まれた空間である前気室Bfと、ボディA10の底面および4つの内壁面(隔壁13含む)とスピーカSPの裏面側(支持体20側)とで囲まれた空間である後気室Brとが形成される。前気室Bfは、カバーA11に複数設けた音孔12を介して外部に連通している。後気室Brは、スピーカSPの支持体20がカバーA11の内面に密着することで、前気室Bfとは絶縁した(連通していない)空間となり、さらにカバーA11がボディA10の前面開口に密着することで、外部とも絶縁した密閉された空間となっている。   In the space A1a, the front air chamber Bf that is a space surrounded by the inner surface of the cover A11 and the surface side of the speaker SP (diaphragm 21 side), the bottom surface of the body A10, and four inner wall surfaces (including the partition wall 13). ) And the rear air chamber Br, which is a space surrounded by the back side of the speaker SP (the support 20 side). The front air chamber Bf communicates with the outside through a plurality of sound holes 12 provided in the cover A11. The rear air chamber Br becomes a space that is insulated (not communicated) with the front air chamber Bf by the support 20 of the speaker SP being in close contact with the inner surface of the cover A11, and the cover A11 is formed in the front opening of the body A10. By being in close contact, it is a sealed space that is insulated from the outside.

次に、マイクロホン基板MB1は、マイクロホンM1およびマイクロホンM2をモジュール基板2の一面に各々実装し、ハウジングA1の外面に取付可能に構成される。本実施形態では、モジュール基板2の一面をハウジングA1の前面外側に沿って配置し、マイクロホンM1はハウジングA1前面の開口14を挿通する。そして、マイクロホンM1の集音面は、前気室Bfに向かってスピーカSPの振動板21に対向しており、スピーカSPからの音声に対して高い指向性を有して、スピーカSPが発する音声を確実に集音することができる。また、マイクロホンM2は、ハウジングA1の前面に設けた凹部15に嵌合し、モジュール基板2に穿設したマイクロホンM2の音孔2aはハウジングA1の外部(前方)に面しているので、音孔2aを介して伝達される、通話装置Aの前方に位置する話者からの音声に対して高い指向性を有している。すなわち、スピーカSPが発する音声と話者の発する音声とをマイクロホンM1,M2で分離して集音しているのである。   Next, the microphone substrate MB1 is configured such that the microphone M1 and the microphone M2 are mounted on one surface of the module substrate 2 and can be attached to the outer surface of the housing A1. In the present embodiment, one surface of the module substrate 2 is arranged along the outer front surface of the housing A1, and the microphone M1 is inserted through the opening 14 on the front surface of the housing A1. The sound collection surface of the microphone M1 faces the diaphragm 21 of the speaker SP toward the front air chamber Bf, has high directivity with respect to the sound from the speaker SP, and the sound emitted from the speaker SP. Can be reliably collected. Further, the microphone M2 is fitted into the recess 15 provided on the front surface of the housing A1, and the sound hole 2a of the microphone M2 formed in the module substrate 2 faces the outside (front) of the housing A1, so that the sound hole It has high directivity with respect to the voice from the speaker located in front of the communication device A transmitted through 2a. That is, the sound emitted by the speaker SP and the sound emitted by the speaker are separated and collected by the microphones M1 and M2.

また、ハウジングA1内の空間A1bには音声処理部10、通話スイッチSW1が配置されており、通話スイッチSW1は、ハウジングA1の前面からその操作部が露出している。そして音声処理部10は、他の部屋等に設置されている通話装置Aから情報線Lsを介して送信された音声信号をスピーカSPから出力したり、通話スイッチSW1を操作することで通話可能状態となった場合に、マイクロホンM2で集音した通話音声から,マイクロホンM1で集音したスピーカ音を除去することで、スピーカSPから回り込んだ音声をキャンセルするハウリング防止処理を施して、情報線Lsを介して他の部屋等に設置されている通話装置Aへ音声信号を送信する。   The voice processing unit 10 and the call switch SW1 are disposed in the space A1b in the housing A1, and the operation unit of the call switch SW1 is exposed from the front surface of the housing A1. The voice processing unit 10 outputs a voice signal transmitted from the call device A installed in another room or the like via the information line Ls from the speaker SP or operates the call switch SW1 to enable a call. In this case, by removing the speaker sound collected by the microphone M1 from the call voice collected by the microphone M2, a howling prevention process for canceling the sound sneak around from the speaker SP is performed, and the information line Ls The voice signal is transmitted to the communication device A installed in another room or the like.

上記のように構成された通話装置Aは、概略寸法が40mm×30mm×8mmである空間A1a(実際は、ハウジングA1の厚みがあるためこの寸法より小さくなる)内にスピーカSPを配置しており、スピーカSPの裏面側の空間である後気室Brの寸法も、上記概略寸法40mm×30mm×8mmより小さくなり、本実施形態では後気室Brの容量を3800mm(または3800mm以下)に設定している。一般に通話で使用される音声帯域は600Hz〜3KHzであり、後気室Br内に3KHz以下の定在波を発生させるためには、後気室Brを包囲する面間の距離が50mm以上必要になる。したがって、本実施形態のように後気室Brを包囲する面間の距離が50mm以下の小型の装置では、後気室Br内に3KHz以下の定在波が発生することはなく、後気室Br内に発生する定在波によって通話音質や効率が悪化することは考えられない。しかし、後気室Brの容量が小さいことによってスピーカSPの放射音圧が低下し、スピーカSPの最低共振周波数foが高周波数側にずれて、スピーカSPの音質、効率が悪化する恐れがある。 In the communication device A configured as described above, the speaker SP is disposed in a space A1a having an approximate dimension of 40 mm × 30 mm × 8 mm (actually smaller than this dimension due to the thickness of the housing A1). The size of the rear air chamber Br which is the space on the back surface side of the speaker SP is also smaller than the above approximate size 40 mm × 30 mm × 8 mm, and in this embodiment, the capacity of the rear air chamber Br is set to 3800 mm 3 (or 3800 mm 3 or less). is doing. In general, the voice band used for calling is 600 Hz to 3 KHz, and in order to generate a standing wave of 3 KHz or less in the rear air chamber Br, the distance between the surfaces surrounding the rear air chamber Br needs to be 50 mm or more. Become. Therefore, in a small apparatus in which the distance between the surfaces surrounding the rear air chamber Br is 50 mm or less as in this embodiment, a standing wave of 3 KHz or less is not generated in the rear air chamber Br. It is unlikely that the sound quality and efficiency of communication will deteriorate due to standing waves generated in Br. However, since the capacity of the rear air chamber Br is small, the radiated sound pressure of the speaker SP is lowered, and the lowest resonance frequency fo of the speaker SP is shifted to the high frequency side, which may deteriorate the sound quality and efficiency of the speaker SP.

ここで、スピーカSPの最低共振周波数foは、一般に、スピーカの振動系の等価質量(振動板、ボイスコイル、空気付加質量)Moと、それを支持するエッジ等のスティフネスSoと、後気室Br内の空気のスティフネスSrとによって決まり、   Here, the minimum resonance frequency fo of the speaker SP is generally equal to the equivalent mass (diaphragm, voice coil, air added mass) Mo of the vibration system of the speaker, the stiffness So such as an edge supporting the same, and the rear air chamber Br. It depends on the stiffness Sr of the air inside,

Figure 2008211389
Figure 2008211389

で表される。 It is represented by

図4はスピーカSPの前方における放射音圧の周波数特性を示しており、密閉された後気室の容量が3800mm(または3800mm以下)のハウジング(後述する音響管無し)を用いた場合と、ハウジングとして理想的なバッフル板を用いた場合との両方の場合について各結果を示す。 FIG. 4 shows the frequency characteristics of the radiated sound pressure in front of the speaker SP, and the case where a housing (without an acoustic tube, which will be described later) having a sealed rear air chamber volume of 3800 mm 3 (or 3800 mm 3 or less) is used. The results are shown for both cases where an ideal baffle plate is used as the housing.

まず、理想的なバッフル板とは、図5に示すように無限大の大きさを有するバッフル板Cのことであり、放射音圧特性(図4の特性Y1)は、スピーカSPの最低共振周波数fo1=600Hzとなり、最低共振周波数はスピーカSP単体での特性と同じ理想的な特性を示している。バッフル板Cを用いるとこのように優れた特性を備えるが、これはバッフル板Cが無限大の大きさを有して、スピーカSPの裏面(振動板21の裏面)から放射された音がバッフル板Cで遮断されて前方に回り込まないとした場合の結果であり、現実的ではない。   First, the ideal baffle plate is a baffle plate C having an infinite size as shown in FIG. 5, and the radiated sound pressure characteristic (characteristic Y1 in FIG. 4) is the lowest resonance frequency of the speaker SP. fo1 = 600 Hz, and the lowest resonance frequency shows the same ideal characteristic as that of the speaker SP alone. When the baffle plate C is used, such excellent characteristics are provided. However, the baffle plate C has an infinite size, and the sound radiated from the back surface of the speaker SP (the back surface of the diaphragm 21) is baffled. This is the result when it is blocked by the plate C and does not go forward, and is not realistic.

次に、密閉された後気室を有するハウジングを用いた場合の放射音圧特性については、後気室の容量が十分に大きければバッフル板Cと同様の特性を得ることができるが、後気室の容量が小さいと、後気室内の空気のスティフネスSrが大きくなり、スピーカSPの最低共振周波数は高くなり、放射音圧が低下して、通話音質および効率が悪化する。後気室の容量が3800mm(または3800mm以下)のハウジングを用いた場合の放射音圧特性(図4の特性Y2)は、スピーカSPの最低共振周波数fo2=1200Hzとなり、バッフル板Cを用いた場合に比べて最低共振周波数が高周波数側にずれ、さらには800Hz以下の周波数帯域でバッフル板Cを用いた場合に比べて音圧レベルが5〜20dB程度減少しており、スピーカSPの音質および効率が悪化している。後気室の容量を大きくすればスピーカSPの音質は改善されるが、後気室の容量を大きくするとハウジングも大型化し、通話装置の小型化が困難になる。 Next, regarding the radiated sound pressure characteristics when a housing having a sealed rear air chamber is used, the same characteristics as the baffle plate C can be obtained if the capacity of the rear air chamber is sufficiently large. When the volume of the room is small, the stiffness Sr of the air in the rear air chamber is increased, the minimum resonance frequency of the speaker SP is increased, the radiated sound pressure is lowered, and the speech quality and efficiency are deteriorated. The radiation sound pressure characteristic (characteristic Y2 in FIG. 4) when a housing having a rear air chamber volume of 3800 mm 3 (or 3800 mm 3 or less) is used is the lowest resonance frequency fo2 of the speaker SP = 1200 Hz, and the baffle plate C is used. The lowest resonance frequency is shifted to the high frequency side compared with the case where the sound pressure level is lower, and the sound pressure level is reduced by about 5 to 20 dB compared with the case where the baffle plate C is used in the frequency band of 800 Hz or less. And efficiency is deteriorating. Increasing the capacity of the rear chamber improves the sound quality of the speaker SP. However, increasing the capacity of the rear chamber increases the size of the housing and makes it difficult to reduce the size of the communication device.

そこで、本実施形態では、図1、図3に示すように、スピーカSP裏面の後気室Brを包囲するハウジングA1の内壁面に沿って、一端を内壁面から離し、他端を内壁面に連続させた管壁16が立設されており、この管壁16とハウジングA1の内壁面とカバーA11の裏面とで中空の音響管40が形成され、この音響管40が小容量の後気室Br内に配置されている。音響管40は、後気室Brの3つの内壁面に沿って屈曲し、後気室Brの周囲を略3/4周に亘って形成された矩形の断面形状を有する中空の閉管で、一端を開口し(開口端40a)、他端を閉塞して(閉塞端40b)形成され、管内は開口端40aを介して後気室Br内に連通している。音響管とは、閉管の共振周波数(管の全長が略1/4波長の奇数倍に一致する周波数)で入力インピーダンスが極めて小さくなることを利用したもので、共振周波数の音波が入射すると、その反射波は入射波に対して位相が反転した波形となり、入射波と反射波とが互いに打ち消しあうことで、開口端40aから外部へ伝播する音波を低減させている。また、音響管40を後気室Brの複数の内壁面に亘って連続して形成することで、小容量の後気室Br内に設けられる音響管40を必要に応じて長くすることができ、さらに音響管40を屈曲した形状に形成することで、小容量の後気室Br内に音響管40を配置することができる
以下、音響管40の作用について詳細に説明する。まず、図6は、後気室Brに音響管40を備えたスピーカ装置、および音響管40を備えていないスピーカ装置の各概略構成とその振動モデルとを示しており、音響管40を備えていないハウジングA1では、スピーカSPの振動系の等価質量Moが、この振動系を支持するスピーカSPのエッジ等の減衰定数m1およびばね定数m2の並列回路と、後気室Br内の減衰定数m3とを介して固定端に接続している。一方、音響管40を備えたハウジングA1では、上記音響管40を備えていない構成に加えて、質量、減衰定数、ばね定数を合成して表される音響管40のインピーダンスZp(以後、音響インピーダンスZpと称す)が、後気室Br内の減衰定数m3と固定端との間に存在する。
Therefore, in this embodiment, as shown in FIGS. 1 and 3, along the inner wall surface of the housing A1 surrounding the rear air chamber Br on the back surface of the speaker SP, one end is separated from the inner wall surface, and the other end is connected to the inner wall surface. A continuous tube wall 16 is erected, and a hollow acoustic tube 40 is formed by the tube wall 16, the inner wall surface of the housing A1, and the back surface of the cover A11. The acoustic tube 40 is a small capacity rear air chamber. Arranged in Br. The acoustic tube 40 is a hollow closed tube having a rectangular cross-sectional shape that is bent along the three inner wall surfaces of the rear air chamber Br and is formed over the circumference of the rear air chamber Br over approximately three quarters. (Open end 40a) and the other end is closed (closed end 40b), and the inside of the pipe communicates with the rear air chamber Br via the open end 40a. An acoustic tube uses the fact that the input impedance becomes extremely small at the resonance frequency of the closed tube (the frequency at which the total length of the tube coincides with an odd multiple of a quarter wavelength). The reflected wave has a waveform whose phase is inverted with respect to the incident wave, and the incident wave and the reflected wave cancel each other, thereby reducing the sound wave propagating from the opening end 40a to the outside. Further, by forming the acoustic tube 40 continuously over a plurality of inner wall surfaces of the rear air chamber Br, the acoustic tube 40 provided in the small air rear chamber Br can be lengthened as necessary. Further, by forming the acoustic tube 40 in a bent shape, the acoustic tube 40 can be disposed in the small-capacity rear air chamber Br. Hereinafter, the operation of the acoustic tube 40 will be described in detail. First, FIG. 6 shows a schematic configuration and a vibration model of a speaker device including the acoustic tube 40 in the rear chamber Br and a speaker device not including the acoustic tube 40, and includes the acoustic tube 40. In the housing A1, the equivalent mass Mo of the vibration system of the speaker SP is equal to the parallel circuit of the damping constant m1 and the spring constant m2 such as the edge of the speaker SP supporting the vibration system, and the damping constant m3 in the rear air chamber Br. It is connected to the fixed end via. On the other hand, in the housing A1 including the acoustic tube 40, in addition to the configuration not including the acoustic tube 40, the impedance Zp (hereinafter referred to as acoustic impedance) of the acoustic tube 40 expressed by combining the mass, the damping constant, and the spring constant. Zp) exists between the attenuation constant m3 in the rear air chamber Br and the fixed end.

そして、上記音響管40を備えた場合の振動モデルの等価回路は、図7のように、電気系回路Keと機械系回路Ksと音響系回路Kaとで構成される。なお、[スピーカSPの振動系の等価質量Mo]=[振動板とボイスコイルの質量Ms]+[空気付加質量2Ma]とする。   And the equivalent circuit of the vibration model at the time of providing the said acoustic tube 40 is comprised by the electrical system circuit Ke, the mechanical system circuit Ks, and the acoustic system circuit Ka like FIG. It is assumed that [the equivalent mass Mo of the vibration system of the speaker SP] = [the mass Ms of the diaphragm and the voice coil] + [the additional air mass 2Ma].

電気系回路Keは、電圧源Eの出力端間に直列接続されたスピーカSPのボイスコイルインピーダンスZe[ボイスコイル抵抗ReとボイスコイルインダクタンスLeの直列回路]で構成され、機械系回路Ksは、振動板21の機械インピーダンスZms[振動板の機械抵抗Rsと振動板およびボイスコイルの重量MsとスピーカSPのエッジ等のスティフネスSoとの直列回路]で構成され、電気系回路Keの電気エネルギーは、トランスT1を介して機械エネルギーに変換されて機械系回路Ksに伝達される。具体的には、電気系回路Keのボイスコイルを流れる電流I(A)、変換時の力係数G(N/A)とすると、スピーカSPの振動板21には力Fs=GI(N)が加わり速度Vs(m/s)で振動する。   The electric circuit Ke is composed of a voice coil impedance Ze [series circuit of a voice coil resistance Re and a voice coil inductance Le] of the speaker SP connected in series between the output terminals of the voltage source E, and the mechanical circuit Ks is a vibration circuit. The mechanical impedance Zms of the plate 21 [series circuit of the mechanical resistance Rs of the diaphragm, the weight Ms of the diaphragm and voice coil, and the stiffness So such as the edge of the speaker SP], and the electric energy of the electric circuit Ke is It is converted into mechanical energy via T1 and transmitted to the mechanical circuit Ks. Specifically, when the current I (A) flowing through the voice coil of the electric circuit Ke and the force coefficient G (N / A) at the time of conversion are given, a force Fs = GI (N) is applied to the diaphragm 21 of the speaker SP. It vibrates at the applied velocity Vs (m / s).

また、音響系回路Kaは、放射インピーダンスZa[後気室Br内の空気の機械抵抗Raと空気付加質量Maの直列回路]と、後気室インピーダンスZr(後気室Br内の空気のスティフネスSr)と音響インピーダンスZpの並列回路との直列回路で構成され、機械系回路Ksの機械エネルギーは、トランスT2を介して音響エネルギーに変換されて音響系回路Kaに伝達される。具体的には、速度Vs(m/s)で振動するスピーカSPの振動板21から、体積速度Ua(m/s)の音波が放射される。 The acoustic circuit Ka includes a radiation impedance Za [series circuit of the mechanical resistance Ra of air in the rear air chamber Br and an additional air mass Ma] and a rear air chamber impedance Zr (stiffness Sr of air in the rear air chamber Br). ) And the parallel circuit of the acoustic impedance Zp, the mechanical energy of the mechanical system circuit Ks is converted into acoustic energy via the transformer T2 and transmitted to the acoustic system circuit Ka. Specifically, a sound wave having a volume velocity Ua (m 3 / s) is emitted from the diaphragm 21 of the speaker SP that vibrates at a velocity Vs (m / s).

上記電気系回路Keと機械系回路Ksと音響系回路Kaとで構成される等価回路は、さらに図8に示す機械系等価回路に置き換えられる。この機械系等価回路は、振動板21を速度Vs(m/s)で振動させる力Fsの加振源F1を有し、この加振源F1の両端間には、機械系電気インピーダンスZme(=Ze/G)と、振動板インピーダンスZs(=Zms+Za)と、後気室インピーダンスZr(後気室Br内の空気のスティフネスSr)と音響インピーダンスZpとの並列回路と、前気室Bf内の空気のスティフネスSfと音孔12のインピーダンスZf[音孔抵抗Rbと空気付加質量Mb]との並列回路とを直列接続して構成される。 The equivalent circuit composed of the electric system circuit Ke, the mechanical system circuit Ks, and the acoustic system circuit Ka is further replaced with a mechanical system equivalent circuit shown in FIG. This mechanical system equivalent circuit has a vibration source F1 of a force Fs that vibrates the diaphragm 21 at a speed Vs (m / s), and a mechanical electric impedance Zme (=) between both ends of the vibration source F1. Ze / G 2 ), diaphragm impedance Zs (= Zms + Za), rear air chamber impedance Zr (stiffness Sr of air in rear air chamber Br) and acoustic impedance Zp, and parallel circuit of front air chamber Bf The air stiffness Sf and the impedance Zf of the sound hole 12 [sound hole resistance Rb and air added mass Mb] are connected in series.

このような機械系等価回路において、後気室Br前方のゾーンH1(図6参照)での振動板インピーダンスZsは、   In such a mechanical equivalent circuit, the diaphragm impedance Zs in the zone H1 (see FIG. 6) in front of the rear air chamber Br is

Figure 2008211389
Figure 2008211389

となり、さらに、振動板21による音源を半径Dの呼吸球とみなし、空気密度をρ、音速をc、Bessel関数をJ、Struve関数をK1、位相定数をkとすると、放射インピーダンスZaは、 Further, assuming that the sound source by the diaphragm 21 is a respiratory sphere having a radius D, the air density is ρ, the sound velocity is c, the Bessel function is J 1 , the Strube function is K 1, and the phase constant is k, the radiation impedance Za is ,

Figure 2008211389
Figure 2008211389

となる。 It becomes.

そして、ハウジングA1に取り付けたスピーカSPの音圧レベルの周波数特性Y11、および自由インピーダンスの周波数特性Y12を[数2][数3]に基づいて算出すると図9のように各々示され、ともに600Hz付近でピークとなる特性を有している。なお、自由インピーダンスとは、二端子対の系で出力側に接続する負荷のインピーダンスがゼロのときの入力側から見たインピーダンスのことである。   Then, the frequency characteristic Y11 of the sound pressure level of the speaker SP attached to the housing A1 and the frequency characteristic Y12 of the free impedance are calculated based on [Equation 2] and [Equation 3] as shown in FIG. It has a characteristic that peaks in the vicinity. The free impedance is an impedance viewed from the input side when the impedance of the load connected to the output side in the two-terminal pair system is zero.

次に、音響管40を含む後気室Br後方のゾーンH2(図6参照)での音響管40による作用について、図10(a)(b)に示すような後気室Brの外部に音響管40’を設けた構成を用いて理論的に説明する。なお、後気室Br内は平面波音場であり、ハウジングA1および音響管40’は、その断面形状が波長に比較して小さい剛壁であるとする。   Next, regarding the action of the acoustic tube 40 in the zone H2 (see FIG. 6) behind the rear air chamber Br including the acoustic tube 40, an acoustic wave is generated outside the rear air chamber Br as shown in FIGS. 10 (a) and 10 (b). A theoretical explanation will be given using a configuration in which the tube 40 'is provided. It is assumed that the rear chamber Br is a plane wave sound field, and the housing A1 and the acoustic tube 40 'are rigid walls whose cross-sectional shapes are small compared to the wavelength.

後気室Br内の進行波(振動板21の裏面からハウジングA1の底面に向かう方向に進む音波)の圧力Pr+、粒子速度Vr+とし、後気室Br内の反射波(ハウジングA1の底面から振動板21の裏面に向かう方向に進む音波)の圧力Pr-、粒子速度Vr-とした場合、後気室Br内の振動板21寄りの面101(音波の進行方向を法線とする面)での圧力Pr1、粒子速度Vr1は、   The pressure Pr + and the particle velocity Vr + of the traveling wave in the rear air chamber Br (sound wave traveling in the direction from the back surface of the diaphragm 21 toward the bottom surface of the housing A1) and the reflected velocity in the rear air chamber Br (the bottom surface of the housing A1) When the pressure Pr− and the particle velocity Vr− of the sound wave traveling in the direction toward the rear surface of the diaphragm 21 are set to the surface 101 near the diaphragm 21 in the rear air chamber Br (a surface having the traveling direction of the sound wave as a normal line). ) Pressure Pr1 and particle velocity Vr1 at

Figure 2008211389
Figure 2008211389

となり、面101から距離XrだけハウジングA1の底面寄りに位置する面102(音波の進行方向を法線とする面)での圧力Pr2、粒子速度Vr2は、 The pressure Pr2 and the particle velocity Vr2 on the surface 102 (surface with the traveling direction of sound waves as a normal line) located near the bottom surface of the housing A1 by the distance Xr from the surface 101 are

Figure 2008211389
Figure 2008211389

となる。 It becomes.

したがって、後気室Brの断面積をQr、面101での体積速度をUr1、面102での体積速度をUr2とした場合、上記[数4][数5]より、伝達行列は、   Therefore, when the cross-sectional area of the rear air chamber Br is Qr, the volume velocity at the surface 101 is Ur1, and the volume velocity at the surface 102 is Ur2, from [Equation 4] and [Equation 5], the transfer matrix is

Figure 2008211389
Figure 2008211389

となる。 It becomes.

そして、音響管40’の開口端40a’を、面102と同様に面101から距離XrだけハウジングA1の底面寄りに設けたとすると、後気室Brの長さをLrとし、音響管40’の断面積をQp、長さをLpとした場合、閉管の条件より閉塞端での粒子速度=0となることから、後気室インピーダンスZr、音響インピーダンスZpは、   If the opening end 40a ′ of the acoustic tube 40 ′ is provided near the bottom surface of the housing A1 by a distance Xr from the surface 101 in the same manner as the surface 102, the length of the rear air chamber Br is Lr, and the acoustic tube 40 ′ When the cross-sectional area is Qp and the length is Lp, the particle velocity at the closed end becomes 0 due to the closed tube condition. Therefore, the rear chamber impedance Zr and the acoustic impedance Zp are

Figure 2008211389
Figure 2008211389

となる。 It becomes.

そして、後気室Brと音響管40’のつなぎ目での境界条件として、後気室Brおよび音響管40’での各体積速度および圧力が同じであることを適用すると、後気室Brでの機械系インピーダンスZmr、および音響管40’での機械系インピーダンスZmpは、   Then, applying the same volume velocity and pressure in the rear air chamber Br and the acoustic tube 40 'as the boundary condition at the joint between the rear air chamber Br and the acoustic tube 40', The mechanical impedance Zmr and the mechanical impedance Zmp at the acoustic tube 40 ′ are

Figure 2008211389
Figure 2008211389

となり、上記機械系インピーダンスZmr、Zmpの合成インピーダンスZmは、 The combined impedance Zm of the mechanical system impedances Zmr and Zmp is

Figure 2008211389
Figure 2008211389

となる。 It becomes.

上記[数7]の音響インピーダンスZpは、音響管40’の管壁の粘性による減衰を考慮していないが、以下、音響管40’の管壁の粘性による減衰を考慮した音響インピーダンスZpを求める。まず、[数10]で表される交番力Faが空気に作用することを考慮して、音響管40’内の運動方程式を解くと、管壁の粘性によって粒子速度が影響を受ける範囲δoは、音波の波長をλ、周波数をf、空気の粘性をμとした場合には[数11]のようになり、範囲δoは図11に示すように周波数が高いほど狭くなる。   Although the acoustic impedance Zp in [Expression 7] does not consider the attenuation due to the viscosity of the tube wall of the acoustic tube 40 ′, hereinafter, the acoustic impedance Zp considering the attenuation due to the viscosity of the tube wall of the acoustic tube 40 ′ is obtained. . First, in consideration of the fact that the alternating force Fa expressed by [Equation 10] acts on the air, when the equation of motion in the acoustic tube 40 ′ is solved, the range δo in which the particle velocity is affected by the viscosity of the tube wall is When the wavelength of the sound wave is λ, the frequency is f, and the viscosity of the air is μ, [Formula 11] is obtained, and the range δo becomes narrower as the frequency is higher as shown in FIG.

Figure 2008211389
Figure 2008211389

Figure 2008211389
Figure 2008211389

そして、図12に示すように、音響管40’の開口端40a’での圧力をPp1、粒子速度をVp1とし、開口端40a’から距離Xpだけ閉塞端40b’寄りの位置での圧力をPp2、粒子速度をVp2とし、さらにαを波長定数、βを減衰定数、γを伝播定数、dを音響管40’の内径(半径)とすると、音響管40’内を軸方向に進む音波の位相定数kは、   Then, as shown in FIG. 12, the pressure at the opening end 40a ′ of the acoustic tube 40 ′ is Pp1, the particle velocity is Vp1, and the pressure at the position near the closing end 40b ′ by the distance Xp from the opening end 40a ′ is Pp2. If the particle velocity is Vp2, α is a wavelength constant, β is an attenuation constant, γ is a propagation constant, and d is the inner diameter (radius) of the acoustic tube 40 ′, the phase of the sound wave traveling in the axial direction in the acoustic tube 40 ′ The constant k is

Figure 2008211389
Figure 2008211389

となる。なお、[数12]中の減衰定数β、および管内音波の速度c”は、図13および図14に示すように周波数が高いほど大きくなる。 It becomes. In addition, the attenuation constant β and the velocity c ″ of the in-tube sound wave in [Equation 12] increase as the frequency increases as shown in FIGS. 13 and 14.

また、音響管40’内を軸方向に進む音波の振幅速度uは、音響管40’の管壁の粘性の影響を受けない振幅速度をVoとした場合、   In addition, the amplitude velocity u of the sound wave traveling in the axial direction in the acoustic tube 40 'is set to Vo when the amplitude velocity not affected by the viscosity of the tube wall of the acoustic tube 40' is Vo.

Figure 2008211389
Figure 2008211389

となる。 It becomes.

したがって、開口端40’での体積速度をUp1、開口端40a’から距離Xpだけ閉塞端40b’寄りの位置での体積速度をUp2とし、[数14]に位相定数k=−jγを代入して、音響管40’の概略音響インピーダンスZp’を求めると[数15]のようになる。   Therefore, the volume velocity at the open end 40 ′ is Up1, the volume velocity at the position near the closed end 40b ′ by the distance Xp from the open end 40a ′ is Up2, and the phase constant k = −jγ is substituted into [Equation 14]. Thus, the approximate acoustic impedance Zp ′ of the acoustic tube 40 ′ is obtained as shown in [Equation 15].

Figure 2008211389
Figure 2008211389

Figure 2008211389
Figure 2008211389

ここで、[数16]に示す開口端補正値ΔLと、[数17]に示す音響管40’の開口端40a’での圧力損失Δpを考慮すると、音響管40’の音響インピーダンスZpは[数18]のようになる。   Here, considering the opening end correction value ΔL shown in [Equation 16] and the pressure loss Δp at the opening end 40a ′ of the acoustic tube 40 ′ shown in [Equation 17], the acoustic impedance Zp of the acoustic tube 40 ′ is [ Equation 18].

Figure 2008211389
Figure 2008211389

Figure 2008211389
Figure 2008211389

Figure 2008211389
Figure 2008211389

この音響管40’の長さLp=95mm、断面積Qp=9mmとした場合の比音響インピーダンスZp/ρc(音響インピーダンスZpを、空気の特性インピーダンス=ρcで割った値)の周波数特性は図15に示され、Y21は音響管の管壁の粘性による減衰を考慮していない比音響インピーダンスであり、Y22は音響管の管壁の粘性による減衰を考慮した比音響インピーダンスであり、管壁の粘性を考慮していない場合は、比音響インピーダンスの極大値、極小値の変動が大きくなる。また、図15中において、比音響インピーダンスが1以下であれば、音響インピーダンスが空気の特性インピーダンスより小さく、吸音効果があることを示す。 The frequency characteristics of the specific acoustic impedance Zp / ρc (the value obtained by dividing the acoustic impedance Zp by the characteristic impedance of air = ρc) when the length Lp = 95 mm and the cross-sectional area Qp = 9 mm 2 of the acoustic tube 40 ′ are shown in FIG. 15, Y 21 is a specific acoustic impedance not considering attenuation due to the viscosity of the tube wall of the acoustic tube, Y 22 is a specific acoustic impedance considering attenuation due to the viscosity of the tube wall of the acoustic tube, and When the viscosity is not taken into consideration, the fluctuation of the maximum value and the minimum value of the specific acoustic impedance becomes large. In FIG. 15, if the specific acoustic impedance is 1 or less, the acoustic impedance is smaller than the characteristic impedance of air, which indicates that there is a sound absorbing effect.

図10(a)(b)に示すような後気室Brの外部に音響管40’を設けた構成を用いて音響管の作用を上記説明したが、図1〜図3のように、後気室Br内に音響管40を設けた構成であっても、音響管の作用は同様に説明でき、音響管40(40’)の全長Lpを、音圧レベルを増大させたい周波数(本実施形態では700〜800Hz付近の低周波数)の略1/4波長に設定することで、スピーカSPの最低共振周波数が低周波数側に移行し、さらにはスピーカSPの音圧レベルが増加するので、後気室Brが小容量であってもスピーカSPの音質および効率が向上する。音圧レベルを増大させたい周波数と音響管40の全長Lpとの関係は[数19]に示される。   The operation of the acoustic tube has been described above using a configuration in which the acoustic tube 40 ′ is provided outside the rear air chamber Br as shown in FIGS. 10A and 10B. However, as shown in FIGS. Even in the configuration in which the acoustic tube 40 is provided in the air chamber Br, the operation of the acoustic tube can be explained in the same manner, and the total length Lp of the acoustic tube 40 (40 ′) is set to the frequency at which the sound pressure level is desired to be increased (this embodiment). Since the lowest resonance frequency of the speaker SP shifts to the low frequency side and further the sound pressure level of the speaker SP increases by setting the wavelength to approximately ¼ wavelength (low frequency near 700 to 800 Hz in the embodiment) Even if the air chamber Br has a small capacity, the sound quality and efficiency of the speaker SP are improved. The relationship between the frequency at which the sound pressure level is to be increased and the total length Lp of the acoustic tube 40 is shown in [Equation 19].

Figure 2008211389
Figure 2008211389

そして、図16(a)(b)(c)は、音響管40を備えたハウジングA1に取り付けたスピーカSPの放射音圧特性を示しており、後気室Brの容量:3800mm、音響管40の長さ:95mmは共通で、音響管40の断面積のみが異なり、図16(a)は音響管40の断面積が3.8mm(φ2.2mm相当)の場合の特性であり、Y31(破線)は音響管の管壁の粘性による減衰を考慮していない音圧レベルの理論値、Y32(実線)は音響管の管壁の粘性による減衰を考慮した音圧レベルの理論値、Y33(△マーク)は音圧レベルの実験結果を示す。また、図16(b)は音響管40の断面積が9.0mm(φ3.4mm相当)の場合の特性であり、Y41(破線)は音響管の管壁の粘性による減衰を考慮していない音圧レベルの理論値、Y42(実線)は音響管の管壁の粘性による減衰を考慮した音圧レベルの理論値、Y43(△マーク)は音圧レベルの実験結果を示す。また、図16(c)は音響管40の断面積が12.6mm(φ4.0mm)の場合の特性であり、Y51(破線)は音響管の管壁の粘性による減衰を考慮していない音圧レベルの理論値、Y52(実線)は音響管の管壁の粘性による減衰を考慮した音圧レベルの理論値、Y53(△マーク)は音圧レベルの実験結果を示す。 16 (a), 16 (b), and 16 (c) show the radiated sound pressure characteristics of the speaker SP attached to the housing A1 including the acoustic tube 40. The capacity of the rear air chamber Br: 3800 mm 2 , the acoustic tube The length of 40: 95 mm is common, and only the cross-sectional area of the acoustic tube 40 is different. FIG. 16A shows characteristics when the cross-sectional area of the acoustic tube 40 is 3.8 mm 2 (equivalent to φ2.2 mm). Y31 (broken line) is the theoretical value of the sound pressure level not considering attenuation due to the viscosity of the tube wall of the acoustic tube, Y32 (solid line) is the theoretical value of sound pressure level considering the attenuation due to the viscosity of the tube wall of the acoustic tube, Y33 (Δ mark) indicates the experimental result of the sound pressure level. FIG. 16B shows the characteristics when the cross-sectional area of the acoustic tube 40 is 9.0 mm 2 (equivalent to φ3.4 mm), and Y41 (broken line) considers attenuation due to the viscosity of the tube wall of the acoustic tube. No theoretical value of the sound pressure level, Y42 (solid line) indicates the theoretical value of the sound pressure level considering attenuation due to the viscosity of the tube wall of the acoustic tube, and Y43 (Δ mark) indicates the experimental result of the sound pressure level. FIG. 16C shows characteristics when the cross-sectional area of the acoustic tube 40 is 12.6 mm 2 (φ4.0 mm), and Y51 (broken line) does not consider attenuation due to the viscosity of the tube wall of the acoustic tube. The theoretical value of the sound pressure level, Y52 (solid line) indicates the theoretical value of the sound pressure level considering attenuation due to the viscosity of the tube wall of the acoustic tube, and Y53 (Δ mark) indicates the experimental result of the sound pressure level.

而して、音響管の管壁の粘性による減衰を考慮した音圧レベルの理論値と実験結果とはほぼ一致しており、音響管40を設けたハウジングA1では、スピーカSPの最低共振周波数fo0=800Hzとなって、図4に示す音響管無しの特性Y2(最低共振周波数fo2=1200Hz)に比べて最低共振周波数が低周波数側に移行し、さらには800Hz以下の低域の音圧レベルが増大しており、スピーカSPの音質および効率が向上している。また、図16(a)(b)(c)によると、音響管40の断面積が小さいほど、1000Hz近傍での音圧レベルの落ち込みが小さくなることがわかる。   Thus, the theoretical value of the sound pressure level in consideration of the attenuation due to the viscosity of the tube wall of the acoustic tube and the experimental result almost coincide, and in the housing A1 provided with the acoustic tube 40, the lowest resonance frequency fo0 of the speaker SP. = 800 Hz, the lowest resonance frequency shifts to the low frequency side as compared with the characteristic Y2 without acoustic tube shown in FIG. 4 (minimum resonance frequency fo2 = 1200 Hz), and the sound pressure level in the low range of 800 Hz or less The sound quality and efficiency of the speaker SP are improved. Further, according to FIGS. 16A, 16B, and 16C, it can be seen that the smaller the cross-sectional area of the acoustic tube 40, the smaller the drop in the sound pressure level near 1000 Hz.

また、図1に破線で示すように、音響管40の開口端40a近傍に、不織布等の吸音材45を配設することで、吸音効果を高めて、音響管40の共振周波数を微調整することができ、図16(a)(b)(c)の900〜1000Hz付近で発生している音圧レベルの落ち込みを抑制して、音圧レベルを上げることができる。この吸音材45は、微調整の度合によって、後気室Br内または音響管40内の各所に配置すればよい。   Further, as shown by a broken line in FIG. 1, a sound absorbing material 45 such as a nonwoven fabric is disposed in the vicinity of the opening end 40 a of the acoustic tube 40, thereby enhancing the sound absorbing effect and finely adjusting the resonance frequency of the acoustic tube 40. It is possible to suppress the drop in the sound pressure level occurring in the vicinity of 900 to 1000 Hz in FIGS. 16A, 16B, and 16C, and to increase the sound pressure level. The sound absorbing material 45 may be disposed in various places in the rear air chamber Br or the acoustic tube 40 depending on the degree of fine adjustment.

また、音響管40の断面形状は矩形に限定されず、円、楕円、多角形等の形状でもよく、さらに1つの音響管40で異なる形状の断面形状を連続して形成してもよい。(例えば、音響管40の前半分の断面形状を円とし、後ろ半分の断面形状を矩形とする)。   In addition, the cross-sectional shape of the acoustic tube 40 is not limited to a rectangle, and may be a circle, an ellipse, a polygon, or the like, and different cross-sectional shapes may be continuously formed in one acoustic tube 40. (For example, the cross-sectional shape of the front half of the acoustic tube 40 is a circle and the cross-sectional shape of the back half is a rectangle).

また、音響管の形態として、図17の概略図のようにハウジングA2の外部からチューブ状の音響管41を後気室Brに差し込む形態でもよい。この音響管41にウレタンチューブ等を用いると、全長Lpを任意に設定、変更することができる。   Further, as a form of the acoustic tube, a tubular acoustic tube 41 may be inserted into the rear air chamber Br from the outside of the housing A2 as shown in the schematic diagram of FIG. When a urethane tube or the like is used for the acoustic tube 41, the total length Lp can be arbitrarily set and changed.

(実施形態2)
実施形態1ではハウジング内に音響管を1つ設けていたが、本実施形態では図18の概略図に示すように、ハウジングA3の後気室Brに複数の音響管42,43,44(本実施形態では3つ)を設けており、音響管42,43,44を互いに異なる長さに設定すれば、その共振周波数も互いに異なる周波数となる。したがって、スピーカSPの音圧レベルを、複数の周波数で増大させることができ、音響管42,43,44の各全長を適宜設定することで、所望の音質および効率を得ることができる。
(Embodiment 2)
In the first embodiment, one acoustic tube is provided in the housing. However, in this embodiment, as shown in the schematic view of FIG. 18, a plurality of acoustic tubes 42, 43, 44 (this In the embodiment, three) are provided, and if the acoustic tubes 42, 43, 44 are set to different lengths, their resonance frequencies are also different from each other. Therefore, the sound pressure level of the speaker SP can be increased at a plurality of frequencies, and desired sound quality and efficiency can be obtained by appropriately setting the overall lengths of the acoustic tubes 42, 43, and 44.

また、音響管42,43,44の長さを同一にすれば、所定周波数の音圧レベルを大幅に向上させることができる。   Further, if the lengths of the acoustic tubes 42, 43, 44 are made the same, the sound pressure level at a predetermined frequency can be greatly improved.

(実施形態3)
実施形態1において、音響管40の閉塞端40bを、図19に示すように、音響管40の軸方向に対して斜めに形成された閉塞面とすることで、管内の経路長に差ができ、1つの音響管40によって向上可能な音圧レベルの周波数帯域を広げることができる。
(Embodiment 3)
In the first embodiment, the closed end 40b of the acoustic tube 40 is a closed surface formed obliquely with respect to the axial direction of the acoustic tube 40 as shown in FIG. The frequency band of the sound pressure level that can be improved by one acoustic tube 40 can be expanded.

また、実施形態1,2の他の音響管41,42,43,44の閉塞面を同様に形成すれば、同様の効果を得ることができる。   Further, if the closed surfaces of the other acoustic tubes 41, 42, 43, 44 of the first and second embodiments are formed in the same manner, the same effect can be obtained.

(a)(b)(c)実施形態1の構成を示す図である。(A) (b) (c) It is a figure which shows the structure of Embodiment 1. FIG. 同上の斜視図である。It is a perspective view same as the above. 同上の一部分解図である。It is a partially exploded view same as the above. スピーカの放射音圧特性を示す図である。It is a figure which shows the radiation sound pressure characteristic of a speaker. 理想的なバッフル板を用いた場合の構成を示す一部側面断面図である。It is a partial side sectional view showing the composition at the time of using an ideal baffle board. スピーカ装置の振動モデルを示す図である。It is a figure which shows the vibration model of a speaker apparatus. スピーカ装置の等価回路を示す図である。It is a figure which shows the equivalent circuit of a speaker apparatus. スピーカ装置の機械系等価回路を示す図である。It is a figure which shows the mechanical equivalent circuit of a speaker apparatus. 後気室前方のゾーンにおけるスピーカの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the speaker in the zone ahead of a back air chamber. 音響管の作用を理論説明するための構成を示す図である。It is a figure which shows the structure for theoretically explaining the effect | action of an acoustic tube. 音響管の管壁の粘性によって粒子速度が影響を受ける範囲の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the range where particle velocity is influenced by the viscosity of the tube wall of an acoustic tube. 音響管内の音場を示す図である。It is a figure which shows the sound field in an acoustic tube. 減衰定数の周波数特性を示す図である。It is a figure which shows the frequency characteristic of an attenuation constant. 管内音波の速度の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the speed of an in-tube sound wave. 音響管の比音響インピーダンスの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the specific acoustic impedance of an acoustic tube. 音響管を設けた場合の放射音圧特性を示す図である。It is a figure which shows the radiation sound pressure characteristic at the time of providing an acoustic tube. 同上の別のハウジングを示す側面断面図である。It is side surface sectional drawing which shows another housing same as the above. 実施形態2のハウジングを示す側面断面図である。6 is a side cross-sectional view showing a housing of Embodiment 2. FIG. 実施形態3の音響管の閉塞面の形状を示す図である。It is a figure which shows the shape of the obstruction | occlusion surface of the acoustic tube of Embodiment 3.

符号の説明Explanation of symbols

A1 ハウジング
SP スピーカ
Bf 前気室
Br 後気室
40 音響管
A1 Housing SP Speaker Bf Front air chamber Br Rear air chamber 40 Acoustic tube

本発明は、通話装置に関するものである。 The present invention relates to a call device .

本発明は、上記事由に鑑みてなされたものであり、その目的は、後気室内に発生する音声帯域の定在波を抑制して、音声帯域でのスピーカの音質、効率を向上させた通話装置を提供することにある。 The present invention has been made in view of the above circumstances, and its object is to suppress the standing waves of voice band generated in the rear air chamber, thereby improving the sound quality of the speaker in the voice band, the efficiency call To provide an apparatus .

請求項1の発明は、双方向の通話が可能な通話装置において、ハウジングと、ハウジングに取り付けられて、一方面側からハウジング外へ音声情報を出力するスピーカと、ハウジング内でスピーカの他方面側に形成された空間である後気室と、一端を開口し他端を閉塞した中空に形成され、開口を介して後気室内に連通した音響管と、音声を集音するマイクロホンと、スピーカおよびマイクロホンとの間で音声信号の授受を行う音声処理部とを備え、後気室を包囲する各面は、互いに対向する面間の距離が50mm以下に形成されることを特徴とする。 The invention according to claim 1 is a communication device capable of two-way communication, a housing, a speaker that is attached to the housing and outputs audio information from one side to the outside of the housing, and the other side of the speaker in the housing A rear air chamber, which is a space formed at the end, an acoustic tube formed in a hollow having one end opened and the other end closed, and communicated with the rear air chamber through the opening, a microphone for collecting sound, a speaker, and And a sound processing unit that transmits and receives a sound signal to and from the microphone, and each surface surrounding the rear air chamber is formed such that a distance between the surfaces facing each other is 50 mm or less.

この発明によれば、後気室内に3KHz以下の定在波が発生することはなく、後気室内に発生する定在波によって音声帯域でのスピーカの音質、効率が悪化することを防止できる。すなわち、後気室内に発生する音声帯域の定在波を抑制して、音声帯域でのスピーカの音質、効率を向上させた通話装置を提供することができる。また、音響管によって、スピーカの最低共振周波数が低周波数側に移行し、さらにはスピーカの音圧レベルが増加するので、後気室が小容量であっても音声帯域の音質および効率が向上する。 According to the present invention, a standing wave of 3 KHz or less is not generated in the rear air chamber, and the sound quality and efficiency of the speaker in the voice band can be prevented from being deteriorated by the standing wave generated in the rear air chamber. That is, it is possible to provide a communication device that suppresses standing waves in the voice band generated in the rear air chamber and improves the sound quality and efficiency of the speaker in the voice band. In addition, the acoustic tube shifts the lowest resonance frequency of the speaker to the lower frequency side and further increases the sound pressure level of the speaker, so that the sound quality and efficiency of the voice band are improved even if the rear air chamber has a small capacity. .

請求項2の発明は、請求項1において、前記音響管は、後気室の容量が小さいことによって低下するスピーカ出力の所定周波数の音圧レベルを増大させるために、増大させる周波数の1/4波長に基づく長さに設定されることを特徴とする。 According to a second aspect of the present invention, in the first aspect, the acoustic tube is ¼ of the frequency to be increased in order to increase the sound pressure level at a predetermined frequency of the speaker output, which decreases due to the small capacity of the rear air chamber. The length is set based on the wavelength.

請求項3の発明は、請求項1または2において、前記音響管は、前記後気室を包囲する各面のうち、複数の面に亘って連続して形成されることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect, the acoustic tube is formed continuously over a plurality of surfaces among the surfaces surrounding the rear air chamber.

請求項4の発明は、請求項1乃至3いずれかにおいて、互いに長さが同一である複数の前記音響管を備えることを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, a plurality of the acoustic tubes having the same length are provided.

請求項5の発明は、請求項1乃至3いずれかにおいて、互いに長さの異なる複数の前記音響管を備えることを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to third aspects, a plurality of the acoustic tubes having different lengths are provided.

請求項6の発明は、請求項1乃至5いずれかにおいて、前記音響管の閉塞した他端面の形状を、音響管の軸方向に対して斜めに形成したことを特徴とする。 A sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, the shape of the closed other end face of the acoustic tube is formed obliquely with respect to the axial direction of the acoustic tube.

請求項7の発明は、請求項1乃至6いずれかにおいて、前記後気室内または前記音響管内に吸音材を設けたことを特徴とする。 A seventh aspect of the invention is characterized in that in any one of the first to sixth aspects, a sound absorbing material is provided in the rear air chamber or the acoustic tube.

請求項8の発明は、請求項1乃至7いずれかにおいて、前記音響管は、屈曲した形状に形成されて後気室内に設けられることを特徴とする。 The invention of claim 8 is characterized in that, in any one of claims 1 to 7, the acoustic tube is formed in a bent shape and provided in the rear air chamber.

(実施形態1)
本発明の一形態として、インターホンの通話装置を例に挙げて以下説明する。
(Embodiment 1)
As an embodiment of the present invention, an interphone communication device will be described below as an example.

請求項1の発明は、双方向の通話が可能な通話装置において、ハウジングと、ハウジングに取り付けられて、一方面側からハウジング外へ音声情報を出力するスピーカと、ハウジング内でスピーカの他方面側に形成された空間である後気室と、一端を開口し他端を閉塞した中空に形成され、開口を介して後気室内に連通した音響管と、音声を集音するマイクロホンと、スピーカおよびマイクロホンとの間で音声信号の授受を行う音声処理部とを備え、後気室を包囲する各面は、互いに対向する面間の距離が50mm以下に形成され、音響管の内径は、音響管の管壁の粘性による減衰を考慮した音響インピーダンスに基づいて設定されることを特徴とする。 The invention according to claim 1 is a communication device capable of two-way communication, a housing, a speaker that is attached to the housing and outputs audio information from one side to the outside of the housing, and the other side of the speaker in the housing A rear air chamber, which is a space formed at the end, an acoustic tube formed in a hollow having one end opened and the other end closed, and communicated with the rear air chamber through the opening, a microphone for collecting sound, a speaker, and Each of the surfaces surrounding the rear air chamber is formed with a distance of 50 mm or less between the surfaces facing each other , and the inner diameter of the acoustic tube is It is set based on the acoustic impedance in consideration of the attenuation due to the viscosity of the tube wall .

Claims (9)

ハウジングと、
ハウジングに取り付けられて、一方面側からハウジング外へ音声情報を出力するスピーカと、
ハウジング内でスピーカの他方面側に形成された空間である後気室とを備え、
後気室を包囲する各面は、互いに対向する面間の距離が50mm以下に形成される
ことを特徴とするスピーカ装置。
A housing;
A speaker attached to the housing and outputting audio information from one side to the outside of the housing;
A rear air chamber that is a space formed on the other side of the speaker in the housing,
Each of the surfaces surrounding the rear air chamber is formed such that the distance between the surfaces facing each other is 50 mm or less.
一端を開口し他端を閉塞した中空に形成され、開口を介して後気室内に連通した音響管を備えることを特徴とする請求項1記載のスピーカ装置。   2. The speaker device according to claim 1, further comprising an acoustic tube that is formed in a hollow shape having one end opened and the other end closed, and communicated with the rear air chamber through the opening. 前記音響管は、後気室の容量が小さいことによって低下するスピーカ出力の所定周波数の音圧レベルを増大させるために、増大させる周波数の1/4波長に基づく長さに設定されることを特徴とする請求項2記載のスピーカ装置。   The acoustic tube is set to a length based on a quarter wavelength of the frequency to be increased in order to increase the sound pressure level at a predetermined frequency of the speaker output that is reduced due to the small capacity of the rear air chamber. The speaker device according to claim 2. 前記音響管は、前記後気室を包囲する各面のうち、複数の面に亘って連続して形成されることを特徴とする請求項2または3記載のスピーカ装置。   The speaker device according to claim 2, wherein the acoustic tube is formed continuously over a plurality of surfaces among the surfaces surrounding the rear air chamber. 互いに長さが同一である複数の前記音響管を備えることを特徴とする請求項2乃至4いずれか記載のスピーカ装置。   The speaker device according to claim 2, comprising a plurality of the acoustic tubes having the same length. 互いに長さの異なる複数の前記音響管を備えることを特徴とする請求項2乃至4いずれか記載のスピーカ装置。   The speaker device according to claim 2, further comprising a plurality of the acoustic tubes having different lengths. 前記音響管の閉塞した他端面の形状を、音響管の軸方向に対して斜めに形成したことを特徴とする請求項2乃至6いずれか記載のスピーカ装置。   The speaker device according to any one of claims 2 to 6, wherein a shape of the other end face of the acoustic tube closed is formed obliquely with respect to an axial direction of the acoustic tube. 前記後気室内または前記音響管内に吸音材を設けたことを特徴とする請求項2乃至7いずれか記載のスピーカ装置。   The speaker device according to any one of claims 2 to 7, wherein a sound absorbing material is provided in the rear air chamber or the acoustic tube. 前記音響管は、屈曲した形状に形成されて後気室内に設けられることを特徴とする請求項2乃至8いずれか記載のスピーカ装置。   9. The speaker device according to claim 2, wherein the acoustic tube is formed in a bent shape and is provided in a rear air chamber.
JP2007044563A 2007-02-23 2007-02-23 Intercom device Pending JP2008211389A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007044563A JP2008211389A (en) 2007-02-23 2007-02-23 Intercom device
PCT/JP2007/075351 WO2008102516A1 (en) 2007-02-23 2007-12-25 Intercom device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044563A JP2008211389A (en) 2007-02-23 2007-02-23 Intercom device

Publications (1)

Publication Number Publication Date
JP2008211389A true JP2008211389A (en) 2008-09-11

Family

ID=39709798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044563A Pending JP2008211389A (en) 2007-02-23 2007-02-23 Intercom device

Country Status (2)

Country Link
JP (1) JP2008211389A (en)
WO (1) WO2008102516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073431A1 (en) * 2010-12-03 2012-06-07 パナソニック株式会社 Speaker system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8300873B2 (en) 2010-07-14 2012-10-30 American Greetings Corporation Low profile greeting card speaker

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278426U (en) * 1975-12-09 1977-06-11
JPS578306Y2 (en) * 1976-04-21 1982-02-17
JPH03123153A (en) * 1989-10-06 1991-05-24 Toshiba Corp Rubber cover for loudspeaker
JP3763682B2 (en) * 1998-10-14 2006-04-05 パイオニア株式会社 Speaker device
JP2001201175A (en) * 2000-01-18 2001-07-27 Paloma Ind Ltd Remote controller
JP2004129192A (en) * 2002-07-29 2004-04-22 Hosiden Corp Receiver unit
JP2006311235A (en) * 2005-04-28 2006-11-09 Fujitsu Ltd Portable terminal equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073431A1 (en) * 2010-12-03 2012-06-07 パナソニック株式会社 Speaker system
US8699738B2 (en) 2010-12-03 2014-04-15 Panasonic Corporation Speaker system with resonance frequency approximately identical to the peak frequency of the sound pressure
JPWO2012073431A1 (en) * 2010-12-03 2014-05-19 パナソニック株式会社 Speaker system

Also Published As

Publication number Publication date
WO2008102516A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US7206425B2 (en) Actuator for an active noise control system
CN106851457B (en) Loudspeaker and PlayGear Stealth
CN110603816A (en) Speaker unit having electromagnetic speaker and micro speaker
KR200417799Y1 (en) Electroacoustic conversion unit having an output structure of the same phase bass reversal method
EP2417777A1 (en) An audio driver
JP4599368B2 (en) Speaker system
JP6379239B2 (en) Speaker module for listening device and listening device
JPH01302997A (en) Acoustic device
JP2008135864A (en) Speech communication device
KR101534629B1 (en) Speaker with acoustically excited panel
JP2008211389A (en) Intercom device
WO2002003751A1 (en) Speaker system, and noise canceling device
CN111698620A (en) Electronic equipment
JP2008211388A (en) Intercom device
JP2008301129A (en) Intercommunication device
KR20080095962A (en) Electronic sound-transforming unit having structure of generating bass reflex with same phase for preventing distortion
JP3976079B1 (en) Telephone device
CN111083614B (en) Horn device
JP2009049964A (en) Speech apparatus
CN102316401A (en) Multi-function micro speaker
JP4862611B2 (en) Telephone device
JP2009055483A (en) Intercom device
JP7371216B1 (en) Speakers and electronic equipment
JP2009049963A (en) Speech apparatus
CN218277116U (en) Double-magnetic circuit loudspeaker

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218