JP2008210730A - Battery pack, and its welding method - Google Patents

Battery pack, and its welding method Download PDF

Info

Publication number
JP2008210730A
JP2008210730A JP2007048351A JP2007048351A JP2008210730A JP 2008210730 A JP2008210730 A JP 2008210730A JP 2007048351 A JP2007048351 A JP 2007048351A JP 2007048351 A JP2007048351 A JP 2007048351A JP 2008210730 A JP2008210730 A JP 2008210730A
Authority
JP
Japan
Prior art keywords
welding
battery
metal plate
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007048351A
Other languages
Japanese (ja)
Other versions
JP4637122B2 (en
JP2008210730A5 (en
Inventor
Akiyoshi Imanaga
昭慈 今永
Kinya Aota
欣也 青田
Yoshihisa Tsurumi
芳久 鶴見
Masuhiro Onishi
益弘 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2007048351A priority Critical patent/JP4637122B2/en
Priority to EP07021828A priority patent/EP1921696A1/en
Priority to US11/937,599 priority patent/US9065124B2/en
Publication of JP2008210730A publication Critical patent/JP2008210730A/en
Publication of JP2008210730A5 publication Critical patent/JP2008210730A5/ja
Application granted granted Critical
Publication of JP4637122B2 publication Critical patent/JP4637122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a battery pack capable of obtaining excellent welding quality and a welding part high in tensile strength, small in connection resistance between battery electrodes, capable of reducing current-carrying loss in battery charging/discharging, and effective in improvement of battery life; and its welding method. <P>SOLUTION: In a battery pack in which multiple battery cells are housed in one or multiple rows in an electrically insulating housing case and an electrode of each battery cell is coupled to an electrode of another battery cell through each connecting metallic plate, the connecting metallic plates 3 made of copper are disposed on both surfaces of a positive electrode part 6 of each battery cell 2 and a negative electrode part 7 of another battery cell 2 to respectively form lap joints, wherein the battery pack includes welding parts 5 each formed in one specific positions on the connecting metallic plate 3 above the positive electrode part 6 and on the other specific positions on the connecting metallic plate 3 above the negative electrode part 7 by applying arc spot welding. The depth h of weld penetration in the welding part 5 is larger than the thickness T1 of the connecting metallic plate 3 and smaller than the thickness T1 plus the thickness T2 of the positive electrode part 6 or the negative electrode part 7, and is formed in a range satisfying T1<h≤(T1+T2×4/5). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数個の単電池の正負極間を接続金属板によって連結する組電池及びその溶接方法に関する。   The present invention relates to an assembled battery in which positive and negative electrodes of a plurality of single cells are connected by a connecting metal plate and a welding method thereof.

ハイブリッド自動車や電気自動車や携帯機器等に使用する組電池(電池モジュールとも称す)は、大電流の充放電が要求されるため、数十本の単電池を直列に接続する必要がある。接続抵抗(電気抵抗)が大きいと、電圧降下による通電ロスが増加し、発熱量も大きくなり、電池の特性劣化,寿命低下が生じる。このため、従来より組電池の接続抵抗を小さくする方法や電池極間を連結する方法が幾つか提案されている。   An assembled battery (also referred to as a battery module) used for a hybrid vehicle, an electric vehicle, a portable device, or the like is required to charge and discharge a large current, and thus several tens of cells need to be connected in series. If the connection resistance (electrical resistance) is large, the energization loss due to the voltage drop increases, the heat generation amount increases, and the battery characteristics deteriorate and the service life decreases. For this reason, several methods for reducing the connection resistance of the assembled battery and connecting the battery electrodes have been proposed.

特許文献1に記載の円筒型電池及び組電池では、雌ねじ孔が穿設され又は雄ねじ部が立設された面部を有する導電性材料からなる集電端子が前記面部を支持する脚部を介してそれぞれ正極部と負極部とに接続固定することが提案されている。   In the cylindrical battery and the assembled battery described in Patent Document 1, a current collecting terminal made of a conductive material having a surface portion in which a female screw hole is bored or a male screw portion is erected via a leg portion that supports the surface portion. It has been proposed to connect and fix to the positive electrode portion and the negative electrode portion, respectively.

特許文献2に記載の組電池では、2本の単電池の正極キャップ上に配置された電気絶縁性樹脂製のプレートは、組電池の外周より小さく、単電池間の谷状空間に多角形状の窪みを有する突起が突設されており、前記プレート表面に前記単電池間を機械的,電気的に接続する金属ブスバを配置することが提案されている。   In the assembled battery described in Patent Document 2, the plate made of electrically insulating resin disposed on the positive caps of the two unit cells is smaller than the outer periphery of the assembled battery, and has a polygonal shape in the valley space between the unit cells. It has been proposed that a protrusion having a recess is provided and a metal bus bar for mechanically and electrically connecting the cells is disposed on the plate surface.

特許文献3では、縦列に並べられる単電池の対向する電極端子に、第1電極ユニットと第2電池ユニットの外側に突出した金属リード板を固定しており、前記金属リード板の表面を互いに接触させる状態で接続することが提案されている。   In Patent Document 3, metal lead plates protruding outside the first electrode unit and the second battery unit are fixed to the opposing electrode terminals of the cells arranged in a column, and the surfaces of the metal lead plates are in contact with each other. It is proposed to connect in such a state.

また、特許文献4に記載の組電池では、接続部材の2種類の突起の内、一方の突起は一方の単電池の封口体上に溶接され、他方の突起は他方の単電池の外装缶底面に溶接されることが提案されている。   Moreover, in the assembled battery described in Patent Document 4, one of the two types of protrusions of the connection member is welded onto the sealing body of one unit cell, and the other protrusion is the bottom surface of the outer can of the other unit cell. It has been proposed to be welded.

特許文献5に記載の密閉型電池とその製造法及び密閉型電池用蓋板では、電池容器の開口部を密閉する蓋板の裏面は注入穴近傍が外周部より薄肉に形成され、該薄肉に形成された部分と封止栓との溶融によって前記注入穴が封止されていることが提案されている。   In the sealed battery and its manufacturing method and sealed battery lid plate described in Patent Document 5, the back surface of the lid plate that seals the opening of the battery container is formed so that the vicinity of the injection hole is thinner than the outer peripheral portion. It has been proposed that the injection hole is sealed by melting the formed portion and the sealing plug.

また、特許文献6(特公昭61−8539号公報)に記載の渦巻電極を備えた電池の製造法では、渦巻電極体の上下各電極突出端に略円盤状の金属無地板よりなる集電体を配置し、アークスポット溶接により集電体とこれと直角に交差接触する電極突出端とを溶接した後、電池ケース内に包み込むことが提案されている。   Further, in the method of manufacturing a battery having spiral electrodes described in Patent Document 6 (Japanese Patent Publication No. 61-8539), a current collector made of a substantially disc-shaped metal plain plate at the upper and lower electrode protruding ends of the spiral electrode body. It is proposed to wrap the battery in a battery case after welding the current collector and the electrode protruding end that intersects with the current collector at right angles by arc spot welding.

上記特許文献1の場合には、電池の正負極部に取付けた集電端子と電池同士を接続する接続体とをボルトで締結する構造であるため、部品数が多く、コスト高になる。集電端子の脚部に切込みと凸部を設けて、電池の正極部や負極部にスポット溶接(抵抗溶接)しているが、溶接箇所が8箇所もあり、溶接工数が増加するという問題がある。また、集電端子は、ニッケル製のような導電性材料が使用されており、スポット溶接(抵抗溶接)の施工が可能であるが、板厚を多少厚くしても、ニッケル材の電気抵抗が銅材の電気抵抗と比べて大きいため、接続抵抗の減少に限界がある。また、ニッケル材は銅材より高価である。電気抵抗の小さい銅材は、ジュール発熱方式の抵抗溶接が困難であるため、前記集電端子には使用することができず、また、前記抵抗溶接と方法が異なるアーク溶接(アークスポット溶接)は適用されていない。   In the case of the above-mentioned patent document 1, since the current collector terminal attached to the positive and negative electrode parts of the battery and the connection body for connecting the batteries are fastened with bolts, the number of parts is large and the cost is increased. The legs of the current collector terminal are provided with cuts and protrusions, and spot welding (resistance welding) is performed on the positive and negative electrode parts of the battery. However, there are 8 welding points, which increases the number of welding steps. is there. The current collector terminal is made of a conductive material such as nickel and can be spot welded (resistance welding). However, even if the plate thickness is made slightly thicker, the electrical resistance of the nickel material can be reduced. Since it is larger than the electrical resistance of copper material, there is a limit to the reduction in connection resistance. Nickel materials are more expensive than copper materials. Copper materials with low electrical resistance cannot be used for the current collector terminals because it is difficult to perform Joule heating type resistance welding, and arc welding (arc spot welding) is different from the resistance welding method. Not applied.

上記特許文献2の場合には、電気絶縁性樹脂製のプレート上にT字状,十字状の金属ブスバを配置し、単電池の正極端子,負極端子にスポット溶接(抵抗溶接)している。前記金属ブスバの材質は記載されていないが、上記特許文献1と同様に、ニッケル製のような導電性材料と考えられる。また、電気抵抗の小さい銅材は、ジュール発熱方式の抵抗溶接が困難であるため、前記集電金属ブスバには使用することができない。また、前記抵抗溶接と方法が異なるアーク溶接(アークスポット溶接)は適用されていない。   In the case of Patent Document 2, T-shaped and cross-shaped metal bus bars are arranged on a plate made of an electrically insulating resin, and spot welding (resistance welding) is performed on the positive electrode terminal and the negative electrode terminal of the unit cell. Although the material of the metal bus bar is not described, it is considered to be a conductive material such as nickel as in the above-mentioned Patent Document 1. In addition, a copper material having a small electric resistance cannot be used for the current collector metal bus bar because it is difficult to perform resistance welding by the Joule heating method. Further, arc welding (arc spot welding) which is different from the resistance welding method is not applied.

上記特許文献3の場合には、上段の第1電池ユニットと下段の第2電池ユニットとを連結する金属リード板の突出部同士を半田付け又はスポット溶接(抵抗溶接)している。また、複数個の単電池の極間同士を接続するリード板もスポット溶接(抵抗溶接)している。組電池の構造は異なるが、上記特許文献1,2と同様に、抵抗溶接と方法が異なるアーク溶接(アークスポット溶接)は適用されていない。また、電気抵抗の小さい銅材は、ジュール発熱方式の抵抗溶接が困難であるため、前記金属リード板及びリード板には使用することができない。   In the case of Patent Document 3, the protruding portions of the metal lead plates that connect the upper first battery unit and the lower second battery unit are soldered or spot welded (resistance welding). Further, the lead plates that connect the electrodes of the plurality of single cells are also spot-welded (resistance welding). Although the structure of the assembled battery is different, arc welding (arc spot welding), which is different from resistance welding and method, is not applied as in Patent Documents 1 and 2. Also, a copper material having a small electrical resistance cannot be used for the metal lead plate and the lead plate because it is difficult to perform resistance welding by the Joule heating method.

上記特許文献4の場合には、2種類の突起を有する接続部材を介して上側の単電池と下側の単電池とを連結する構造であり、一方の突起を下側の単電池正極面に溶接(抵抗溶接)し、他方の突起を上側の単電池負極面を溶接(抵抗溶接)している。前記接続部材には溶接時に溶接電極を取付けるリード部が突出しているため、溶接終了後に前記リード部を切断する又は折り曲げる必要があり、余分な工数が増えるという問題がある。溶接トーチを挿入する空間がないため、抵抗溶接と異なるアーク溶接等の他の溶接法は適用することができない。   In the case of the above-mentioned Patent Document 4, the upper unit cell and the lower unit cell are connected via a connection member having two types of protrusions, and one protrusion is connected to the lower unit cell positive electrode surface. Welding (resistance welding) is performed, and the other protrusion is welded to the upper cell negative electrode surface (resistance welding). Since the lead part for attaching the welding electrode at the time of welding protrudes from the connecting member, it is necessary to cut or bend the lead part after the end of welding, and there is a problem that extra man-hours increase. Since there is no space for inserting the welding torch, other welding methods such as arc welding different from resistance welding cannot be applied.

上記特許文献5の場合には、蓋板の薄肉部分と封止栓とをアーク溶接して穴封止(溶融接合)しているが、角型電池の穴を封止溶接する技術であり、複数個の単電池の極間同士を接続溶接するものではない。また、角型電池の蓋板及び封止栓の材質はアルミニウムであり、銅やニッケルではない。材質や形状が異なると、溶接可能な適正条件が全く異なるため、前記アルミニウムの溶接条件をそのまま適用することができない。   In the case of the above-mentioned Patent Document 5, arc welding is performed on the thin portion of the cover plate and the sealing plug to perform hole sealing (melt bonding), but this is a technique for sealing and welding the hole of the rectangular battery. It does not connect and weld the electrodes of a plurality of single cells. The material of the lid plate and the sealing plug of the square battery is aluminum, not copper or nickel. If the material and the shape are different, the appropriate conditions for welding are completely different, so that the aluminum welding conditions cannot be applied as they are.

上記特許文献6の場合には、円盤状の集電体と下側にある渦巻電極体の突出端とをアークスポット溶接しているが、丸型電池の電極部分を溶接する技術であり、複数個の単電池の極間同士を接続溶接するものではない。また、前記集電体及び渦巻電極体の材質はニッケルメッキ付の鋼板であり、銅やニッケルではない。上記特許文献5と同様に、材質や形状が異なると、溶接可能な適正条件が全く異なるため、前記鋼板の溶接条件をそのまま適用することができないという問題がある。   In the case of the above-mentioned Patent Document 6, arc spot welding is performed on the disk-shaped current collector and the protruding end of the spiral electrode body on the lower side, and this is a technique for welding the electrode portion of the round battery. It does not connect and weld the poles of a single cell. The material of the current collector and the spiral electrode body is a steel plate with nickel plating, not copper or nickel. Similar to the above-mentioned Patent Document 5, if the material and shape are different, the appropriate conditions for welding are completely different, so that the welding conditions for the steel sheet cannot be applied as they are.

特開平8−287898号公報JP-A-8-287898 特開2004−164981号公報JP 2004-164981 A 特開2000−133227号公報JP 2000-133227 A 特開2001−266843号公報JP 2001-266843 A 特開2004−259584号公報Japanese Patent Application Laid-Open No. 2004-2559584 特公昭61−8539号公報Japanese Patent Publication No. 61-8539

本発明は、良好な溶接品質及び引張強度の高い溶接部が得ると共に、電池極間の接続抵抗が小さく、電池充放電時の通電ロスを減少でき、電池寿命向上に有効な組電池及び溶接方法を提供することを目的とする。   The present invention provides an assembled battery and a welding method that are effective in improving battery life by obtaining a welded portion having good welding quality and high tensile strength, having low connection resistance between battery electrodes, and reducing current loss during battery charging and discharging. The purpose is to provide.

本発明は、上記目的を達成するために、複数個の単電池を電気絶縁性の収納ケースに一列又は複数列に収納後に、各単電池の極間を各接続金属板によって連結する組電池において、材質が銅製の前記接続金属板を各単電池の正極部と他の単電池の負極部との両面に配置して重ね継手を各々形成し、前記正極部の上側にある片方の前記接続金属板の特定位置、及び前記負極部の上側にある他方の前記接続金属板の特定位置にアークスポット溶接を施工して各々形成した溶接部を備えていることを特徴とする。   In order to achieve the above object, the present invention provides an assembled battery in which a plurality of single cells are stored in one or a plurality of rows in an electrically insulating storage case, and the electrodes of each single cell are connected by connecting metal plates. The connection metal plate made of copper is disposed on both surfaces of the positive electrode part of each unit cell and the negative electrode part of another unit cell to form lap joints, and one of the connection metals on the upper side of the positive electrode unit It is characterized by comprising welded portions each formed by performing arc spot welding at a specific position of the plate and a specific position of the other connecting metal plate above the negative electrode portion.

特に、前記溶接部の溶け込み深さhは、前記接続金属板の板厚T1より大きく、前記正極部又は負極部の板厚T2を加えた値より小さく、T1<h≦(T1+T2×4/5)の範囲に形成されているとよい。   In particular, the penetration depth h of the welded portion is larger than the plate thickness T1 of the connection metal plate and smaller than the value obtained by adding the plate thickness T2 of the positive electrode portion or the negative electrode portion, and T1 <h ≦ (T1 + T2 × 4/5). ).

また、前記重ね継手は、前記接続金属板に該当する上側の板厚T1が0.5mm以上1.5mm以下の銅材と、前記正極部又は負極部に該当する下側の板厚T2が0.5mm以上1.5mm以下の鋼材との異材継手であり、前記鋼材の表裏面にニッケルメッキが形成されているとよい。   In the lap joint, a copper material having an upper plate thickness T1 corresponding to the connecting metal plate of 0.5 mm to 1.5 mm and a lower plate thickness T2 corresponding to the positive electrode portion or the negative electrode portion is 0. It is a dissimilar joint with a steel material of .5 mm or more and 1.5 mm or less, and nickel plating is preferably formed on the front and back surfaces of the steel material.

また、本発明は、上記目的を達成するために、複数個の単電池を電気絶縁性の収納ケースに一列又は複数列に収納後に、各単電池の極間を各接続金属板によって連結する組電池の溶接方法において、材質が銅製の前記接続金属板を各単電池の正極部と他の単電池の負極部との両面に配置して重ね継手を各々形成する工程と、前記正極部の上側にある片方の前記接続金属板の特定位置、及び前記負極部の上側にある他方の前記接続金属板の特定位置にアークスポット溶接を各々施工する工程とを備えていることを特徴とする。   Further, in order to achieve the above object, the present invention is a set in which a plurality of single cells are stored in one or a plurality of rows in an electrically insulating storage case, and the electrodes of each single cell are connected by each connecting metal plate. In the battery welding method, the connection metal plate made of copper is disposed on both surfaces of the positive electrode part of each unit cell and the negative electrode part of another unit cell to form lap joints, and above the positive electrode part And a step of performing arc spot welding at a specific position of one of the connecting metal plates in the above and a specific position of the other connecting metal plate above the negative electrode part.

特に、前記溶接工程では、前記接続金属板の板厚をT1とし、前記正極部又は負極部の板厚をT2とした場合に、溶け込み深さhが以下の式(1)を満たす範囲でアークスポット溶接を行うことを特徴とする。   In particular, in the welding step, when the plate thickness of the connecting metal plate is T1 and the plate thickness of the positive electrode portion or the negative electrode portion is T2, the arc is within the range where the penetration depth h satisfies the following formula (1). Spot welding is performed.

T1<h≦(T1+T2×4/5) …式(1)
すなわち、本発明の組電池では、材質が銅製の前記接続金属板を各単電池の正極部と他の単電池の負極部との両面に配置して重ね継手を各々形成し、前記正極部の上側にある片方の前記接続金属板の特定位置、及び前記負極部の上側にある他方の前記接続金属板の特定位置にアークスポット溶接を施工して各々形成した溶接部を備えていることにより、電池極間の接続抵抗を小さく、電池充放電時の通電ロスが少ない組電池を得ることができる。特に、銅の電気抵抗はニッケル材や鋼材の電気抵抗と比べて(Cu:1.55<Ni:
6.58<Fe:8.71(×10-6Ω・cm)) 格段に小さいため、銅製の接続金属板を使用することで、前記接続抵抗が小さくでき、また、ニッケル材より低コストで製作することができる。また、銅製の接続金属板であっても、アークスポット溶接によって確実に溶融接合することができる。なお、従来のジュール発熱方式の抵抗溶接(スポット溶接)では、電気抵抗の小さな銅の溶接が困難であり、適用することができない。
T1 <h ≦ (T1 + T2 × 4/5) (1)
That is, in the battery pack of the present invention, the connection metal plate made of copper is disposed on both surfaces of the positive electrode part of each unit cell and the negative electrode part of another unit cell to form lap joints, By including a welded portion formed by performing arc spot welding at a specific position of one of the connecting metal plates on the upper side and a specific position of the other connecting metal plate on the upper side of the negative electrode part, An assembled battery can be obtained in which the connection resistance between the battery electrodes is small and the energization loss during charging and discharging of the battery is small. In particular, the electrical resistance of copper is higher than that of nickel or steel (Cu: 1.55 <Ni:
6.58 <Fe: 8.71 (× 10 −6 Ω · cm)) Since it is much smaller, the connection resistance can be reduced by using a copper connection metal plate, and at a lower cost than nickel material. Can be produced. Moreover, even if it is a copper connection metal plate, it can melt-join reliably by arc spot welding. In the conventional Joule heating type resistance welding (spot welding), it is difficult to weld copper having a small electric resistance, and it cannot be applied.

前記溶接部の溶け込み深さhは、前記接続金属板の板厚T1より大きく、前記正極部又は負極部の板厚T2の4/5をT1に加えた値より小さい、T1<h≦(T1+T2×4/5)の範囲に形成されていることにより、重ね継手の裏側まで溶かさない深さの溶接部を確実に得ることができる。なお、前記溶け込み深さhが上側の板厚T1より浅いと、溶接不足になり、反対に、溶け込み深さhが(T1+T2×4/5)より大きくなると、裏溶けが生じ易くなり、耐食性の低下や電池液漏れの問題があるので好ましくない。   The penetration depth h of the welded portion is larger than the plate thickness T1 of the connection metal plate, and smaller than the value obtained by adding 4/5 of the plate thickness T2 of the positive electrode portion or the negative electrode portion to T1, T1 <h ≦ (T1 + T2 By forming in the range of x4 / 5), the welding part of the depth which does not melt to the back side of a lap joint can be obtained reliably. If the penetration depth h is shallower than the upper plate thickness T1, welding will be insufficient. Conversely, if the penetration depth h is greater than (T1 + T2 × 4/5), back-melting is likely to occur and corrosion resistance is increased. This is not preferable because there is a problem of reduction and battery leakage.

前記重ね継手は、前記接続金属板に該当する上側の板厚T1が0.5mm以上1.5mm以下の銅材と、前記正極部又は負極部に該当する下側の板厚T2が0.5mm以上1.5mm以下の鋼材との異材継手であり、前記鋼材の表裏面にニッケルメッキが形成されていることにより、Niメッキを媒体にして融点の低いCuと融点の高いFeとが結び付き、割れのない良好な極薄いCu/Feの混合層が形成し、良好な溶接品質及び引張強度の高い溶接部を得ることができる。また、鋼製又は低炭素鋼であっても、Niメッキによって耐食性を高めることができる。Niメッキの厚みは、1μm以上10μm以下であればよく、銅と
Niメッキ付鋼との異材溶接が施工でき、割れのない良好な溶接部を得ることができる。
The lap joint has a copper material having an upper plate thickness T1 corresponding to the connecting metal plate of 0.5 mm to 1.5 mm and a lower plate thickness T2 corresponding to the positive electrode portion or the negative electrode portion of 0.5 mm. This is a dissimilar joint with a steel material of 1.5 mm or less, and nickel plating is formed on the front and back surfaces of the steel material, so that Cu having a low melting point and Fe having a high melting point are combined and cracked using Ni plating as a medium. As a result, a very thin Cu / Fe mixed layer with no weld is formed, and a weld with good weld quality and high tensile strength can be obtained. Moreover, even if it is steel or low carbon steel, corrosion resistance can be improved by Ni plating. The thickness of Ni plating should just be 1 micrometer or more and 10 micrometers or less, dissimilar material welding of copper and steel with Ni plating can be performed, and the favorable weld part without a crack can be obtained.

なお、前記接続金属板の板厚T1が0.5mm より薄いと、素材そのものの強度が低く、溶接部の強度が低く振動に弱い構造になってしまい、反対に、板厚T1が1.5mm より厚くなると、接続金属板への熱放散の増加によってアークスポット溶接ができなくなるので好ましくない。また、単電池の正極部又は負極部の板厚T2が0.5mm より薄いと、素材そのものの強度が低く、溶接部の強度が低く振動に弱い構造になってしまい、反対に、板厚T2が1.5mm より厚くなると、深絞り成形加工が難しくなり、重量が増加するばかりでなく、アーク溶接も困難になるので好ましくない。また、Niメッキの厚みが1μmより薄いと、僅かなキズ等によって鋼面が露出し、耐食性が低下し易くなり、反対に、10μmより厚くなると、メッキ処理に時間がかかるばかりでなく、アーク溶接時に接合不足が生じ易くなるので好ましくない。   If the thickness T1 of the connecting metal plate is less than 0.5 mm, the strength of the material itself is low, the strength of the welded portion is low and the structure is weak against vibration, and conversely, the thickness T1 is 1.5 mm. A thicker thickness is not preferable because arc spot welding cannot be performed due to an increase in heat dissipation to the connecting metal plate. On the other hand, if the plate thickness T2 of the positive electrode portion or the negative electrode portion of the unit cell is less than 0.5 mm, the strength of the material itself is low, the strength of the welded portion is low, and the structure is weak against vibration. If the thickness is larger than 1.5 mm, it is not preferable because deep drawing becomes difficult, the weight increases, and arc welding becomes difficult. On the other hand, if the thickness of the Ni plating is thinner than 1 μm, the steel surface is exposed due to slight scratches and the corrosion resistance tends to be lowered. Conversely, if it is thicker than 10 μm, not only the plating process takes time but also arc welding. It is not preferable because sometimes insufficient bonding is likely to occur.

また、本発明の組電池の溶接方法では、材質が銅製の前記接続金属板を各単電池の正極部と他の単電池の負極部との両面に配置して重ね継手を各々形成する工程と、前記正極部の上側にある片方の前記接続金属板の特定位置、及び前記負極部の上側にある他方の前記接続金属板の特定位置にアークスポット溶接を各々施工する工程とを備えていることにより、前記重ね継手を溶融接合でき、良好な溶接品質及び引張強度の高い溶接部を得ることができる。また、電池極間の接続抵抗が小さく、電池充放電時の通電ロスが少ない組電池を得ることができると共に、銅製の接続金属板の使用によってニッケル材より低コストに製作することができる。   Further, in the assembled battery welding method of the present invention, the step of forming the lap joint by disposing the connecting metal plate made of copper on both surfaces of the positive electrode portion of each unit cell and the negative electrode unit of another unit cell; And a step of performing arc spot welding at a specific position of one of the connection metal plates above the positive electrode portion and a specific position of the other connection metal plate above the negative electrode portion, respectively. Thus, the lap joint can be melt-bonded, and a weld with good welding quality and high tensile strength can be obtained. In addition, it is possible to obtain an assembled battery having a small connection resistance between the battery electrodes and a small current loss during charging / discharging of the battery, and can be manufactured at a lower cost than a nickel material by using a connection metal plate made of copper.

特に、前記溶接工程では、前記接続金属板の板厚T1及び前記正極部又は負極部の板厚T2に対する溶け込み深さhがT1<h≦(T1+T2×4/5)の範囲に形成するように前記アークスポット溶接を行うことにより、上述したように、重ね継手の裏側まで溶かさない深さの溶接部を確実に得ることができる。   In particular, in the welding step, the penetration depth h with respect to the plate thickness T1 of the connection metal plate and the plate thickness T2 of the positive electrode portion or the negative electrode portion is formed in the range of T1 <h ≦ (T1 + T2 × 4/5). By performing the arc spot welding, as described above, a weld portion having a depth that does not melt to the back side of the lap joint can be reliably obtained.

本発明の組電池及びその溶接方法によれば、良好な溶接品質及び引張強度の高い溶接部が得られ、電池極間の接続抵抗が小さく、電池充放電時の通電ロスを減少でき、電池寿命向上に寄与することができる。   According to the assembled battery and the welding method of the present invention, a welded portion having good welding quality and high tensile strength can be obtained, the connection resistance between the battery electrodes is small, the current loss during charging / discharging of the battery can be reduced, and the battery life It can contribute to improvement.

以下、本発明の組電池及びその溶接方法について好ましい実施形態を図面に基づいて説明する。図1は、本発明の組電池に係わる単電池の配列と電池正負極間の接続及び電流経路の一実施例を示す説明図である。また、図2は、図1に示した電池正極間の接続状態の一実施例を示す上面図であり、図3は、図2に示した電池正極間の接続状態を示す断面図である。また、図4は、本発明の組電池及びその溶接方法に係わる接続金属板の配置工程及びアークスポット溶接工程の一実施例を示す手順及び断面図である。   Hereinafter, preferred embodiments of the assembled battery and the welding method of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing an example of the arrangement of unit cells and the connection between the battery positive and negative electrodes and the current path for the assembled battery of the present invention. 2 is a top view showing an embodiment of the connection state between the battery positive electrodes shown in FIG. 1, and FIG. 3 is a cross-sectional view showing the connection state between the battery positive electrodes shown in FIG. FIG. 4 is a procedure and cross-sectional view showing one embodiment of the connecting metal plate arranging step and the arc spot welding step according to the assembled battery and the welding method of the present invention.

図1に示すように、1組40本の単電池2を電気絶縁性の収納ケース1に複数列に収納している。他の配列に変更しても良いし、また、単電池の本数が少ない場合には一列に配列し、倍数の80本必要な場合には2組配置することもできる。各単電池2は、円筒型のリチウム電池であり、電池正極部6と他の電池負極部7とが交互に隣接するように配置し、各接続金属板3によって直列に連結されており、組電池の稼働時には、電流経路12の方向に高電流が出力できるようにしている。   As shown in FIG. 1, a set of 40 unit cells 2 are stored in a plurality of rows in an electrically insulating storage case 1. The arrangement may be changed to another arrangement, or when the number of single cells is small, they may be arranged in a line, and when a multiple of 80 is required, two sets may be arranged. Each unit cell 2 is a cylindrical lithium battery, in which battery positive electrode parts 6 and other battery negative electrode parts 7 are arranged alternately adjacent to each other, and are connected in series by connecting metal plates 3. When the battery is operating, a high current can be output in the direction of the current path 12.

図2〜図4に示すように、材質が銅製の接続金属板3を単電池2の電池正極部6と他の単電池2の電池負極部7(電池底面)との両面に配置して重ね継手を各々形成し、電池正極部6の上側にある片方の前記接続金属板3の特定位置、及び前記電池負極部7の上側にある他方の前記接続金属板3の特定位置にアークスポット溶接を施工して各々形成した溶接部5を備えている。電池正極部6及び電池負極部7は、材質が鋼製であり、耐食性を高めるために、鋼製の裏表面にNiメッキが形成されている。各接続金属板3の表面部には、アークスポット溶接の施工による溶接部5が電池正極部6側に2点ずつ、他方の電池負極部7側に2点ずつ形成されている。2点ずつの溶接部5を形成すべき特定位置は、例えば、接続金属板3の板幅wに対して、両端面からw/4程度の位置又はこの近傍位置にするとよい。溶接し易い他の位置に変更することも可能である。また、溶接部5を電池正極部6側及び電池負極部7側に1点ずつ形成する場合には、板幅wのほぼ中央位置又はこの近傍位置にすればよい。少ない溶接点数であっても、良好な溶接品質及び高い引張強度の溶接部が得られ、電池正負極間を確実に締結でき、同時に、溶接工数を削減することもできる。   As shown in FIGS. 2 to 4, the connection metal plate 3 made of copper is disposed on both surfaces of the battery positive electrode portion 6 of the unit cell 2 and the battery negative electrode unit 7 (battery bottom surface) of the other unit cell 2. Each of the joints is formed, and arc spot welding is performed at a specific position of one of the connection metal plates 3 above the battery positive electrode portion 6 and at a specific position of the other connection metal plate 3 above the battery negative electrode portion 7. Welded portions 5 each formed by construction are provided. The battery positive electrode portion 6 and the battery negative electrode portion 7 are made of steel, and Ni plating is formed on the steel back surface in order to improve corrosion resistance. On the surface portion of each connecting metal plate 3, two welded portions 5 by arc spot welding are formed on the battery positive electrode portion 6 side and two points on the other battery negative electrode portion 7 side. The specific position where the two welded portions 5 should be formed may be, for example, a position about w / 4 from both end faces with respect to the plate width w of the connection metal plate 3 or a position near this. It is also possible to change to another position where welding is easy. Moreover, when forming the welding part 5 one point at a time at the battery positive electrode part 6 side and the battery negative electrode part 7 side, what is necessary is just to make it the approximate center position of the board width w, or this vicinity position. Even with a small number of welding points, a welded portion with good welding quality and high tensile strength can be obtained, the battery positive and negative electrodes can be securely fastened, and at the same time, the number of welding steps can be reduced.

このように、アークスポット溶接による溶接部5を形成することにより、電池極間の接続抵抗を小さく、電池充放電時の通電ロスが少ない組電池を得ることができる。特に、銅の電気抵抗はニッケル材や鋼材の電気抵抗と比べて(Cu:1.55<Ni:6.58<
Fe:8.71 (×10-6Ω・cm))格段に小さいため、銅製の接続金属板3を使用することで、接続抵抗が格段に小さくでき、また、ニッケル材より低コストで製作することもできる。また、銅製の接続金属板3であっても、アークスポット溶接によって確実に溶融接合でき、良好な溶接品質及び引張強度の高い溶接部5を得ることができる。なお、従来のジュール発熱方式の抵抗溶接(スポット溶接)は、電気抵抗の小さな銅の溶接が困難であり、適用することができない。
Thus, by forming the welded part 5 by arc spot welding, an assembled battery can be obtained in which the connection resistance between the battery electrodes is small and the energization loss during battery charging and discharging is small. In particular, the electrical resistance of copper is higher than that of nickel or steel (Cu: 1.55 <Ni: 6.58 <
Fe: 8.71 (× 10 −6 Ω · cm)) Because it is much smaller, the connection resistance can be made much smaller by using the copper connection metal plate 3, and it can be manufactured at a lower cost than nickel materials. You can also. Moreover, even if it is the connection metal plate 3 made from copper, it can melt-join reliably by arc spot welding, and the welding part 5 with favorable welding quality and high tensile strength can be obtained. Note that conventional Joule heating type resistance welding (spot welding) cannot be applied because it is difficult to weld copper with low electrical resistance.

前記溶接部5の溶け込み深さhは、接続金属板3(上側)の板厚T1より大きく、電池正極部6又は電池負極部7(下側)の板厚T2を加えた値より小さく、T1<h≦(T1+T2×4/5)の範囲に形成されていることにより、重ね継手の裏側まで溶かさない深さの溶接部5を確実に得ることができる。   The penetration depth h of the welded portion 5 is larger than the plate thickness T1 of the connection metal plate 3 (upper side), and smaller than the value obtained by adding the plate thickness T2 of the battery positive electrode portion 6 or the battery negative electrode portion 7 (lower side). By forming in the range of <h <= (T1 + T2 * 4/5), the welding part 5 of the depth which does not melt to the back side of a lap joint can be obtained reliably.

図1〜図3に示した実施例の単電池3又は組電池は、リチウム電池であるが、ニッケル水素電池等の他の電池であってもよく、本発明の溶接方法を行うことにより、上述したように、良好な溶接品質及び引張強度の高い溶接部5が得られ、電池極間の接続抵抗を小さく、電池充放電時の通電ロスが少ない組電池を得ることができる。また、接続金属板3には、溶接部5の位置から離れた箇所に2つ以上の曲がり部4を上位方向に形成している。この曲がり部4の形成により、組電池の一体化による拘束や自動車搭載稼働による振動などで溶接部5に加わる応力を抑制することができる。   The unit cell 3 or the assembled battery of the embodiment shown in FIG. 1 to FIG. 3 is a lithium battery, but may be another battery such as a nickel metal hydride battery. As described above, a welded portion 5 having good welding quality and high tensile strength can be obtained, and a battery assembly having a low connection resistance between battery electrodes and a small current loss during battery charge / discharge can be obtained. Further, two or more bent portions 4 are formed in the upper direction in the connection metal plate 3 at a location away from the position of the welded portion 5. By forming the bent portion 4, it is possible to suppress the stress applied to the welded portion 5 due to restraint due to the integration of the assembled battery, vibration due to operation of mounting on a vehicle, or the like.

図4に示すように、単電池の配列工程21は、絶縁性の収納ケースに所定個数の単電池2を配列したり、出力電圧等の検出信号の配線や必要な各種部品を取付けたりする工程である。次の接続金属板の配置工程22は、銅製の接続金属板3を単電池2の電池正極部6と他の単電池2の電池負極部7との両面に配置して重ね継手を各々形成する工程である。各単電池2は、電池正極部6及び電池負極部7を除く外周囲を薄い絶縁シート(省略)でシールされており、また、絶縁材のブロック枠8によって事前に区分けされ、アーク溶接が施工できるように電池正極部6及び電池負極部7を露出させている。前記重ね継手は、接続金属板3に該当する上側の板厚T1が0.5mm以上1.5mm以下の銅材と、電池正極部6又は電池負極部7に該当する下側の板厚T2が0.5mm以上1.5mm以下の鋼材との異材継手である。単電池2の容器や電池正極部6及び電池負極部7は、耐食性を高めるため、鋼材の表裏面にニッケルメッキが形成されている。Niメッキの厚みは、1μm以上10μm以下であり、銅とNiメッキ付鋼との異材継手のアーク溶接を可能にしている。   As shown in FIG. 4, the cell arranging step 21 is a step of arranging a predetermined number of the cells 2 in an insulating storage case, attaching a detection signal such as an output voltage, and attaching various necessary parts. It is. In the next connecting metal plate arranging step 22, the copper connecting metal plate 3 is arranged on both surfaces of the battery positive electrode portion 6 of the unit cell 2 and the battery negative electrode unit 7 of the other unit cell 2 to form lap joints. It is a process. Each cell 2 is sealed with a thin insulating sheet (omitted) on the outer periphery except for the battery positive electrode portion 6 and the battery negative electrode portion 7, and is preliminarily divided by an insulating material block frame 8 to perform arc welding. The battery positive electrode portion 6 and the battery negative electrode portion 7 are exposed so as to be able to. The lap joint has a copper material having an upper plate thickness T1 corresponding to the connection metal plate 3 of 0.5 mm to 1.5 mm and a lower plate thickness T2 corresponding to the battery positive electrode portion 6 or the battery negative electrode portion 7. This is a dissimilar joint with steel material of 0.5 mm or more and 1.5 mm or less. The container of the unit cell 2, the battery positive electrode part 6 and the battery negative electrode part 7 are formed with nickel plating on the front and back surfaces of the steel material in order to improve the corrosion resistance. The thickness of the Ni plating is 1 μm or more and 10 μm or less, and enables arc welding of a dissimilar joint between copper and Ni-plated steel.

次のアークスポット溶接工程23は、非消耗電極方式のアーク10によって接続金属板3と電池正極部6又は電池負極部7との重ね継手を溶融接合11する工程である。特に、この溶接工程23では、接続金属板3の板厚T1及び電池正極部6又は電池負極部7の板厚T2に対する溶け込み深さhがT1<h≦(T1+T2×4/5)の範囲に形成するようにアークスポット溶接を行う。この詳細は次の図5を用いて説明する。   The next arc spot welding process 23 is a process in which the lap joint between the connection metal plate 3 and the battery positive electrode part 6 or the battery negative electrode part 7 is melt-bonded 11 by the non-consumable electrode type arc 10. In particular, in this welding step 23, the penetration depth h with respect to the plate thickness T1 of the connecting metal plate 3 and the plate thickness T2 of the battery positive electrode portion 6 or the battery negative electrode portion 7 is in the range of T1 <h ≦ (T1 + T2 × 4/5). Arc spot welding is performed to form. Details will be described with reference to FIG.

図5は、電池極間の重ね継手部をアークスポット溶接する工程を示す断面図及び溶接電流と時間の関係を示す線図であり、(1)上側の接続金属板のアーク加熱、(2)接続金属板の溶融、(3)下側の電池正極部又は負極部との溶融接合、(4)時間経過の電流波形の様子をそれぞれ示している。この実施例に用いているアーク熱源は、非消耗性のタングステン溶接電極9を用いるアーク10であり、所定の溶接条件(電流と溶接時間)を溶接電源に設定して出力させている。図示していないシールドガス(Arガス)流出の雰囲気内でアーク10を発生させ、図5(4)に示すように所定時間T(ms)の電流I(A)を出力させる。図5(1)及び図5(2)に示すように、最初に上側の接続金属板3がアーク加熱して溶融接合11し、次に、図5(3)に示すように、熱伝導及びアーク力によって上側の溶融部と下側の電池正極部6又は電池負極部7とが溶融接合11する。下板の裏側まで溶かさない短い時間の寸止め溶接であり、アーク消去直後に凝固し、裏溶けや割れのない品質良好な溶接部5を得ることができる。溶接施工時には、押え治具(省略)を用いて上側の接続金属板3が下板(電池正極部6又は電池負極部7)に密着するように押えるとよい。継手部にギャップがない方がよいが、少しのギャップがあっても、アーク力によって容易に溶融接合することができる。   FIG. 5 is a cross-sectional view showing a step of arc spot welding of a lap joint between battery electrodes and a diagram showing a relationship between welding current and time, (1) arc heating of the upper connecting metal plate, (2) The melting of the connecting metal plate, (3) fusion bonding with the lower battery positive electrode part or negative electrode part, and (4) the state of the current waveform over time are shown. The arc heat source used in this embodiment is an arc 10 using a non-consumable tungsten welding electrode 9 and outputs predetermined welding conditions (current and welding time) set in a welding power source. An arc 10 is generated in an atmosphere of shielding gas (Ar gas) flowing out (not shown), and a current I (A) for a predetermined time T (ms) is output as shown in FIG. As shown in FIGS. 5 (1) and 5 (2), the upper connecting metal plate 3 is first arc-heated to be melt-bonded 11, and then, as shown in FIG. The upper molten portion and the lower battery positive electrode portion 6 or the battery negative electrode portion 7 are melt-bonded 11 by the arc force. It is a short time stop welding that does not melt to the back side of the lower plate, solidifies immediately after the arc is erased, and a welded part 5 with good quality free from back melting and cracking can be obtained. At the time of welding, the upper connecting metal plate 3 may be pressed so as to be in close contact with the lower plate (battery positive electrode portion 6 or battery negative electrode portion 7) using a holding jig (omitted). Although it is better that there is no gap in the joint portion, even if there is a slight gap, it can be easily melt-bonded by the arc force.

また、銅製の接続金属板3と鋼製の電池正極部6又は電池負極部7との異材重ね継手の溶接であっても、確実に溶融接合することができ、特に、Niメッキを媒体にして融点の低いCuと融点の高いFeとが結び付き(金属の融点:Cu:1083<Ni:1455<Fe:1539℃)、割れのない良好な極薄いCu/Feの混合層が形成し、良好な溶接品質及び引張強度の高い溶接部5を得ることができる。鋼製の電池正極部6又は電池負極部7の裏表面がNiメッキ処理されていれば、上板側の接続金属板3が銅製のまま
(Niメッキなし)でも、或いはNiメッキありでも、アーク溶接による異材溶接が各々施工可能であり、割れのない品質良好な溶接部5を得ることができる。なお、Niメッキの厚みが1μmより薄いと、僅かなキズ等によって鋼面が露出し、耐食性が低下し易くなり、反対に、10μmより厚くなると、メッキ処理に時間がかかるばかりでなく、アーク溶接時に接合不足が生じ易くなるので好ましくない。
Moreover, even when welding a dissimilar lap joint between the copper connecting metal plate 3 and the steel battery positive electrode portion 6 or the battery negative electrode portion 7, it can be surely melt-bonded, particularly with Ni plating as a medium. Cu having a low melting point and Fe having a high melting point are combined (melting point of metal: Cu: 1083 <Ni: 1455 <Fe: 1539 ° C.), and an excellent ultrathin Cu / Fe mixed layer without cracking is formed, which is good A welded portion 5 having high welding quality and high tensile strength can be obtained. If the back surface of the battery positive electrode part 6 or the battery negative electrode part 7 made of steel is Ni-plated, the connection metal plate 3 on the upper plate side remains made of copper (without Ni plating) or with Ni plating, and the arc Dissimilar material welding by welding can be performed, and a welded portion 5 having good quality without cracks can be obtained. If the thickness of the Ni plating is less than 1 μm, the steel surface is exposed due to slight scratches and the corrosion resistance tends to be lowered. Conversely, if the thickness is more than 10 μm, not only the plating process takes time, but also arc welding. It is not preferable because sometimes insufficient bonding is likely to occur.

溶接部5の溶け込み深さhは、T1<h≦(T1+T2×4/5)の範囲に形成することにより、裏溶けや割れのない品質良好な溶接部5を得ることができ、下板裏側のNiメッキが残存して耐食性を保持することができる。裏溶けのない寸止め溶接は、浅い溶け込みとなる適正な溶接条件又はこれに該当する入熱条件を予め選定し、溶接施工時に出力させればよい。なお、溶け込み深さhが上側の板厚T1より浅いと、溶接不足になり、反対に、溶け込み深さhが(T1+T2×4/5)より大きくなると、裏溶けが生じ易くなり、耐食性の低下や電池液漏れの問題があるので好ましくない。また、接続金属板3の板厚T1が0.5mm より薄いと、素材そのものの強度が低く、溶接部5の強度が低く振動に弱い構造になってしまい、反対に、板厚T1が1.5mm より厚くなると、接続金属板3への熱放散の増加によってアークスポット溶接ができなくなるので好ましくない。また、単電池2の電池正極部6又は電池負極部7の板厚T2が0.5mm より薄いと、素材そのものの強度が低く、溶接部の強度が低く振動に弱い構造になってしまい、反対に、板厚T2が
1.5mm より厚くなると、深絞り成形加工が難しくなり、重量が増加するばかりでなく、アーク溶接も困難になるので好ましくない。
By forming the penetration depth h of the welded portion 5 in the range of T1 <h ≦ (T1 + T2 × 4/5), it is possible to obtain a welded portion 5 with good quality without back melting or cracking, The Ni plating remains and the corrosion resistance can be maintained. For dimension stop welding without back-melting, it is only necessary to select in advance appropriate welding conditions that result in shallow penetration or heat input conditions corresponding thereto, and to output the welding conditions. In addition, if the penetration depth h is shallower than the upper plate thickness T1, welding will be insufficient. Conversely, if the penetration depth h is greater than (T1 + T2 × 4/5), back-melting is likely to occur, resulting in reduced corrosion resistance. And there is a problem of battery leakage. On the other hand, if the thickness T1 of the connecting metal plate 3 is less than 0.5 mm, the strength of the material itself is low, the strength of the welded portion 5 is low and the structure is weak against vibration, and conversely, the thickness T1 is 1. If it is thicker than 5 mm, it is not preferable because arc spot welding cannot be performed due to an increase in heat dissipation to the connecting metal plate 3. On the other hand, if the plate thickness T2 of the battery positive electrode portion 6 or the battery negative electrode portion 7 of the unit cell 2 is less than 0.5 mm, the strength of the material itself is low, the strength of the welded portion is low, and the structure is weak against vibration. In addition, if the plate thickness T2 is greater than 1.5 mm, it is not preferable because the deep drawing process becomes difficult and not only the weight increases but also arc welding becomes difficult.

溶接箇所の接続金属板3は、平坦であるが、裏面に突起(凸部)を形成した接続金属板を用いてもよく、本発明の溶接方法を行うことにより、上述したように、良好な溶接品質及び引張強度の高い溶接部5が得られ、電池極間の接続抵抗を小さく、電池充放電時の通電ロスが少ない組電池を得ることができる。   The connecting metal plate 3 at the welded portion is flat, but a connecting metal plate having protrusions (convex portions) formed on the back surface may be used. As described above, the connecting metal plate 3 is good by performing the welding method of the present invention. A welded portion 5 having high welding quality and high tensile strength can be obtained, and an assembled battery with low connection resistance between battery electrodes and low current loss during battery charge / discharge can be obtained.

表1は、電池正負極間の接続抵抗を測定した結果の一実施例であり、Niメッキ付銅材の接続金属板をアーク溶接したものと、ニッケル材の接続金属板を抵抗溶接したものとを示している。接続抵抗の測定にはハイテスタを使用し、図2中に示したように、単電池2の正負極間(AB点間)の抵抗値を交流4端子法により測定した。表1に示すように、銅製の接続金属板を2点溶接(アーク溶接)した正負極間の接続抵抗(3個測定の平均値)は、0.27mΩ であり、Ni製の接続金属板を4点溶接(従来の抵抗溶接)した正負極間の接続抵抗(0.76mΩ )と比べて約1/3であり、また、1点溶接の場合でも0.39mΩと小さい結果になっている。2点溶接と1点溶接との接続抵抗が異なる理由としては、接合断面積の大きさの違いが考えられる。このように、銅製の接続金属板を使用することによって、電池正負極間の接続抵抗が小さくなり、図1に示した組電池における電池充放電時の通電ロスを大幅に軽減でき、電池寿命向上に寄与することができる。また、ニッケル材より低コストで製作することができる。   Table 1 is one example of the results of measuring the connection resistance between the positive and negative electrodes of the battery, and the one obtained by arc welding the connection metal plate of the Ni-plated copper material and the one obtained by resistance welding the connection metal plate of the nickel material Is shown. A high tester was used to measure the connection resistance, and as shown in FIG. 2, the resistance value between the positive and negative electrodes (between points AB) of the unit cell 2 was measured by the AC four-terminal method. As shown in Table 1, the connection resistance (average value of three measurements) between the positive and negative electrodes obtained by two-point welding (arc welding) of a copper connection metal plate is 0.27 mΩ, and the connection metal plate made of Ni is It is about 1/3 of the connection resistance (0.76 mΩ) between the positive and negative electrodes subjected to four-point welding (conventional resistance welding), and even in the case of one-point welding, the result is as small as 0.39 mΩ. As the reason why the connection resistance between the two-point welding and the one-point welding is different, a difference in the size of the joint cross-sectional area is considered. Thus, by using a copper connection metal plate, the connection resistance between the positive and negative electrodes of the battery is reduced, the current loss during battery charging and discharging in the assembled battery shown in FIG. 1 can be greatly reduced, and the battery life is improved. Can contribute. Moreover, it can be manufactured at a lower cost than nickel materials.

Figure 2008210730
図6は、電池溶接におけるアーク溶接の電流とアーク電圧,適正時間及び入熱量の関係を示す一実施例である。板厚0.8mm の接続金属板3(Niメッキ付銅)と板厚0.8mm の電池正極部6(Niメッキ付鋼)との異材溶接であり、裏溶けのない溶融接合11が可能な適正条件を示している。アークスポット溶接では、高い電流Iを使用すると短時間及び低入熱量で溶融接合し、低い電流Iを使用すると、アーク力及び熱伝導の低下により、溶融接合可能な適正時間T及び入熱量Qが増加している。アーク電圧Vaは電流Iの大きさに応じて上昇している。入熱量Q(J)は、電流I(A)とアーク電圧Va(V)及び時間T(ms)から算出(Q=I×Va×T/1000)することができる。
Figure 2008210730
FIG. 6 is an example showing the relationship between arc welding current, arc voltage, appropriate time, and heat input in battery welding. This is a dissimilar material welding of a 0.8 mm thick connecting metal plate 3 (Ni plated copper) and a 0.8 mm thick battery positive electrode 6 (Ni plated steel), enabling fusion bonding 11 without melting back. Appropriate conditions are shown. In arc spot welding, when a high current I is used, melt bonding is performed in a short time and with a low heat input, and when a low current I is used, an appropriate time T and heat input Q that can be melt-bonded due to a decrease in arc force and heat conduction. It has increased. The arc voltage Va rises according to the magnitude of the current I. The amount of heat input Q (J) can be calculated from the current I (A), the arc voltage Va (V), and the time T (ms) (Q = I × Va × T / 1000).

板厚が0.8mmより薄い0.5mmの電池正極部6又は電池負極部7を溶融接合する場合は、図6に示したアーク溶接の電流と時間の関係より短い適正時間を設定し、反対に、板厚を1mmに厚くする場合には、前記適正時間を長く設定するとよい。使用する板厚に適した溶接条件を用いて溶接施工することにより、裏溶けや割れのない品質良好な溶接部5を得ることができる。また、継手部に少しのギャップがあっても、アーク力によって容易に溶融接合することができる。   When the battery positive electrode 6 or battery negative electrode 7 having a thickness of less than 0.8 mm is melt-bonded, an appropriate time shorter than the relationship between current and time of arc welding shown in FIG. In addition, when the plate thickness is increased to 1 mm, the appropriate time may be set longer. By performing welding using welding conditions suitable for the plate thickness to be used, it is possible to obtain a welded part 5 with good quality without melting back or cracking. Further, even if there is a slight gap in the joint portion, it can be easily melt-bonded by the arc force.

図7は、アークスポット溶接した2点溶接部の断面積と引張強度の関係を示す一実施例である。断面積Sは、溶接電流や時間を変えて変化させており、引張試験後の破断面から寸法測定して算出した値である。図7に示すように、2点溶接部の引張強度F(破断荷重)は、断面積Sの大きさにほぼ比例増加している。接合面Sが5mm2 未満の場合は、接合面から剥離破断し、引張強度Fが低く(650N未満)、5≦S≦8mm2 の場合には、上板溶融部から破断し、高い引張強度(650≦F≦1200N)を得ることができる。接合面Sが8mm2 より大きくなると、引張強度がさらに増加するが、入熱過大により裏溶けに至る。 FIG. 7 is an example showing the relationship between the cross-sectional area and the tensile strength of a two-point welded part that has been arc spot welded. The cross-sectional area S is a value calculated by measuring the dimensions from the fracture surface after the tensile test, changing the welding current and time. As shown in FIG. 7, the tensile strength F (breaking load) of the two-point welded portion increases substantially in proportion to the size of the cross-sectional area S. If the bonding surface S is less than 5 mm 2, peeled fractured from the joining surfaces, the tensile strength F is low (less than 650 N), in the case of 5 ≦ S ≦ 8 mm 2 is broken from the upper plate melting unit, high tensile strength (650 ≦ F ≦ 1200 N) can be obtained. When the joint surface S is larger than 8 mm 2 , the tensile strength further increases, but the back melt occurs due to excessive heat input.

このように、本発明の組電池及びその溶接方法によれば、電池極間の接続抵抗が小さく、電池充放電時の通電ロスを減少することができる。また、抵抗溶接が困難な銅材の溶接、銅と鋼材との異材重ね継手の溶接であっても、アークスポット溶接によって良好な溶接品質及び引張強度の高い溶接部を得ることができる。   Thus, according to the assembled battery and the welding method thereof of the present invention, the connection resistance between the battery electrodes is small, and the energization loss during battery charging / discharging can be reduced. Moreover, even if it is welding of the copper material with which resistance welding is difficult, and welding of the dissimilar lap joint of copper and steel materials, a welding part with favorable welding quality and high tensile strength can be obtained by arc spot welding.

本発明の組電池に係わる単電池の配列と電池正負極間の接続及び電流経路の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the arrangement | sequence of the cell concerning the assembled battery of this invention, the connection between battery positive / negative electrodes, and a current pathway. 本発明の組電池及びその溶接方法に係わる電池正負極間の接続状態の一実施例を示す上面図である。It is a top view which shows one Example of the connection state between the battery positive electrode concerning the assembled battery of this invention, and its welding method. 図2に示した電池正負極間の接続状態を示す断面図である。It is sectional drawing which shows the connection state between the battery positive / negative electrodes shown in FIG. 本発明の組電池及びその溶接方法に係わる接続金属板の配置工程及びアークスポット溶接工程の一実施例を示す手順及び断面図である。It is the procedure and sectional drawing which show one Example of the arrangement | positioning process and arc spot welding process of the connection metal plate which concern on the assembled battery of this invention, and its welding method. 電池極間の重ね継手部をアークスポット溶接する工程を示す断面図及び溶接電流と時間の関係を示す線図である。It is sectional drawing which shows the process of carrying out the arc spot welding of the lap joint part between battery electrodes, and the diagram which shows the relationship between welding current and time. 電池溶接におけるアーク溶接の電流とアーク電圧,適正時間及び入熱量の関係を示す一実施例である。It is one Example which shows the relationship between the electric current of arc welding in battery welding, an arc voltage, appropriate time, and a heat input. アークスポット溶接した2点溶接部の断面積と引張強度の関係を示す一実施例である。It is one Example which shows the relationship between the cross-sectional area of two-point welding part which carried out the arc spot welding, and tensile strength.

符号の説明Explanation of symbols

1 収納ケース
2 単電池
3 接続金属板
4 曲がり部
5 溶接部
6 電池正極部
7 電池負極部
8 ブロック枠
9 タングステン溶接電極
10 アーク
11 溶融接合
DESCRIPTION OF SYMBOLS 1 Storage case 2 Single cell 3 Connection metal plate 4 Bending part 5 Welding part 6 Battery positive electrode part 7 Battery negative electrode part 8 Block frame 9 Tungsten welding electrode 10 Arc 11 Fusion joining

Claims (5)

複数個の単電池を収納ケースに一列又は複数列に収納し、複数個の前記単電池の極間を接続金属板によって連結する組電池において、
前記接続金属板は銅を含み、
前記接続金属板は、単電池の正極部と他の単電池の負極部との両面に配置され重ね継手を形成し、前記正極部の上側にある片方の前記接続金属板及び前記負極部の上側にある他方の前記接続金属板にアークスポット溶接を施工して形成した溶接部を備えていることを特徴とする組電池。
In a battery pack in which a plurality of cells are housed in a storage case in a row or a plurality of rows, and the electrodes of the plurality of cells are connected by a connecting metal plate,
The connecting metal plate includes copper;
The connecting metal plate is disposed on both surfaces of the positive electrode part of the unit cell and the negative electrode part of another unit cell to form a lap joint, and the upper side of the one of the connecting metal plate and the negative electrode part above the positive electrode part. A battery assembly comprising a welded portion formed by performing arc spot welding on the other connecting metal plate.
前記溶接部の溶け込み深さhは、前記接続金属板の板厚より大きく、前記正極部又は前記負極部の板厚の4/5を前記接続金属板の板厚に加えた値より小さい範囲に形成されていることを特徴とする請求項1に記載の組電池。   The penetration depth h of the welded portion is larger than the plate thickness of the connection metal plate, and is smaller than the value obtained by adding 4/5 of the plate thickness of the positive electrode portion or the negative electrode portion to the plate thickness of the connection metal plate. The assembled battery according to claim 1, wherein the battery pack is formed. 前記重ね継手は、前記接続金属板に該当する上側の板厚が0.5mm以上1.5mm以下の銅材と、前記正極部又は負極部に該当する下側の板厚が0.5mm以上1.5mm以下の鋼材との異材継手であり、前記鋼材の表裏面にニッケルメッキが形成されていることを特徴とする請求項1に記載の組電池。   The lap joint has a copper material having an upper plate thickness of 0.5 mm to 1.5 mm corresponding to the connecting metal plate and a lower plate thickness of 0.5 mm to 1 corresponding to the positive electrode portion or the negative electrode portion. The assembled battery according to claim 1, wherein the assembled battery is a dissimilar joint with a steel material of .5 mm or less, and nickel plating is formed on the front and back surfaces of the steel material. 複数個の単電池を収納ケースに一列又は複数列に収納し、複数個の前記単電池の極間を接続金属板によって連結する組電池の溶接方法において、
前記接続金属板が銅を含み、
前記接続金属板は、単電池の正極部と他の単電池の負極部との両面に配置して重ね継手を各々形成する工程と、
前記正極部の上側にある片方の前記接続金属板及び前記負極部の上側にある他方の前記接続金属板にアークスポット溶接を施工する工程と、
を備えていることを特徴とする組電池の溶接方法。
In a method for welding assembled batteries in which a plurality of cells are stored in a row or a plurality of rows in a storage case, and the electrodes of the plurality of cells are connected by a connecting metal plate,
The connecting metal plate includes copper;
The connection metal plate is disposed on both surfaces of the positive electrode part of the unit cell and the negative electrode part of the other unit cell to form lap joints,
Applying arc spot welding to one of the connection metal plates above the positive electrode portion and the other connection metal plate above the negative electrode portion;
A method for welding an assembled battery, comprising:
前記溶接工程では、前記接続金属板の板厚及び前記正極部又は負極部の板厚に対する溶け込み深さhが、前記接続金属板の板厚より大きく、前記正極部又は前記負極部の板厚の4/5を前記接続金属板の板厚に加えた値より小さい範囲に形成されるように前記アークスポット溶接を行うことを特徴とする請求項4に記載の組電池の溶接方法。   In the welding step, the penetration depth h with respect to the plate thickness of the connection metal plate and the plate thickness of the positive electrode portion or the negative electrode portion is larger than the plate thickness of the connection metal plate, and the plate thickness of the positive electrode portion or the negative electrode portion. 5. The method for welding an assembled battery according to claim 4, wherein the arc spot welding is performed so as to be formed in a range smaller than a value obtained by adding 4/5 to a thickness of the connection metal plate.
JP2007048351A 2006-11-10 2007-02-28 Battery pack and welding method thereof Active JP4637122B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007048351A JP4637122B2 (en) 2007-02-28 2007-02-28 Battery pack and welding method thereof
EP07021828A EP1921696A1 (en) 2006-11-10 2007-11-09 Battery pack and method for welding cells
US11/937,599 US9065124B2 (en) 2006-11-10 2007-11-09 Battery pack and method for welding cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048351A JP4637122B2 (en) 2007-02-28 2007-02-28 Battery pack and welding method thereof

Publications (3)

Publication Number Publication Date
JP2008210730A true JP2008210730A (en) 2008-09-11
JP2008210730A5 JP2008210730A5 (en) 2009-03-26
JP4637122B2 JP4637122B2 (en) 2011-02-23

Family

ID=39786845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048351A Active JP4637122B2 (en) 2006-11-10 2007-02-28 Battery pack and welding method thereof

Country Status (1)

Country Link
JP (1) JP4637122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770958A (en) * 2017-06-19 2020-02-07 罗伯特·博世有限公司 Battery pack device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182965A (en) * 1981-05-07 1982-11-11 Matsushita Electric Ind Co Ltd Manufacture of lead acid battery
JPH08287898A (en) * 1995-02-17 1996-11-01 Japan Storage Battery Co Ltd Cylindrical battery and assembly battery
JPH09223494A (en) * 1996-02-16 1997-08-26 Toyota Autom Loom Works Ltd Inter-battery connecting apparatus and connection method thereof
JP2003115285A (en) * 2001-10-03 2003-04-18 Ngk Insulators Ltd Lithium secondary cell and connecting structure of lithium secondary cell
JP2008123768A (en) * 2006-11-10 2008-05-29 Hitachi Vehicle Energy Ltd Battery pack and its welding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182965A (en) * 1981-05-07 1982-11-11 Matsushita Electric Ind Co Ltd Manufacture of lead acid battery
JPH08287898A (en) * 1995-02-17 1996-11-01 Japan Storage Battery Co Ltd Cylindrical battery and assembly battery
JPH09223494A (en) * 1996-02-16 1997-08-26 Toyota Autom Loom Works Ltd Inter-battery connecting apparatus and connection method thereof
JP2003115285A (en) * 2001-10-03 2003-04-18 Ngk Insulators Ltd Lithium secondary cell and connecting structure of lithium secondary cell
JP2008123768A (en) * 2006-11-10 2008-05-29 Hitachi Vehicle Energy Ltd Battery pack and its welding method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770958A (en) * 2017-06-19 2020-02-07 罗伯特·博世有限公司 Battery pack device
KR20200019880A (en) * 2017-06-19 2020-02-25 로베르트 보쉬 게엠베하 Rechargeable battery pack unit
JP2020523768A (en) * 2017-06-19 2020-08-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Battery pack device, battery pack and laser welding process
US11618100B2 (en) 2017-06-19 2023-04-04 Robert Bosch Gmbh Rechargeable battery pack unit
CN110770958B (en) * 2017-06-19 2023-10-20 罗伯特·博世有限公司 Battery pack device, battery pack of hand-held power tool, and laser welding method
KR102616321B1 (en) * 2017-06-19 2023-12-26 로베르트 보쉬 게엠베하 Rechargeable battery pack unit

Also Published As

Publication number Publication date
JP4637122B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US9065124B2 (en) Battery pack and method for welding cells
JP4586008B2 (en) Battery pack and manufacturing method thereof
JP6038802B2 (en) Battery pack and prismatic secondary battery for use in the battery pack
US8906545B2 (en) Prismatic secondary battery
US9318734B2 (en) Bimetal buss bar assembly
JP5656592B2 (en) Secondary battery
JP5231235B2 (en) Secondary battery for medium and large battery modules
US9559347B2 (en) Negative electrode terminal for battery and method for producing negative electrode terminal for battery
JP2010510641A (en) Method for connecting a conductive member to a device
TW201529212A (en) Method for welding electrode taps of secondary battery and electrode assembly manufactured thereby
KR20150144600A (en) Rechargeable battery
KR100778983B1 (en) Can for cylinderical lithium rechargeable battery and Cylinderical lithium rechargeable battery using the same
US7568958B2 (en) Electrical terminal for sealed accumulator
JP5957651B2 (en) Assembled battery
JP5558878B2 (en) Assembled battery, resistance welding method, and assembled battery manufacturing method
JP5622676B2 (en) Battery and tab connection method and tab
JP4637122B2 (en) Battery pack and welding method thereof
JP2018092743A (en) Friction stir welding method
KR101124964B1 (en) Method for connecting between cathod lead or anode lead of secondary battery and external element
KR101297398B1 (en) Battery Cell and Welding Method for Welding electrode lead of Battery Cell
JP4691919B2 (en) Welding method for metal parts
JP2015011807A (en) Square secondary battery and battery pack
KR101340062B1 (en) Battery Cell and Welding Method for Welding electrode lead of Battery Cell
CN115315334B (en) Method for manufacturing terminal for storage battery and storage battery
JP2013097923A (en) Electrode lead connection body and electrode lead connection assembly

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250