JP2008211161A - One-chip high-voltage photocell - Google Patents

One-chip high-voltage photocell Download PDF

Info

Publication number
JP2008211161A
JP2008211161A JP2007142117A JP2007142117A JP2008211161A JP 2008211161 A JP2008211161 A JP 2008211161A JP 2007142117 A JP2007142117 A JP 2007142117A JP 2007142117 A JP2007142117 A JP 2007142117A JP 2008211161 A JP2008211161 A JP 2008211161A
Authority
JP
Japan
Prior art keywords
silicon substrate
circuit board
printed circuit
thickness
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007142117A
Other languages
Japanese (ja)
Other versions
JP5132191B2 (en
Inventor
Saburo Shimokawa
三郎 下川
Toshihiko Kawaguchi
俊彦 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZEO SYSTEM KK
Geosystem Co Ltd Japan
Original Assignee
ZEO SYSTEM KK
Geosystem Co Ltd Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZEO SYSTEM KK, Geosystem Co Ltd Japan filed Critical ZEO SYSTEM KK
Priority to JP2007142117A priority Critical patent/JP5132191B2/en
Publication of JP2008211161A publication Critical patent/JP2008211161A/en
Application granted granted Critical
Publication of JP5132191B2 publication Critical patent/JP5132191B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a one-chip high-voltage photocell which can be efficiently formed with an excellent yield and whose light receiving efficiency is excellent. <P>SOLUTION: In the state soldering and joining a silicon board 2 composed by forming a plurality of photodiode elements 1 on a printed circuit board 11, it is cut for a set cut amount along the boundary of the formation region of the photodiode elements 1 and the plurality of photodiode elements 1 are separately arranged on the printed circuit board 11. Since the temperature of an object produced by the solder joining of the silicon board 2 and the printed circuit board 11 becomes lower in cutting the silicon board 2 than in soldering and joining them, a difference between the maximum value and minimum value of an amount of surfacing curve from a virtual flat bottom surface at each cutting position of the silicon board 2 generated by a thermal expansion difference between the silicon board 2 and the printed circuit board 11 becomes smaller than the thickness of the printed circuit board 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ワンチップに集積された赤外線域で高感度なワンチップ高電圧光電池に関するものである。   The present invention relates to a one-chip high-voltage photovoltaic cell with high sensitivity in the infrared region integrated on one chip.

光電池として、アモルファスシリコンで形成された単位発電素子を直列に接続した太陽電池があるが、この太陽電池は、目に見えない赤外線の波長域では感度が無いため、発電しない。光通信分野で、前記赤外線の波長域で大きな光エネルギーを伝送する事が必要な場合は、その赤外線エネルギーを有効に受光し、発電する高電圧光電池が必要になる。   As a photovoltaic cell, there is a solar cell in which unit power generation elements formed of amorphous silicon are connected in series. However, this solar cell does not generate power because it has no sensitivity in an invisible infrared wavelength region. In the optical communication field, when it is necessary to transmit a large amount of light energy in the infrared wavelength range, a high voltage photovoltaic cell that effectively receives the infrared energy and generates electric power is required.

赤外線で起電する光電池として、例えば図7に示すように、結晶から成る単位素子30を複数用いて形成されるシリコン光電池が使用されている。各単位素子30はシリコンウエハーを切断して形成されたシリコンチップであり、シリコンウエハーを切断して個々の単位素子30を形成した後、単位素子30をプリント基板11上に複数配置してシリコン光電池が形成されている。プリント基板11の表面側には、銅ラウンド21が互いに間隔を介して配置されており、銅ラウンド21は、プリント基板11に形成されたスルーホール孔22を介してプリント基板11の裏面側に導通している。また、対となる銅ラウンド21同士は、スルーホール孔22を介して銅の配線23によりプリント基板11の裏面側で接続されている。   For example, as shown in FIG. 7, a silicon photovoltaic cell formed by using a plurality of unit elements 30 made of crystals is used as a photovoltaic cell that generates electricity by infrared rays. Each unit element 30 is a silicon chip formed by cutting a silicon wafer. After the silicon wafer is cut to form individual unit elements 30, a plurality of unit elements 30 are arranged on the printed circuit board 11 to form a silicon photovoltaic cell. Is formed. Copper rounds 21 are arranged on the front surface side of the printed circuit board 11 at intervals, and the copper rounds 21 are electrically connected to the back surface side of the printed circuit board 11 through through-hole holes 22 formed in the printed circuit board 11. is doing. Further, the copper rounds 21 to be paired are connected to each other on the back surface side of the printed board 11 by a copper wiring 23 through a through-hole hole 22.

前記各単位素子30(各シリコンチップ)は、その表面側の受光面31側から赤外線を受光するものであり、それぞれ、プリント基板11上の1つおきの銅ラウンド21上に配設されている。この銅ラウンド21上の単位素子30と、単位素子30が配置されていない銅ラウンド21とがワイヤボンディング20を介して接続されることにより、複数の単位素子30が直列接続され、シリコン光電池が高電圧を発電できるように形成されている。   Each unit element 30 (each silicon chip) receives infrared rays from the light-receiving surface 31 side on the surface side, and is disposed on every other copper round 21 on the printed circuit board 11. . The unit element 30 on the copper round 21 and the copper round 21 in which the unit element 30 is not disposed are connected via the wire bonding 20, whereby a plurality of unit elements 30 are connected in series, and the silicon photovoltaic cell is high. It is configured to generate voltage.

ところで、このシリコン光電池は、プリント基板11の表面側において、単位素子30が赤外線を受光する構成であるにもかかわらず、プリント基板11の表面側に、単位素子30が配置されていない銅ラウンド21を設けているので、単位受光面積当たりの受光効率がよくない。そこで、赤外線の受光面側に銅ラウンド21が露出しないように、ワイヤボンディング20を用いずに単位素子30を接続する接続方式を用いたシリコン光電池が提案された(例えば、特許文献1、参照。)。   By the way, this silicon photovoltaic cell is a copper round 21 in which the unit element 30 is not arranged on the surface side of the printed circuit board 11 even though the unit element 30 receives infrared rays on the surface side of the printed circuit board 11. Therefore, the light receiving efficiency per unit light receiving area is not good. Therefore, a silicon photovoltaic cell using a connection method in which the unit elements 30 are connected without using the wire bonding 20 has been proposed so that the copper round 21 is not exposed on the infrared light receiving surface side (see, for example, Patent Document 1). ).

この提案のシリコン光電池は、図5(a)に示すように、複数のフォトダイオード素子1をプリント基板11上に整列状に配置搭載し、これらのフォトダイオード素子1を、プリント基板11を介して直列接続して形成されており、フォトダイオード素子1の受光面側(表面側)にはワイヤボンディング20が配置されていない。なお、図5(a)は、光電池を、その一部破断面として示す斜視説明図である。   In the proposed silicon photovoltaic cell, as shown in FIG. 5A, a plurality of photodiode elements 1 are arranged and mounted on a printed board 11 in an aligned manner, and these photodiode elements 1 are arranged via the printed board 11. The wire bonding 20 is not disposed on the light receiving surface side (front surface side) of the photodiode element 1. FIG. 5 (a) is a perspective explanatory view showing the photovoltaic cell as a partially broken surface.

この提案のシリコン光電池は、n型のシリコン基板2の表面にp型の拡散層3を設けているが、この拡散層3とシリコン基板2とを貫通するスルーホール4を設けることにより、このスルーホール4を介して拡散層3に電気的に導通するp層陽電極6をシリコン基板2の裏面側に設け、シリコン基板2の裏面側の同一面に、このp層陽電極6と、シリコン基板2に電気的に導通するn層陰電極5とを設けている。そのため、ワイヤボンディング20が無くても、電極5,6を直接、プリント基板11のスルーホール孔22と接続できるのである。   In this proposed silicon photovoltaic cell, a p-type diffusion layer 3 is provided on the surface of an n-type silicon substrate 2. By providing a through hole 4 penetrating the diffusion layer 3 and the silicon substrate 2, this through-hole is provided. A p-layer positive electrode 6 electrically connected to the diffusion layer 3 through the hole 4 is provided on the back surface side of the silicon substrate 2, and the p-layer positive electrode 6 and the silicon substrate are formed on the same surface on the back surface side of the silicon substrate 2. 2 is provided with an n-layer negative electrode 5 which is electrically conductive. Therefore, the electrodes 5 and 6 can be directly connected to the through-hole hole 22 of the printed circuit board 11 without the wire bonding 20.

また、この提案においては、各フォトダイオード素子1を個々に切断して形成してプリント基板11上に配置するのではなく、図5(b)に示すように、シリコン基板2のウエハー(シリコンウエハー7)に、複数のフォトダイオード素子1を形成し、シリコン基板2を、プリント基板11のスルーホール孔22にハンダ付け接合した状態で(図5にハンダは図示せず)、前記シリコン基板2(シリコンウエハー7)を各フォトダイオード素子1の形成領域の境界線に沿って、ハーフカット部25で切断して形成するものである。それゆえ、このシリコン光電池は、各フォトダイオード素子1を個々に切断して形成する場合に比べ、非常に製造が容易であり、製造時間の短縮化と歩留まりの向上等を図ることができる。   Further, in this proposal, each photodiode element 1 is not cut and formed individually and placed on the printed circuit board 11, but as shown in FIG. 5B, a silicon substrate 2 wafer (silicon wafer) 7), a plurality of photodiode elements 1 are formed, and the silicon substrate 2 is soldered and joined to the through-hole hole 22 of the printed board 11 (solder is not shown in FIG. 5). The silicon wafer 7) is formed by being cut by the half-cut portion 25 along the boundary line of the formation region of each photodiode element 1. Therefore, this silicon photovoltaic cell is very easy to manufacture as compared with the case where each photodiode element 1 is cut and formed individually, and the manufacturing time can be shortened and the yield can be improved.

特開2006−237543号JP 2006-237543 A

ところで、図5(a)に示した提案のシリコン光電池において、図5(b)に示したシリコン基板2とプリント基板11とのハンダ接合は、シリコン基板2とプリント基板11を180℃以上の温度に加熱して行われ、その後、シリコン基板2とプリント基板11とのハンダ接合による一体化物の温度を常温(例えば約25℃)に戻してからシリコン基板2を切断するようにしている。   Incidentally, in the proposed silicon photovoltaic cell shown in FIG. 5A, the solder bonding between the silicon substrate 2 and the printed board 11 shown in FIG. After that, the temperature of the integrated product by solder bonding between the silicon substrate 2 and the printed board 11 is returned to room temperature (for example, about 25 ° C.), and then the silicon substrate 2 is cut.

しかしながら、シリコン基板2とプリント基板11とのハンダ接合による一体化物の温度が常温に戻ると、前記シリコン基板2とプリント基板11との熱膨張差によって、プリント基板11の方がシリコン基板2より多く収縮し、前記一体化物が曲面状に反ってしまう。   However, when the temperature of the integrated product due to solder bonding between the silicon substrate 2 and the printed circuit board 11 returns to room temperature, the printed circuit board 11 is more than the silicon circuit board 2 due to the difference in thermal expansion between the silicon substrate 2 and the printed circuit board 11. It shrinks, and the integrated product warps into a curved surface.

そのため、プリント基板11は切り落とさずに、シリコン基板2のみをフォトダイオード素子1毎にその境界線に沿って的確に切断することが難しい。それというのは、シリコン基板2の切断は、図6(a)に示すように、ダイサー32等を用い、ダイサー32を回転させながらシリコン基板2の表面側から厚み方向に下げていくことにより行われるため、例えばシリコン基板2の表面の最上端位置(例えば図6のAの位置)を基準とし、シリコン基板2の切断を各切断位置において一定の切り込み量で(つまり、ダイサー32の下方向への移動量Bを設定切り込み量として)行った場合には、シリコン基板2の中央部においては適切な切断が行われても、図6(b)に示すように、シリコン基板2の端部においては、切断ができない可能性がある。   Therefore, it is difficult to accurately cut only the silicon substrate 2 along the boundary line for each photodiode element 1 without cutting off the printed board 11. This is because, as shown in FIG. 6A, the silicon substrate 2 is cut by using a dicer 32 or the like and lowering the dicer 32 from the surface side of the silicon substrate 2 in the thickness direction while rotating the dicer 32. Therefore, for example, with reference to the uppermost end position (for example, the position of FIG. 6A) of the surface of the silicon substrate 2, the silicon substrate 2 is cut at a certain cutting amount at each cutting position (that is, downward in the dicer 32). 6 (b) as the set cutting amount), even if appropriate cutting is performed at the center portion of the silicon substrate 2, as shown in FIG. May not be cut.

そこで、前記切り込み量を多めに設定すると、シリコン基板2の端部においても切断が可能となるが、この場合、プリント基板11の中央部にも切れ込みが入ってしまい、場合によっては、プリント基板11の切断も行われてしまう。したがって、前記提案において、シリコン基板2のみを切断する工程においては、それぞれの切断位置においてシリコン基板2の切り込み量を可変設定しなくてはならず、大変な手間と時間がかかった。   Therefore, if the cut amount is set to be large, cutting can be performed at the end portion of the silicon substrate 2, but in this case, the cut portion also enters the central portion of the printed circuit board 11. Will be cut. Therefore, in the above-described proposal, in the process of cutting only the silicon substrate 2, it is necessary to variably set the cutting amount of the silicon substrate 2 at each cutting position, which takes a lot of labor and time.

また、シリコン基板2が湾曲していると、シリコン基板2をフォトダイオード素子1毎に切断する際に、シリコン基板2が破損してしまうこともあった。   Further, when the silicon substrate 2 is curved, the silicon substrate 2 may be damaged when the silicon substrate 2 is cut for each photodiode element 1.

本発明は、前記課題を解決するために成されたものであり、その目的は、複数のフォトダイオード素子を形成したシリコン基板をプリント基板にハンダ付けした後に切断する際、フォトダイオード素子毎の切断が容易に、かつ、的確に設計通り行われて歩留まりよく形成でき、単位受光面積当たりの受光効率が良好なワンチップ高電圧光電池を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its object is to cut each photodiode element when the silicon substrate on which a plurality of photodiode elements are formed is soldered to a printed circuit board and then cut. It is an object of the present invention to provide a one-chip high-voltage photovoltaic cell that can be easily and accurately performed as designed and can be formed with a high yield, and that has good light-receiving efficiency per unit light-receiving area.

本発明は、次に示す構成をもって前記課題を解決する手段と成している。すなわち、第1の発明は、複数のフォトダイオード素子がプリント基板上に搭載され、前記複数のフォトダイオード素子が電気的に直列接続されて成るワンチップ高電圧光電池であって、シリコン基板の面領域に複数のフォトダイオード素子が形成され、前記シリコン基板の裏面には各フォトダイオード素子の電極が形成されている構成と成し、前記プリント基板には、その表面に前記各フォトダイオード素子の前記電極に対応する位置に導通部が形成され、前記シリコン基板の裏面の各フォトダイオード素子の電極が前記プリント基板の導通部にハンダ付け接合されてシリコン基板とプリント基板とが一体化された状態で、前記各フォトダイオード素子の形成領域の境界線に沿って予め定められた切り込み量だけシリコン基板が切断されることにより、前記複数のフォトダイオード素子が前記プリント基板上に分離配置される構成と成し、前記シリコン基板と前記プリント基板とのハンダ接合による一体化物の温度がハンダ付け接合処理時よりも前記シリコン基板の切断時に下がることにより前記シリコン基板と前記プリント基板との熱膨張差によって生じるシリコン基板の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が前記プリント基板の厚みよりも小となるようにシリコン基板の厚みに対応させてプリント基板の厚みが設定されている構成をもって課題を解決する手段としている。   The present invention is configured as means for solving the above problems with the following configuration. That is, the first invention is a one-chip high-voltage photovoltaic cell in which a plurality of photodiode elements are mounted on a printed circuit board and the plurality of photodiode elements are electrically connected in series, and the surface area of the silicon substrate A plurality of photodiode elements are formed on the back surface of the silicon substrate, and electrodes of each photodiode element are formed on the back surface of the silicon substrate. In a state where the conductive portion is formed at a position corresponding to the above, the electrodes of the respective photodiode elements on the back surface of the silicon substrate are soldered and joined to the conductive portion of the printed board, and the silicon substrate and the printed board are integrated. The silicon substrate is cut by a predetermined cut amount along the boundary line between the formation regions of the photodiode elements. Thus, the plurality of photodiode elements are separated from each other on the printed circuit board, and the temperature of the integrated product due to the solder bonding between the silicon substrate and the printed circuit board is higher than that during the solder bonding process. The difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate caused by the difference in thermal expansion between the silicon substrate and the printed substrate due to lowering at the time of cutting the substrate is that of the printed circuit board. A configuration in which the thickness of the printed circuit board is set so as to correspond to the thickness of the silicon substrate so as to be smaller than the thickness serves as means for solving the problem.

また、第2の発明は、複数のフォトダイオード素子がプリント基板上に搭載され、前記複数のフォトダイオード素子が電気的に直列接続されて成るワンチップ高電圧光電池であって、シリコン基板の面領域に複数のフォトダイオード素子が形成され、前記シリコン基板の裏面には各フォトダイオード素子の電極が形成されている構成と成し、前記プリント基板には、その表面に前記各フォトダイオード素子の前記電極に対応する位置に導通部が形成され、前記シリコン基板の裏面の各フォトダイオード素子の電極が前記プリント基板の導通部にハンダ付け接合されてシリコン基板とプリント基板とが一体化された状態で、前記各フォトダイオード素子の形成領域の境界線に沿って予め定められた切り込み量だけシリコン基板が切断されることにより、前記複数のフォトダイオード素子が前記プリント基板上に分離配置される構成と成し、前記シリコン基板と前記プリント基板とのハンダ接合による一体化物の温度がハンダ付け接合処理時よりも前記シリコン基板の切断時に下がることにより前記シリコン基板と前記プリント基板との熱膨張差によって生じるシリコン基板の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差を前記熱膨張差によって生じるプリント基板への引っ張り応力による塑性伸び変形を生じさせることにより小さくして前記浮き上がり湾曲量の最大値と最小値との差が前記プリント基板の厚みよりも小となるようにシリコン基板の厚みに対応させてプリント基板の厚みが設定されていることを特徴とする。   The second invention is a one-chip high-voltage photovoltaic cell comprising a plurality of photodiode elements mounted on a printed circuit board, wherein the plurality of photodiode elements are electrically connected in series, wherein the surface area of the silicon substrate A plurality of photodiode elements are formed on the back surface of the silicon substrate, and electrodes of each photodiode element are formed on the back surface of the silicon substrate. In a state where the conductive portion is formed at a position corresponding to the above, the electrodes of the respective photodiode elements on the back surface of the silicon substrate are soldered and joined to the conductive portion of the printed board, and the silicon substrate and the printed board are integrated. The silicon substrate is cut by a predetermined cut amount along a boundary line between the formation regions of the photodiode elements. Accordingly, the plurality of photodiode elements are separately arranged on the printed circuit board, and the temperature of the integrated product due to the solder bonding between the silicon substrate and the printed circuit board is higher than that during the solder bonding process. The difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate caused by the difference in thermal expansion between the silicon substrate and the printed circuit board due to lowering at the time of cutting of the silicon substrate by the thermal expansion difference The silicon substrate is formed such that the difference between the maximum value and the minimum value of the lift curve amount is smaller than the thickness of the printed circuit board by reducing plastic elongation deformation caused by tensile stress on the generated printed circuit board. The thickness of the printed circuit board is set corresponding to the thickness.

さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記プリント基板のフォトダイオード素子との対向面側には、隣り合うハンダ同士がハンダ接合時のハンダ溶融により当接するのを防ぐための隔壁が熱硬化性材料を熱硬化させて成る絶縁性薄膜により形成されており、シリコン基板と前記絶縁性薄膜を形成したプリント基板とのハンダ接合による一体化物の温度がハンダ付け接合処理時よりも前記シリコン基板の切断時に下がることにより前記シリコン基板と前記絶縁性薄膜を形成したプリント基板との熱膨張差によって生じるシリコン基板の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が前記プリント基板の厚みよりも小となるようにする代わりに前記差が前記絶縁性薄膜の厚みと前記プリント基板の厚みを合わせた厚みよりも小となるようにシリコン基板の厚みに対応させてプリント基板と絶縁性薄膜の厚みが設定されていることを特徴とする。   Further, according to the third invention, in addition to the configuration of the first or second invention, adjacent solders come into contact with the photodiode surface of the printed circuit board by solder melting at the time of solder joining. The partition wall is formed of an insulating thin film formed by thermosetting a thermosetting material, and the temperature of the integrated product by solder bonding between the silicon substrate and the printed circuit board on which the insulating thin film is formed is soldered. The amount of rising curvature from the virtual flat bottom surface at each cutting position of the silicon substrate caused by the difference in thermal expansion between the silicon substrate and the printed circuit board on which the insulating thin film is formed by lowering at the time of cutting the silicon substrate than at the time of bonding processing. Instead of making the difference between the maximum value and the minimum value smaller than the thickness of the printed circuit board, the difference is less than the thickness of the insulating thin film. It characterized in that in correspondence with the thickness of the silicon substrate printed circuit board the thickness of the insulating thin film is set to be smaller than the total thickness of the thickness of the printed circuit board.

本発明では、シリコン基板の裏面の各フォトダイオード素子の電極がプリント基板の導通部にハンダ付け接合されてシリコン基板とプリント基板とが一体化された状態で、前記各フォトダイオード素子の形成領域の境界線に沿って予め定められた切り込み量だけシリコン基板が切断されることにより、前記複数のフォトダイオード素子が前記プリント基板上に分離配置される構成と成している。   In the present invention, the electrode of each photodiode element on the back surface of the silicon substrate is soldered and joined to the conductive portion of the printed circuit board so that the silicon substrate and the printed circuit board are integrated. The plurality of photodiode elements are separated from each other on the printed circuit board by cutting the silicon substrate by a predetermined cut amount along the boundary line.

この構成において、前記シリコン基板と前記プリント基板とのハンダ接合による一体化物の温度がハンダ付け接合処理時よりも前記シリコン基板の切断時に下がると、前記シリコン基板と前記プリント基板との熱膨張差によってシリコン基板とプリント基板とが湾曲するが、本発明によれば、前記熱膨張差によって生じるシリコン基板の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が、第1と第2の発明では、前記プリント基板の厚みよりも小となるように、第3の発明では、絶縁性薄膜の厚みと前記プリント基板の厚みを合わせた厚みよりも小となるように、それぞれ、シリコン基板の厚みに対応させてプリント基板の厚みが設定されているので、前記切り込み量で、シリコン基板を容易に、かつ、的確に切断することができる。   In this configuration, when the temperature of the integrated product due to the solder bonding between the silicon substrate and the printed circuit board is lower during the cutting of the silicon substrate than during the solder bonding process, a difference in thermal expansion between the silicon substrate and the printed circuit board is caused. Although the silicon substrate and the printed circuit board are curved, according to the present invention, the difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate caused by the thermal expansion difference is In 1 and 2nd invention, so that it may become smaller than the thickness of the said printed circuit board, in 3rd invention, so that it may become smaller than the thickness which combined the thickness of the insulating thin film, and the thickness of the said printed circuit board, Since the thickness of the printed circuit board is set in accordance with the thickness of the silicon substrate, the silicon substrate can be easily and appropriately formed with the above-mentioned cutting amount. It can be cut into.

つまり、シリコン基板の前記仮想平坦面からの各切断位置における浮き上がり湾曲量の最大値と最小値との差に対応させて、前記切り込み量を、例えばシリコン基板の厚みに前記浮き上がり湾曲量の最大値と最小値との差を加えた値またはその近傍の値に設定してシリコン基板を切断すれば、シリコン基板を各切断位置において的確に切断でき、かつ、この切断時に、プリント基板まで切断してしまうことはなく、歩留まりよくワンチップ高電圧光電池を形成することができる。   That is, in correspondence with the difference between the maximum value and the minimum value of the lift curve at each cutting position from the virtual flat surface of the silicon substrate, the cut amount is set to, for example, the thickness of the silicon substrate, and the maximum value of the lift curve If the silicon substrate is cut with a value obtained by adding the difference between the value and the minimum value or a value in the vicinity thereof, the silicon substrate can be accurately cut at each cutting position. Therefore, a one-chip high voltage photovoltaic cell can be formed with high yield.

なお、前記シリコン基板とプリント基板との熱膨張差によって生じるシリコン基板とプリント基板の湾曲は、これらの基板の弾性変形によるものであるが、この弾性変形の域を超えて塑性変形の域になるような力が加わると、プリント基板に塑性変形が生じる。   The curvature of the silicon substrate and the printed circuit board caused by the difference in thermal expansion between the silicon substrate and the printed circuit board is due to the elastic deformation of these substrates, but the region of plastic deformation exceeds this elastic deformation region. When such a force is applied, plastic deformation occurs in the printed circuit board.

そこで、第2の発明は、前記シリコン基板と前記プリント基板との熱膨張差によって生じるシリコン基板の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差を、前記熱膨張差によって生じるプリント基板への引っ張り応力による塑性伸び変形を生じさせることにより小さくして、前記浮き上がり湾曲量の最大値と最小値との差が前記プリント基板の厚みよりも小となるように、シリコン基板の厚みに対応させてプリント基板の厚みを設定することにより、前記と同様に、シリコン基板の切断を的確に行うことができ、歩留まりよくワンチップ高電圧光電池を形成することができる。   In view of this, the second invention provides the difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate caused by the thermal expansion difference between the silicon substrate and the printed circuit board. By making the plastic elongation deformation due to the tensile stress to the printed circuit board caused by the expansion difference, the difference between the maximum value and the minimum value of the lifting curve amount is smaller than the thickness of the printed circuit board. By setting the thickness of the printed circuit board corresponding to the thickness of the silicon substrate, the silicon substrate can be cut accurately as described above, and a one-chip high-voltage photovoltaic cell can be formed with high yield.

また、本発明によれば、複数のフォトダイオード素子を形成して成るシリコン基板を、プリント基板にハンダ付け接合してからフォトダイオード素子の形成領域の境界線に沿って切断して形成するものであるから、フォトダイオード素子を個々に形成してプリント基板上に配置する場合に比べ、ワンチップ高電圧光電池の製造を格段に容易とすることができる。また、ハンダを間欠的に設けて接合することにより、シリコン基板とプリント基板との接合面全体をクリームハンダ等により接合する場合に比べ、ワンチップ高電圧光電池の製造を容易にすることができる。   Further, according to the present invention, a silicon substrate formed with a plurality of photodiode elements is formed by cutting and joining along a boundary line of a photodiode element forming region after soldering and joining to a printed circuit board. Therefore, compared with the case where the photodiode elements are individually formed and arranged on the printed circuit board, the manufacture of the one-chip high voltage photovoltaic cell can be made much easier. Further, by providing solder and intermittently joining, it is possible to facilitate the manufacture of a one-chip high-voltage photovoltaic cell as compared with the case where the entire joint surface between the silicon substrate and the printed board is joined by cream solder or the like.

また、本発明において、プリント基板のフォトダイオード素子との対向面側には、隣り合うハンダ同士がハンダ接合時のハンダ溶融により当接するのを防ぐための隔壁が熱硬化性材料を熱硬化させて成る絶縁性薄膜により形成されている第3の発明においては、隣り合うハンダ同士が当接する、所謂、ハンダブリッジを防ぐことができ、かつ、前記のような優れた効果を奏することができる。   Further, in the present invention, on the side of the printed circuit board facing the photodiode element, a partition for preventing adjacent solders from coming into contact with each other due to solder melting at the time of soldering joins the thermosetting material. In the third invention formed by the insulating thin film, the so-called solder bridge where adjacent solders come into contact with each other can be prevented, and the excellent effects as described above can be obtained.

本発明の実施の形態を図面に基づいて説明する。なお、本実施形態例の説明において、これまでの説明と同一名称部分には、同一符号が付してあり、その重複説明は省略または簡略化する。図1には、本発明に係るワンチップ高電圧光電池の一実施形態例を示す構成図が断面図により模式的に示されている。同図に示すように、本実施形態例のワンチップ高電圧光電池は、複数のフォトダイオード素子1をプリント基板11上に搭載し、複数のフォトダイオード素子1を、プリント基板11側の、例えば銅により形成した配線23により電気的に直列接続して形成されている。   Embodiments of the present invention will be described with reference to the drawings. Note that, in the description of the present embodiment, the same reference numerals are assigned to the same name portions as those described so far, and the duplicate description is omitted or simplified. FIG. 1 is a cross-sectional view schematically showing a configuration diagram showing an embodiment of a one-chip high-voltage photovoltaic cell according to the present invention. As shown in the figure, the one-chip high-voltage photovoltaic cell according to the present embodiment has a plurality of photodiode elements 1 mounted on a printed circuit board 11, and the plurality of photodiode elements 1 are placed on the printed circuit board 11 side, for example, copper. Are electrically connected in series by the wiring 23 formed by the above.

フォトダイオード素子1は、n型のシリコン基板(Si(n型)基板)2の面領域に複数形成されており、前記シリコン基板2の裏面には各フォトダイオード素子1の電極5,6が形成されている。なお、各フォトダイオード素子1は、シリコン基板2を貫通するスルーホール4と、このスルーホール4の内壁面およびスルーホール4の近傍のシリコン基板2の表面に形成されたp型の拡散層3とを有して形成されている。また、シリコン基板2の表面および裏面の両面には、シリコン基板2の熱酸化により酸化シリコン(SiO)の保護膜8が形成されている。 A plurality of photodiode elements 1 are formed on a surface region of an n-type silicon substrate (Si (n-type) substrate) 2, and electrodes 5 and 6 of each photodiode element 1 are formed on the back surface of the silicon substrate 2. Has been. Each photodiode element 1 includes a through hole 4 penetrating the silicon substrate 2, and a p-type diffusion layer 3 formed on the inner wall surface of the through hole 4 and the surface of the silicon substrate 2 in the vicinity of the through hole 4. It is formed. A protective film 8 of silicon oxide (SiO 2 ) is formed on both the front and back surfaces of the silicon substrate 2 by thermal oxidation of the silicon substrate 2.

本実施形態例で適用しているシリコン基板2は、ポアソン比が0.28、熱膨張係数が2.3ppm/deg、弾性定数が130GPaであり、赤外線領域で有効な受光感度を有する厚みである400μmで形成されている。   The silicon substrate 2 applied in the present embodiment has a thickness having a Poisson's ratio of 0.28, a thermal expansion coefficient of 2.3 ppm / deg, an elastic constant of 130 GPa, and an effective light receiving sensitivity in the infrared region. It is formed at 400 μm.

また、前記電極5,6は、シリコン基板2に電気的に導通するオーミック電極アルミパットのn層陰電極5と、前記拡散層3に電気的に導通するオーミック電極アルミパットのp層陽電極6であり、互いに間隔を介して配置されている。これらn層陰電極5とp層陽電極6には、その表面側(プリント基板11との対向側)にハンダ付け用のニッケルコート15,16が施されている。   The electrodes 5 and 6 include an n-layer negative electrode 5 of an ohmic electrode aluminum pad electrically connected to the silicon substrate 2 and a p-layer positive electrode 6 of an ohmic electrode aluminum pad electrically connected to the diffusion layer 3. And are arranged at intervals. The n-layer negative electrode 5 and the p-layer positive electrode 6 are provided with nickel coatings 15 and 16 for soldering on the surface side (the side facing the printed circuit board 11).

前記プリント基板11には、その表面に前記各フォトダイオード素子1のn層陰電極5とp層陽電極6とが搭載するそれぞれの位置に、導電部としての銅ラウンド21が設けられ、プリント基板11に形成された貫通のスルーホール孔22に設けられた銅の配線23を介して対応する銅ラウンド21同士が接続されている。つまり、隣り合う一方のフォトダイオード素子1のn層陰電極5側のスルーホール孔22と他方のフォトダイオード素子1のp層陽電極6側のスルーホール孔22とが配線23により導通するように構成されている。   The printed circuit board 11 is provided with a copper round 21 as a conductive portion at each position where the n-layer negative electrode 5 and the p-layer positive electrode 6 of each photodiode element 1 are mounted on the surface thereof. Corresponding copper rounds 21 are connected to each other through a copper wiring 23 provided in a through-hole hole 22 formed in a through hole 11. That is, the through hole 22 on the n-layer negative electrode 5 side of one adjacent photodiode element 1 and the through-hole hole 22 on the p-layer positive electrode 6 side of the other photodiode element 1 are electrically connected by the wiring 23. It is configured.

なお、本実施形態例において、プリント基板11は、熱膨張率が32ppm/deg、弾性定数が4.8GPaの材料により形成され、その厚み(図1のt)は、100μmである。   In this embodiment, the printed circuit board 11 is made of a material having a thermal expansion coefficient of 32 ppm / deg and an elastic constant of 4.8 GPa, and its thickness (t in FIG. 1) is 100 μm.

また、プリント基板11のフォトダイオード素子1との対向面(表面)側には、隣り合うハンダ9同士がハンダ接合時のハンダ溶融により当接するのを防ぐための隔壁10が絶縁性薄膜のレジスト12により形成されており、プリント基板11の裏面側には、レジスト12と同じ材料により形成された同じ膜厚の絶縁性薄膜のレジスト13が設けられている。   In addition, on the surface (front surface) facing the photodiode element 1 of the printed circuit board 11, a partition wall 10 for preventing adjacent solders 9 from coming into contact with each other due to solder melting at the time of soldering is provided with an insulating thin film resist 12. An insulating thin film resist 13 having the same film thickness and made of the same material as that of the resist 12 is provided on the back surface side of the printed circuit board 11.

本実施形態例では、前記隔壁10(絶縁性薄膜)の形成後にプリント基板11の温度が下がったときに、プリント基板11と絶縁性薄膜(レジスト12)との熱膨張率差によってプリント基板11にシリコン基板2とのハンダ接合処理を難しくする反りが生じないように、前記絶縁性薄膜が、設定厚みとしての25μm程度に形成されている。   In this embodiment, when the temperature of the printed circuit board 11 is lowered after the partition wall 10 (insulating thin film) is formed, the printed circuit board 11 is caused to have a thermal expansion coefficient difference between the printed circuit board 11 and the insulating thin film (resist 12). The insulating thin film is formed to have a set thickness of about 25 μm so as not to cause a warp that makes it difficult to perform solder bonding with the silicon substrate 2.

ところで、本実施形態例は、シリコン基板2の裏面の各フォトダイオード素子1の電極5,6が前記プリント基板11の銅ラウンド21にハンダ付け接合されて、シリコン基板2とプリント基板11とが一体化された状態で、前記各フォトダイオード素子1の形成領域の境界線に沿って、予め定められた切り込み量だけシリコン基板2が切断されることにより、前記複数のフォトダイオード素子1が前記プリント基板11上に分離配置される構成と成している。   By the way, in this embodiment, the electrodes 5 and 6 of the respective photodiode elements 1 on the back surface of the silicon substrate 2 are soldered and joined to the copper round 21 of the printed circuit board 11 so that the silicon substrate 2 and the printed circuit board 11 are integrated. When the silicon substrate 2 is cut by a predetermined cut amount along the boundary line of the formation region of each photodiode element 1 in the state of being formed, the plurality of photodiode elements 1 are the printed board. 11 is configured so as to be separately disposed on the top.

そして、本実施形態例の最も特徴的な構成は、シリコン基板2とプリント基板11とのハンダ接合による一体化物の温度が、ハンダ付け接合処理時よりもシリコン基板2の切断時に下がることにより、シリコン基板2とプリント基板11との熱膨張差によって生じるシリコン基板2の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が、プリント基板11の厚みよりも小となるように、シリコン基板2の厚みに対応させてプリント基板11の厚みが設定されていることである。   The most characteristic configuration of the present embodiment is that the temperature of the integrated product by the solder bonding of the silicon substrate 2 and the printed circuit board 11 is lower when the silicon substrate 2 is cut than when the solder bonding process is performed. The difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate 2 caused by the difference in thermal expansion between the substrate 2 and the printed substrate 11 is smaller than the thickness of the printed substrate 11. Thus, the thickness of the printed circuit board 11 is set corresponding to the thickness of the silicon substrate 2.

つまり、本実施形態例は、シリコン基板2の厚みが、赤外線領域で有効な受光感度を有する400μmに形成されており、それに対応させて、前記熱膨張差によって生じるシリコン基板2の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が、プリント基板11の厚みよりも小となるように、すなわち、前記浮き上がり湾曲量の最大値と最小値との差をΔUとし、プリント基板11の厚みをtとしたとき、ΔU<tとなるようにしている。なお、ΔU<tとなる範囲内でも、とくに、ΔU<0.7tとなることが好ましいため、ΔU<tの中でも、ΔU<0.7tとなるように、プリント基板11の厚みを100μmに設定した。   That is, in this embodiment, the thickness of the silicon substrate 2 is formed to 400 μm having effective light receiving sensitivity in the infrared region, and correspondingly, at each cutting position of the silicon substrate 2 caused by the thermal expansion difference. The difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface is smaller than the thickness of the printed board 11, that is, the difference between the maximum value and the minimum value of the rising curve value is ΔU. When the thickness of the printed circuit board 11 is t, ΔU <t. In addition, since it is preferable that ΔU <0.7t even in the range where ΔU <t, the thickness of the printed circuit board 11 is set to 100 μm so that ΔU <0.7t even in ΔU <t. did.

以下に、このシリコン基板2とプリント基板11の厚み設定について説明する。本実施形態例において、シリコン基板2とプリント基板11とのハンダ接合による一体化物の温度が、ハンダ付け接合処理時よりもシリコン基板2の切断時に下がることにより、シリコン基板2とプリント基板11とが、その熱膨張差によって弾性変形により湾曲し、図2に示すように、仮想平坦底面(図2のAで示す面)から浮き上がる。   Below, the thickness setting of this silicon substrate 2 and the printed circuit board 11 is demonstrated. In this embodiment, the temperature of the integrated product by the solder bonding between the silicon substrate 2 and the printed circuit board 11 is lower when the silicon substrate 2 is cut than during the solder bonding process. Then, it is bent by elastic deformation due to the difference in thermal expansion, and as shown in FIG. 2, it floats from the virtual flat bottom surface (the surface indicated by A in FIG. 2).

本発明者は、シリコン基板2が赤外線領域で最高の受光感度を有するように、その厚みを400μmに形成した場合に、シリコン基板2の前記仮想平坦底面からの浮き上がり量とプリント基板11の厚みとの関係を検討し、シリコン基板2の各切断位置(図2のC)における仮想平坦底面からの浮き上がり湾曲量の最大値(図2のUMA)と最小値(図2のUMI)との差が、プリント基板11の厚みよりも小となるように、シリコン基板2の厚み(400μm)に対応させてプリント基板11の厚みを設定することを試みた。 When the thickness of the silicon substrate 2 is 400 μm so that the silicon substrate 2 has the highest light receiving sensitivity in the infrared region, the present inventors have found that the amount of lift from the virtual flat bottom surface of the silicon substrate 2 and the thickness of the printed circuit board 11 The relationship between the maximum value (U MA in FIG. 2) and the minimum value (U MI in FIG. 2) of the rising curvature amount from the virtual flat bottom surface at each cutting position (C in FIG. 2) of the silicon substrate 2 An attempt was made to set the thickness of the printed circuit board 11 in correspondence with the thickness of the silicon substrate 2 (400 μm) so that the difference is smaller than the thickness of the printed circuit board 11.

なお、前記仮想平坦底面からの浮き上がり量は、シリコン基板2の厚みが一定であればプリント基板11の厚みによって変わるものであり、その逆に、プリント基板11の厚みが一定であればシリコン基板2の厚みによって変わるものである。つまり、シリコン基板2の厚みとプリント基板11の厚みとが相対的に関連してシリコン基板2の前記仮想平坦底面からの浮き上がり量が決定される。   Note that the amount of floating from the virtual flat bottom surface varies depending on the thickness of the printed circuit board 11 if the thickness of the silicon substrate 2 is constant, and conversely, if the thickness of the printed circuit board 11 is constant, the silicon substrate 2. It depends on the thickness of the. That is, the thickness of the silicon substrate 2 and the thickness of the printed board 11 are relatively related to determine the amount of lifting of the silicon substrate 2 from the virtual flat bottom surface.

したがって、フォトダイオード素子1に適用されるシリコン基板2の厚みが決まれば、シリコン基板2の前記仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が、プリント基板11の厚みによって一義的に定まるものであり、本発明者は、シリコン基板2の厚みを一定(ここでは400μm)にしてプリント基板11の厚みを様々に変化させて実験等を行い、シリコン基板2の各切断位置における前記仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差がプリント基板11の厚みより小さくなるような値を求めた。さらに、シリコン基板2の前記仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差をΔUとしたとき、このΔUの値が、プリント基板11の厚みtの0.7倍よりも小さくなる(ΔU<0.7tとなる)ようにすることが、より好ましいため、本実施形態例では、この関係となるように、プリント基板11の厚みを100μmに設定した。   Therefore, if the thickness of the silicon substrate 2 applied to the photodiode element 1 is determined, the difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface of the silicon substrate 2 is uniquely determined by the thickness of the printed circuit board 11. The present inventor conducted experiments and the like by changing the thickness of the printed circuit board 11 while keeping the thickness of the silicon substrate 2 constant (400 μm in this case), and at each cutting position of the silicon substrate 2. A value was determined such that the difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface was smaller than the thickness of the printed board 11. Furthermore, when the difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface of the silicon substrate 2 is ΔU, the value of ΔU is smaller than 0.7 times the thickness t of the printed circuit board 11. Therefore, in this embodiment, the thickness of the printed board 11 is set to 100 μm so as to satisfy this relationship.

このようにプリント基板11の厚みを形成すると、シリコン基板2の切断時に、いくつかの切断位置においてプリント基板11の表面側まで切り込みが生じたとしても、その切り込み量を小さくでき、プリント基板11の機械的強度も保つことができる。   When the thickness of the printed circuit board 11 is formed in this way, even when the silicon substrate 2 is cut, even if cutting occurs to the surface side of the printed circuit board 11 at several cutting positions, the amount of cutting can be reduced. Mechanical strength can also be maintained.

本実施形態例は以上のように構成されており、以下に、本実施形態例のワンチップ高電圧光電池の製造方法について説明する。フォトダイオード素子1を形成するためには、n型のシリコン基板2を形成するシリコン基板2にスルーホール4を形成し、シリコン基板2の表面とスルーホール4の孔面にp型の拡散層3を形成する。また、シリコン基板2の表面側には、スルーホール4の形成領域を除く領域に、保護膜8を形成する。その後、スルーホール4を介して拡散層3に電気的に導通するp層陽電極6と、シリコン基板2に電気的に導通するn層陰電極5を形成する。   This embodiment is configured as described above, and a method for manufacturing a one-chip high-voltage photovoltaic cell according to this embodiment will be described below. In order to form the photodiode element 1, the through hole 4 is formed in the silicon substrate 2 on which the n-type silicon substrate 2 is formed, and the p-type diffusion layer 3 is formed on the surface of the silicon substrate 2 and the hole surface of the through hole 4. Form. A protective film 8 is formed on the surface side of the silicon substrate 2 in a region excluding the region where the through hole 4 is formed. Thereafter, a p-layer positive electrode 6 electrically connected to the diffusion layer 3 through the through hole 4 and an n-layer negative electrode 5 electrically connected to the silicon substrate 2 are formed.

また、プリント基板1側の構成を、以下のようにして形成する。つまり、図3(a)の第1工程で、プリント板11の両面に銅箔18を貼る。次に、図3(b)の第2工程で、銅箔18とプリント基板11を貫通するスルーホール孔22を開け、このスルーホール孔22を銅メッキする(銅17のメッキを施す)ことにより、プリント基板11の表面側の銅箔18と裏面側の銅箔18とを電気的に接続する。   The configuration on the printed circuit board 1 side is formed as follows. That is, the copper foil 18 is pasted on both surfaces of the printed board 11 in the first step of FIG. Next, in the second step of FIG. 3B, a through-hole hole 22 that penetrates the copper foil 18 and the printed circuit board 11 is opened, and the through-hole hole 22 is plated with copper (plating of copper 17). The copper foil 18 on the front surface side of the printed board 11 and the copper foil 18 on the back surface side are electrically connected.

次に、図3(c)の第3工程で、銅箔18上に、ドライフイルム14を貼り付け、露光して現像する。次に、図3(d)の第4工程で、プリント基板11の表面側に形成されている銅箔18をエッチングによりパターン化して銅箔パッド(銅ラウンド)21を形成し、前記ドライフィルム14を取り除く。また、プリント基板11の裏面側に形成されている銅箔18をエッチングによりパターン化して銅の配線23のパターンを形成する。   Next, in the third step of FIG. 3C, the dry film 14 is attached on the copper foil 18, exposed and developed. Next, in the fourth step of FIG. 3D, the copper foil 18 formed on the surface side of the printed circuit board 11 is patterned by etching to form a copper foil pad (copper round) 21, and the dry film 14 Remove. Further, the copper foil 18 formed on the back surface side of the printed board 11 is patterned by etching to form a pattern of the copper wiring 23.

次に、図3(e)の第5工程で、プリント基板11の両面にフォトイメージャブルソルダーレジスト24を塗布し、乾燥後、プリント基板11の表面側の銅ラウンド21の位置に投光して露光する。これにより、図3(f)に示すように、銅箔ラウンド21の両側の部位に絶縁性薄膜のレジスト12の隔壁10がプリント基板11の表面に形成される。なお、プリント基板11の裏面にはプリント基板11の裏面と銅の配線23とを覆うレジスト13が形成される。   Next, in the fifth step of FIG. 3E, the photoimageable solder resist 24 is applied to both sides of the printed circuit board 11, dried, and then projected to the position of the copper round 21 on the surface side of the printed circuit board 11. Exposure. As a result, as shown in FIG. 3 (f), the partition walls 10 of the insulating thin film resist 12 are formed on the surface of the printed circuit board 11 at both sides of the copper foil round 21. A resist 13 that covers the back surface of the printed circuit board 11 and the copper wiring 23 is formed on the back surface of the printed circuit board 11.

このようにして形成したプリント基板11側の銅ラウンド21の上にハンダ(クリームハンダ)9を塗布し、前記の如く、拡散層3や保護膜8、電極5,6を形成したシリコン基板2をプリント基板11の上に重ね、シリコン基板2側に形成されたn層陰電極5、p層陽電極6を、ハンダ9を介して銅ラウンド21と対向させる。その後、この状態のプリント基板11とシリコン基板2を炉等の恒温層に入れ、ハンダ9を溶融する温度まで温度上昇させて接合し、その数分間後に、接合したシリコン基板2とプリント基板11を常温に戻す。   Solder (cream solder) 9 is applied on the copper round 21 on the printed board 11 side thus formed, and the silicon substrate 2 on which the diffusion layer 3, the protective film 8 and the electrodes 5, 6 are formed as described above. The n-layer negative electrode 5 and the p-layer positive electrode 6 formed on the silicon substrate 2 side are placed on the printed circuit board 11 so as to face the copper round 21 through the solder 9. Thereafter, the printed substrate 11 and the silicon substrate 2 in this state are put in a thermostatic layer such as a furnace, and the solder 9 is heated to a temperature at which the solder 9 is melted and bonded. After a few minutes, the bonded silicon substrate 2 and the printed substrate 11 are bonded. Return to room temperature.

そして、フォトダイオード素子1の形成領域の境界線に沿って予め定められた切り込み量だけダイサー32で切断する。この切断は、例えば、プリント基板11を裏側から真空吸着して保持した状態で行われるものであるが、この保持の仕方等は特に限定されるものでなく、適宜設定されるものである。なお、このシリコン基板2の切断部は、図1において、ハーフカット部25として図示されている。   Then, it is cut by the dicer 32 by a predetermined cut amount along the boundary line of the formation region of the photodiode element 1. This cutting is performed, for example, in a state where the printed circuit board 11 is held by vacuum suction from the back side, but the holding method and the like are not particularly limited and can be set as appropriate. The cut portion of the silicon substrate 2 is shown as a half cut portion 25 in FIG.

その後、予め定めた個数の複数のフォトダイオード素子1毎に、つまり、適当な受光電圧を発生させることができる設定数のフォトダイオード素子4毎に、シリコン基板2とプリント基板11とを同時に切落とすことにより、ワンチップ高電圧光電池を形成する。この切断部は、図1において、同時切り落とし部26として図示されている。   Thereafter, the silicon substrate 2 and the printed circuit board 11 are simultaneously cut off for each of a predetermined number of the plurality of photodiode elements 1, that is, for each set number of photodiode elements 4 capable of generating an appropriate light receiving voltage. Thus, a one-chip high voltage photovoltaic cell is formed. This cutting part is shown as a simultaneous cut-off part 26 in FIG.

なお、プリント基板11とシリコン基板2とをハンダ9で接合する場合に、隔壁10として、銅ラウンド21の厚みと同程度厚みの膜を形成しても、図4(b)に示すように、隣り合うハンダ9が接合するハンダブリッジが生じてしまうので、隔壁10の厚みは銅ラウンド21より厚くする必要がある。しかしながら、隔壁10を形成する際に、熱硬化性材料(例えば液状のレジスト膜の形成材料であるシリコン含有レジスト)を熱硬化させて絶縁性薄膜を形成した後、プリント基板11を常温に戻すと、プリント板11の反りが発生し、この反り量は、隔壁10の厚みが厚いほど大きくなる。   Note that when the printed circuit board 11 and the silicon substrate 2 are joined by the solder 9, even if a film having the same thickness as the copper round 21 is formed as the partition wall 10, as shown in FIG. Since a solder bridge is formed in which adjacent solders 9 are joined, the partition 10 needs to be thicker than the copper round 21. However, when the partition wall 10 is formed, after the thermosetting material (for example, a silicon-containing resist that is a liquid resist film forming material) is thermally cured to form an insulating thin film, the printed circuit board 11 is returned to room temperature. The warpage of the printed board 11 occurs, and the amount of warpage increases as the thickness of the partition wall 10 increases.

そこで、本実施形態例では、前記ハンダブリッジを的確に防止でき、かつ、隔壁10を形成する絶縁性薄膜(レジスト12)の形成後にプリント基板11の温度が下がったときに、該プリント基板11と前記絶縁性薄膜との熱膨張率差によって、プリント基板11にシリコン基板2とのハンダ接合処理を難しくする反りが生じないような絶縁性薄膜の厚みを検討し、その結果、絶縁性薄膜のレジスト12の厚みを25μm程度に設定した。   Therefore, in this embodiment, when the temperature of the printed board 11 is reduced after the formation of the insulating thin film (resist 12) that forms the partition wall 10, the solder bridge can be prevented accurately. The thickness of the insulating thin film is examined so that the warpage that makes it difficult to perform the solder bonding process with the silicon substrate 2 on the printed circuit board 11 due to the difference in coefficient of thermal expansion with the insulating thin film. The thickness of 12 was set to about 25 μm.

このように、本実施形態例は、隔壁10のレジスト12の厚みを決定したので、レジスト12の形成後にプリント基板11が反ることを抑制でき、かつ、図4(a)に示すように、シリコン基板2とプリント基板11とのハンダ接合時にハンダブリッジを防ぐことができる。   Thus, since the thickness of the resist 12 of the partition wall 10 is determined in this embodiment, the printed circuit board 11 can be prevented from warping after the resist 12 is formed, and as shown in FIG. Solder bridge can be prevented at the time of solder bonding between the silicon substrate 2 and the printed circuit board 11.

本実施形態例は、例えば前記のような製造方法を適用して製造されるものであり、シリコン基板2とプリント基板11とのハンダ接合による一体化物の温度が、ハンダ付け接合処理時よりもシリコン基板2の切断時に下がることにより、シリコン基板2とプリント基板11との熱膨張差によって生じるシリコン基板2の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が、プリント基板11の厚みよりも小となるように、前記検討に基づき、シリコン基板2の厚みに対応させてプリント基板11の厚みが設定されているので、シリコン基板2のフォトダイオード1毎の切断を、予め定めた一定の切り込み量で設計通り行うことができ、歩留まりよくワンチップ高電圧光電池を形成することができる。   In this embodiment, for example, the manufacturing method as described above is applied, and the temperature of the integrated product by the solder bonding between the silicon substrate 2 and the printed circuit board 11 is higher than that during the solder bonding process. The difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate 2 caused by the difference in thermal expansion between the silicon substrate 2 and the printed circuit board 11 due to lowering when the substrate 2 is cut. Based on the above examination, the thickness of the printed circuit board 11 is set so as to correspond to the thickness of the silicon substrate 2 so as to be smaller than the thickness of the printed circuit board 11. This can be performed as designed with a predetermined amount of cut, and a one-chip high-voltage photovoltaic cell can be formed with high yield.

つまり、シリコン基板2の切断位置毎に切り込み量を個々に設定してシリコン基板2の切断を行うことなく、全ての切断位置において、一定の切り込み量でシリコン基板2の切断を行うことができ、容易に、かつ、的確にシリコン基板2を切断して、ワンチップ高電圧光電池を形成することができる。   In other words, the silicon substrate 2 can be cut with a constant cut amount at all cutting positions without cutting the silicon substrate 2 by individually setting the cut amount for each cutting position of the silicon substrate 2. The silicon substrate 2 can be easily and accurately cut to form a one-chip high voltage photovoltaic cell.

また、本実施形態例によれば、複数のフォトダイオード素子1をプリント基板11上に搭載し、フォトダイオード素子1のn層陰電極5とp層陽電極6とを間隔を介してシリコン基板2の裏面側に配置し、n層陰電極5とp層陽電極6とを、その搭載位置のプリント基板11上の銅ラウンド21にハンダ付け接合するので、ワイヤボンディングによるフォトダイオード素子1の接続は不要であり、シリコン基板2の表面側を受光面側として、単位受光面積当たりの受光効率が良好なワンチップ高電圧光電池を実現することができる。   In addition, according to the present embodiment, a plurality of photodiode elements 1 are mounted on the printed circuit board 11, and the n-layer negative electrode 5 and the p-layer positive electrode 6 of the photodiode element 1 are spaced from each other with a gap therebetween. Since the n-layer negative electrode 5 and the p-layer positive electrode 6 are soldered to the copper round 21 on the printed board 11 at the mounting position, the photodiode element 1 is connected by wire bonding. A one-chip high-voltage photovoltaic cell with good light-receiving efficiency per unit light-receiving area can be realized by using the surface side of the silicon substrate 2 as the light-receiving surface side.

なお、本発明は前記実施形態例に限定されるものではなく、様々な実施の態様をとり得る。例えば、プリント基板11に形成する隔壁10の形成領域は、前記プリント基板11と前記絶縁性薄膜との熱膨張率差によるプリント板11の反りを小さくするために、図4(c)に示すように、隔壁10を銅ラウンド21の周辺部のみに限定し、反りの原因となる隔壁10の面積を最小に押さえるようにしてもよい。   In addition, this invention is not limited to the said embodiment, It can take various aspects. For example, a region where the partition wall 10 is formed on the printed circuit board 11 is shown in FIG. 4C in order to reduce the warpage of the printed board 11 due to the difference in thermal expansion coefficient between the printed circuit board 11 and the insulating thin film. In addition, the partition wall 10 may be limited to only the peripheral portion of the copper round 21 so that the area of the partition wall 10 that causes warping is minimized.

また、プリント基板11の形成材料、隔壁10のレジスト12やレジスト13の形成材料は、特に限定されるものでなく、適宜設定されるものであり、また、レジスト13は省略することもできる。   Further, the forming material of the printed circuit board 11 and the forming material of the resist 12 and the resist 13 of the partition wall 10 are not particularly limited, and are appropriately set, and the resist 13 can be omitted.

さらに、前記実施形態例では、シリコン基板2の厚みを400μmにしたが、シリコン基板2の厚みは限定されるものではなく、適宜設定されるものであり、その厚みに対応させて、プリント基板11の厚みも、シリコン基板2の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が前記プリント基板の厚み以下となるように、適宜設定されるものである。   Furthermore, in the above embodiment, the thickness of the silicon substrate 2 is set to 400 μm, but the thickness of the silicon substrate 2 is not limited and is set as appropriate, and the printed circuit board 11 corresponding to the thickness. The thickness of the substrate is also set appropriately so that the difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate 2 is equal to or less than the thickness of the printed circuit board.

さらに、前記実施形態例の説明は、ハンダ接合後にシリコン基板2とプリント基板11との一体化物を常温に戻したときに、シリコン基板2とプリント基板11とが、その熱膨張差によって弾性変形により湾曲することについて述べたが、シリコン基板2とプリント基板11との熱膨張差によって、プリント基板11の方がシリコン基板2より多く収縮するため、常温に戻った時点において、シリコン基板2にはプリント基板11側から圧縮応力が加わり、プリント基板11にはシリコン基板2側から引っ張り応力が加わることになる。   Further, in the description of the embodiment, when the integrated body of the silicon substrate 2 and the printed circuit board 11 is returned to room temperature after soldering, the silicon substrate 2 and the printed circuit board 11 are elastically deformed due to the difference in thermal expansion. As described above, since the printed circuit board 11 contracts more than the silicon circuit board 2 due to a difference in thermal expansion between the silicon circuit board 2 and the printed circuit board 11, the printed circuit board 11 is printed on the silicon circuit board 2 when the temperature returns to room temperature. Compressive stress is applied from the substrate 11 side, and tensile stress is applied to the printed circuit board 11 from the silicon substrate 2 side.

そこで、この引っ張り応力により、プリント基板11に塑性伸び変形(クリープを含む)を生じさせて、シリコン基板2の仮想平坦底面からの浮き上がり湾曲量を小さくし、シリコン基板2の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が前記プリント基板の厚み以下となるように、シリコン基板2の厚みに対応させてプリント基板11の厚みを設定してもよい(言い換えると、前記引っ張り応力により塑性変形が生じるように、熱膨張率やヤング率、厚み等を選択した、シリコン基板2とプリント基板11を用いてもよい)。   Therefore, this tensile stress causes plastic elongation deformation (including creep) in the printed circuit board 11 to reduce the amount of rising curvature from the virtual flat bottom surface of the silicon substrate 2, and the virtual flatness at each cutting position of the silicon substrate 2. The thickness of the printed circuit board 11 may be set in accordance with the thickness of the silicon substrate 2 so that the difference between the maximum value and the minimum value of the amount of rising curvature from the bottom surface is equal to or less than the thickness of the printed circuit board (in other words, The silicon substrate 2 and the printed circuit board 11 may be used in which the thermal expansion coefficient, Young's modulus, thickness, etc. are selected so that plastic deformation is caused by the tensile stress).

さらに、前記実施形態例のように、プリント基板11のフォトダイオード素子との対向面に絶縁性薄膜の隔壁10を形成する場合は、この絶縁性薄膜の隔壁10を形成したプリント基板11とシリコン基板2のハンダ接合による一体化物の温度がハンダ付け接合処理時よりもシリコン基板2の切断時に下がることにより、シリコン基板2と絶縁性薄膜(前記実施形態例におけるレジスト12)を形成したプリント基板11との熱膨張差によって生じるシリコン基板11の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差(前記実施形態例におけるΔU)が絶縁性薄膜の厚みとプリント基板11の厚みを合わせた厚みよりも小となるように、シリコン基板2の厚みに対応させてプリント基板11と絶縁性薄膜の厚みを設定してもよい。   Further, when the insulating thin film partition wall 10 is formed on the surface of the printed circuit board 11 facing the photodiode element as in the above embodiment, the printed circuit board 11 and the silicon substrate on which the insulating thin film partition wall 10 is formed. The temperature of the integrated product by the solder bonding of 2 is lower when the silicon substrate 2 is cut than during the soldering process, and thus the printed circuit board 11 on which the silicon substrate 2 and the insulating thin film (the resist 12 in the above embodiment) are formed. The difference (ΔU in the above embodiment) between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate 11 caused by the difference in thermal expansion of the silicon substrate 11 is the thickness of the insulating thin film and the printed substrate 11. The printed circuit board 11 and the insulating thin film are made to correspond to the thickness of the silicon substrate 2 so as to be smaller than the combined thickness. It may be set only.

さらに、前記実施形態例では、プリント基板11のスルーホール孔22に設けた銅ラウンド21上にハンダ付けをしたが、銅ラウンド21を設けずに、スルーホール孔22にハンダ9を付けてもよい。   Further, in the embodiment, soldering is performed on the copper round 21 provided in the through hole hole 22 of the printed circuit board 11. However, the solder 9 may be attached to the through hole hole 22 without providing the copper round 21. .

本発明に係るワンチップ高電圧光電池の一実施形態例を模式的に示す構成図である。It is a block diagram which shows typically the example of 1 embodiment of the one-chip high voltage photovoltaic cell which concerns on this invention. 前記実施形態例のシリコンウエハー切断工程時のシリコンウエハーの浮き上がり湾曲状態例を模式的に示す説明図である。It is explanatory drawing which shows typically the example of the rising curved state of the silicon wafer at the time of the silicon wafer cutting process of the embodiment. 前記実施形態例に適用されるプリント基板の製造方法例を示す断面説明図である。It is sectional explanatory drawing which shows the example of the manufacturing method of the printed circuit board applied to the said embodiment example. プリント基板に形成する絶縁性薄膜の形成パターンと効果を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the formation pattern and effect of an insulating thin film formed in a printed circuit board. 従来提案されたワンチップ高電圧光電池を模式的に示す説明図である。It is explanatory drawing which shows typically the conventionally proposed one-chip high voltage photovoltaic cell. 図5に示した光電池の製造においてシリコンウエハー切断時のシリコンウエハーとプリント基板の反りの状態を模式的に示す説明図である。FIG. 6 is an explanatory diagram schematically showing a state of warpage of a silicon wafer and a printed circuit board when the silicon wafer is cut in manufacturing the photovoltaic cell shown in FIG. 5. 光電池をワイヤボンデングでプリント基板に配線し、直列接続した高電圧光電池の図である。It is a figure of the high voltage photovoltaic cell which wired the photovoltaic cell to the printed circuit board by wire bonding, and was connected in series.

符号の説明Explanation of symbols

1 フォトダイオード素子
2 シリコン基板
3 拡散層
4 スルーホール
5 電極(n層陰電極)
6 電極(p層陽電極)
8 保護膜
9 ハンダ
10 隔壁
11 プリント基板
21 銅ラウンド
22 スルーホール孔
23 配線
25 ハーフカット部
26 同時切り落とし部
DESCRIPTION OF SYMBOLS 1 Photodiode element 2 Silicon substrate 3 Diffusion layer 4 Through hole 5 Electrode (n layer negative electrode)
6 electrode (p-layer positive electrode)
8 Protective film 9 Solder 10 Bulkhead 11 Printed circuit board 21 Copper round 22 Through hole hole 23 Wiring 25 Half cut part 26 Simultaneous cut part

Claims (3)

複数のフォトダイオード素子がプリント基板上に搭載され、前記複数のフォトダイオード素子が電気的に直列接続されて成るワンチップ高電圧光電池であって、シリコン基板の面領域に複数のフォトダイオード素子が形成され、前記シリコン基板の裏面には各フォトダイオード素子の電極が形成されている構成と成し、前記プリント基板には、その表面に前記各フォトダイオード素子の前記電極に対応する位置に導通部が形成され、前記シリコン基板の裏面の各フォトダイオード素子の電極が前記プリント基板の導通部にハンダ付け接合されてシリコン基板とプリント基板とが一体化された状態で、前記各フォトダイオード素子の形成領域の境界線に沿って予め定められた切り込み量だけシリコン基板が切断されることにより、前記複数のフォトダイオード素子が前記プリント基板上に分離配置される構成と成し、前記シリコン基板と前記プリント基板とのハンダ接合による一体化物の温度がハンダ付け接合処理時よりも前記シリコン基板の切断時に下がることにより前記シリコン基板と前記プリント基板との熱膨張差によって生じるシリコン基板の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が前記プリント基板の厚みよりも小となるようにシリコン基板の厚みに対応させてプリント基板の厚みが設定されていることを特徴とするワンチップ高電圧光電池。   A one-chip high-voltage photovoltaic cell in which a plurality of photodiode elements are mounted on a printed circuit board and the plurality of photodiode elements are electrically connected in series, and the plurality of photodiode elements are formed in a surface region of a silicon substrate The electrode of each photodiode element is formed on the back surface of the silicon substrate, and the printed circuit board has a conductive portion at a position corresponding to the electrode of each photodiode element on the surface. In the state where the electrodes of the respective photodiode elements on the back surface of the silicon substrate are formed by soldering and joining the conductive portions of the printed circuit board to integrate the silicon substrate and the printed circuit board The silicon substrate is cut by a predetermined cut amount along the boundary line, thereby the plurality of frames. The diode element is configured to be separately disposed on the printed circuit board, and the temperature of the integrated product by solder bonding between the silicon substrate and the printed circuit board is lower when the silicon substrate is cut than during the solder bonding process. Due to this, the difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate caused by the thermal expansion difference between the silicon substrate and the printed substrate is smaller than the thickness of the printed substrate. Thus, the thickness of the printed circuit board is set so as to correspond to the thickness of the silicon substrate. 複数のフォトダイオード素子がプリント基板上に搭載され、前記複数のフォトダイオード素子が電気的に直列接続されて成るワンチップ高電圧光電池であって、シリコン基板の面領域に複数のフォトダイオード素子が形成され、前記シリコン基板の裏面には各フォトダイオード素子の電極が形成されている構成と成し、前記プリント基板には、その表面に前記各フォトダイオード素子の前記電極に対応する位置に導通部が形成され、前記シリコン基板の裏面の各フォトダイオード素子の電極が前記プリント基板の導通部にハンダ付け接合されてシリコン基板とプリント基板とが一体化された状態で、前記各フォトダイオード素子の形成領域の境界線に沿って予め定められた切り込み量だけシリコン基板が切断されることにより、前記複数のフォトダイオード素子が前記プリント基板上に分離配置される構成と成し、前記シリコン基板と前記プリント基板とのハンダ接合による一体化物の温度がハンダ付け接合処理時よりも前記シリコン基板の切断時に下がることにより前記シリコン基板と前記プリント基板との熱膨張差によって生じるシリコン基板の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差を前記熱膨張差によって生じるプリント基板への引っ張り応力による塑性伸び変形を生じさせることにより小さくして前記浮き上がり湾曲量の最大値と最小値との差が前記プリント基板の厚みよりも小となるようにシリコン基板の厚みに対応させてプリント基板の厚みが設定されていることを特徴とするワンチップ高電圧光電池。   A one-chip high-voltage photovoltaic cell in which a plurality of photodiode elements are mounted on a printed circuit board and the plurality of photodiode elements are electrically connected in series, and the plurality of photodiode elements are formed in a surface region of a silicon substrate The electrode of each photodiode element is formed on the back surface of the silicon substrate, and the printed circuit board has a conductive portion at a position corresponding to the electrode of each photodiode element on the surface. In the state where the electrodes of the respective photodiode elements on the back surface of the silicon substrate are formed by soldering and joining the conductive portions of the printed circuit board to integrate the silicon substrate and the printed circuit board The silicon substrate is cut by a predetermined cut amount along the boundary line, thereby the plurality of frames. The diode element is configured to be separately disposed on the printed circuit board, and the temperature of the integrated product by solder bonding between the silicon substrate and the printed circuit board is lower when the silicon substrate is cut than during the solder bonding process. Due to the difference in thermal expansion between the silicon substrate and the printed circuit board, the difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate is changed to the printed circuit board generated by the thermal expansion difference. Corresponding to the thickness of the silicon substrate so that the difference between the maximum value and the minimum value of the lifted curvature amount is smaller than the thickness of the printed circuit board by reducing the plastic elongation due to tensile stress. A one-chip high-voltage photovoltaic cell, wherein the thickness of the printed circuit board is set. プリント基板のフォトダイオード素子との対向面側には、隣り合うハンダ同士がハンダ接合時のハンダ溶融により当接するのを防ぐための隔壁が熱硬化性材料を熱硬化させて成る絶縁性薄膜により形成されており、シリコン基板と前記絶縁性薄膜を形成したプリント基板とのハンダ接合による一体化物の温度がハンダ付け接合処理時よりも前記シリコン基板の切断時に下がることにより前記シリコン基板と前記絶縁性薄膜を形成したプリント基板との熱膨張差によって生じるシリコン基板の各切断位置における仮想平坦底面からの浮き上がり湾曲量の最大値と最小値との差が前記プリント基板の厚みよりも小となるようにする代わりに前記差が前記絶縁性薄膜の厚みと前記プリント基板の厚みを合わせた厚みよりも小となるようにシリコン基板の厚みに対応させてプリント基板と絶縁性薄膜の厚みが設定されていることを特徴とする請求項1または請求項2に記載のワンチップ高電圧光電池。   On the side of the printed circuit board facing the photodiode element, a partition is formed by insulating thin film formed by thermosetting a thermosetting material to prevent adjacent solders from coming into contact with each other due to solder melting during solder joining. The temperature of the integrated product by solder bonding between the silicon substrate and the printed circuit board on which the insulating thin film is formed is lower at the time of cutting the silicon substrate than at the time of soldering bonding processing, so that the silicon substrate and the insulating thin film are The difference between the maximum value and the minimum value of the rising curve amount from the virtual flat bottom surface at each cutting position of the silicon substrate caused by the difference in thermal expansion from the printed circuit board on which the substrate is formed is made smaller than the thickness of the printed circuit board. Instead, the silicon substrate is used so that the difference is smaller than the total thickness of the insulating thin film and the printed board. One-chip high-voltage photovoltaic cell of claim 1 or claim 2 that is characterized in that in correspondence with the thickness and the printed circuit board by the thickness of the insulating thin film is set.
JP2007142117A 2007-01-30 2007-05-29 Method for manufacturing one-chip high-voltage photovoltaic cell Expired - Fee Related JP5132191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142117A JP5132191B2 (en) 2007-01-30 2007-05-29 Method for manufacturing one-chip high-voltage photovoltaic cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007019591 2007-01-30
JP2007019591 2007-01-30
JP2007142117A JP5132191B2 (en) 2007-01-30 2007-05-29 Method for manufacturing one-chip high-voltage photovoltaic cell

Publications (2)

Publication Number Publication Date
JP2008211161A true JP2008211161A (en) 2008-09-11
JP5132191B2 JP5132191B2 (en) 2013-01-30

Family

ID=39787179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142117A Expired - Fee Related JP5132191B2 (en) 2007-01-30 2007-05-29 Method for manufacturing one-chip high-voltage photovoltaic cell

Country Status (1)

Country Link
JP (1) JP5132191B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207310A (en) * 2013-04-12 2014-10-30 トヨタ自動車株式会社 Solar battery cell
JP2015164219A (en) * 2015-05-13 2015-09-10 アン,ヒョン・ウー Solar cell utilizing pcb

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283365A (en) * 1994-04-05 1995-10-27 Fujitsu Ltd Semiconductor device and its manufacture as well as pedestal
JP2006237543A (en) * 2005-02-25 2006-09-07 Zeo System:Kk One-chip-type high voltage photocell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283365A (en) * 1994-04-05 1995-10-27 Fujitsu Ltd Semiconductor device and its manufacture as well as pedestal
JP2006237543A (en) * 2005-02-25 2006-09-07 Zeo System:Kk One-chip-type high voltage photocell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207310A (en) * 2013-04-12 2014-10-30 トヨタ自動車株式会社 Solar battery cell
JP2015164219A (en) * 2015-05-13 2015-09-10 アン,ヒョン・ウー Solar cell utilizing pcb

Also Published As

Publication number Publication date
JP5132191B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
US11538952B2 (en) Solar cell module and method for manufacturing the same
JP4947929B2 (en) Light emitting diode package and manufacturing process thereof
US20190252360A1 (en) Micro-led module and method for fabricating the same
JP4989549B2 (en) Solar cell and solar cell module
KR101183743B1 (en) Solar cell module and method for its production
JPWO2009157079A1 (en) Method for manufacturing solar battery cell
JP2012109626A (en) Inter-element wiring member and photoelectric conversion element connection body using it and photoelectric conversion module
WO2007060743A1 (en) Solar cell
JP2005142282A (en) Interconnector, solar cell string using it and its manufacturing method, and solar cell module using solar cell string
KR20110056407A (en) Monolithic photovoltaic module
JP2009164204A (en) Photovoltaic cell device
JP5289667B2 (en) Method for manufacturing one-chip high-voltage photovoltaic cell
JP2006237543A5 (en)
JP5132191B2 (en) Method for manufacturing one-chip high-voltage photovoltaic cell
JP2007059475A (en) Lead wire for solar cell
JP2008288278A (en) Manufacturing process of solar cell module
JP4443981B2 (en) Semiconductor photodetector element and photodetector
JP2006278695A (en) Solar cell module
JP2010251569A (en) Solar cell module
JP2012049401A (en) Method of manufacturing photosensor
JPWO2011058653A1 (en) Solar cells
KR101091359B1 (en) Solar cell and mehtod of fabricating the same
JP6785964B2 (en) Solar cells and solar modules
JP5980923B2 (en) Thin film solar cell and manufacturing method thereof
JP2010045348A (en) Solar cell having cooling channel, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees