JP2008208428A - Hydrogen storage alloy, and hydrogen storage alloy electrode and nickel-hydrogen secondary battery both using this alloy - Google Patents

Hydrogen storage alloy, and hydrogen storage alloy electrode and nickel-hydrogen secondary battery both using this alloy Download PDF

Info

Publication number
JP2008208428A
JP2008208428A JP2007046884A JP2007046884A JP2008208428A JP 2008208428 A JP2008208428 A JP 2008208428A JP 2007046884 A JP2007046884 A JP 2007046884A JP 2007046884 A JP2007046884 A JP 2007046884A JP 2008208428 A JP2008208428 A JP 2008208428A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
secondary battery
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007046884A
Other languages
Japanese (ja)
Other versions
JP5183077B2 (en
Inventor
Masaru Kihara
勝 木原
Takahiro Endo
賢大 遠藤
Akira Saguchi
明 佐口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007046884A priority Critical patent/JP5183077B2/en
Publication of JP2008208428A publication Critical patent/JP2008208428A/en
Application granted granted Critical
Publication of JP5183077B2 publication Critical patent/JP5183077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth-Mg-Ni-based hydrogen storage alloy containing inexpensive La as a main component and hardly causing pulverization by charge/discharge and a hydrogen storage alloy electrode using this alloy and hereby to provide a high-capacity nickel-hydrogen secondary battery excellent in cycle characteristics using the rare earth-Mg-Ni-based hydrogen storage alloy at a low cost. <P>SOLUTION: The nickel-hydrogen secondary battery contains particles of a hydrogen storage alloy in a negative pole, and this hydrogen storage alloy has a composition represented by general formula (La<SB>a</SB>Pr<SB>b</SB>Nd<SB>c</SB>A<SB>d</SB>)<SB>1-x</SB>Mg<SB>x</SB>Ni<SB>y</SB>T<SB>z</SB>(wherein, A represents at least one element selected from the group consisting of Sm, Eu, etc.; T represents at least one element selected from the group consisting of V, Nb, etc.; subscripts a, b, c and d satisfy relations represented by a≥0.4, b>0, c≥0, d≥0, a≥b>c and a+b+c+d=1, respectively; and subscripts x, y and z are within the ranges represented by 0.10≤x≤0.25, 0.05≤z≤0.35 and 3.0≤y+z≤4.0, respectively). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素吸蔵合金、該合金を用いた水素吸蔵合金電極及びニッケル水素二次電池に関する。   The present invention relates to a hydrogen storage alloy, a hydrogen storage alloy electrode using the alloy, and a nickel hydride secondary battery.

水素吸蔵合金は、安全且つ容易に水素を吸蔵できることから、エネルギー変換材料及びエネルギー貯蔵材料として注目されている。また、水素吸蔵合金を負極に使用したアルカリ蓄電池、特にニッケル水素二次電池は、高容量であることやクリーンであるなどの特徴を有することから民生用電池として大きな需要がある。
ニッケル水素二次電池の負極用の水素吸蔵合金としては、従来、LaNi等のAB型(CaCu型)合金が用いられているが、電池の高容量化のため、AB型合金における希土類元素の一部をMg元素で置換した希土類−Mg−Ni系合金が開発されている。
Hydrogen storage alloys are attracting attention as energy conversion materials and energy storage materials because they can store hydrogen safely and easily. In addition, alkaline storage batteries using a hydrogen storage alloy as a negative electrode, particularly nickel hydride secondary batteries, have features such as high capacity and cleanliness, and thus have a great demand as consumer batteries.
As a hydrogen storage alloy for the negative electrode of a nickel metal hydride secondary battery, an AB 5 type (CaCu 5 type) alloy such as LaNi 5 is conventionally used. However, in order to increase the capacity of the battery, an AB 5 type alloy is used. Rare earth-Mg-Ni alloys have been developed in which some of the rare earth elements are replaced with Mg elements.

希土類−Mg−Ni系合金は、AB型合金に比べ、常温付近で水素ガスを多量に吸蔵できるという特徴を有する。しかしながら、開発初期の希土類−Mg−Ni系合金は耐アルカリ性が低く、この合金を適用した密閉型アルカリ蓄電池では、電池のサイクル寿命が短くなるという問題があった。
そこで、特許文献1は、耐アルカリ性に優れた希土類−Mg−Ni系合金及び該合金を負極に用いた二次電池を開示している。特許文献1の希土類−Mg−Ni系合金によれば、希土類成分のうち、La及びCeの含有量が制限されることで合金の耐アルカリ性が向上し、二次電池のサイクル寿命が向上する。
Rare earth-Mg-Ni alloys have a feature that they can occlude a large amount of hydrogen gas at around room temperature, compared to AB 5 type alloys. However, rare earth-Mg-Ni alloys in the early stages of development have low alkali resistance, and the sealed alkaline storage battery to which this alloy is applied has a problem that the cycle life of the battery is shortened.
Therefore, Patent Document 1 discloses a rare earth-Mg-Ni alloy having excellent alkali resistance and a secondary battery using the alloy as a negative electrode. According to the rare earth-Mg-Ni alloy of Patent Document 1, the alkali resistance of the alloy is improved by limiting the contents of La and Ce among the rare earth components, and the cycle life of the secondary battery is improved.

また、特許文献2は、希土類−Mg−Ni系合金とAB型合金を用いた二次電池を開示し、希土類−Mg−Ni系合金では、希土類成分のうちCeの含有量が制限されることで耐アルカリ性が向上している。
更に、特許文献3は、La及びCeを含まない希土類−Mg−Ni系合金を開示し、この合金も優れた耐アルカリ性を有する。
Further, Patent Document 2 discloses a secondary battery using a rare earth -Mg-Ni based alloy and AB 5 type alloys, the rare earth -Mg-Ni based alloy, it is limited the content of Ce of the rare earth component As a result, alkali resistance is improved.
Furthermore, Patent Document 3 discloses a rare earth-Mg-Ni alloy that does not contain La and Ce, and this alloy also has excellent alkali resistance.

これら特許文献1乃至3からわかるように、耐アルカリ性に優れた希土類−Mg−Ni系合金の研究開発の流れは、La及びCeの含有量を更に制限する方向にある。
特開2005-290473号公報 特開2006-040847号公報 特開2004-263213号公報
As can be seen from these Patent Documents 1 to 3, the flow of research and development of rare earth-Mg-Ni alloys excellent in alkali resistance is in the direction of further limiting the contents of La and Ce.
JP 2005-290473 A JP 2006-040847 JP JP 2004-263213 A

しかしながら、特許文献1乃至3が開示する希土類−Mg−Ni系合金には、コスト面で問題がある。
すなわち、従来のAB型合金を作製する場合、希土類成分の主原材料としてMm(ミッシュメタル)が使用されていた。Mmは、La,Ce,Pr,Ndの混合物であるため安価であり、電池の原材料に適していた。
However, the rare earth-Mg-Ni alloys disclosed in Patent Documents 1 to 3 have a problem in cost.
That is, when producing a conventional AB type 5 alloy, Mm (Misch metal) was used as the main raw material of the rare earth component. Since Mm is a mixture of La, Ce, Pr, and Nd, it is inexpensive and suitable as a battery raw material.

これに対し、特許文献1乃至3が開示する希土類−Mg−Ni系合金を作製する場合、La及びCeの含有量を制限する必要があるため、希土類成分の主原材料として、各希土類元素の単体金属を使用しなければならない。希土類元素の単体金属はミッシュメタルに比べて高価であるため、その使用は、希土類−Mg−Ni系合金ひいては該合金を用いた水素吸蔵合金電極及び電池の価格上昇を招いてしまう。このため、La及びCeの含有量が制限された希土類−Mg−Ni系合金は、工業用としては使い難いものとなっていた。   On the other hand, when producing the rare earth-Mg-Ni alloys disclosed in Patent Documents 1 to 3, it is necessary to limit the contents of La and Ce. Metal must be used. Since rare earth elemental metals are more expensive than misch metals, their use leads to an increase in the price of rare earth-Mg-Ni alloys, and hydrogen storage alloy electrodes and batteries using such alloys. For this reason, the rare earth-Mg-Ni-based alloy in which the contents of La and Ce are limited has been difficult to use for industrial use.

本発明は上述の事情に基づいてなされたものであって、その目的とするところは、安価なLaを主成分として含み、充放電により微粉化し難い希土類−Mg−Ni系水素吸蔵合金及び当該合金を用いた水素吸蔵合金電極を提供し、これにより希土類−Mg―Ni系水素吸蔵合金を用いた高容量でサイクル特性に優れたニッケル水素二次電池を安価にて提供することにある。   The present invention has been made based on the above-described circumstances, and the object thereof is to include a rare earth-Mg—Ni-based hydrogen storage alloy that includes inexpensive La as a main component and is difficult to be pulverized by charge and discharge, and the alloy. It is an object of the present invention to provide a nickel-metal hydride secondary battery having a high capacity and excellent cycle characteristics using a rare earth-Mg—Ni-based hydrogen storage alloy.

上記した目的を達成すべく、本発明者等は、Laの含有量を制限するという研究開発の流れに逆らい、安価なLaを主成分とし使用しながら、希土類−Mg−Ni系水素吸蔵合金の耐アルカリ性を確保する手段を鋭意検討した。
本発明者等は、この検討過程で、自然界で産出される希土類元素の鉱物は、NdをPrよりも多く含むため、従来の希土類−Mg−Ni系合金では、Prの含有量がNdの含有量よりも多かったことに着目し、新たにNdよりもPrを多く含む希土類−Mg−Ni系合金を開発した。そして、このPr含有量がNd含有量よりも多い新規な希土類−Mg−Ni系合金のうち、Laを主成分として含み、Ceを実質的に含まない合金であれば、当該合金を用いた電池でサイクル特性が低下しないことを見出し、本発明に想到した。
In order to achieve the above object, the present inventors have countered the flow of research and development to limit the content of La, while using inexpensive La as a main component, while using rare-earth-Mg-Ni-based hydrogen storage alloys. The means for ensuring the alkali resistance was intensively studied.
In the examination process, the present inventors have found that rare earth element minerals produced in nature contain more Nd than Pr. Therefore, in the conventional rare earth-Mg-Ni alloys, the Pr content is Nd. Focusing on the fact that it was more than the amount, a new rare earth-Mg-Ni alloy containing more Pr than Nd was developed. Among the new rare earth-Mg-Ni alloys having a higher Pr content than the Nd content, a battery using the alloy is used as long as it contains La as a main component and substantially does not contain Ce. Thus, the inventors have found that the cycle characteristics do not deteriorate and have arrived at the present invention.

すなわち、本発明によれば、一般式:(LaPrNdA1−xMgNiT(ただし、式中、Aは、Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sr,Sc,Y,Zr,Hf,Ca及びTiよりなる群から選ばれる少なくとも1種の元素を表し、Tは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Al,Ga,Zn,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、添字a,b,c,dはそれぞれ、a≧0.4,b>0,c≧0,d≧0,a≧b>c,a+b+c+d=1で示される関係を満たし、添字x,y,zはそれぞれ0.10≦x≦0.25,0.05≦z≦0.35,3.0≦y+z≦4.0で示される範囲にある。)にて表される組成を有する水素吸蔵合金が提供される(請求項1)。 That is, according to the present invention, the general formula: (La a Pr b Nd c A d ) 1-x Mg x Ni y T z (where A is Sm, Eu, Gd, Tb, Dy, Ho , Er, Tm, Yb, Lu, Sr, Sc, Y, Zr, Hf, Ca and Ti represent at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn , Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P and at least one element selected from the group consisting of B, and the subscripts a, b, c, and d are a ≧ 0.4, respectively. , B> 0, c ≧ 0, d ≧ 0, a ≧ b> c, a + b + c + d = 1, and the subscripts x, y, z are 0.10 ≦ x ≦ 0.25, 0.05 ≦ z ≦ 0.35, 3.0, respectively. A hydrogen storage alloy having a composition represented by ≦ y + z ≦ 4.0 is provided.

好ましくは、前記添字dは0.1以下である(請求項2)。
また本発明によれば、請求項1又は請求項2に記載の水素吸蔵合金からなる粒子と、前記粒子が充填された導電性を有する芯体とを備える水素吸蔵合金電極が提供される(請求項3)。
更に本発明によれば、請求項3に記載の水素吸蔵合金電極を負極として具備したことを特徴とするニッケル水素二次電池が提供される(請求項4)。
Preferably, the subscript d is 0.1 or less (claim 2).
Moreover, according to this invention, the hydrogen storage alloy electrode provided with the particle | grains which consist of the hydrogen storage alloy of Claim 1 or Claim 2, and the core which has the electroconductivity filled with the said particle | grain is provided. Item 3).
Furthermore, according to the present invention, there is provided a nickel metal hydride secondary battery comprising the hydrogen storage alloy electrode according to claim 3 as a negative electrode (claim 4).

本発明の請求項1の水素吸蔵合金では、Ceを含まず且つPrの含有量に関連する添字bがNdの含有量に関連する添字cよりも大きくPrの含有量がNdの含有量よりも多いため、アルカリ蓄電池等に適用したときに、充放電サイクルの進行に伴う水素吸蔵合金の微粉化が防止される。
一方、この水素吸蔵合金では、Laの含有量に関連する添字aが0.4以上でありLaの含有量が多いため、工業的に安価に生産される。
In the hydrogen storage alloy according to claim 1 of the present invention, the subscript b not containing Ce and related to the Pr content is larger than the subscript c related to the Nd content, and the Pr content is higher than the Nd content. Therefore, when applied to an alkaline storage battery or the like, the hydrogen storage alloy is prevented from being pulverized as the charge / discharge cycle progresses.
On the other hand, in this hydrogen storage alloy, the subscript “a” related to the La content is 0.4 or more, and the La content is large.

請求項2の水素吸蔵合金は、添字dが0.1以下であることにより、アルカリ蓄電池等に適用したときに、更に微粉化し難い。
本発明の請求項3の水素吸蔵合金電極は、請求項1又は請求項2の水素吸蔵合金を含むため、アルカリ蓄電池等に適用したときに、水素吸蔵合金の微粉化が防止されて優れた耐久性を有し、且つ安価である。
The hydrogen storage alloy according to claim 2 has a subscript d of 0.1 or less, so that it is more difficult to pulverize when applied to an alkaline storage battery or the like.
Since the hydrogen storage alloy electrode of claim 3 of the present invention includes the hydrogen storage alloy of claim 1 or claim 2, when applied to an alkaline storage battery or the like, the hydrogen storage alloy is prevented from being pulverized and has excellent durability. And inexpensive.

本発明の請求項4のニッケル水素二次電池は、請求項3の水素吸蔵合金電極を負極として備えるため、高容量であるとともに、サイクル特性に優れ且つ安価である。   Since the nickel hydride secondary battery of claim 4 of the present invention includes the hydrogen storage alloy electrode of claim 3 as a negative electrode, it has high capacity, is excellent in cycle characteristics, and is inexpensive.

以下、本発明の一実施形態に係るニッケル水素二次電池を詳細に説明する。
この電池は例えばAAサイズの円筒型電池であり、図1に示したように、上端が開口した有底円筒形状をなす外装缶10を備えている。外装缶10の底壁は導電性を有し、負極端子として機能する。外装缶10の開口内には、リング状の絶縁パッキン12を介して導電性を有する円板形状の蓋板14が配置され、これら蓋板14及び絶縁パッキン12は外装缶10の開口縁をかしめ加工することにより外装缶10の開口縁に固定されている。
Hereinafter, a nickel metal hydride secondary battery according to an embodiment of the present invention will be described in detail.
This battery is, for example, an AA size cylindrical battery, and includes an outer can 10 having a bottomed cylindrical shape with an open upper end as shown in FIG. The bottom wall of the outer can 10 has conductivity and functions as a negative electrode terminal. Inside the opening of the outer can 10, a disc-shaped cover plate 14 having conductivity is arranged via a ring-shaped insulating packing 12, and the cover plate 14 and the insulating packing 12 caulk the opening edge of the outer can 10. It is fixed to the opening edge of the outer can 10 by processing.

蓋板14は中央にガス抜き孔16を有し、蓋板14の外面上にはガス抜き孔16を塞いでゴム製の弁体18が配置されている。更に、蓋板14の外面上には、弁体18を覆うフランジ付き円筒形状の正極端子20が固定され、正極端子20は弁体18を蓋板14に押圧している。従って、通常時、外装缶10は絶縁パッキン12及び弁体18を介して蓋板14により気密に閉塞されている。一方、外装缶10内でガスが発生し、その内圧が高まった場合には弁体18が圧縮され、ガス抜き孔16を通して外装缶10からガスが放出される。つまり、蓋板14、弁体18及び正極端子20は、安全弁を形成している。   The lid plate 14 has a gas vent hole 16 in the center, and a rubber valve element 18 is disposed on the outer surface of the lid plate 14 so as to close the gas vent hole 16. Furthermore, a flanged cylindrical positive electrode terminal 20 covering the valve body 18 is fixed on the outer surface of the lid plate 14, and the positive electrode terminal 20 presses the valve body 18 against the lid plate 14. Therefore, the outer can 10 is normally airtightly closed by the lid plate 14 via the insulating packing 12 and the valve body 18. On the other hand, when gas is generated in the outer can 10 and the internal pressure increases, the valve body 18 is compressed, and the gas is released from the outer can 10 through the gas vent hole 16. That is, the cover plate 14, the valve body 18, and the positive electrode terminal 20 form a safety valve.

外装缶10には、電極群22が収容されている。電極群22は、それぞれ帯状の正極24、負極26及びセパレータ28からなり、渦巻状に巻回された正極24と負極26の間にセパレータが挟まれている。即ち、セパレータ28を介して正極24及び負極26が互い重ね合わされている。電極群22の最外周は負極26の一部(最外周部)により形成され、負極26の最外周部が外装缶10の内周壁と接触することで、負極26と外装缶10とは互いに電気的に接続されている。なお、正極24、負極26及びセパレータ28については後述する。   An electrode group 22 is accommodated in the outer can 10. The electrode group 22 includes a belt-like positive electrode 24, a negative electrode 26, and a separator 28, respectively, and a separator is sandwiched between the positive electrode 24 and the negative electrode 26 wound in a spiral shape. That is, the positive electrode 24 and the negative electrode 26 are overlapped with each other via the separator 28. The outermost periphery of the electrode group 22 is formed by a part of the negative electrode 26 (outermost peripheral portion), and the outermost peripheral portion of the negative electrode 26 is in contact with the inner peripheral wall of the outer can 10 so that the negative electrode 26 and the outer can 10 are electrically connected to each other. Connected. The positive electrode 24, the negative electrode 26, and the separator 28 will be described later.

そして、外装缶10内には、電極群22の一端と蓋板14との間に、正極リード30が配置され、正極リード30の両端は正極24及び蓋板14にそれぞれ接続されている。従って、正極端子20と正極24との間は、正極リード30及び蓋板14を介して電気的に接続されている。なお、蓋板14と電極群22との間には円形の絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリットを通して延びている。また、電極群22と外装缶10の底部との間にも円形の絶縁部材34が配置されている。   In the outer can 10, a positive electrode lead 30 is disposed between one end of the electrode group 22 and the cover plate 14, and both ends of the positive electrode lead 30 are connected to the positive electrode 24 and the cover plate 14, respectively. Therefore, the positive electrode terminal 20 and the positive electrode 24 are electrically connected via the positive electrode lead 30 and the lid plate 14. A circular insulating member 32 is disposed between the cover plate 14 and the electrode group 22, and the positive electrode lead 30 extends through a slit provided in the insulating member 32. A circular insulating member 34 is also arranged between the electrode group 22 and the bottom of the outer can 10.

更に、外装缶10内には、所定量のアルカリ電解液(図示せず)が注液され、セパレータ28に含まれたアルカリ電解液を介して正極24と負極26との間で充放電反応が進行する。なお、アルカリ電解液の種類としては、特に限定されないけれども、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等をあげることができ、またアルカリ電解液の濃度についても特には限定されず、例えば8Nのものを用いることができる。   Furthermore, a predetermined amount of alkaline electrolyte (not shown) is injected into the outer can 10, and a charge / discharge reaction occurs between the positive electrode 24 and the negative electrode 26 via the alkaline electrolyte contained in the separator 28. proceed. In addition, although it does not specifically limit as a kind of alkaline electrolyte, For example, sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, potassium hydroxide aqueous solution, the aqueous solution which mixed 2 or more of these, etc. can be mention | raise | lifted, Also, the concentration of the alkaline electrolyte is not particularly limited, and, for example, 8N can be used.

セパレータ28の材料としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを用いることができる。
正極24は、多孔質構造を有する導電性の正極基板と、正極基板の空孔内に保持された正極合剤とからなり、正極合剤は、正極活物質粒子と、必要に応じて正極24の特性を改善するための種々の添加剤粒子と、これら正極活物質粒子及び添加剤粒子の混合粒子を正極基板に結着するための結着剤とからなる。
As a material for the separator 28, for example, a polyamide fiber nonwoven fabric or a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene provided with a hydrophilic functional group can be used.
The positive electrode 24 includes a conductive positive electrode substrate having a porous structure and a positive electrode mixture held in the pores of the positive electrode substrate. The positive electrode mixture includes positive electrode active material particles and, if necessary, the positive electrode 24 These are various additive particles for improving the characteristics and a binder for binding the mixed particles of these positive electrode active material particles and additive particles to the positive electrode substrate.

なお、正極活物質粒子は、この電池がニッケル水素二次電池なので水酸化ニッケル粒子であるけれども、水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいは表面がアルカリ熱処理されたコバルト化合物で被覆されていてもよい。また、いずれも特に限定されることはないが、添加剤としては、酸化イットリウムの他に、酸化コバルト、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、酸化エルビウム等の希土類化合物等を、結着剤としては親水性若しくは疎水性のポリマー等を用いることができる。   The positive electrode active material particles are nickel hydroxide particles because this battery is a nickel-hydrogen secondary battery. However, the nickel hydroxide particles may be dissolved in cobalt, zinc, cadmium or the like, or the surface is alkaline. You may coat | cover with the heat-treated cobalt compound. In addition, although there is no particular limitation, additives include, in addition to yttrium oxide, cobalt compounds such as cobalt oxide, metal cobalt, and cobalt hydroxide, zinc such as metal zinc, zinc oxide, and zinc hydroxide. Compounds, rare earth compounds such as erbium oxide, etc., and hydrophilic or hydrophobic polymers can be used as binders.

負極26は、帯状をなす導電性の負極基板(芯体)を有し、この負極基板に負極合剤が保持されている。負極基板は、貫通孔が分布されたシート状の金属材からなり、例えば、パンチングメタルや、金属粉末を成型してから焼結した金属粉末焼結体基板を用いることができる。従って、負極合剤は、負極基板の貫通孔内に充填されるとともに、負極基板の両面上に層状にして保持される。   The negative electrode 26 has a conductive negative electrode substrate (core body) having a strip shape, and a negative electrode mixture is held on the negative electrode substrate. The negative electrode substrate is made of a sheet-like metal material in which through-holes are distributed. For example, a punching metal or a metal powder sintered body substrate that is sintered after molding metal powder can be used. Therefore, the negative electrode mixture is filled in the through holes of the negative electrode substrate and is held in layers on both surfaces of the negative electrode substrate.

負極合剤は、図1中円内に概略的に示したけれども、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子36と、必要に応じて例えばカーボン等の導電助剤(図示せず)と、これら水素吸蔵合金及び導電助剤を負極基板に結着する結着剤38とからなる。結着剤38としては親水性若しくは疎水性のポリマー等を用いることができ、導電助剤としては、カーボンブラックや黒鉛を用いることができる。なお、活物質が水素の場合、負極容量は水素吸蔵合金量により規定されるので、本発明では、水素吸蔵合金のことを負極活物質ともいう。また、負極24のことを水素吸蔵合金電極ともいう。   Although the negative electrode mixture is schematically shown in a circle in FIG. 1, the hydrogen storage alloy particles 36 capable of occluding and releasing hydrogen as a negative electrode active material, and a conductive auxiliary agent such as carbon (for example, carbon as necessary) And a binder 38 that binds the hydrogen storage alloy and the conductive additive to the negative electrode substrate. A hydrophilic or hydrophobic polymer or the like can be used as the binder 38, and carbon black or graphite can be used as the conductive assistant. Note that when the active material is hydrogen, the negative electrode capacity is defined by the amount of the hydrogen storage alloy. Therefore, in the present invention, the hydrogen storage alloy is also referred to as a negative electrode active material. The negative electrode 24 is also referred to as a hydrogen storage alloy electrode.

この電池の水素吸蔵合金粒子36における水素吸蔵合金は、希土類−Mg−Ni系合金であって、主たる結晶構造がCaCu型ではなく、AB型構造とAB型構造とを合わせた超格子構造であり、その組成が一般式:
(LaPrNdA1−xMgNiT…(1)
で示される。
The hydrogen storage alloy in the hydrogen storage alloy particles 36 of this battery is a rare earth-Mg-Ni alloy, and the main crystal structure is not a CaCu 5 type, but a superlattice combining an AB 5 type structure and an AB 2 type structure. Structure, the composition of which is the general formula:
(La a Pr b Nd c A d ) 1-x Mg x Ni y T z (1)
Indicated by

ただし、式(1)中、Aは、Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sr,Sc,Zr,Hf,Ca及びTiよりなる群から選ばれる少なくとも1種の元素を表し、Tは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Al,Ga,Zn,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、添字a,b,c,dはそれぞれ、a≧0.4,b>0,c≧0,d≧0,a≧b>c,a+b+c+d=1で示される関係を満たし、添字x,y,zはそれぞれ0.10≦x≦0.25,0.05≦z≦0.35,3.0≦y+z≦4.0で示される範囲にある。   However, in Formula (1), A is at least 1 chosen from the group which consists of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Sc, Zr, Hf, Ca, and Ti. T represents at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P, and B Represents a kind of element, the subscripts a, b, c, d satisfy the relationship indicated by a ≧ 0.4, b> 0, c ≧ 0, d ≧ 0, a ≧ b> c, a + b + c + d = 1, respectively. x, y, and z are in the ranges indicated by 0.10 ≦ x ≦ 0.25, 0.05 ≦ z ≦ 0.35, and 3.0 ≦ y + z ≦ 4.0, respectively.

水素吸蔵合金粒子36は、例えば以下のようにして得ることできる。
まず、上述の組成となるよう金属原料を秤量して混合し、この混合物を例えば高周波溶解炉で溶解してインゴットにする。得られたインゴットに、900〜1200℃の温度の不活性ガス雰囲気下にて5〜24時間加熱する熱処理を施し、インゴットの金属組織をAB型構造とAB型構造とを合わせた超格子構造にする。この後、インゴットを粉砕し、篩分けにより所望粒径に分級して、水素吸蔵合金粒子36を得ることができる。
The hydrogen storage alloy particles 36 can be obtained, for example, as follows.
First, metal raw materials are weighed and mixed so as to have the above-described composition, and this mixture is melted in, for example, a high-frequency melting furnace to form an ingot. The obtained ingot was heat-treated in an inert gas atmosphere at a temperature of 900 to 1200 ° C. for 5 to 24 hours, and the metal structure of the ingot was combined with an AB 5 type structure and an AB 2 type structure. Make the structure. Thereafter, the ingot is pulverized and classified to a desired particle size by sieving, whereby the hydrogen storage alloy particles 36 can be obtained.

上述したニッケル水素二次電池においては、水素吸蔵合金粒子36が希土類−Mg−Ni系合金を主成分とするため、高容量である。
また、このニッケル水素二次電池では、水素吸蔵合金粒子36を構成する希土類−Mg−Ni系合金が、(1)Laの含有量に関連する添字aが0.4以上でありLaを主成分として含み、(2)実質的にCeを含まず且つ(3)Prの含有量に関連する添字bがNdの含有量に関連する添字cよりも大きく、モル比でみてPrの含有量がNdの含有量よりも多いため、充放電サイクルの進行に伴う水素吸蔵合金粒子36の微粉化が防止される。
The nickel-hydrogen secondary battery described above has a high capacity because the hydrogen storage alloy particles 36 are mainly composed of a rare earth-Mg-Ni alloy.
In this nickel metal hydride secondary battery, the rare earth-Mg-Ni alloy constituting the hydrogen storage alloy particles 36 is (1) the subscript a related to the La content is 0.4 or more and contains La as a main component. , (2) substantially free of Ce and (3) the subscript b related to the Pr content is larger than the subscript c related to the Nd content, and the Pr content in terms of molar ratio is Nd Since the amount is larger than the amount, pulverization of the hydrogen storage alloy particles 36 accompanying the progress of the charge / discharge cycle is prevented.

従ってこのニッケル水素二次電池は、優れたサイクル特性を有する。
更に、このニッケル水素二次電池においては、水素吸蔵合金粒子36の希土類−Mg−Ni系合金が、Laの含有量に関連する添字aが0.4以上でありLaを主成分として多く含有するため、工業的に安価に生産される。
なお、式(1)中、添字x,y,zの数値範囲の限定理由は以下のとおりである。
Therefore, this nickel metal hydride secondary battery has excellent cycle characteristics.
Furthermore, in this nickel metal hydride secondary battery, the rare earth-Mg-Ni alloy of the hydrogen storage alloy particles 36 has a subscript a related to the La content of 0.4 or more and contains a large amount of La as a main component. It is produced industrially at a low cost.
In the formula (1), the reasons for limiting the numerical ranges of the subscripts x, y, and z are as follows.

AサイトにおけるMgの原子数の割合を表す添字xが0.10≦x≦0.25で示される範囲に設定されるのは、xが0.10未満である場合、合金容量の低下が顕著になるからである。またxが0.25を超えている場合、合金の耐食性が低下し、電池の寿命特性が低下するからである。
BサイトにおけるTの原子数の割合を表す添字zが0.05≦z≦0.35で示される範囲に設定されるのは、zの値が当該範囲であると、本発明の効果が顕著となるからである。
The reason why the subscript x representing the ratio of the number of Mg atoms at the A site is set in a range represented by 0.10 ≦ x ≦ 0.25 is that when x is less than 0.10, the alloy capacity is significantly reduced. Moreover, when x exceeds 0.25, the corrosion resistance of the alloy is lowered, and the life characteristics of the battery are lowered.
The subscript z representing the ratio of the number of T atoms at the B site is set in a range represented by 0.05 ≦ z ≦ 0.35 because the effect of the present invention becomes remarkable when the value of z is in this range. is there.

Aサイトに対するBサイトの比率を表す添字yとzとの和が3.0≦y+z≦4.0で示される範囲に設定されるのは、y+zが小さくなりすぎると、水素吸蔵合金内における水素の吸蔵安定性が高くなるため、水素放出能が劣化し、またy+zが大きくなりすぎると、今度は水素吸蔵合金における水素の吸蔵サイトが減少して、水素吸蔵能の劣化が起こり始めるためである。   The sum of the subscripts y and z representing the ratio of the B site to the A site is set to a range represented by 3.0 ≦ y + z ≦ 4.0 because if y + z becomes too small, the hydrogen in the hydrogen storage alloy As the storage stability of the hydrogen increases, the hydrogen releasing ability deteriorates, and if y + z becomes too large, the hydrogen storage sites in the hydrogen storage alloy decrease and the deterioration of the hydrogen storage capacity begins to occur. It is.

1.電池の組立て
実施例1
(1)負極の作製
希土類成分の内訳が、原子数比で、45%のLa、40%のPr及び15%のZrになるように希土類成分の原材料を用意し、そして、希土類成分の原材料、Mg、Ni及びAlを原子数比で0.85:0.15:3.30:0.07の割合で含有する水素吸蔵合金の塊を誘導溶解炉を用いて調製した。この合金をアルゴン雰囲気中で1000℃、10時間の熱処理を行い、組成が(La0.45Pr0.40Zr0.15)0.85Mg0.15Ni3.30Al0.07で表わされる超格子構造の希土類−Mg−Ni系合金のインゴットを得た。
1. Battery assembly Example 1
(1) Fabrication of negative electrode Rare earth component raw materials are prepared so that the breakdown of rare earth components is 45% La, 40% Pr and 15% Zr in terms of atomic ratio, A mass of a hydrogen storage alloy containing Mg, Ni, and Al in an atomic ratio of 0.85: 0.15: 3.30: 0.07 was prepared using an induction melting furnace. This alloy was heat-treated in an argon atmosphere at 1000 ° C. for 10 hours, and a superlattice rare earth-Mg-Ni alloy ingot represented by the composition (La 0.45 Pr 0.40 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 Got.

この希土類−Mg−Ni系合金のインゴットを不活性ガス雰囲気中で機械的に粉砕し、篩分けにより400〜200メッシュの範囲の粒径を有する合金粒子を選別した。この合金粒子に対してレーザ回折・散乱式粒度分布測定装置を使用して粒度分布を測定したところ、重量積分50%に相当する平均粒径は30μmであり、最大粒径は45μmであった。
この合金粒子100質量部に対してポリアクリル酸ナトリウム0.4質量部、カルボキシメチルセルロース0.1質量部、および、ポリテトラフルオロエチレン分散液(分散媒:水、固形分60質量部)2.5質量部及び金属Sn(錫)1質量部を加えた後、混練して負極合剤のスラリーを得た。
The ingot of the rare earth-Mg-Ni alloy was mechanically pulverized in an inert gas atmosphere, and alloy particles having a particle size in the range of 400 to 200 mesh were selected by sieving. When the particle size distribution of the alloy particles was measured using a laser diffraction / scattering type particle size distribution measuring device, the average particle size corresponding to 50% by weight was 30 μm, and the maximum particle size was 45 μm.
With respect to 100 parts by mass of the alloy particles, 0.4 parts by mass of sodium polyacrylate, 0.1 parts by mass of carboxymethylcellulose, 2.5 parts by mass of polytetrafluoroethylene dispersion (dispersion medium: water, solid content 60 parts by mass) and metal Sn ( After adding 1 part by mass of tin), the mixture was kneaded to obtain a slurry of a negative electrode mixture.

このスラリーを、Niめっきを施した厚さ60μmのFe製パンチングメタルの両面の全面に均等に、かつ厚さが一定になるように塗着した。スラリーの乾燥を経て、このパンチングメタルをプレスして裁断し、AAサイズのニッケル水素二次電池用の負極を作製した。
(2)正極の作製
金属Niに対して、Znが3質量%、Coが1質量%の比率となるように、硫酸ニッケル、硫酸亜鉛および硫酸コバルトの混合水溶液を調製し、この混合水溶液に攪拌しながら水酸化ナトリウム水溶液を徐々に添加した。この際、反応中のpHを13〜14に保持して水酸化ニッケル粒子を析出させ、この水酸化ニッケル粒子を10倍量の純水にて3回洗浄したのち、脱水、乾燥した。
This slurry was applied evenly and uniformly on both surfaces of a 60 μm thick Fe punching metal plated with Ni. After the slurry was dried, the punching metal was pressed and cut to prepare a negative electrode for an AA size nickel-hydrogen secondary battery.
(2) Preparation of positive electrode A mixed aqueous solution of nickel sulfate, zinc sulfate and cobalt sulfate was prepared so that Zn was 3% by mass and Co was 1% by mass with respect to metal Ni, and this mixed aqueous solution was stirred. While adding sodium hydroxide aqueous solution gradually. At this time, the pH during the reaction was maintained at 13 to 14 to precipitate nickel hydroxide particles. The nickel hydroxide particles were washed three times with 10 times the amount of pure water, and then dehydrated and dried.

得られた水酸化ニッケル粒子に、40質量%のHPCディスパージョン液を混合して、正極合剤のスラリーを調製した。このスラリーを多孔質構造のニッケル基板に充填して乾燥させてから、この基板を圧延、裁断してAAサイズのニッケル水素二次電池用の正極を作製した。
(3)ニッケル水素二次電池の組立て
上記のようにして得られた負極及び正極を、ポリプロピレンまたはナイロン製の不織布よりなるセパレータを介して渦巻状に巻回して電極群を形成し、この電極群を外装缶に収容したのち、この外装缶内に、リチウム、ナトリウムを含有した濃度30質量%の水酸化カリウム水溶液を注入して、図1に示した構成の電池を有し、体積エネルギー密度が300Wh/lであるAAサイズのニッケル水素二次電池を組立てた。
The obtained nickel hydroxide particles were mixed with 40% by mass of an HPC dispersion liquid to prepare a slurry of a positive electrode mixture. The slurry was filled in a nickel substrate having a porous structure and dried, and then the substrate was rolled and cut to produce a positive electrode for an AA size nickel metal hydride secondary battery.
(3) Assembly of nickel-metal hydride secondary battery The negative electrode and the positive electrode obtained as described above are spirally wound through a separator made of polypropylene or nylon nonwoven fabric to form an electrode group, and this electrode group In the outer can, and a lithium hydroxide sodium-containing 30% by weight potassium hydroxide aqueous solution containing lithium and sodium is injected into the outer can, so that the battery having the configuration shown in FIG. AA size NiMH secondary battery of 300Wh / l was assembled.

実施例2
水素吸蔵合金の組成を(La0.45Pr0.36Nd0.04Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
実施例3
水素吸蔵合金の組成を(La0.45Pr0.32Nd0.08Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
Example 2
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.36 Nd 0.04 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .
Example 3
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.32 Nd 0.08 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .

実施例4
水素吸蔵合金の組成を(La0.45Pr0.28Nd0.12Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
実施例5
水素吸蔵合金の組成を(La0.45Pr0.24Nd0.16Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
Example 4
A nickel hydrogen secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.28 Nd 0.12 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .
Example 5
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.24 Nd 0.16 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .

実施例6
水素吸蔵合金の組成を(La0.45Pr0.45Zr0.10)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
比較例1
水素吸蔵合金の組成を(La0.45Pr0.20Nd0.20Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
Example 6
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.45 Zr 0.10 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .
Comparative Example 1
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.20 Nd 0.20 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .

比較例2
水素吸蔵合金の組成を(La0.45Pr0.16Nd0.24Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
比較例3
水素吸蔵合金の組成を(La0.45Pr0.12Nd0.28Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
Comparative Example 2
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.16 Nd 0.24 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .
Comparative Example 3
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.12 Nd 0.28 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .

比較例4
水素吸蔵合金の組成を(La0.45Pr0.08Nd0.32Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
比較例5
水素吸蔵合金の組成を(La0.45Pr0.04Nd0.36Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
Comparative Example 4
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.08 Nd 0.32 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .
Comparative Example 5
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Pr 0.04 Nd 0.36 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .

比較例6
水素吸蔵合金の組成を(La0.45Nd0.40Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
比較例7
水素吸蔵合金の組成を(La0.10Pr0.20Nd0.55Zr0.15)0.85Mg0.15Ni3.30Al0.07にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
Comparative Example 6
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.45 Nd 0.40 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .
Comparative Example 7
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.10 Pr 0.20 Nd 0.55 Zr 0.15 ) 0.85 Mg 0.15 Ni 3.30 Al 0.07 .

なお、実施例1〜6においては、水素吸蔵合金作製の際、Pr及びNdの原材料としてジジム(PrとNdとの混合金属)をベースに、不足分としてPrの単金属を添加してもよい。一般に、ジジムはPr及びNdの単金属より安価であるため、より安価に水素吸蔵合金を作製できる。
2.電池評価
(1)サイクル寿命
実施例1〜6及び比較例1〜7の各電池について、1.0Cの電流で1時間充電してから1.0Cの電流で終止電圧0.8Vまで放電する電池容量測定を繰り返し、電池が放電できなくなるまでのサイクル数(サイクル寿命)を数えた。これらの結果を、比較例7の結果を100として表1及び図2(ただし比較例7を除く)に示す。
In Examples 1 to 6, when producing a hydrogen storage alloy, Pr and Nd raw materials may be based on didymium (a mixed metal of Pr and Nd), and a Pr single metal may be added as a deficiency. . In general, didymium is cheaper than single metals of Pr and Nd, so a hydrogen storage alloy can be produced at a lower cost.
2. Battery evaluation (1) Cycle life For each battery of Examples 1 to 6 and Comparative Examples 1 to 7, the battery capacity was measured by charging to 1.0V current to 1.0V after charging for 1 hour at 1.0C current. Repeatedly, the number of cycles (cycle life) until the battery could not be discharged was counted. These results are shown in Table 1 and FIG. 2 (except for Comparative Example 7), with the result of Comparative Example 7 being 100.

(2)平均粒径
実施例1〜6及び比較例1〜7の各電池について、上記サイクル寿命の試験と同一の充放電条件で充放電を50回繰り返した後、電池を分解して水素吸蔵合金粒子を収集し、その平均粒径を調べた。これらの結果を初期の平均粒径に対する比率に換算した上で、サイクル後平均粒径として表1に示す。
(2) Average particle size For each of the batteries of Examples 1 to 6 and Comparative Examples 1 to 7, after repeating charge and discharge 50 times under the same charge and discharge conditions as in the above cycle life test, the battery was disassembled to store hydrogen. Alloy particles were collected and their average particle size was examined. These results are converted into a ratio to the initial average particle diameter, and are shown in Table 1 as the average particle diameter after the cycle.

Figure 2008208428
Figure 2008208428

表1及び図2からは以下のことが明らかである。
(1)実施例1〜4及び比較例1〜6では、Pr/(Pr+Nd)の値、即ちb/(b+c)の値が0.5を境にサイクル特性が大きく異なることがわかる。Pr/(Pr+Nd)が0.5以下の領域では、0.2〜0.3の領域で若干サイクル特性が向上するものの、全般的にサイクル特性が低い。これに対して、Pr/(Pr+Nd)の値が0.5を超えると、すなわちPrの含有量がNdの含有量を上回るようになると、サイクル特性が大きく向上していることがわかる。
The following is clear from Table 1 and FIG.
(1) It can be seen that in Examples 1 to 4 and Comparative Examples 1 to 6, the value of Pr / (Pr + Nd), that is, the value of b / (b + c) is greatly different at the boundary of 0.5. When Pr / (Pr + Nd) is 0.5 or less, the cycle characteristics are slightly improved in the range of 0.2 to 0.3, but the cycle characteristics are generally low. In contrast, when the value of Pr / (Pr + Nd) exceeds 0.5, that is, when the Pr content exceeds the Nd content, it can be seen that the cycle characteristics are greatly improved.

(2)実施例1〜4及び比較例1〜7では、サイクル特性がサイクル後平均粒径にほぼ比例していることがわかる。これより、水素の吸蔵放出に伴う希土類−Mg−Ni系合金の微粉化が抑制されることで、Pr含有量がNd含有量よりも多い実施例1〜4ではサイクル特性が向上しているものと考えられる。
(3)Laの含有量が少ない比較例7では、Pr/(Pr+Nd)が0.5以下であっても、微粉化が進行せずサイクル特性が低下しないことがわかる。
(4)実施例1と実施例6の比較から、Zrの含有量、即ち式(1)中の添字dを0.15から0.10に小さくすることでサイクル特性が向上しており、添字dは0.10以下が好ましいことがわかる。
(2) In Examples 1 to 4 and Comparative Examples 1 to 7, it can be seen that the cycle characteristics are substantially proportional to the post-cycle average particle size. From this, the pulverization of the rare earth-Mg-Ni alloy accompanying the storage and release of hydrogen is suppressed, so that the cycle characteristics are improved in Examples 1 to 4 in which the Pr content is higher than the Nd content. it is conceivable that.
(3) In Comparative Example 7 with a low La content, even when Pr / (Pr + Nd) is 0.5 or less, it is understood that pulverization does not proceed and cycle characteristics do not deteriorate.
(4) From the comparison between Example 1 and Example 6, the cycle characteristics are improved by reducing the Zr content, that is, the subscript d in the formula (1) from 0.15 to 0.10, and the subscript d is 0.10 or less. Is preferable.

本発明は上記した一実施形態及び実施例に限定されることはなく、種々変形が可能であり、例えばニッケル水素二次電池は、角形電池であってもよく、機械的な構造は格別限定されることはない。
上記した一実施形態において、添字aの好ましい範囲はa≧0.45であり、より好ましい範囲はa≧0.50である。添字bの好ましい範囲はb≧0.15であり、より好ましい範囲はb≧0.20である。添字cの好ましい範囲はc≦0.20であり、より好ましい範囲はc≦0.12である。
The present invention is not limited to the above-described embodiment and examples, and various modifications are possible. For example, the nickel-hydrogen secondary battery may be a prismatic battery, and the mechanical structure is particularly limited. Never happen.
In the above-described embodiment, a preferable range of the subscript a is a ≧ 0.45, and a more preferable range is a ≧ 0.50. A preferred range for the subscript b is b ≧ 0.15, and a more preferred range is b ≧ 0.20. A preferred range for the subscript c is c ≦ 0.20, and a more preferred range is c ≦ 0.12.

上記した一実施形態において、式(1)中、添字xは、0.10≦x≦0.25で示される範囲に入っているが、好ましい範囲は0.10≦x≦0.20であり、より好ましい範囲は、0.10≦x≦0.15である。
上記した一実施形態において、式(1)中、添字zは、0.05≦z≦0.35で示される範囲に入っているが、好ましい範囲は0.10≦z≦0.30であり、より好ましい範囲は、0.15≦z≦0.25である。
In the above-described embodiment, in formula (1), the subscript x is in the range represented by 0.10 ≦ x ≦ 0.25, but the preferred range is 0.10 ≦ x ≦ 0.20, and the more preferred range is 0.10 ≦ x. x ≦ 0.15.
In the above-described embodiment, in the formula (1), the subscript z is in a range represented by 0.05 ≦ z ≦ 0.35, but a preferred range is 0.10 ≦ z ≦ 0.30, and a more preferred range is 0.15 ≦ z. z ≦ 0.25.

上記した一実施形態において、式(1)中、添字yとzとの和は、3.0≦y+z≦4.0で示される範に入っているが、好ましい範囲は3.0≦y+z≦3.8であり、より好ましい範囲は、3.2≦y+z≦3.6である。
最後に本発明の水素吸蔵合金及び水素吸蔵合金電極は、ニッケル水素二次電池以外の他の物品にも適用可能であるのは勿論である。
In the above-described embodiment, in the formula (1), the sum of the subscripts y and z falls within the range represented by 3.0 ≦ y + z ≦ 4.0, but the preferred range is 3.0 ≦ y + z ≦ 3.8. A more preferable range is 3.2 ≦ y + z ≦ 3.6.
Finally, it goes without saying that the hydrogen storage alloy and the hydrogen storage alloy electrode of the present invention can be applied to other articles other than nickel-hydrogen secondary batteries.

本発明の一実施形態に係るニッケル水素二次電池を示す部分切欠斜視図であり、円内に負極の一部を拡大して概略的に示した。1 is a partially cutaway perspective view showing a nickel metal hydride secondary battery according to an embodiment of the present invention, and schematically shows an enlarged part of a negative electrode in a circle. 実施例及び比較例のニッケル水素二次電池におけるPr/(Pr+Nd)とサイクル特性との関係を示すグラフである。It is a graph which shows the relationship between Pr / (Pr + Nd) and a cycle characteristic in the nickel hydride secondary battery of an Example and a comparative example.

符号の説明Explanation of symbols

26 負極
36 水素吸蔵合金粒子
26 Negative electrode
36 Hydrogen storage alloy particles

Claims (4)

一般式:
(LaPrNdA1−xMgNiT
(ただし、式中、Aは、Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sr,Sc,Y,Zr,Hf,Ca及びTiよりなる群から選ばれる少なくとも1種の元素を表し、Tは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Al,Ga,Zn,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、添字a,b,c,dはそれぞれ、a≧0.4,b>0,c≧0,d≧0,a≧b>c,a+b+c+d=1で示される関係を満たし、添字x,y,zはそれぞれ0.10≦x≦0.25,0.05≦z≦0.35,3.0≦y+z≦4.0で示される範囲にある。)
にて表される組成を有する水素吸蔵合金。
General formula:
(La a Pr b Nd c A d ) 1-x Mg x Ni y T z
(Wherein, A is at least one selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Sc, Y, Zr, Hf, Ca and Ti. T represents at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P, and B Represents a kind of element, the subscripts a, b, c, d satisfy the relationship indicated by a ≧ 0.4, b> 0, c ≧ 0, d ≧ 0, a ≧ b> c, a + b + c + d = 1, respectively. x, y, and z are in the ranges indicated by 0.10 ≦ x ≦ 0.25, 0.05 ≦ z ≦ 0.35, and 3.0 ≦ y + z ≦ 4.0, respectively.
The hydrogen storage alloy which has a composition represented by these.
前記添字dは0.1以下であることを特徴とする請求項1に記載の水素吸蔵合金。   The hydrogen storage alloy according to claim 1, wherein the subscript d is 0.1 or less. 請求項1又は請求項2に記載の水素吸蔵合金からなる粒子と、前記粒子が充填された導電性を有する芯体とを備えることを特徴とする水素吸蔵合金電極。   A hydrogen storage alloy electrode comprising particles comprising the hydrogen storage alloy according to claim 1 and a conductive core filled with the particles. 請求項3に記載の水素吸蔵合金電極を負極として具備したことを特徴とするニッケル水素二次電池。   A nickel metal hydride secondary battery comprising the hydrogen storage alloy electrode according to claim 3 as a negative electrode.
JP2007046884A 2007-02-27 2007-02-27 Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery Active JP5183077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046884A JP5183077B2 (en) 2007-02-27 2007-02-27 Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046884A JP5183077B2 (en) 2007-02-27 2007-02-27 Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery

Publications (2)

Publication Number Publication Date
JP2008208428A true JP2008208428A (en) 2008-09-11
JP5183077B2 JP5183077B2 (en) 2013-04-17

Family

ID=39784982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046884A Active JP5183077B2 (en) 2007-02-27 2007-02-27 Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery

Country Status (1)

Country Link
JP (1) JP5183077B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044388A (en) * 2009-08-24 2011-03-03 Gs Yuasa Corp Nickel-metal hydride storage battery
WO2014050075A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Storage cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105564A (en) * 2000-09-29 2002-04-10 Toshiba Corp Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
WO2007018291A1 (en) * 2005-08-11 2007-02-15 Gs Yuasa Corporation Hydrogen-storage alloy, process for producing the same, hydrogen-storage alloy electrode, and secondary cell
WO2008018494A1 (en) * 2006-08-09 2008-02-14 Gs Yuasa Corporation Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105564A (en) * 2000-09-29 2002-04-10 Toshiba Corp Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
WO2007018291A1 (en) * 2005-08-11 2007-02-15 Gs Yuasa Corporation Hydrogen-storage alloy, process for producing the same, hydrogen-storage alloy electrode, and secondary cell
WO2008018494A1 (en) * 2006-08-09 2008-02-14 Gs Yuasa Corporation Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044388A (en) * 2009-08-24 2011-03-03 Gs Yuasa Corp Nickel-metal hydride storage battery
WO2014050075A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Storage cell system
CN104584313A (en) * 2012-09-25 2015-04-29 三洋电机株式会社 Storage cell system

Also Published As

Publication number Publication date
JP5183077B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP4873947B2 (en) Hydrogen storage alloy and alkaline secondary battery using the hydrogen storage alloy
JP5196953B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP4566025B2 (en) Alkaline storage battery
JP4873914B2 (en) Alkaline storage battery
JP2009206004A (en) Anode for alkaline storage battery and alkaline storage battery
JP5121499B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
JP4911561B2 (en) Alkaline storage battery
JP5196932B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the hydrogen storage alloy, and nickel-hydrogen secondary battery
JP4587734B2 (en) Hydrogen storage alloy electrode and secondary battery using the electrode
JP2009076430A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP2007084846A (en) Hydrogen storage alloy
JP2009228096A (en) Hydrogen storage alloy
JP2006228536A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2004220994A (en) Alkaline storage battery
JP5183077B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP2007250250A (en) Nickel hydrogen storage battery
JP5283435B2 (en) Alkaline storage battery
JP2005226084A (en) Hydrogen storage alloy for alkaline storage battery, alkali storage battery, and method for manufacturing alkali storage battery
JP5171123B2 (en) Alkaline secondary battery
JP4159501B2 (en) Rare earth-magnesium hydrogen storage alloy, hydrogen storage alloy particles, and secondary battery
JP2007092115A (en) Hydrogen storage alloy, and nickel-hydrogen storage battery using this alloy
JP2010231940A (en) Alkaline secondary battery
JP2008235173A (en) Nickel-hydrogen secondary battery
JP4511298B2 (en) Nickel metal hydride storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R151 Written notification of patent or utility model registration

Ref document number: 5183077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3