JP2008211232A - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
JP2008211232A
JP2008211232A JP2008104063A JP2008104063A JP2008211232A JP 2008211232 A JP2008211232 A JP 2008211232A JP 2008104063 A JP2008104063 A JP 2008104063A JP 2008104063 A JP2008104063 A JP 2008104063A JP 2008211232 A JP2008211232 A JP 2008211232A
Authority
JP
Japan
Prior art keywords
wavelength
semiconductor laser
wavelength conversion
laser
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008104063A
Other languages
Japanese (ja)
Other versions
JP4900309B2 (en
Inventor
Kimitada Tojo
公資 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008104063A priority Critical patent/JP4900309B2/en
Publication of JP2008211232A publication Critical patent/JP2008211232A/en
Application granted granted Critical
Publication of JP4900309B2 publication Critical patent/JP4900309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small, lightweight semiconductor laser device having a simple structure, capable of easily obtaining a high conversion efficiency and highly efficiently outputting short wavelength laser light of high power. <P>SOLUTION: One end face 11 of a laser diode chip 10 is made into a total reflection surface and the other end face 12 into a non-reflective surface. An optical oscillator is formed by the one end face 11 and a wavelength selective mirror 15, a nonlinear optical crystal 14 is arranged within the oscillator for wavelength conversion, and then only light subjected to wavelength conversion is allowed to pass through the wavelength selective mirror 15 for output to the outside. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、情報機器、半導体製造装置、バイオメディカル機器等の種々の用途に用いられる、短波長レーザ光を発生するのに好適な、半導体レーザ装置に関する。 The present invention relates to a semiconductor laser device suitable for generating short-wavelength laser light used for various applications such as information equipment, semiconductor manufacturing equipment, biomedical equipment, and the like.

従来より、短波長レーザ光を発生する装置として、Arレーザ装置に代表される気体レーザ装置や、LD励起固体レーザの波長変換レーザ装置、半導体レーザ光を外部共振器により波長変換するタイプのレーザ装置などが知られている(例えば特許文献1参照)
特開平4−5880号公報
Conventionally, as a device for generating a short wavelength laser beam, a gas laser device represented by an Ar laser device, a wavelength conversion laser device for an LD-excited solid-state laser, and a laser device of a type that converts the wavelength of a semiconductor laser beam by an external resonator Etc. are known (see, for example, Patent Document 1) .
Japanese Patent Laid-Open No. 4-5880

しかしながら、従来の短波長レーザ光を発生するレーザ装置はいずれも問題があった。Arレーザ等の気体レーザ装置は大型で寿命が短く、消費電力が大きい。LD励起固体レーザの波長変換レーザ装置、半導体レーザ光を外部共振器により波長変換するタイプのレーザ装置などでは、装置が複雑で、調整および制御が極めて困難である。 However, any conventional laser apparatus that generates short-wavelength laser light has a problem. A gas laser device such as an Ar laser is large, has a short life, and consumes a large amount of power. In an LD-pumped solid-state laser wavelength conversion laser device, a laser device of a type that converts the wavelength of semiconductor laser light using an external resonator, the device is complicated, and adjustment and control are extremely difficult.

この発明は、上記に鑑み、小型・軽量・構造簡単で、かつ高効率に短波長レーザ光を出力することができる、半導体レーザ装置を提供することを目的とする。 In view of the above, an object of the present invention is to provide a semiconductor laser device that is small in size, light in weight, simple in structure, and capable of outputting short-wavelength laser light with high efficiency.

上記の目的を達成するため、この発明による半導体レーザ装置においては、一端面が全反射面、他端面が無反射面とされ、該他端面から基本波を出射する半導体レーザ素子と、後記共振器内に配置され、前記基本波を第2高調波に変換する波長変換素子と、前記半導体レーザ素子の外部に配置され前記一端面との間で光学的共振器を形成するとともに、実質的に前記基本波に対し全反射であり、前記第2高調波の波長に対し無反射であるミラーと、前記半導体レーザ素子の温度を適切な波長のレーザビームを発生するように制御する第1のペルチェ素子と、前記波長変換素子の温度を最も効率のよい波長変換が行なわれるように制御する第2のペルチェ素子と、前記第1及び第2のペルチェ素子、並びに前記ミラーに対してヒートシンクを介して接続され、全体の温度が一定になるように制御する第3のペルチェ素子と、を有することが特徴となっている。 In order to achieve the above object, in a semiconductor laser device according to the present invention, a semiconductor laser device in which one end surface is a total reflection surface and the other end surface is a non-reflection surface and emits a fundamental wave from the other end surface, and a resonator described later An optical resonator is formed between a wavelength conversion element that is disposed within and converts the fundamental wave into a second harmonic, and the one end face that is disposed outside the semiconductor laser element, and substantially A mirror that is totally reflected with respect to the fundamental wave and is not reflected with respect to the wavelength of the second harmonic, and a first Peltier element that controls the temperature of the semiconductor laser element so as to generate a laser beam with an appropriate wavelength A second Peltier element for controlling the temperature of the wavelength conversion element so as to perform the most efficient wavelength conversion, a heat sink for the first and second Peltier elements, and the mirror. It is connected, to have a third Peltier element for controlling so that the temperature of the whole is constant, the is the distinctive feature Te.

レーザ共振器を、半導体レーザ素子の一端面と、外部のミラーとにより形成し、その中に波長変換素子を配置して、波長変換された光を外部に出力させるようにしているため、波長変換素子内の基本波のパワー密度を高めることができ、構造単純で、容易に高い変換効率が得られ、短波長の高出力レーザ光が得られる。 A laser resonator is formed by one end face of a semiconductor laser element and an external mirror, and a wavelength conversion element is arranged therein to output wavelength-converted light to the outside. The power density of the fundamental wave in the element can be increased, the structure is simple, high conversion efficiency can be easily obtained, and high-power laser light with a short wavelength can be obtained.

以上説明したように、この発明の半導体レーザ装置によれば、レーザ共振器を、半導体レーザ素子の一端面と、外部のミラーとにより形成し、その中に波長変換素子である非線形光学結晶を配置して、波長変換された光を外部に出力させるようにしているため、波長変換素子内の基本波のパワー密度を高めることができ、構造単純で、容易に高い変換効率が得られ、小型、軽量で、高出力の短波長レーザ光を高効率に出力することができる。 As described above, according to the semiconductor laser device of the present invention, a laser resonator is formed by one end face of a semiconductor laser element and an external mirror, and a nonlinear optical crystal that is a wavelength conversion element is disposed therein. Since the wavelength-converted light is output to the outside, the power density of the fundamental wave in the wavelength conversion element can be increased, the structure is simple, high conversion efficiency is easily obtained, and the size is small. Light weight and high output short wavelength laser light can be output with high efficiency.

つぎに、この発明の実施の形態について図面を参照しながら詳細に説明する。図1において、レーザダイオードチップ(LDチップ)10の一端面11には発振波長の光に対して全反射膜となるHRコートが施され、他方の端面12には同波長の光に対して無反射膜となるARコートが施されている。この端面12から出射したレーザビームが集光用レンズ13によって非線形光学結晶14に集光され、さらに凹面鏡となっている波長選択性ミラー15によって反射させられて、同じ経路を逆にたどってレーザダイオードチップ10に再び入射させられるようになっている。これにより、レーザ共振器が端面11とミラー15とによって形成される。そして、ミラー15を透過した波長のレーザビームがコリメート用レンズ16によってコリメートされて出射される。 Next, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, one end surface 11 of a laser diode chip (LD chip) 10 is provided with an HR coat that serves as a total reflection film for light having an oscillation wavelength, and the other end surface 12 has no effect on light having the same wavelength. An AR coat serving as a reflective film is applied. The laser beam emitted from the end face 12 is condensed on the nonlinear optical crystal 14 by the condensing lens 13 and further reflected by the wavelength selective mirror 15 which is a concave mirror. The light can enter the chip 10 again. As a result, a laser resonator is formed by the end face 11 and the mirror 15. Then, the laser beam having the wavelength transmitted through the mirror 15 is collimated by the collimating lens 16 and emitted.

レーザダイオードチップ10はヒートシンク25を介してペルチェ素子24に取り付けられて温度コントロールされており、適切な波長のレーザビーム(たとえば波長860nm付近の赤外光、以後これを基本波という)を発生するようチューニングされている。 The laser diode chip 10 is attached to the Peltier element 24 via the heat sink 25 and is temperature-controlled so as to generate a laser beam having an appropriate wavelength (for example, infrared light having a wavelength of about 860 nm, hereinafter referred to as a fundamental wave). It has been tuned.

非線形光学結晶14は、これを通る光の波長を変換するもので、ヒートシンク27を介してペルチェ素子26に取り付けられて、最も効率のよい波長変換が行なわれる温度にコントロールされている。 The nonlinear optical crystal 14 converts the wavelength of light passing therethrough, and is attached to the Peltier element 26 via a heat sink 27 and controlled to a temperature at which the most efficient wavelength conversion is performed.

ミラー15には、レーザダイオードチップ10からの出射光である基本波の波長に対しては全反射し、非線形光学結晶14によって変換された第2高調波の波長に対しては無反射となるようなコートが施されており、その結果、共振器外部へは非線形光学結晶14によって変換された第2高調波のみを出射する。これにより、波長変換されて得た第2高調波(たとえば、波長430nm付近の青色光)を出射させることができる。 The mirror 15 totally reflects the wavelength of the fundamental wave that is emitted from the laser diode chip 10 and does not reflect the wavelength of the second harmonic converted by the nonlinear optical crystal 14. As a result, only the second harmonic converted by the nonlinear optical crystal 14 is emitted to the outside of the resonator. Thereby, the second harmonic obtained by wavelength conversion (for example, blue light having a wavelength of about 430 nm) can be emitted.

これら、レーザダイオードチップ10、集光用レンズ13、非線形光学結晶14、波長選択性ミラー15、コリメート用レンズ16は、ヒートシンクやペルチェ素子を介してあるいはこれらを介さずに直接、ベース21にペルチェ素子22を介して取り付けられたヒートシンク23上に固定されていて、全体がペルチェ素子22によって一定温度に保たれるようになっている。 These laser diode chip 10, condensing lens 13, nonlinear optical crystal 14, wavelength selective mirror 15, and collimating lens 16 are directly connected to the base 21 via a Peltier element through or without a heat sink or Peltier element. It is fixed on the heat sink 23 attached via 22 and the whole is maintained at a constant temperature by the Peltier element 22.

このような構成において、半導体レーザ装置の共振器を、レーザダイオードチップ10の一端面11と外部ミラー15とで構成し、その共振器の中に非線形光学結晶14を配置して波長変換し、変換された波長の光のみを外部に出射するようにしている。そのため、外部共振器等の複雑な構造を用いずとも容易に非線形光学結晶14内の基本波のパワー密度を高めることができ、その結果として高い変換効率が得られる。すなわち、上記のように構成された半導体レーザ装置は、小型、軽量であり、かつ高効率に短波長レーザ光を発生することができる。 In such a configuration, the resonator of the semiconductor laser device is constituted by the one end face 11 of the laser diode chip 10 and the external mirror 15, and the nonlinear optical crystal 14 is arranged in the resonator to perform wavelength conversion and conversion. Only the light of the specified wavelength is emitted to the outside. Therefore, the power density of the fundamental wave in the nonlinear optical crystal 14 can be easily increased without using a complicated structure such as an external resonator, and as a result, high conversion efficiency can be obtained. That is, the semiconductor laser device configured as described above is small and lightweight, and can generate short-wavelength laser light with high efficiency.

図2は他の実施形態を示すものであり、ここではレーザダイオードチップ10の一端面11と全反射ミラー19とによってレーザ共振器が形成されている。この共振器内に非線形光学結晶14とプリズム18が配置されていて、非線形光学結晶14によって波長変換し、プリズム18の分光特性を利用して基本波と第2高調波とを波長選別する。プリズム18によって波長選別するため、ミラー19は波長選択性でなく全反射ミラーとする。また、矢印で示すようにこのミラー19の角度を変化させ、共振器に戻す光の波長を変化させることにより、基本波の発振波長をチューニングすることができ、結果的に非線形光学結晶14で変換された第2高調波の波長を可変にすることができる。 FIG. 2 shows another embodiment, in which a laser resonator is formed by one end face 11 of the laser diode chip 10 and a total reflection mirror 19. A nonlinear optical crystal 14 and a prism 18 are disposed in the resonator, and wavelength conversion is performed by the nonlinear optical crystal 14, and the fundamental wave and the second harmonic are subjected to wavelength selection using the spectral characteristics of the prism 18. Since the wavelength is selected by the prism 18, the mirror 19 is not a wavelength selectivity but a total reflection mirror. Further, the oscillation wavelength of the fundamental wave can be tuned by changing the angle of the mirror 19 and changing the wavelength of the light returned to the resonator as indicated by the arrow, and the result is converted by the nonlinear optical crystal 14. The wavelength of the generated second harmonic can be made variable.

この図2では省略しているが、レーザダイオードチップ10や非線形光学結晶14は図1と同様にヒートシンクおよびペルチェ素子を介して固定することによりそれぞれ温度コントロールする。他の光学素子も図1に示すようにヒートシンク23およびペルチェ素子22を介してベース21に固定することが望ましい。 Although not shown in FIG. 2, the laser diode chip 10 and the nonlinear optical crystal 14 are respectively controlled in temperature by being fixed via a heat sink and a Peltier element as in FIG. Other optical elements are preferably fixed to the base 21 via a heat sink 23 and a Peltier element 22 as shown in FIG.

なお、上記の説明はこの発明の一つの実施形態に関するものであり、この発明が上記に限定されるものではなく、この発明の趣旨を逸脱しない範囲で種々に変形できることはもちろんである。たとえば図2において、プリズム18の代わりにエタロンやグレーティングなどを用いて波長をチューニングすることもできる。 The above description relates to one embodiment of the present invention. The present invention is not limited to the above, and it is needless to say that various modifications can be made without departing from the spirit of the present invention. For example, in FIG. 2, the wavelength can be tuned by using an etalon or a grating instead of the prism 18.

この発明の実施の形態を示す模式図。The schematic diagram which shows embodiment of this invention. 他の実施の形態を示す模式図。The schematic diagram which shows other embodiment.

符号の説明Explanation of symbols

10 レーザダイオードチップ
11 全反射面となっている端面
12 無反射面となっている端面
13、17 集光用レンズ
14 非線形光学結晶
15 波長選択性凹面ミラー
16 コリメート用レンズ
18 プリズム
19 全反射ミラー
21 ベース
22、24、26 ペルチェ素子
23、25、27 ヒートシンク
DESCRIPTION OF SYMBOLS 10 Laser diode chip 11 End surface 12 which is a total reflection surface End surfaces 13 and 17 which are non-reflection surfaces Condensing lens 14 Nonlinear optical crystal 15 Wavelength selective concave mirror 16 Collimating lens 18 Prism 19 Total reflection mirror 21 Base 22, 24, 26 Peltier element 23, 25, 27 Heat sink

Claims (2)

一端面が全反射面、他端面が無反射面とされ、該他端面から基本波を出射する半導体レーザ素子と、
後記光学的共振器内に配置され、前記基本波を第2高調波に変換する波長変換素子と、
前記半導体レーザ素子の外部に配置され前記一端面との間で光学的共振器を形成するとともに、実質的に前記基本波に対し全反射であり、前記第2高調波の波長に対し無反射であるミラーと、
前記半導体レーザ素子の温度を適切な波長のレーザビームを発生するように制御する第1のペルチェ素子と、
前記波長変換素子の温度を最も効率のよい波長変換が行なわれるように制御する第2のペルチェ素子と、
前記第1及び第2のペルチェ素子、並びに前記ミラーに対してヒートシンクを介して接続され、前記光学的共振器全体の温度が一定になるように制御する第3のペルチェ素子と、
を有することを特徴とする半導体レーザ装置。
A semiconductor laser element that has one end surface as a total reflection surface and the other end surface as a non-reflection surface, and emits a fundamental wave from the other end surface ;
A wavelength conversion element that is arranged in an optical resonator to be described later and converts the fundamental wave into a second harmonic ;
An optical resonator is formed between the semiconductor laser element and the one end face, and is substantially totally reflected with respect to the fundamental wave and non-reflective with respect to the wavelength of the second harmonic wave. A mirror,
A first Peltier element that controls the temperature of the semiconductor laser element to generate a laser beam of an appropriate wavelength;
A second Peltier element that controls the temperature of the wavelength conversion element so that the most efficient wavelength conversion is performed;
A third Peltier element that is connected to the first and second Peltier elements and the mirror via a heat sink and controls the temperature of the entire optical resonator to be constant;
A semiconductor laser device comprising:
前記半導体レーザ素子と、前記波長変換素子との間に配置された集光用レンズと
前記共振器の外側に配置されたコリメート用レンズとをさらに有し
当該集光用及びコリメート用レンズも、前記ヒートシンクを介して第3のペルチェ素子に接続されていることを特徴とする、請求項1記載の半導体レーザ装置
A condensing lens disposed between the semiconductor laser element and the wavelength conversion element ;
A collimating lens disposed outside the resonator ;
2. The semiconductor laser device according to claim 1, wherein the condensing lens and the collimating lens are also connected to a third Peltier element via the heat sink .
JP2008104063A 2008-04-11 2008-04-11 Semiconductor laser device Expired - Fee Related JP4900309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104063A JP4900309B2 (en) 2008-04-11 2008-04-11 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104063A JP4900309B2 (en) 2008-04-11 2008-04-11 Semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22108297A Division JPH1154836A (en) 1997-07-31 1997-07-31 Semiconductor laser equipment

Publications (2)

Publication Number Publication Date
JP2008211232A true JP2008211232A (en) 2008-09-11
JP4900309B2 JP4900309B2 (en) 2012-03-21

Family

ID=39787210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104063A Expired - Fee Related JP4900309B2 (en) 2008-04-11 2008-04-11 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP4900309B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045880A (en) * 1990-04-23 1992-01-09 Matsushita Electron Corp Semiconductor laser device
JPH04107536A (en) * 1990-08-29 1992-04-09 Oki Electric Ind Co Ltd Second harmonic generation device
JPH04204526A (en) * 1990-11-30 1992-07-24 Toshiba Corp Light higher harmonics generating device
JPH07235721A (en) * 1994-02-23 1995-09-05 Sumitomo Metal Mining Co Ltd Laser apparatus
JPH07306429A (en) * 1994-05-07 1995-11-21 Samsung Electron Co Ltd Method and device for generating second higher-harmonic wave
WO1996010855A1 (en) * 1994-10-03 1996-04-11 Sdl, Inc. Tunable blue laser diode
JPH08172240A (en) * 1994-12-16 1996-07-02 Fuji Photo Film Co Ltd Semiconductor light emitting device
JPH08195520A (en) * 1995-01-17 1996-07-30 Seitai Hikari Joho Kenkyusho:Kk Solid state laser oscillator
JPH09214022A (en) * 1996-02-07 1997-08-15 Sun Tec Kk Rotatory mechanism and variable-wavelength semiconductor laser of external resonator type

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045880A (en) * 1990-04-23 1992-01-09 Matsushita Electron Corp Semiconductor laser device
JPH04107536A (en) * 1990-08-29 1992-04-09 Oki Electric Ind Co Ltd Second harmonic generation device
JPH04204526A (en) * 1990-11-30 1992-07-24 Toshiba Corp Light higher harmonics generating device
JPH07235721A (en) * 1994-02-23 1995-09-05 Sumitomo Metal Mining Co Ltd Laser apparatus
JPH07306429A (en) * 1994-05-07 1995-11-21 Samsung Electron Co Ltd Method and device for generating second higher-harmonic wave
WO1996010855A1 (en) * 1994-10-03 1996-04-11 Sdl, Inc. Tunable blue laser diode
JPH08172240A (en) * 1994-12-16 1996-07-02 Fuji Photo Film Co Ltd Semiconductor light emitting device
JPH08195520A (en) * 1995-01-17 1996-07-30 Seitai Hikari Joho Kenkyusho:Kk Solid state laser oscillator
JPH09214022A (en) * 1996-02-07 1997-08-15 Sun Tec Kk Rotatory mechanism and variable-wavelength semiconductor laser of external resonator type

Also Published As

Publication number Publication date
JP4900309B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4392024B2 (en) Mode-controlled waveguide laser device
JP2007142384A (en) High efficient second harmonic generation vertical external cavity surface light emitting laser
GB2313951A (en) Single longitudinal mode frequency-converted laser
US7406108B2 (en) Vertical external cavity surface emitting laser (VECSEL)
KR101100432B1 (en) High efficient second harmonic generation vertical external cavity surface emitting laser system
JP2007194597A (en) External resonator surface emitting laser
US20060280220A1 (en) Optically-pumped vertical external cavity surface emitting laser
JP5259385B2 (en) Wavelength conversion device and image display device
JP6718973B2 (en) Light source configured for stabilization against external operating conditions
JP2007081233A (en) Laser oscillator
WO2006112412A1 (en) Laser beam generation device and generation method
JP2005101504A (en) Laser apparatus
JP2012098495A (en) Laser beam wavelength conversion device
JP2011523198A (en) Green light source generation device and portable electronic device provided with laser projection display using the same
JP2006128656A (en) External resonance type semiconductor laser
JP4900309B2 (en) Semiconductor laser device
JP2007073552A (en) Laser light generator and image formation apparatus
KR100818492B1 (en) DPSS Laser Apparatus Using Pumping Laser Diode
JP2008153561A (en) External resonance type laser light source apparatus, monitoring apparatus using same, and image display apparatus
JPH1154836A (en) Semiconductor laser equipment
WO2018108251A1 (en) Laser
JP4713271B2 (en) LASER OSCILLATION METHOD, LASER DEVICE, AND LASER DEVICE ARRAY
JP2005181509A (en) Wavelength conversion laser device
KR20070074750A (en) Vertical external cavity surface emitting laser
Zhang et al. A serially-connected two-chip VECSEL for dual-wavelength emission with high intracavity power

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees