JP2008209391A - Routine operated seismic source utilizing electromagnetic coil - Google Patents

Routine operated seismic source utilizing electromagnetic coil Download PDF

Info

Publication number
JP2008209391A
JP2008209391A JP2007178472A JP2007178472A JP2008209391A JP 2008209391 A JP2008209391 A JP 2008209391A JP 2007178472 A JP2007178472 A JP 2007178472A JP 2007178472 A JP2007178472 A JP 2007178472A JP 2008209391 A JP2008209391 A JP 2008209391A
Authority
JP
Japan
Prior art keywords
electromagnetic coil
coil
permanent magnet
force
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007178472A
Other languages
Japanese (ja)
Other versions
JP4984242B2 (en
Inventor
Makoto Okano
眞 岡野
Shuichiro Fuchino
修一郎 淵野
Mitsuo Furuse
充穂 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007178472A priority Critical patent/JP4984242B2/en
Publication of JP2008209391A publication Critical patent/JP2008209391A/en
Application granted granted Critical
Publication of JP4984242B2 publication Critical patent/JP4984242B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precise routine operated seismic source utilizing electromagnetic coil, which is quite a new type precise-controlled routine operated seismic source capable of generating large-scale artificial shaking by utilizing a superconducting coil or the like where a large current is caused to flow by making electric resistance zero to thereby generate a high magnetic field and using the electromagnetic force of repulsive force or attraction force of the high magnetic field, and which is compact, require extremely small consumption energy, and has a semipermanent lifetime as compared with the conventional precise-controlled routine operated seismic source. <P>SOLUTION: In this routine operated seismic source, a permanent magnet or a direct current superconducting electromagnetic coil and an alternating current superconducting electromagnetic coil are disposed adjacent to each other, and also one of the permanent magnet or the direct current superconducting electromagnetic coil and the alternating current superconducting electromagnetic coil is fixed in an optional position, thereby utilizing the shaking force generated due to the electromagnetic force of the permanent magnet or the direct current superconducting electromagnetic coil and the alternating current superconducting electromagnetic coil. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に地震の早期発見のため地下の構造や状態を監視、観測するために人工的に定常弾性波を発生し、地中内に送信するための精密制御定常震源(Accurately Controlled Routine Operated Seismic Source, ACROSS)に関するものである。   The present invention mainly generates a stationary elastic wave artificially for monitoring and observing underground structures and conditions mainly for early detection of earthquakes, and is used to accurately transmit a steady controlled source (Accurately Controlled Routine). Operated Seismic Source, ACROSS).

従来、超電導コイル等による電磁力を利用した精密制御定常震源は考えられていなかった。現在、精密制御定常震源としては、大きな定常震動を得るために遠心力を利用した機械式なものが使われているが、機械的接触をともなうため軸受損失が極めて大きく、騒音、寿命の問題もある。また、最近、静圧流体軸受を支持軸受として用いることが提案され、200kgf程度の偏心負荷を与える震源が試作され、良好な結果を得ているが、大容量震源では、大面積の精密加工の困難さ、軸受流量の増大による消費電力の増大、また、大型で大重量の物体が空気中を回転するため風損によるエネルギー損失も大きいという欠点がある。さらに、ピン止め型超電導磁気浮上を用いた遠心力利用型の省エネルギー定常震源も提案さえているが、いずれの場合も1Hz以下の極低い周波数では、装置の大型化、エネルギーの大量消費、コストの増大など問題点が多く、製作も困難である。   Conventionally, a precise controlled steady-state source using electromagnetic force generated by a superconducting coil has not been considered. At present, mechanically controlled devices using centrifugal force are used as precision controlled steady-state earthquake sources to obtain large steady-state vibrations. However, bearing loss is extremely large due to mechanical contact, and there are problems with noise and life. is there. Recently, it has been proposed to use a hydrostatic bearing as a support bearing, and a hypocenter that gives an eccentric load of about 200 kgf has been prototyped and has obtained good results. There are difficulties such as increased power consumption due to increased bearing flow rate and large energy loss due to windage because large and heavy objects rotate in the air. In addition, centrifugal force-based energy-saving stationary earthquake sources using pinned superconducting magnetic levitation have been proposed, but in any case, at extremely low frequencies of 1 Hz or less, the size of the device, the mass consumption of energy, and the cost There are many problems such as increase, and it is difficult to manufacture.

図1に従来使用されている機械式軸受(ローラー軸受)を用いた精密制御定常震源の構造図を示す。偏心質量は、同図に示されるように大きなシャフトの一部に切り欠きを設けることにより作り出している。そのため、軸受は大きな高重量のシャフトを支えるとともに半径方向には高速回転で作り出される遠心力に耐えうるものでなくてはならず、軸受の発熱を引き起こし、駆動電力の増大、さらには軸受破壊に至るという問題を抱えている。   FIG. 1 shows a structural diagram of a precision controlled stationary earthquake source using a mechanical bearing (roller bearing) conventionally used. The eccentric mass is created by providing a notch in a part of a large shaft as shown in FIG. For this reason, the bearing must support a large and heavy shaft and be able to withstand the centrifugal force generated by high-speed rotation in the radial direction, causing heat generation of the bearing, increasing drive power, and further destroying the bearing. Has a problem of reaching.

図2は、非接触に回転体を磁気浮上させるピン止め型超電導磁気浮上ガイドを利用した精密制御定常震源の概念図を示す。円筒内面側に永久磁石と磁性体とで構成する磁気レールを配置し、バルク超電導体を設置した走行車両を超電導現象の一つであるピン止め効果を利用して非接触に内面側に磁気浮上させた精密制御定常震源を示したものである。超電導磁気浮上では、回転走行車両そのものの質量が偏心質量となり、例えば、図3に示したように重量5kgの車両は、回転によって数十トンという大きな遠心力が発生する。しかし、数rps以下の回転数では、大きな発生力を作り出すことが難しくなる。遠心力Fは、F=mRω(m:ロータ質量、R:回転半径、ω:角速度2πf、f:1秒当たりの回転数)で与えられるため、特に0.5rps以下の回転数では、ωが重力加速度より小さくなるため図4に示すように5トンの発生力を得るのに0.5rps以下の回転数では偏心負荷となるロータの重量のほうが大きくなり、もはや遠心力で大きな発生力を作り出すことは製作上困難になる。
特開平10−142345号公報 特開2006−250568号公報
FIG. 2 shows a conceptual diagram of a precision controlled stationary earthquake source using a pinned superconducting magnetic levitation guide that magnetically levitates a rotating body in a non-contact manner. A magnetic rail composed of permanent magnets and magnetic material is placed on the inner surface of the cylinder, and a vehicle with a bulk superconductor installed is magnetically levitated on the inner surface side in a non-contact manner using the pinning effect that is one of the superconducting phenomena. This shows the precise controlled steady-state epicenter. In superconducting magnetic levitation, the mass of the rotating vehicle itself becomes an eccentric mass. For example, as shown in FIG. 3, a vehicle having a weight of 5 kg generates a large centrifugal force of several tens of tons by rotation. However, it is difficult to generate a large generated force at a rotational speed of several rps or less. Since the centrifugal force F is given by F = mRω 2 (m: rotor mass, R: rotational radius, ω: angular velocity 2πf, f: rotational speed per second), especially at rotational speeds of 0.5 rps or less, ω Since 2 is smaller than the gravitational acceleration, to obtain a generated force of 5 tons as shown in FIG. 4, at the rotational speed of 0.5 rps or less, the weight of the rotor that becomes an eccentric load becomes larger, and the generated force is no longer large due to centrifugal force. It becomes difficult to produce.
Japanese Patent Laid-Open No. 10-142345 JP 2006-250568 A

本発明の課題は、電気抵抗がゼロにより大電流を流せる超電導電磁コイル等を利用して高磁場を発生させ、高磁場の反発力あるいは吸引力の電磁力により大規模の人工震動を発生できる全く新しい形式の精密制御定常震源で、従来の精密制御定常震源に比較して、小型で、駆動・消費エネルギーも極めて少ない反永久的寿命を持つ精密制御定常震源を提供することにある。   An object of the present invention is to generate a high magnetic field by using a superconducting magnetic coil that can flow a large current with zero electrical resistance, and to generate a large-scale artificial vibration by a high magnetic field repulsive force or an attractive electromagnetic force. It is a new type of precision controlled steady-state epicenter, which is to provide a precision controlled steady-state source that is smaller and has an anti-permanent lifetime that is much smaller in drive and energy consumption than conventional precision controlled steady-state sources.

上記課題は次のような手段により解決される。
(1)永久磁石又は直流電磁コイルと交流電磁コイルとを隣接して配置し、永久磁石又は直流電磁コイルと交流電磁コイルとの間の電磁力を利用した定常震源。
(2)永久磁石又は直流電磁コイルと交流電磁コイルとを隣接して配置し、永久磁石又は直流電磁コイルと交流電磁コイルのいずれか一方を任意の位置において固定することにより、永久磁石又は直流電磁コイルと交流電磁コイルとの間の電磁力に起因して発生する加振力を利用した定常震源。
(3)永久磁石又は直流電磁コイルを、交流電磁コイルの両側面に直結して配置するとともに、交流電磁コイルを任意の位置において固定することを特徴とする(2)に記載の定常震源。
(4)地中とコイルとを連結するカプラーと一体となった永久磁石又は直流電磁コイルとを、交流電磁コイルの両側面に配置するとともに、交流電磁コイルを任意の位置において固定することを特徴とする(2)に記載の定常震源。
(5)地中とコイルとを連結する第1のカプラー及び第1の永久磁石又は直流電磁コイルを交流電磁コイルの一方の側面に配置し、地中とコイルとを連結する第2のカプラー及び第2の永久磁石又は直流電磁コイルを交流電磁コイルの他方の側面に配置した定常震源であって、交流電磁コイルを任意の位置において固定するとともに、第1のカプラーと第2の永久磁石又は直流電磁コイル、及び第2のカプラーと第1の永久磁石又は直流電磁コイルとがそれぞれ対となり連結されていることを特徴とする(2)に記載の定常震源。
(6)上記直流電磁コイル及び交流電磁コイルの少なくともいずれか一方は、超電導電磁コイルであることを特徴とする(1)乃至(5)のいずれかに記載の定常震源。
The above problems are solved by the following means.
(1) A stationary earthquake source in which a permanent magnet or a DC electromagnetic coil and an AC electromagnetic coil are arranged adjacent to each other and electromagnetic force between the permanent magnet or the DC electromagnetic coil and the AC electromagnetic coil is used.
(2) A permanent magnet or a DC electromagnetic coil and an AC electromagnetic coil are arranged adjacent to each other, and either the permanent magnet or the DC electromagnetic coil and the AC electromagnetic coil are fixed at an arbitrary position, thereby allowing the permanent magnet or the DC electromagnetic coil to be fixed. Stationary seismic source using excitation force generated due to electromagnetic force between coil and AC electromagnetic coil.
(3) The stationary seismic source according to (2), wherein the permanent magnet or the DC electromagnetic coil is directly connected to both side surfaces of the AC electromagnetic coil, and the AC electromagnetic coil is fixed at an arbitrary position.
(4) A permanent magnet or a DC electromagnetic coil integrated with a coupler that connects the ground and the coil is arranged on both sides of the AC electromagnetic coil, and the AC electromagnetic coil is fixed at an arbitrary position. The stationary seismic source described in (2).
(5) a first coupler for connecting the ground and the coil, a first permanent magnet or a DC electromagnetic coil disposed on one side of the AC electromagnetic coil, and a second coupler for connecting the ground and the coil; A stationary earthquake source in which a second permanent magnet or a DC electromagnetic coil is disposed on the other side surface of the AC electromagnetic coil, the AC electromagnetic coil being fixed at an arbitrary position, and a first coupler and a second permanent magnet or DC The stationary seismic source according to (2), wherein the electromagnetic coil and the second coupler and the first permanent magnet or the direct current electromagnetic coil are connected in pairs.
(6) The stationary earthquake source according to any one of (1) to (5), wherein at least one of the DC electromagnetic coil and the AC electromagnetic coil is a superconducting magnetic coil.

本発明によれば、超電導電磁コイル等で発生する電磁力を用いることにより大出力の震動発生力を小型で損失が少なく、半永久的な寿命を持ち、しかも、任意の電流波形に比例した発生力、制御のし易さ、極めて低い周波数領域から高い周波数領域まで動作可能な精密制御定常震源を実現することができる。   According to the present invention, by using an electromagnetic force generated by a superconducting magnetic coil or the like, a large output vibration generating force is reduced in size, has little loss, has a semi-permanent life, and is generated in proportion to an arbitrary current waveform. Therefore, it is possible to realize a precise control stationary earthquake source that is easy to control and can operate from a very low frequency region to a high frequency region.

さらに請求項3、4の構成によれば、二つの直流超電導電磁コイルに直流電流を流して直流磁場を発生させ、その間に設置されている交流超電導電磁コイルに交流電流を流すことにより二つの直流超電導コイルと交流超電導電磁コイルとの間に交流電流に比例した反発力及び吸引力の電磁力が発生する。この電磁力Fは、磁場B中に流れる電流Iに比例(F∝BI)するため交流電流の周波数、電流波形及び電流値などに比例して発生することになり、すなわち、直流電磁コイルあるいは交流電磁コイルの任意の位置においてどちらか一方を固定することにより加振力が発生し、精密制御定常震源を創出することになる。   Furthermore, according to the configuration of claims 3 and 4, a direct current is passed through the two direct current superconducting magnetic coils to generate a direct current magnetic field, and an alternating current is passed through the alternating current superconducting magnetic coil installed between the two direct current superconducting magnetic coils. Between the superconducting coil and the AC superconducting magnetic coil, a repulsive force and an attractive electromagnetic force proportional to the AC current are generated. Since this electromagnetic force F is proportional to the current I flowing in the magnetic field B (F∝BI), it is generated in proportion to the frequency, current waveform, current value, etc. of the alternating current, that is, a direct current electromagnetic coil or an alternating current. An excitation force is generated by fixing one of the electromagnetic coils at an arbitrary position, and a precise controlled steady-state earthquake source is created.

本発明は、振動周波数の非常に低い領域から小型で大きな発生力を作り出すために超電導電磁コイル等を用いて遠心力に代えて電磁力を使うことを特徴とするもので、基本構造の一例は、図5に示すように二つの直流超電導電磁コイルとその中間に設置された交流超電導電磁コイルから成っている。超電導電磁コイルは、液体窒素温度以下に冷却、保冷されるためその周辺は、真空断熱層で囲まれている。二つの直流超電導電磁コイルは、直結されており、励磁後、超電導スイッチを短絡することにより永久電流モードで永久磁石とすることもできる。また、超電導電磁コイルに代えて、バルク超電導体を用いてピン止め型永久磁石を形成することも可能である。
二つの直流超電導電磁コイルは、互いに向き合う極性に励磁され、中間の交流超電導電磁コイルに交流電流を流すことにより、片側の直流超電導電磁コイルと吸引し、もう一方の直流超電導電磁コイルと反発し合うことにより交流波形及び周波数、電流値に応じた電磁力が発生する。
The present invention is characterized in that an electromagnetic force is used instead of a centrifugal force using a superconducting magnetic coil or the like in order to create a small and large generating force from a very low vibration frequency region, and an example of a basic structure is As shown in FIG. 5, it consists of two DC superconducting magnetic coils and an AC superconducting magnetic coil installed between them. Since the superconducting magnetic coil is cooled and kept below the liquid nitrogen temperature, its periphery is surrounded by a vacuum heat insulating layer. The two DC superconducting magnetic coils are directly connected, and after excitation, the superconducting switch can be short-circuited to form a permanent magnet in the permanent current mode. Moreover, it is also possible to form a pinned permanent magnet using a bulk superconductor instead of the superconducting magnetic coil.
The two DC superconducting magnet coils are excited to polarities facing each other, and by flowing an AC current through the intermediate AC superconducting magnet coil, they are attracted to one DC superconducting magnet coil and repel each other DC superconducting magnet coil As a result, an electromagnetic force corresponding to the AC waveform, frequency, and current value is generated.

一例として、超電導電磁コイルの直径300mm、内径150mm、二つの直流超電導コイルの幅30mm(巻き数:超電導線480回)、交流超電導電磁コイルの幅50mm(巻き数:超電導線800回)、各電磁コイル間30mmの構成では、電流200Aを流すことにより震動発生力5トンの非常に小型な精密定常震源が得られることになる。   As an example, the diameter of the superconducting magnetic coil is 300 mm, the inner diameter is 150 mm, the width of the two DC superconducting coils is 30 mm (the number of turns: 480 times of superconducting wire), the width of the AC superconducting magnetic coil is 50 mm (the number of turns: 800 times of superconducting wire), In the configuration of 30 mm between the coils, a very small precision steady-state source having a vibration generating force of 5 tons can be obtained by flowing a current of 200 A.

図6は、図5に示した精密制御定常震源の電源、冷凍機などを含めた全体の構成を示したものである。直流超電導電磁コイルの代わりに永久磁石を用いた場合には、冷却が必要ないためその部分の構造が簡単になる。しかし、現在、得られる希土類永久磁石のオープン表面磁場は0.5T程度であるため発生力5トンを得るためには磁束密度Bの二乗の関係からやや大型のシステムになる。   FIG. 6 shows the entire configuration including the power source, refrigerator, etc. of the precision controlled steady-state epicenter shown in FIG. When a permanent magnet is used in place of the DC superconducting magnetic coil, cooling is not necessary and the structure of the portion is simplified. However, at present, the open surface magnetic field of the obtained rare earth permanent magnet is about 0.5 T, and therefore, to obtain a generated force of 5 tons, the system becomes a rather large system due to the square relationship of the magnetic flux density B.

次に図7〜8に超電導電磁コイルを用いた精密制御定常震源の概念図を示す。
図7は、交流超電導電磁コイルの両側に地中とコイルとを連結するカプラーと一体となった直流電磁石を設け、中央の交流電磁石に変動電流を流して両側の電磁石との反発力でカプラーを介して地中に震動を与える反発型定常震源である。中央の超電導電磁コイルに流れる電流は、図9に示すようなバイアス電流となっており、常時カプラー1及びカプラー2には圧縮力が加わるようになっている。
なお図7において直流電磁石に代えて超電導電磁コイルあるいは永久磁石やバルク超電導体を用いた永久磁石を用いてもよい。またもう一つ超電導電磁コイルを用いて直流電流を流しバイアス磁場を加えることもできる。
Next, FIGS. 7 to 8 show conceptual diagrams of a precisely controlled stationary earthquake source using a superconducting magnetic coil.
7 shows a DC electromagnet integrated with a coupler that connects the ground and the coil on both sides of an AC superconducting magnetic coil, and a variable current is passed through the center AC electromagnet to cause the coupler to react with the electromagnets on both sides. It is a repulsive stationary source that gives ground motion through the ground. The current flowing through the superconducting magnetic coil in the center is a bias current as shown in FIG. 9, and a compressive force is always applied to the coupler 1 and the coupler 2.
In FIG. 7, a superconducting magnetic coil or a permanent magnet using a permanent magnet or a bulk superconductor may be used instead of the DC electromagnet. A bias magnetic field can also be applied by passing a direct current using another superconducting magnetic coil.

図8は、両側の直流電磁石と中央の超電導電磁コイルと常時吸引力で作用させて地中に震動を与える吸引型定常震源である。直流電磁石1とカプラー2及び直流電磁石2とカプラー1がそれぞれ対となり連結されていて、反発型と同様、カプラーには常に変動圧縮力が加わる。
この構造は、中央の交流超電導電磁コイルには両サイドから同等の反発力あるいは吸引力が働くため中央の超電導電磁コイルは地中に頑固に固定されていることになる。
このため小型で0〜数Hz程度の低周波領域でも大きな加振力を持つ定常震源が可能となる。
FIG. 8 shows a suction-type stationary seismic source that vibrates in the ground by acting on the DC electromagnets on both sides and the superconducting magnetic coil in the center with constant attraction. The direct current electromagnet 1 and the coupler 2 and the direct current electromagnet 2 and the coupler 1 are connected in pairs, and a variable compression force is always applied to the coupler as in the repulsion type.
In this structure, since the same repulsive force or attractive force is applied to the central AC superconducting magnetic coil from both sides, the central superconducting magnetic coil is firmly fixed in the ground.
For this reason, a stationary seismic source having a large excitation force even in a low frequency region of about 0 to several Hz becomes possible.

なお、上記の例は、あくまでも本発明の理解を容易にするためのものであり、本発明はこれに限定されるものではない。すなわち、本発明の技術思想に基づく変形、他の態様は、当然本発明に包含されるものである。
例えば二つの直流超電導電磁コイルとその中間に設置された交流超電導電磁コイルを有する定常震源を例示したが、一つの直流超電導電磁コイルと交流超電導電磁コイルの場合であってもよく、また直流電磁コイル及び交流電磁コイルは、一方あるいは両方が通常の(常電導)電磁コイルであってもよい。
Note that the above example is merely for facilitating understanding of the present invention, and the present invention is not limited to this. That is, modifications and other aspects based on the technical idea of the present invention are naturally included in the present invention.
For example, a stationary earthquake source having two DC superconducting magnet coils and an AC superconducting magnet coil installed between them is illustrated. However, a single DC superconducting magnet coil and an AC superconducting magnet coil may be used. In addition, one or both of the AC electromagnetic coils may be normal (normal conducting) electromagnetic coils.

実際に稼動している機械式軸受支持の20t級精密制御定常震源の構造Structure of 20t-class precision controlled steady-state epicenter with mechanical bearing support in operation 提案されている超電導磁気浮上支持による円筒型精密制御定常震源の概念図Conceptual diagram of a cylindrical precision controlled steady-state source with a proposed superconducting magnetic levitation support 回転走行車両荷重5kgにおける回転数に対する遠心力の計算値Calculated value of centrifugal force with respect to rotational speed at 5 kg of rotating vehicle load 5tの遠心力を得るために必要な3Hz以下の周波数をパラメータとした回転体重量と回転半径の関係Relationship between rotating body weight and rotating radius with frequency of 3Hz or less necessary for obtaining centrifugal force of 5t as parameter 本発明の超電導電磁コイルを用いたリニア型精密制御定常震源の概略図Schematic diagram of a linear precision controlled steady-state source using the superconducting magnetic coil of the present invention 本発明のリニア型精密制御定常震源の超電導体の冷却、真空断熱などを配置した構成図Configuration diagram of cooling, vacuum insulation, etc. for the superconductor of the linear precision controlled steady-state epicenter of the present invention 超電導電磁コイルを用いた反発型精密制御定常震源の概念図Conceptual diagram of repulsive precision controlled stationary seismic source using superconducting magnetic coil 超電導電磁コイルを用いた吸引型精密制御定常震源の概念図Conceptual diagram of a suction-type precision controlled stationary source using superconducting magnetic coils バイアス電流図Bias current diagram

Claims (6)

永久磁石又は直流電磁コイルと交流電磁コイルとを隣接して配置し、永久磁石又は直流電磁コイルと交流電磁コイルとの間の電磁力を利用した定常震源。   A stationary earthquake source in which a permanent magnet or a direct current electromagnetic coil and an alternating current electromagnetic coil are disposed adjacent to each other and electromagnetic force between the permanent magnet or the direct current electromagnetic coil and the alternating current electromagnetic coil is used. 永久磁石又は直流電磁コイルと交流電磁コイルとを隣接して配置し、永久磁石又は直流電磁コイルと交流電磁コイルのいずれか一方を任意の位置において固定することにより、永久磁石又は直流電磁コイルと交流電磁コイルとの間の電磁力に起因して発生する加振力を利用した定常震源。   A permanent magnet or a DC electromagnetic coil and an AC electromagnetic coil are arranged adjacent to each other, and either the permanent magnet or the DC electromagnetic coil or the AC electromagnetic coil is fixed at an arbitrary position, whereby the permanent magnet or the DC electromagnetic coil and the AC are exchanged. Stationary seismic source using excitation force generated due to electromagnetic force between electromagnetic coils. 永久磁石又は直流電磁コイルを、交流電磁コイルの両側面に直結して配置するとともに、交流電磁コイルを任意の位置において固定することを特徴とする請求項2に記載の定常震源。   The stationary earthquake source according to claim 2, wherein the permanent magnet or the direct current electromagnetic coil is directly connected to both side surfaces of the alternating current electromagnetic coil, and the alternating current electromagnetic coil is fixed at an arbitrary position. 地中とコイルとを連結するカプラーと一体となった永久磁石又は直流電磁コイルとを、交流電磁コイルの両側面に配置するとともに、交流電磁コイルを任意の位置において固定することを特徴とする請求項2に記載の定常震源。   A permanent magnet or a DC electromagnetic coil integrated with a coupler for connecting the ground and the coil is disposed on both sides of the AC electromagnetic coil, and the AC electromagnetic coil is fixed at an arbitrary position. The steady-state epicenter of Item 2. 地中とコイルとを連結する第1のカプラー及び第1の永久磁石又は直流電磁コイルを交流電磁コイルの一方の側面に配置し、地中とコイルとを連結する第2のカプラー及び第2の永久磁石又は直流電磁コイルを交流電磁コイルの他方の側面に配置した定常震源であって、交流電磁コイルを任意の位置において固定するとともに、第1のカプラーと第2の永久磁石又は直流電磁コイル、及び第2のカプラーと第1の永久磁石又は直流電磁コイルとがそれぞれ対となり連結されていることを特徴とする請求項2に記載の定常震源。   The first coupler and the first permanent magnet or DC electromagnetic coil for connecting the ground and the coil are arranged on one side surface of the AC electromagnetic coil, and the second coupler and the second for connecting the ground and the coil. A stationary earthquake source in which a permanent magnet or a DC electromagnetic coil is disposed on the other side surface of the AC electromagnetic coil, the AC electromagnetic coil being fixed at an arbitrary position, and a first coupler and a second permanent magnet or a DC electromagnetic coil, The stationary earthquake source according to claim 2, wherein the second coupler and the first permanent magnet or DC electromagnetic coil are connected in pairs. 上記直流電磁コイル及び交流電磁コイルの少なくともいずれか一方は、超電導電磁コイルであることを特徴とする請求項1乃至5のいずれか1項に記載の定常震源。   The stationary earthquake source according to any one of claims 1 to 5, wherein at least one of the DC electromagnetic coil and the AC electromagnetic coil is a superconducting magnetic coil.
JP2007178472A 2007-01-30 2007-07-06 Stationary earthquake source using electromagnetic coil Expired - Fee Related JP4984242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007178472A JP4984242B2 (en) 2007-01-30 2007-07-06 Stationary earthquake source using electromagnetic coil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007019207 2007-01-30
JP2007019207 2007-01-30
JP2007178472A JP4984242B2 (en) 2007-01-30 2007-07-06 Stationary earthquake source using electromagnetic coil

Publications (2)

Publication Number Publication Date
JP2008209391A true JP2008209391A (en) 2008-09-11
JP4984242B2 JP4984242B2 (en) 2012-07-25

Family

ID=39785795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178472A Expired - Fee Related JP4984242B2 (en) 2007-01-30 2007-07-06 Stationary earthquake source using electromagnetic coil

Country Status (1)

Country Link
JP (1) JP4984242B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075159A1 (en) * 2009-12-15 2011-06-23 Geokinetics Acquisition Company Magnetic mass - lift impulsive seismic energy source
JP2012088092A (en) * 2010-10-16 2012-05-10 Japanese Super-Conductivity Organization Co Ltd Vibration generating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573065A (en) * 1980-06-06 1982-01-08 Oyo Chishitsu Kk Exciting source for s wave detecting layer
JPH10180186A (en) * 1996-12-26 1998-07-07 Teikoku Tsushin Kogyo Co Ltd Vibration generator
JP2002159914A (en) * 2000-11-24 2002-06-04 Azden Corp Vibration generator
JP2002243864A (en) * 2001-02-20 2002-08-28 Oyo Corp Vibration source for sound-wave detection
JP2006254676A (en) * 2005-03-14 2006-09-21 Tdk Corp Actuator, and method and apparatus for manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573065A (en) * 1980-06-06 1982-01-08 Oyo Chishitsu Kk Exciting source for s wave detecting layer
JPH10180186A (en) * 1996-12-26 1998-07-07 Teikoku Tsushin Kogyo Co Ltd Vibration generator
JP2002159914A (en) * 2000-11-24 2002-06-04 Azden Corp Vibration generator
JP2002243864A (en) * 2001-02-20 2002-08-28 Oyo Corp Vibration source for sound-wave detection
JP2006254676A (en) * 2005-03-14 2006-09-21 Tdk Corp Actuator, and method and apparatus for manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075159A1 (en) * 2009-12-15 2011-06-23 Geokinetics Acquisition Company Magnetic mass - lift impulsive seismic energy source
JP2012088092A (en) * 2010-10-16 2012-05-10 Japanese Super-Conductivity Organization Co Ltd Vibration generating device

Also Published As

Publication number Publication date
JP4984242B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US20100126374A1 (en) Magnetostatic levitation and propulsion systems for moving objects
US7557480B2 (en) Communicating magnetic flux across a gap with a rotating body
EP2371613A1 (en) Magnetostatic levitation and propulsion systems for moving objects
KR101983921B1 (en) Magnetic damper for vibration absorbers
EP0875694B1 (en) Damper device and turbomolecular pump with damper device
JP2008537872A (en) Method for stabilizing a magnetically levitated object
Xu et al. A novel conical active magnetic bearing with claw structure
Tsai et al. Design and analysis of magnetically-drive actuator applied for linear compressor
KR20050025339A (en) Device to relieve thrust load in a rotor-bearing system using permanent magnets
Davey et al. Axial flux cycloidal magnetic gears
JP3057047B2 (en) Magnetic suspension
Lembke Design and analysis of a novel low loss homopolar electrodynamic bearing
KR100701550B1 (en) Bearingless step motor
Samanta et al. On the evolution of passive magnetic bearings
CN114198403B (en) Five-degree-of-freedom hybrid magnetic bearing
JP5504532B2 (en) High speed rotating device
KR100683472B1 (en) A disk-type generator rotating apparatus with magnets and the method of generating
JP4984242B2 (en) Stationary earthquake source using electromagnetic coil
Hasirci et al. Experimental performance investigation of a novel magnetic levitation system
RU2540696C1 (en) High-rate electrical machine with vertical shaft
Bekinal et al. Friction-free permanent magnet bearings for rotating shafts: A comprehensive review
Hillyard Magnetic bearings
JPH08296645A (en) Magnetic bearing device
CN102297202B (en) Single shaft controlled type five-degrees-of-freedom (DOF) miniature magnetic bearing
WO2019102059A1 (en) Apparatus and method for modular stabilization of hubless rotors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

R150 Certificate of patent or registration of utility model

Ref document number: 4984242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees