JP2008209243A - In-vehicle electronic device, in-vehicle physical quantity measuring instrument and thermal air flow meter - Google Patents

In-vehicle electronic device, in-vehicle physical quantity measuring instrument and thermal air flow meter Download PDF

Info

Publication number
JP2008209243A
JP2008209243A JP2007046369A JP2007046369A JP2008209243A JP 2008209243 A JP2008209243 A JP 2008209243A JP 2007046369 A JP2007046369 A JP 2007046369A JP 2007046369 A JP2007046369 A JP 2007046369A JP 2008209243 A JP2008209243 A JP 2008209243A
Authority
JP
Japan
Prior art keywords
physical quantity
copper
measurement
passage structure
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007046369A
Other languages
Japanese (ja)
Inventor
Rintaro Minamitani
林太郎 南谷
Junichi Sakai
潤一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007046369A priority Critical patent/JP2008209243A/en
Publication of JP2008209243A publication Critical patent/JP2008209243A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a physical quantity measuring instrument not corroded by a corrosive gas as air flow sensors, pressure sensors, temperature sensors, oxygen concentration sensors, or the like, placed in the intake pipe or exhaust pipe of an internal combustion engine is subjected to various kinds of corrosive gases. <P>SOLUTION: A copper-made mesh, honeycomb or porous substance for removing sulfur gas is employed as sensors including the temperature sensor, a flow rate measuring device, the pressure sensor, the oxygen concentration sensor, or the like, incorporated in the intake pipe and the exhaust pipe, whereby the corrosion of a wire consisting mainly of Ag can be prevented, marked improvements in reliability can be expected, and a low-cost and high corrosion-resistant product can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の流量,圧力,温度,酸素量を検出する装置に係わり、例えば内燃機関に吸入される空気量を計測する空気流量測定装置に関する。   The present invention relates to a device that detects the flow rate, pressure, temperature, and oxygen amount of an internal combustion engine, and relates to an air flow rate measurement device that measures the amount of air taken into the internal combustion engine, for example.

自動車などの内燃機関の吸気管や排気管には、内燃機関の運転を適正に制御するための流量センサ,圧力センサ,温度センサ,酸素濃度センサなど物理量を計測する装置が設置されている。これら物理量測定装置は、物理量を計測するためのセンサと、そのセンサを駆動するとともにセンサ信号を増幅して制御装置へ伝える駆動回路および入出力回路で構成されている。これら物理量測定センサは、高温,低音,湿度など過酷な環境条件下で使用されることを想定しており、駆動回路と入出力回路を樹脂などから成るケース部材、さらにケース部材上面をカバーで接着する封止構造となっている。接着材としてはシリコーン接着材が使用される場合が多い。駆動回路および入出力回路は、セラミック製回路基板とその上に実装された電子部品により構成されている。回路基板に使用している配線材料は、従来のAg−Pd導体から、回路基板の小型,低価格化のため純銀(Ag)、あるいは銀を主体とした銀パラジウム(Ag−Pt)導体を使用する例が多くなってきた。純
Ag,Ag−Pt導体は抵抗率が比較的小さいことから配線の微細化が可能で小型化に適している反面、従来のAg−Pd導体に比べて耐食性が低下する。自動車などの内燃機関に用いられる物理量測定装置の曝される環境は、硫黄ガス(S8 など)、硫黄酸化物ガス(SOx),硫化水素ガス(H2S ),窒素酸化物ガス(NOx),炭化水素ガス(HC),塩素ガス(Cl2 )が存在する。Ag導体は、このうちSOx,H2S 、特に硫黄ガスにより腐食する。Ag導体材料の上には、防食のためガラス被覆が施されるが、ガラスにはピンホールが存在するため、完全に防食することはできない。
In an intake pipe and an exhaust pipe of an internal combustion engine such as an automobile, devices for measuring physical quantities such as a flow sensor, a pressure sensor, a temperature sensor, and an oxygen concentration sensor for properly controlling the operation of the internal combustion engine are installed. These physical quantity measuring devices are composed of a sensor for measuring a physical quantity, a drive circuit that drives the sensor, amplifies the sensor signal, and transmits the sensor signal to a control device, and an input / output circuit. These physical quantity sensors are assumed to be used under severe environmental conditions such as high temperature, low sound, and humidity. The drive circuit and input / output circuit are bonded to the case member made of resin, etc., and the case member upper surface is bonded to the cover. It has a sealing structure. As the adhesive, a silicone adhesive is often used. The drive circuit and the input / output circuit are composed of a ceramic circuit board and electronic components mounted thereon. The wiring material used for the circuit board is pure silver (Ag) or silver palladium (Ag-Pt) conductor mainly composed of silver to reduce the size and cost of the circuit board from the conventional Ag-Pd conductor. There are many examples to do. Since pure Ag and Ag-Pt conductors have a relatively low resistivity, the wiring can be miniaturized and suitable for miniaturization, but the corrosion resistance is lower than that of conventional Ag-Pd conductors. Environments exposed to physical quantity measuring devices used in internal combustion engines such as automobiles are sulfur gas (S 8 etc.), sulfur oxide gas (SOx), hydrogen sulfide gas (H 2 S), nitrogen oxide gas (NOx). , Hydrocarbon gas (HC) and chlorine gas (Cl 2 ) exist. Among these, the Ag conductor is corroded by SOx, H 2 S, particularly sulfur gas. A glass coating is applied on the Ag conductor material to prevent corrosion. However, since glass has pinholes, it cannot be completely prevented from corrosion.

特開2001−12987号公報Japanese Patent Laid-Open No. 2001-12987 特開平6−22373号公報JP-A-6-22373

上記従来技術は、樹脂ケースを接着材で接合した封止構造としていたが、シリコーン接着材は、それ自体に気体を透過させる物理特性を有している。外部に腐食性ガスが存在すると、腐食性ガスがシリコーン接着剤を透過して、ケース内部に侵入する。導体材料の上には、防食のためガラス被覆が施されているが、ガラス被覆にはピンホールが存在する。このためケース内に進入した腐食性ガスにより、ガラス被覆のピンホールを介してAg配線材料は腐食する。Ag配線材料は、腐食の進行により断線する可能性があり、その信頼性に不安があった。   The above prior art has a sealing structure in which a resin case is bonded with an adhesive, but the silicone adhesive has physical properties that allow gas to permeate itself. When corrosive gas exists outside, the corrosive gas permeates the silicone adhesive and enters the case. A glass coating is applied on the conductor material for corrosion protection, but there is a pinhole in the glass coating. For this reason, the Ag wiring material corrodes through the glass-coated pinhole by the corrosive gas entering the case. The Ag wiring material may be disconnected due to the progress of corrosion, and there was anxiety about its reliability.

ところで空調器や空気清浄器では、四大悪臭(硫化水素,メルカプタン,アンモニア,アミン)を除去するために、酸化第一銅と固体酸を担持したセラミック質繊維ペーパのハニカムからなる脱臭フィルタが採用されている。空調器や空気清浄器では、外部からの吸入空気中の悪臭を除去することを対象にしているため、吸入口に脱臭フィルタを設けている。   By the way, in air conditioners and air purifiers, a deodorizing filter consisting of a ceramic fiber paper honeycomb carrying cuprous oxide and a solid acid is used to remove the four major odors (hydrogen sulfide, mercaptan, ammonia, and amine). Has been. Since air conditioners and air purifiers are intended to remove bad odors in the intake air from the outside, a deodorizing filter is provided at the intake port.

内燃機関の吸気管、あるいは排気管に設置される空気流量センサや圧力センサ,温度センサ,酸素濃度センサ類は、ゴムから放出される腐食性ガスに曝される。この腐食性ガスは、運転中では吸入空気に希釈されるため低濃度であるが、停止後は空気が滞留するため高濃度になる。したがって内燃機関の吸気管、あるいは排気管に設置される空気流量センサや圧力センサ,温度センサ,酸素濃度センサ類は、空調機や空気清浄器のように吸入管だけでなく、排気管からも拡散する硫黄ガスに曝されることになる。これが空調器や空気清浄器の構造と大きく異なる点であり、内燃機関のセンサ類で硫黄ガスによる腐食障害が発生する要因となる。   Air flow sensors, pressure sensors, temperature sensors, and oxygen concentration sensors installed in an intake pipe or exhaust pipe of an internal combustion engine are exposed to corrosive gas released from rubber. The corrosive gas has a low concentration because it is diluted with the intake air during operation, but becomes a high concentration because air stays after stopping. Therefore, air flow sensors, pressure sensors, temperature sensors, and oxygen concentration sensors installed in the intake pipe or exhaust pipe of an internal combustion engine diffuse not only from the intake pipe but also from the exhaust pipe as in air conditioners and air purifiers. Will be exposed to sulfur gas. This is a point that is greatly different from the structure of an air conditioner or an air purifier, and causes a corrosion failure due to sulfur gas in sensors of an internal combustion engine.

このように内燃機関の吸気管、あるいは排気管に設置される空気流量センサや圧力センサ,温度センサ,酸素濃度センサ類は、各種の腐食性ガスに曝されるので、この腐食性ガスにより腐食しない物理量測定装置を提供することが課題である。   As described above, the air flow rate sensor, pressure sensor, temperature sensor, and oxygen concentration sensor installed in the intake pipe or exhaust pipe of the internal combustion engine are exposed to various corrosive gases, and thus are not corroded by the corrosive gas. It is a problem to provide a physical quantity measuring device.

本発明は、被測定流体が流れる導管中に設置した流量測定管と、前記流量測定管内に外部から挿入した物理量測定通路構造と、前記物理量測定通路構造内に設置したセンサと駆動回路基板とからなる物理量測定装置および熱式空気流量計において、前記物理量測定管の被測定流体入口側と出口側に銅製のメッシュ(線材格子)またはハニカム体(板材格子)を設けたものである。これにより、Agを主体とする配線の腐食を防止でき、信頼性の大幅な向上が期待できる。   The present invention includes a flow rate measurement pipe installed in a conduit through which a fluid to be measured flows, a physical quantity measurement passage structure inserted from the outside into the flow measurement pipe, a sensor and a drive circuit board installed in the physical quantity measurement passage structure. In the physical quantity measuring device and the thermal air flow meter as described above, a copper mesh (wire grid) or a honeycomb body (plate grid) is provided on the measured fluid inlet side and outlet side of the physical quantity measuring tube. Thereby, corrosion of wiring mainly composed of Ag can be prevented, and a significant improvement in reliability can be expected.

また本発明は、被測定流体が流れる導管中に設置した流量測定管と、前記流量測定管内に外部から挿入した物理量測定通路構造と、前記物理量測定通路構造内に設置したセンサと駆動回路基板とからなる物理量測定装置および熱式空気流量計において、前記測定通路構造の被測定流体入口側と出口側に銅製のメッシュ(線材格子)またはハニカム体(板材格子)を設けたものである。
また本発明は、被測定流体が流れる導管中に設置した流量測定管と、前記流量測定管内に外部から挿入した物理量測定通路構造と、前記物理量測定通路構造内に設置したセンサと駆動回路基板とからなる物理量測定装置および熱式空気流量計において、前記流量測定通路構造の挿入部周りを銅製のメッシュ(線材格子)で覆ったものである。
The present invention also provides a flow rate measurement tube installed in a conduit through which a fluid to be measured flows, a physical quantity measurement passage structure inserted from the outside into the flow rate measurement tube, a sensor and a drive circuit board installed in the physical quantity measurement passage structure. In the physical quantity measuring device and the thermal air flow meter comprising the above, a copper mesh (wire lattice) or a honeycomb body (plate lattice) is provided on the measured fluid inlet side and outlet side of the measurement passage structure.
The present invention also provides a flow rate measurement tube installed in a conduit through which a fluid to be measured flows, a physical quantity measurement passage structure inserted from the outside into the flow rate measurement tube, a sensor and a drive circuit board installed in the physical quantity measurement passage structure. In the physical quantity measuring device and the thermal air flow meter, the periphery of the insertion portion of the flow rate measurement passage structure is covered with a copper mesh (wire lattice).

被測定流体入口側と出口側に銅製のメッシュ(線材格子)またはハニカム体(板材格子)または多孔質構造を設けることにより、硫黄ガス,硫黄系化合物ガスSOx,H2S などの腐食性ガスを除去できる。これにより、信頼性の高い物理量測定装置を提供できる。 By providing copper mesh (wire grid) or honeycomb body (plate grid) or porous structure on the inlet and outlet sides of the fluid to be measured, corrosive gas such as sulfur gas, sulfur compound gas SOx, H 2 S, etc. Can be removed. Thereby, a highly reliable physical quantity measuring device can be provided.

また予め硫黄ガス環境で銅表面を硫化させたメッシュ(線材格子)またはハニカム体
(板材格子)または多孔質構造、予めオイルを付着させた銅表面を硫化させたメッシュ
(線材格子)またはハニカム体(板材格子)または多孔質構造を用いることにより、さらに安定して硫黄ガス,硫黄系化合物ガスSOx,H2S などの腐食性ガスを除去できる。
In addition, a mesh (wire grid) or honeycomb body (sheet grid) or porous structure in which the copper surface is previously sulfided in a sulfur gas environment, a mesh (wire grid) or honeycomb body (sulfurized copper surface to which oil has been previously adhered) ( By using a plate lattice) or a porous structure, it is possible to more stably remove corrosive gases such as sulfur gas, sulfur compound gas SOx, and H 2 S.

従来の物理量測定管の入口側と出口側に銅製のメッシュ(線材格子),ハニカム体(板材格子)を設けるだけで、信頼性の改善が可能である。   Reliability can be improved by simply providing a copper mesh (wire lattice) and a honeycomb body (plate lattice) on the inlet and outlet sides of a conventional physical quantity measuring tube.

本発明の実施の形態を以下に説明し、本発明を更に具体的に明らかにすることとするが、本発明がそのような実施例の記載によって、何等の制約をも受けるものではない。   Embodiments of the present invention will be described below in order to clarify the present invention more specifically. However, the present invention is not limited by the description of such embodiments.

まず、図3に示す車載電子機器の代表的な断面構造及び、これら車載電子機器が曝される腐食環境を示した図4により、車載電子機器の構造及び使用環境と問題点を説明する。車載電子機器は大別するとセンサとコントロールユニットの燃料制御装置、及びイグナイタやコイルの点火制御装置に分けられる。センサは吸入空気流量,空気温度,大気圧,ブースト圧等の物理量を検出し、コントロールユニットは、センサの信号を受け、シリンダ内での燃焼状態を制御する機能であり、イグナイタやコイルはシリンダ内部の点火時期を制御する機能を担っている。これら、車載電子機器の構造において共通することは、それぞれの電子駆動回路1、あるいは電子制御回路を有し、この電子駆動回路1、あるいは電子制御回路を設置する金属製のベース2に接着固定され、前記電子駆動回路1、あるいは電子制御回路を格納するケース3をベース2に接着封止4し、更に上面をカバー5で接着封止6構造が多い。前記電子駆動回路1、あるいは電子制御回路はセラミック等の無機材により形成されたセラミック基板7の表面に回路の導体配線8と抵抗を印刷焼成することにより形成され、さらに表面にコンデンサ,ダイオード,半導体集積回路を実装した形態のハブリッドIC基板9が搭載される。またハイブリッドIC基板9からの放熱を促すため、ハイブリッドIC基板9はシリコーン接着剤で前記金属製ベース2に接着固定される。金属製ベース2は放熱のヒートシンクを担うため、熱伝導率の高い金属、特にアルミニウムが多く使用されている。ハイブリッドIC基板9を格納するケース3及び、上面を覆うカバー5は、電子駆動回路1の入出力信号インターフェースとなるコネクタと一体となった形状である。ケース3を形成する樹脂内部に電気的信号を伝達する導電性部材より成るターミナル11をインサート成形する構造が多く採用されている。ここで、吸入空気温度,吸入空気流量,ブースト圧力等の物理量を検出するセンサは、外部あるいはケース開口部にセンシングエレメント10が設置される構造をとり、電子駆動回路1とターミナル11を介して電気的に接続されている。   First, referring to FIG. 4 showing a typical cross-sectional structure of the in-vehicle electronic device shown in FIG. 3 and a corrosive environment to which these in-vehicle electronic devices are exposed, the structure, use environment and problems of the in-vehicle electronic device will be described. In-vehicle electronic devices are roughly classified into sensors, fuel control devices for control units, and ignition control devices for igniters and coils. The sensor detects physical quantities such as intake air flow rate, air temperature, atmospheric pressure, boost pressure, etc., and the control unit receives the sensor signal and controls the combustion state in the cylinder. The igniter and coil are inside the cylinder. It has a function to control the ignition timing. What is common in the structure of these in-vehicle electronic devices is that each has an electronic drive circuit 1 or an electronic control circuit, and is bonded and fixed to a metal base 2 on which the electronic drive circuit 1 or the electronic control circuit is installed. In many cases, the electronic drive circuit 1 or the case 3 for storing the electronic control circuit is bonded and sealed 4 to the base 2, and the upper surface is covered with a cover 5. The electronic drive circuit 1 or the electronic control circuit is formed by printing and firing circuit conductor wiring 8 and resistance on the surface of a ceramic substrate 7 formed of an inorganic material such as ceramic, and further on the surface a capacitor, diode, semiconductor A hybrid IC substrate 9 mounted with an integrated circuit is mounted. In order to promote heat dissipation from the hybrid IC substrate 9, the hybrid IC substrate 9 is bonded and fixed to the metal base 2 with a silicone adhesive. Since the metal base 2 serves as a heat sink for heat dissipation, a metal having a high thermal conductivity, particularly aluminum, is often used. The case 3 that stores the hybrid IC substrate 9 and the cover 5 that covers the upper surface have a shape integrated with a connector that is an input / output signal interface of the electronic drive circuit 1. A structure in which a terminal 11 made of a conductive member that transmits an electrical signal is inserted into the resin forming the case 3 is insert-molded. Here, the sensor for detecting the physical quantity such as the intake air temperature, the intake air flow rate, the boost pressure has a structure in which the sensing element 10 is installed outside or in the case opening, and is electrically connected via the electronic drive circuit 1 and the terminal 11. Connected.

ここで、前記した主に樹脂からなるケース3と主に金属からなるベース2は双方の線膨張係数が大きく異なるためシリコーン接着剤のような粘弾性を有する接着剤で接着封止4されることが多い。またケース3とカバー5は同一部材ならエポキシ接着剤、異なる部材ならシリコーン接着剤で封止される例が多い。この状態において、センサの出力特性等の調整を行った後、ケース3内部にハイブリッドIC基板9の保護膜としてシリコーンゲル22を注入し、ケース3上面にカバー5で覆いシリコーン接着剤,エポキシ接着剤等で接着封止6した構造となっている。   Here, the case 3 made mainly of resin and the base 2 made mainly of metal are adhesively sealed 4 with an adhesive having viscoelasticity such as a silicone adhesive because the linear expansion coefficients of both are greatly different. There are many. In many cases, the case 3 and the cover 5 are sealed with an epoxy adhesive if they are the same member, and a silicone adhesive if they are different members. In this state, after adjusting the output characteristics and the like of the sensor, silicone gel 22 is injected into the case 3 as a protective film of the hybrid IC substrate 9 and covered with the cover 5 on the upper surface of the case 3. It has a structure in which the adhesive seal 6 is used.

以上説明した車載電子機器の多くには構造部品と部品の接合には接着が多くの構造場所で採用され、シリコーン接着剤の使用が多いことが特徴である。しかしながら、シリコーン接着剤は、シリコーン樹脂特有の性質により不都合な面がある。車載電子機器が搭載される車両のエンジンルーム内部はエンジンからの燃焼ガスの吹き返しがあり、未燃焼ガスの戻しがあり、硫黄酸化物ガスSOx,窒素酸化物ガスNOx,ハイドロカーボンHCの滞留する雰囲気に曝される。またエンジンルーム内部はエンジン構成部品に多く配置されている硫黄を含むゴムダクト,ホース26等の製品らが群集した状態にあり、エンジン内部温度は一部の車載電子機器は100℃を超える状態にも達する。この状態にある際、ゴムダクトやホース26等の硫黄で加硫した製品群からは硫黄ガス,硫黄系化合物等の腐食性ガス14が放出される。場合によっては、前記した硫黄ガスに加えて燃焼ガスの吹き返し、未燃焼ガスの戻しガス、ハイドロカーボンが混在された複合ガス状態が形成される。したがってこれら腐食性ガスに対して抗力ある車載電子機器を製造しなければ、信頼性の低い製品となりうる可能性がある。これら車載電子機器において多くの電子駆動回路1のセラミック基板7上に形成される導体配線8は、Ag、あるいはAg合金により形成されている場合が多く、ケース3内部が腐食性ガス、特に硫黄ガス,硫黄系化合物等の腐食性ガス14が侵入した場合、導体配線8であるAg,Ag合金の導体配線部分は硫化が進行し、電子駆動回路1の導体配線8が最終的に断線し、電子駆動回路1が動作しない状態となる可能性がある。   Many of the on-vehicle electronic devices described above are characterized in that bonding is employed at many structural locations for bonding between structural components, and silicone adhesive is often used. However, silicone adhesives have disadvantages due to the unique properties of silicone resins. The atmosphere inside the engine room of the vehicle on which the in-vehicle electronic device is mounted is that the combustion gas from the engine blows back, the unburned gas returns, and the sulfur oxide gas SOx, the nitrogen oxide gas NOx, and the hydrocarbon HC stay. Exposed to. In addition, the interior of the engine room is in a state where products such as rubber ducts containing sulfur, hoses 26, and the like, which are often arranged in engine components, are gathered, and the internal temperature of the engine exceeds 100 ° C for some in-vehicle electronic devices. Reach. In this state, corrosive gases 14 such as sulfur gas and sulfur compounds are released from the product group vulcanized with sulfur such as the rubber duct and the hose 26. In some cases, a composite gas state is formed in which combustion gas is blown back, unburned gas return gas, and hydrocarbon are mixed in addition to the above-described sulfur gas. Therefore, unless an in-vehicle electronic device that is resistant to these corrosive gases is manufactured, there is a possibility that it can be a product with low reliability. In these in-vehicle electronic devices, the conductor wiring 8 formed on the ceramic substrate 7 of many electronic drive circuits 1 is often formed of Ag or an Ag alloy, and the inside of the case 3 is corrosive gas, particularly sulfur gas. When the corrosive gas 14 such as sulfur-based compound enters, the conductor wiring portion of the Ag, Ag alloy which is the conductor wiring 8 is sulfided, and the conductor wiring 8 of the electronic driving circuit 1 is finally disconnected, and the electron There is a possibility that the drive circuit 1 will not operate.

車載電子機器の多くに使用されているシリコーン接着剤は、ガス透過率が大きい。従って、前述したように車載電子機器が腐食ガスの環境下に曝された場合、シリコーン接着剤の接着封止部4より、硫黄ガス,硫黄系化合物等の腐食性ガス14が透過し、ケース3内部に侵入する。導体材料の上には、防食のためガラス被覆が施されるが、ガラスにはピンホールが存在するため、ケース内に進入した腐食性ガスによりガラス被覆のピンホールを介して、電子駆動回路1表面に形成されたAg、あるいはAg合金により形成された導体配線8が硫化腐食する問題点がある。   Silicone adhesives used in many in-vehicle electronic devices have a high gas permeability. Accordingly, as described above, when the in-vehicle electronic device is exposed to the environment of corrosive gas, the corrosive gas 14 such as sulfur gas or sulfur-based compound permeates from the adhesive sealing portion 4 of the silicone adhesive, and the case 3 Invade inside. A glass coating is applied on the conductor material for corrosion protection, but since there is a pinhole in the glass, the electronic driving circuit 1 passes through the glass-coated pinhole by the corrosive gas that has entered the case. There is a problem that the conductor wiring 8 formed of Ag or Ag alloy formed on the surface is corroded by sulfide.

本発明による車載電子機器の耐硫化構造は、電子駆動回路1表面に形成されたAg、あるいはAg合金により形成された導体配線の周りに硫黄ガスと反応性の高い銅製のメッシュ,多孔質構造を設けて、腐食性ガスからAg、あるいはAg合金により形成された導体配線を遮断することができる。   The in-vehicle electronic device according to the present invention has an anti-sulfurization structure in which a copper mesh and porous structure highly reactive with sulfur gas are formed around a conductor wiring formed of Ag or an Ag alloy formed on the surface of the electronic drive circuit 1. The conductor wiring formed by Ag or Ag alloy can be cut off from the corrosive gas.

以下、本発明によるAg、あるいはAg合金により形成された導体配線の腐食を抑制するための銅製のメッシュ(線材格子)またはハニカム体(板材格子)または多孔質構造について説明する。   Hereinafter, a copper mesh (wire lattice), a honeycomb body (plate lattice) or a porous structure for suppressing corrosion of conductor wiring formed of Ag or an Ag alloy according to the present invention will be described.

車載電子機器は多数に及び、ここで全てに渡り説明することは困難なので、車載電子機器を代表して、図1に示す吸入空気流量を測定する熱式流量計を代表例として断面構造、及び本発明の実施例を説明する。図2は本発明の熱式流量計の構造を示す構造図である。   Since there are a large number of in-vehicle electronic devices and it is difficult to explain them all here, the cross-sectional structure represented by the thermal flow meter for measuring the intake air flow shown in FIG. Examples of the present invention will be described. FIG. 2 is a structural diagram showing the structure of the thermal flow meter of the present invention.

熱式流量計は、近年急速に市場で普及している吸入空気を計測するセンサである。発熱抵抗体15及び感温抵抗体16を用いた熱式流量計17の発熱抵抗体15は、空気温度を計測する感温抵抗体16と常に一定の温度差に保たれるように定温度制御回路18により定温度制御され、常時加熱されている。発熱抵抗体15は空気流の中に設置されるため空気流に放熱する発熱抵抗体15の表面部分が放熱面、つまり熱伝達面となる。この熱伝達で該空気流に奪われた熱量を電気的信号に変換し空気流量を計測するものである。その全体的な構成は吸入空気を導入しつつ、熱式流量計17を保持するボディ19において、全流量の一部が流入する副通路20に発熱抵抗体15,感温抵抗体16,吸気温度センサ
21が配置されている。これら抵抗体素子と定温度制御回路18はケースに埋設された導電性部材によるターミナル11を介し電気的信号の伝達を行う構造となっている。上記した熱式流量計17は、パワートランジスタ等のパワーデバイスの自己発熱を放散するためのベースが構造上の基体となる。このベースは熱伝導率の高い金属材料、例えばアルミニウムが使用されることが多い。このベース2表面にセラミック基板表面に導体配線や抵抗を印刷で形成し、更に半導体集積回路,コンデンサ,ダイオード等を実装したハイブリッドIC基板をシリコーン接着剤で接着する。更にハイブリッドIC基板を格納する基体としてかつ、センサ信号を外部に伝達する、あるいは外部より回路駆動電源を供給するインターフェース部であるコネクタを同時に形成したケース3をベース2上にシリコーン接着剤で接着封止4する。この状態において、センサの出力特性等の調整を行った後、ケース内部にハイブリッドIC基板の保護膜としてシリコーンゲルを注入し、ケース上面にカバーで覆いシリコーン接着剤,エポキシ接着剤等で封止した構造となっている。
The thermal flow meter is a sensor that measures intake air that has been rapidly spread in the market in recent years. The heating resistor 15 of the thermal flow meter 17 using the heating resistor 15 and the temperature sensitive resistor 16 is controlled at a constant temperature so as to be always kept at a constant temperature difference from the temperature sensitive resistor 16 for measuring the air temperature. The circuit 18 is controlled at a constant temperature and is constantly heated. Since the heat generating resistor 15 is installed in the air flow, the surface portion of the heat generating resistor 15 that radiates heat to the air flow becomes a heat radiating surface, that is, a heat transfer surface. The amount of heat lost to the air flow by this heat transfer is converted into an electrical signal to measure the air flow rate. The overall configuration of the body 19 that holds the thermal flow meter 17 while introducing the intake air is the heating resistor 15, the temperature sensitive resistor 16, the intake air temperature in the sub-passage 20 into which a part of the total flow rate flows. A sensor 21 is arranged. The resistor element and the constant temperature control circuit 18 have a structure for transmitting an electrical signal through the terminal 11 by a conductive member embedded in the case. In the thermal flow meter 17 described above, a base for diffusing self-heating of a power device such as a power transistor serves as a structural base. This base is often made of a metal material having high thermal conductivity, such as aluminum. A conductor wiring and a resistor are formed on the surface of the base 2 by printing on the surface of the ceramic substrate, and a hybrid IC substrate on which a semiconductor integrated circuit, a capacitor, a diode and the like are mounted is bonded with a silicone adhesive. Further, a case 3 in which a connector as an interface part for storing a hybrid IC substrate and transmitting a sensor signal to the outside or supplying a circuit driving power from the outside is formed on the base 2 with a silicone adhesive. Stop 4 In this state, after adjusting the output characteristics of the sensor, silicone gel was injected into the case as a protective film for the hybrid IC substrate, covered with a cover on the upper surface of the case, and sealed with silicone adhesive, epoxy adhesive, etc. It has a structure.

ここで、前述したように、多くの部材と部材の接着に採用されているシリコーン接着剤はガス透過性が高く、腐食環境下にある場合、接着封止部より、ケース内部に透過して、ハイブリッドIC基板の実装部品や、導体配線を腐食させ、最終的に断線障害に至る。排気ガスであるSOx,NOx,H2S に加えて、空気流量計を保持するボディ19の上下流側に設置される吸気管や排気管で使用されているゴムから放出される硫黄ガスが腐食要因となる。空気流量計のAg導体配線がこれらの腐食ガスと接触させなければ、Ag導体配線の腐食を防止できる。そこで、ゴムダクトと接続されている空気流量計を保持するボディ19の上下流端面に、硫黄ガスと反応性の高い銅製のメッシュ50a,50bを設けることにより、耐腐食信頼性が高い、熱式流量計17を含む車載電子機器を製造出来うることを可能にする。銅製のメッシュが腐食することにより、拡散してきた腐食性ガスを銅製のメッシュで捕獲する。これによりAg配線は腐食ガスと接触しないため腐食を防止できる。同時にメッシュ設置は、空気流の整流効果があり、空気流量の測定精度の向上に寄与する。 Here, as described above, the silicone adhesive employed for bonding many members to each other has a high gas permeability, and when in a corrosive environment, the adhesive seal portion permeates the inside of the case, The components mounted on the hybrid IC substrate and the conductor wiring are corroded, and eventually a disconnection failure is caused. In addition to SOx, NOx, and H 2 S, which are exhaust gases, sulfur gas released from rubber used in intake pipes and exhaust pipes installed upstream and downstream of the body 19 that holds the air flow meter corrodes. It becomes a factor. If the Ag conductor wiring of the air flow meter is not brought into contact with these corrosive gases, corrosion of the Ag conductor wiring can be prevented. Therefore, by providing copper meshes 50a and 50b that are highly reactive with sulfur gas on the upstream and downstream end surfaces of the body 19 that holds the air flow meter connected to the rubber duct, a thermal flow rate that has high corrosion resistance reliability. This makes it possible to manufacture in-vehicle electronic devices including the total 17. When the copper mesh is corroded, the corrosive gas that has diffused is captured by the copper mesh. Thereby, since Ag wiring does not contact with corrosive gas, corrosion can be prevented. At the same time, the mesh installation has the effect of rectifying the air flow and contributes to improving the measurement accuracy of the air flow rate.

発明者らは、銅製のメッシュ50を硫黄源と銀の間に設置することで、銀の腐食量を著しく低減できることを見出した。銅は、銀と同様に硫黄ガス環境で腐食し易い金属であり、腐食性ガスを吸収するのに充分な面積の銅製のメッシュを設ける。   The inventors have found that the amount of corrosion of silver can be remarkably reduced by installing a copper mesh 50 between the sulfur source and silver. Copper, like silver, is a metal that is easily corroded in a sulfur gas environment, and a copper mesh having an area sufficient to absorb corrosive gas is provided.

さらに、銅の表面に予め硫化物を形成させることにより、安定して硫黄ガスを捕獲できることを見出した。自動車で想定される高湿度環境で銅は、酸化と硫化を比較すると酸化が優先する。これは、Cu2S の標準生成エネルギ(ΔGf゜=−86.20kJ/mol)に比べてCuO(ΔGf゜=−128.12kJ/mol)またはCu2O の標準生成エネルギは低い値をとるためである。一度、銅表面に酸化銅が形成されると、酸化銅は緻密で安定であり硫黄ガスが酸化皮膜中を拡散し難いため、硫化速度が低下する。そこで、予め硫化物を形成させて酸化物の生成を抑制することが有効となる。また銅表面に酸化銅を形成することも、酸化膜の生成を抑制することに有効である。 Furthermore, it has been found that sulfur gas can be stably captured by previously forming sulfide on the surface of copper. In a high-humidity environment assumed for automobiles, oxidation is prioritized when copper is compared with oxidation. This is because the standard production energy of CuO (ΔGf ° = −128.12 kJ / mol) or Cu 2 O is lower than the standard production energy of Cu 2 S (ΔGf ° = −86.20 kJ / mol). It is. Once copper oxide is formed on the copper surface, the copper oxide is dense and stable, and the sulfur gas hardly diffuses in the oxide film, so the sulfidation rate decreases. Therefore, it is effective to suppress the formation of oxides by previously forming sulfides. Moreover, forming copper oxide on the copper surface is also effective in suppressing the formation of an oxide film.

さらに、銅の表面に予めオイルを付着させることにより、安定して硫黄ガスをトラップできることを見出した。銅表面のオイル層は、自動車で想定される高湿度環境で水の浸入を抑制し、一方オイルに対して溶解性の硫黄ガスの進入を容易にする。そのため、銅の表面に予めオイルを付着させることは、銅の酸化抑制効果、銅の硫化促進効果がある。   Furthermore, it has been found that sulfur gas can be stably trapped by preliminarily attaching oil to the copper surface. The oil layer on the copper surface suppresses the ingress of water in a high humidity environment assumed in automobiles, while facilitating the entry of sulfur gas that is soluble in oil. Therefore, attaching oil to the surface of copper in advance has an effect of suppressing oxidation of copper and an effect of promoting sulfurization of copper.

本発明の別の実施例を説明する。図5に本発明の熱式流量計の断面構造、及び図6は本発明の熱式空気流量計の構造を示す構造図である。この実施例では、銅製のメッシュ50を空気流量計副通路20の入口,出口に設けている。上記発明では、ゴムダクト26と接続されている空気流量計を保持するボディ19の上下流端面に、硫黄ガスと反応性の高い銅製のメッシュ50を設けている。ゴムから放出されて副通路内に拡散する以外の硫黄ガスまでを銅製のメッシュで捕獲しているため、硫黄ガスの捕獲効率が低い場合がある。これに対して、本実施例では、Ag導体配線の腐食障害に関与する副通路内に拡散する硫黄ガスのみを捕獲するため、硫黄ガスを効率よく捕獲することができる。この実施例と同様に硫黄ガスを効率よく捕獲するため、図7の断面構造、図8の熱式空気流量計の構造に示すように、熱式流量計17全体を銅製のメッシュで覆うのもよい。   Another embodiment of the present invention will be described. FIG. 5 is a cross-sectional structure of the thermal flow meter of the present invention, and FIG. 6 is a structural diagram showing the structure of the thermal air flow meter of the present invention. In this embodiment, a copper mesh 50 is provided at the inlet and outlet of the air flow meter sub-passage 20. In the said invention, the copper mesh 50 highly reactive with sulfur gas is provided in the upstream and downstream end surface of the body 19 holding the air flowmeter connected with the rubber duct 26. Since sulfur gas other than that released from rubber and diffusing into the sub-passage is captured by the copper mesh, the sulfur gas capture efficiency may be low. On the other hand, in the present embodiment, only the sulfur gas that diffuses into the sub-passage involved in the corrosion failure of the Ag conductor wiring is captured, so that the sulfur gas can be captured efficiently. In order to efficiently capture sulfur gas as in this embodiment, the entire thermal flow meter 17 is covered with a copper mesh as shown in the cross-sectional structure of FIG. 7 and the structure of the thermal air flow meter of FIG. Good.

上記発明では、銅製のメッシュについて記載した。腐食性ガスを吸収するのに充分な面積を確保するため複数のメッシュ積層してもよい。また、表面積の大きいハニカム体を用いてもよい。さらに銅製のメッシュやハニカム体をエッチングなどにより表面積を拡大させた構造も有効である。   In the said invention, it described about the mesh made from copper. A plurality of meshes may be laminated in order to secure a sufficient area for absorbing the corrosive gas. A honeycomb body having a large surface area may be used. Furthermore, a structure in which the surface area of a copper mesh or honeycomb body is expanded by etching or the like is also effective.

この吸気管、および排気管に搭載される温度センサ,流量測定装置,圧力センサ,酸素濃度センサなどの各種センサ類に本発明の硫黄ガスを除去する銅製のメッシュ,ハニカム体,多孔質体を採用することにより、低価格で耐食性の高い製品とすることができる。   Copper mesh, honeycomb body, and porous body for removing sulfur gas of the present invention are used for various sensors such as temperature sensor, flow rate measuring device, pressure sensor, oxygen concentration sensor, etc. mounted on the intake pipe and exhaust pipe. By doing so, it is possible to obtain a low price and high corrosion resistance product.

内燃機関の吸気管,排気管に取付けられる物理量測定装置以外にも、EGRガスの流量を検出する流量センサや圧力センサ,温度センサにも適用できる。   In addition to a physical quantity measuring device attached to an intake pipe and an exhaust pipe of an internal combustion engine, the present invention can be applied to a flow rate sensor, a pressure sensor, and a temperature sensor that detect the flow rate of EGR gas.

本発明による流量測定装置を示す断面図(実施例1)。Sectional drawing which shows the flow volume measuring apparatus by this invention (Example 1). 本発明による流量測定装置を示す構造図(実施例1)。FIG. 1 is a structural diagram showing a flow rate measuring device according to the present invention (Example 1). 車載電子装置の代表的な断面構造。A typical cross-sectional structure of an in-vehicle electronic device. 車載電子装置の曝される腐食環境。Corrosive environment to which on-vehicle electronic devices are exposed. 本発明による流量測定装置を示す断面図(実施例2)。Sectional drawing which shows the flow volume measuring apparatus by this invention (Example 2). 本発明による流量測定装置を示す構造図(実施例2)。FIG. 6 is a structural diagram showing a flow rate measuring device according to the present invention (Example 2). 本発明による流量測定装置を示す断面図(実施例2)。Sectional drawing which shows the flow volume measuring apparatus by this invention (Example 2). 本発明による流量測定装置を示す構造図(実施例2)。FIG. 6 is a structural diagram showing a flow rate measuring device according to the present invention (Example 2).

符号の説明Explanation of symbols

1 電子駆動回路
2 ベース
3 ケース
4 ベースとケースの接着封止部
5 カバー
6 カバーとケースの接着封止部
7 セラミック基板
8 導体配線
9 ハイブリッドIC基板
10 センシングエレメント
11 ターミナル
12 ボンディングワイヤ
13 燃焼ガス,未燃焼ガス,ハイドロカーボン等のNOx,HCの腐食性ガス
14 硫黄ガス,硫黄系化合物等の腐食性ガス
15 発熱抵抗体
16 感温抵抗体
17 熱式流量計
18 定温度制御回路
19 ボディ
20 副通路
21 吸気温度センサ
22 シリコーンゲル
26 ゴムダクト,ホース
50 銅製メッシュ(線材格子)またはハニカム体(板材格子)
DESCRIPTION OF SYMBOLS 1 Electronic drive circuit 2 Base 3 Case 4 Bonding sealing part 5 of base and case Cover 6 Bonding sealing part of cover and case 7 Ceramic substrate 8 Conductor wiring 9 Hybrid IC substrate 10 Sensing element 11 Terminal 12 Bonding wire 13 Combustion gas, NOx such as unburned gas and hydrocarbon, corrosive gas of HC 14 Corrosive gas such as sulfur gas and sulfur compounds 15 Heating resistor 16 Temperature sensitive resistor 17 Thermal flow meter 18 Constant temperature control circuit 19 Body 20 Sub Passage 21 Intake air temperature sensor 22 Silicone gel 26 Rubber duct, hose 50 Copper mesh (wire grid) or honeycomb (plate grid)

Claims (14)

電子回路が形成された電子部品と、前記電子部品を内蔵するケースと、前記ケース内に前記電子部品を配置し、前記ケースの開放面を覆うカバーを有する車載電子装置において、
電子部品の周りを銅製のメッシュまたはハニカム体で覆うことを特徴とする車載電子装置。
In an in-vehicle electronic device having an electronic component in which an electronic circuit is formed, a case incorporating the electronic component, a cover that covers the open surface of the case, the electronic component is disposed in the case,
An in-vehicle electronic device characterized in that an electronic component is covered with a copper mesh or a honeycomb body.
請求項1の車載電子装置において、
電子部品の周りを、予め銅表面に硫化皮膜が形成されたメッシュまたはハニカム体で覆うことを特徴とする車載電子装置。
The in-vehicle electronic device according to claim 1,
An in-vehicle electronic device characterized in that an electronic component is covered with a mesh or honeycomb body in which a sulfide film is previously formed on a copper surface.
請求項1の車載電子装置において、
電子部品の周りを、予め銅表面にオイル層が形成されたメッシュまたはハニカム体で覆うことを特徴とする車載電子装置。
The in-vehicle electronic device according to claim 1,
An in-vehicle electronic device characterized in that an electronic component is covered with a mesh or honeycomb body in which an oil layer is previously formed on a copper surface.
被測定流体が流れる導管中に設置した測定管と、前記測定管内に外部から挿入した物理量測定通路構造と、前記物理量測定通路構造内に設置したセンサと駆動回路基板からなる物理量測定計において、
前記流量測定通路構造の挿入部周りを銅製のメッシュまたはハニカム体で覆うことを特徴とする物理量測定計。
In a physical quantity measuring instrument comprising a measuring pipe installed in a conduit through which a fluid to be measured flows, a physical quantity measuring passage structure inserted from the outside into the measuring pipe, a sensor and a drive circuit board installed in the physical quantity measuring passage structure,
A physical quantity measuring instrument characterized by covering the periphery of the insertion portion of the flow rate measuring passage structure with a copper mesh or a honeycomb body.
被測定流体が流れる導管中に設置した測定管と、前記測定管内に設置した物理量測定通路構造と、前記物理量測定通路構造内に設置したセンサとセンサ駆動回路基板からなる物理量測定計において、
前記測定管の被測定流体入口側面または出口側面に銅製のメッシュまたはハニカム体を設けたことを特徴とする物理量測定計。
In a physical quantity meter comprising a measurement pipe installed in a conduit through which a fluid to be measured flows, a physical quantity measurement passage structure installed in the measurement pipe, a sensor and a sensor drive circuit board installed in the physical quantity measurement passage structure,
A physical quantity measuring instrument, wherein a copper mesh or a honeycomb body is provided on an inlet side surface or an outlet side surface of a fluid to be measured of the measuring tube.
被測定流体が流れる導管中に設置した測定管と、前記測定管内に設置した物理量測定通路構造と、前記物理量測定通路構造内に設置したセンサとセンサ駆動回路基板からなる物理量測定計において、
前記測定通路構造の被測定流体入口側または出口側に銅製のメッシュまたはハニカム体を設けたことを特徴とする物理量測定計。
In a physical quantity meter comprising a measurement pipe installed in a conduit through which a fluid to be measured flows, a physical quantity measurement passage structure installed in the measurement pipe, a sensor and a sensor drive circuit board installed in the physical quantity measurement passage structure,
A physical quantity measuring instrument comprising a copper mesh or a honeycomb body provided on the measured fluid inlet side or outlet side of the measurement passage structure.
請求項4〜6のいずれかの物理量測定計において、
前記銅は、予め銅表面に硫化皮膜が形成された銅であることを特徴とする物理量測定計。
In the physical-quantity measuring instrument in any one of Claims 4-6,
The said copper is a copper by which the sulfide film was previously formed on the copper surface, The physical quantity meter characterized by the above-mentioned.
請求項4〜6のいずれかの物理量測定計において、
前記銅は、予め銅表面にオイル層が形成された銅であることを特徴とする物理量測定計。
In the physical-quantity measuring instrument in any one of Claims 4-6,
The said copper is a copper with the oil layer previously formed in the copper surface, The physical quantity meter characterized by the above-mentioned.
被測定流体が流れる導管中に設置した測定管と、前記測定管内に外部から挿入した流量測定通路構造と、前記流量測定通路構造内に設置した発熱抵抗体と感温抵抗体、および前記発熱抵抗体と感温抵抗体を制御する電子回路を有してなる吸入空気流量を計測する熱式流量計において、
空気流量計の周りを銅製メッシュまたはハニカム体で覆うことを特徴とする熱式空気流量計。
A measurement tube installed in a conduit through which a fluid to be measured flows, a flow measurement passage structure inserted from the outside into the measurement tube, a heating resistor and a temperature sensing resistor installed in the flow measurement passage structure, and the heating resistor In a thermal flow meter that measures the intake air flow rate, which has an electronic circuit that controls the body and the temperature sensitive resistor,
A thermal air flow meter characterized in that the air flow meter is covered with a copper mesh or a honeycomb body.
被測定流体が流れる導管中に設置した測定管と、前記測定管内に外部から挿入した流量測定通路構造と、前記流量測定通路構造内に設置した発熱抵抗体と感温抵抗体、および前記発熱抵抗体と感温抵抗体を制御する電子回路を有してなる吸入空気流量を計測する熱式流量計において、
前記流量測定管の被測定流体入口側または出口側に銅製のメッシュまたはハニカム体を設けたことを特徴とする熱式空気流量計。
A measurement tube installed in a conduit through which a fluid to be measured flows, a flow measurement passage structure inserted from the outside into the measurement tube, a heating resistor and a temperature sensing resistor installed in the flow measurement passage structure, and the heating resistor In a thermal flow meter that measures the intake air flow rate, which has an electronic circuit that controls the body and the temperature sensitive resistor,
A thermal air flow meter characterized in that a copper mesh or a honeycomb body is provided on the measured fluid inlet side or outlet side of the flow rate measuring tube.
被測定流体が流れる導管中に設置した測定管と、前記測定管内に外部から挿入した流量測定通路構造と、前記流量測定通路構造内に設置した発熱抵抗体と感温抵抗体、および前記発熱抵抗体と感温抵抗体を制御する電子回路を有してなる吸入空気流量を計測する熱式流量計において、
前記測定通路構造の被測定流体入口側または出口側に銅製のメッシュまたはハニカム体を設けたことを特徴とする熱式空気流量計。
A measurement tube installed in a conduit through which a fluid to be measured flows, a flow measurement passage structure inserted from the outside into the measurement tube, a heating resistor and a temperature sensing resistor installed in the flow measurement passage structure, and the heating resistor In a thermal flow meter that measures the intake air flow rate, which has an electronic circuit that controls the body and the temperature sensitive resistor,
A thermal air flow meter characterized in that a copper mesh or a honeycomb body is provided on the measured fluid inlet side or outlet side of the measurement passage structure.
請求項9〜11のいずれかの熱式空気流量計において、
前記銅は、予め銅表面に硫化皮膜が形成された銅であることを特徴とする熱式空気流量計。
The thermal air flow meter according to any one of claims 9 to 11,
The said copper is copper by which the sulfide film was previously formed on the copper surface, The thermal type air flowmeter characterized by the above-mentioned.
請求項9〜11のいずれかの熱式空気流量計において、
前記銅は、予め銅表面にオイル層が形成された銅であることを特徴とする熱式空気流量計。
The thermal air flow meter according to any one of claims 9 to 11,
The said copper is copper by which the oil layer was previously formed on the copper surface, The thermal type air flowmeter characterized by the above-mentioned.
被測定流体が流れる導管中に設置された測定管と、前記測定管内に設置され前記被測定流体が流れる通路を有する物理量測定通路構造と、前記物理量測定通路構造内の通路に設置したセンサと、AgまたはAg合金の導体配線を有して前記センサを制御する電子部品とを備えた物理量測定計において、
前記測定管の前記被測定流体入口あるいは出口、または前記物理量測定通路構造の前記被測定流体入口あるいは出口のいずれかに、銅製の部材を設けたことを特徴とする物理量測定計。
A measurement pipe installed in a conduit through which the fluid to be measured flows, a physical quantity measurement passage structure installed in the measurement pipe and having a passage through which the fluid to be measured flows, and a sensor installed in a passage in the physical quantity measurement passage structure; In a physical quantity measuring instrument comprising a conductor wiring of Ag or an Ag alloy and an electronic component that controls the sensor,
A physical quantity measuring instrument comprising a copper member provided at either the measured fluid inlet or outlet of the measuring pipe or the measured fluid inlet or outlet of the physical quantity measuring passage structure.
JP2007046369A 2007-02-27 2007-02-27 In-vehicle electronic device, in-vehicle physical quantity measuring instrument and thermal air flow meter Pending JP2008209243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046369A JP2008209243A (en) 2007-02-27 2007-02-27 In-vehicle electronic device, in-vehicle physical quantity measuring instrument and thermal air flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046369A JP2008209243A (en) 2007-02-27 2007-02-27 In-vehicle electronic device, in-vehicle physical quantity measuring instrument and thermal air flow meter

Publications (1)

Publication Number Publication Date
JP2008209243A true JP2008209243A (en) 2008-09-11

Family

ID=39785673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046369A Pending JP2008209243A (en) 2007-02-27 2007-02-27 In-vehicle electronic device, in-vehicle physical quantity measuring instrument and thermal air flow meter

Country Status (1)

Country Link
JP (1) JP2008209243A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994537B1 (en) 2010-06-28 2010-11-15 금양산업(주) A thermal type flow sensing system for sensing amount of piston cooling oil of diesel engine for a ship
JP2013057543A (en) * 2011-09-07 2013-03-28 Denso Corp Air flow measurement device
US9541437B2 (en) 2012-06-15 2017-01-10 Hitachi Automotive Systems, Ltd. Thermal flow meter with a circuit package having an air flow measurement circuit for measuring an air flow
US9733113B2 (en) 2012-06-15 2017-08-15 Hitachi Automotive Systems, Ltd. Thermal flow meter including a protrusion protruding from a circuit package body and a temperature detection element buried in the protrusion
WO2020145032A1 (en) * 2019-01-09 2020-07-16 日立オートモティブシステムズ株式会社 Physical quantity measurement device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994537B1 (en) 2010-06-28 2010-11-15 금양산업(주) A thermal type flow sensing system for sensing amount of piston cooling oil of diesel engine for a ship
WO2012002639A1 (en) * 2010-06-28 2012-01-05 금양산업(주) Thermal type flow sensing system for sensing flow rate of piston cooling oil of combustion engine for ship
JP2013057543A (en) * 2011-09-07 2013-03-28 Denso Corp Air flow measurement device
US9541437B2 (en) 2012-06-15 2017-01-10 Hitachi Automotive Systems, Ltd. Thermal flow meter with a circuit package having an air flow measurement circuit for measuring an air flow
US9733113B2 (en) 2012-06-15 2017-08-15 Hitachi Automotive Systems, Ltd. Thermal flow meter including a protrusion protruding from a circuit package body and a temperature detection element buried in the protrusion
US10345128B2 (en) 2012-06-15 2019-07-09 Hitachi Automotive Systems, Ltd. Thermal flow meter with a case having an external terminal for outputting an electric signal
DE112013002992B4 (en) 2012-06-15 2021-09-30 Hitachi Automotive Systems, Ltd. Thermal flow meter
WO2020145032A1 (en) * 2019-01-09 2020-07-16 日立オートモティブシステムズ株式会社 Physical quantity measurement device
JP2020112379A (en) * 2019-01-09 2020-07-27 日立オートモティブシステムズ株式会社 Physical quantity measuring device
JP7218183B2 (en) 2019-01-09 2023-02-06 日立Astemo株式会社 Physical quantity measuring device

Similar Documents

Publication Publication Date Title
JP5178388B2 (en) Air flow measurement device
US9606010B2 (en) Device for measuring a pressure and a temperature of a fluid medium flowing in a duct
US8215160B2 (en) Sensor structure
CN102607738B (en) Intake temperature sensor
US6752015B2 (en) Fluid flow device having reduced fluid ingress
JP2008182126A (en) Electronic equipment installed in engine room
JP2008209243A (en) In-vehicle electronic device, in-vehicle physical quantity measuring instrument and thermal air flow meter
JP4512626B2 (en) Car electronics
JP2003139593A (en) On-vehicle electronic apparatus and thermal flowmeter
JP3780243B2 (en) Flow rate detection device and electronic device
US6865938B2 (en) Device for measuring the mass of air flowing inside a line
EP3217153B1 (en) Thermal air flow meter
JP4310086B2 (en) Engine electronics
WO2013061740A1 (en) Humidity detection device
WO2015068569A1 (en) Physical-quantity measurement device
JP5645693B2 (en) Air flow measurement device
JP5222688B2 (en) Temperature measuring sensor and manufacturing method thereof
JP4636915B2 (en) Air flow measurement device
JP3914950B2 (en) Thermal flow meter for engine
JP2011043485A (en) Temperature sensor
CN105319326B (en) Sensor for determining at least one parameter of a fluid medium flowing through a measurement channel
JP2012507730A (en) Mass flow sensor and automobile equipped with mass flow sensor