JP2008208213A - Hydrogenated copolymer for vibration-damping material, and asphalt vibration-damping material composition - Google Patents

Hydrogenated copolymer for vibration-damping material, and asphalt vibration-damping material composition Download PDF

Info

Publication number
JP2008208213A
JP2008208213A JP2007045900A JP2007045900A JP2008208213A JP 2008208213 A JP2008208213 A JP 2008208213A JP 2007045900 A JP2007045900 A JP 2007045900A JP 2007045900 A JP2007045900 A JP 2007045900A JP 2008208213 A JP2008208213 A JP 2008208213A
Authority
JP
Japan
Prior art keywords
hydrogenated
damping material
copolymer
asphalt
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007045900A
Other languages
Japanese (ja)
Inventor
Shigeo Nakajima
滋夫 中島
Yoshifumi Araki
祥文 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007045900A priority Critical patent/JP2008208213A/en
Publication of JP2008208213A publication Critical patent/JP2008208213A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogenated copolymer for vibration-damping material, excellent in mold-processability, enabling further light weight, and also excellent in vibration-damping and sound insulation performance, and an asphalt vibration-damping material composition. <P>SOLUTION: This hydrogenated copolymer for the vibration damping material (A) obtained by hydrogenating a non-hydrogenated random copolymer containing a conjugated diene monomer unit and a vinyl aromatic monomer unit is provided by having the following characteristics (1) to (4); (1) the peak molecular weight measured by GPC is 40,000 to 400,000 based on a standard polystyrene, (2) the content of the vinyl aromatic monomer unit contained in the (A) is in 20 to 80 wt.% range, (3) the vinyl-bonded amount of the non-hydrogenated polymer consisting of the conjugated diene monomer unit in the (A) is <40%, and (4) in the dynamic viscoelastic spectrum obtained in association with the (A), at least one peak of loss tangent coefficient (tanδ) presents in ≥-40 and <70°C range. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、制振材用水添共重合体及びアスファルト制振材組成物に関する。   The present invention relates to a hydrogenated copolymer for damping material and an asphalt damping material composition.

近年、動力部を有する産業機器には、動力部から発生する振動、騒音を防止した制振シートや遮音シートが装着されている。例えば、自動車の場合は走行中の振動を防止するために車体底部やエンジンルームから発生するエンジン音や振動を自動車室内に伝えないようにエンジンルームと自動車室内の境界などに、かかる制振シートや遮音シートが装着されている。また、同様に駆動部を有する家電なども動力部から発生する振動や騒音を防止するための制振シートや遮音シートが装着されている。さらに、構造物である鉄筋コンクリート製建築や木造建築のビル、マンション、一般住宅の床は、いずれも床から階下に伝わる床衝撃音が問題となっている。   2. Description of the Related Art In recent years, vibration control sheets and sound insulation sheets that prevent vibration and noise generated from a power unit are mounted on industrial equipment having a power unit. For example, in the case of an automobile, the vibration-damping sheet or the like on the boundary between the engine room and the automobile room is not used to prevent the engine sound or vibration generated from the bottom of the vehicle body or the engine room from being transmitted to the car room in order to prevent vibration during driving. A sound insulation sheet is attached. Similarly, home appliances having a drive unit are equipped with a vibration damping sheet and a sound insulation sheet for preventing vibration and noise generated from the power unit. Furthermore, floor impact sound transmitted from the floor to the lower floor is a problem in the floors of buildings, condominiums, and ordinary houses made of reinforced concrete or wooden structures.

これらの衝撃音を階下に伝えないために、様々な床の構造あるいは様々な床構成材の組み合わせ及び遮音シート等を敷く等により、対策が採られている。制振材、遮音材として、SBS、SIS、SEBS、SEPS等のスチレン系エラストマー等の各種熱可塑性エラストマー、天然ゴム、IR、SBR、ブチルゴム、クロロプレンゴム、アクリルゴム等、種々のゴム質重合体をベースとした樹脂組成物やアスファルト組成物等が使用されている。   In order not to transmit these impact sounds to the downstairs, measures are taken by laying various floor structures or combinations of various floor components and sound insulation sheets. Various rubbery polymers such as SBS, SIS, SEBS, SEPS and other thermoplastic elastomers such as SBS, SIS, SEBS, SEPS, natural rubber, IR, SBR, butyl rubber, chloroprene rubber, acrylic rubber, etc. Base resin compositions and asphalt compositions are used.

例えば、特開2002−284830(特許文献1)には、芳香族ビニルモノマーからなる重合体ブロックとイソプレンとスチレンの混合物からなる重合体ブロックからなるブロック共重合体が開示されている。また、特開平8−128128には、石油系アスファルト、熱可塑性エラストマー、鉱物粒、鉄粉及び界面活性剤からなる組成物が開示されている。
特開2002−284830号公報 特開平8−128128号公報
For example, JP-A No. 2002-284830 (Patent Document 1) discloses a block copolymer comprising a polymer block comprising an aromatic vinyl monomer and a polymer block comprising a mixture of isoprene and styrene. JP-A-8-128128 discloses a composition comprising petroleum asphalt, thermoplastic elastomer, mineral particles, iron powder and a surfactant.
JP 2002-284830 A JP-A-8-128128

しかしながら、従来の制振材、遮音材は特定の温度では性能が優れるものの、その温度以外では必ずしも満足な性能を有していなかった。そのため、構造や構成材の組合せにより対応しているのが現状である。従って、複雑な構造や構成材の組合せすることなく、より簡便で薄いシート状の制振材、遮音材の開発が期待されている。   However, although conventional vibration damping materials and sound insulation materials have excellent performance at a specific temperature, they do not necessarily have satisfactory performance at other temperatures. For this reason, the current situation is to cope with the combination of structures and constituent materials. Therefore, development of simpler and thinner sheet-shaped vibration damping materials and sound insulation materials is expected without combining complicated structures and components.

本発明は、このような市場要求に鑑み、従来の制振材、遮音材にない、成形加工性に優れ、より軽量化を可能にし、且つ各温度に優れた制振・遮音性能にも優れる制振材及びアスファルト制振材組成物を提供することを目的とする。   In view of such market demands, the present invention is superior in molding processability and weight reduction, which is not found in conventional vibration damping materials and sound insulation materials, and is excellent in vibration damping and sound insulation performance excellent in each temperature. It aims at providing a damping material and an asphalt damping material composition.

本発明者らは、前記課題を解決するために、鋭意検討を重ねた結果、ある特定の共役ジエン単量体単位とビニル芳香族単量体単位とを含む非水添ランダム共重合体を水添して得られる水添共重合体及び該水添共重合体を含有するアスファルト制振材組成物によって、上記の目的が達成されることを見出し、本発明を完成するに至った。
すなわち、本発明は、
[1] 共役ジエン単量体単位とビニル芳香族単量体単位とを含む非水添ランダム共重合体を水添して得られる制振材用水添共重合体(A)であって、該制振材用水添共重合体(A)が、次の特性(1)〜(4)を有する制振材用水添共重合体(A):
(1)該水添共重合体(A)のGPCによるピーク分子量が標準ポリスチレン換算で4万〜40万であり、
(2)該水添共重合体(A)中に含まれる該ビニル芳香族単量体単位の含有量が20〜80重量%の範囲であり、
(3)該水添共重合体(A)における該共役ジエン単量体単位を含む該非水添重合体のビニル結合量は40%未満であり、
(4)該水添共重合体(A)に関して得られた動的粘弾性スペクトルにおいて、損失係数(tanδ)のピークが−40℃以上、70℃未満の範囲に少なくとも1つ存在する、
[2] 前項[1]に記載の該制振材用水添共重合体(A)をブロックとして少なくとも1個含む、制振材用水添ブロック共重合体、
[3] ビニル芳香族単量体単位を主体とする少なくとも1個の重合体ブロック(B)を、さらに含む、前項[2]に記載の制振材用水添ブロック共重合体、
[4] 該ブロック共重合体中における全ビニル芳香族単量体単位の含有量が40〜80重量%である前項[3]に記載の制振材用水添ブロック共重合体、
[5] 該ブロック共重合体中におけるビニル芳香族単量体単位を含む重合体ブロック(B)の割合が40重量%未満である前項[3]又は[4]に記載の制振材用水添ブロック共重合体、
[6] 前項[2]〜[5]のいずれか一項に記載の水添ブロック共重合体を架橋してなる制振材、
[7] 前項[2]〜[5]のいずれか一項に記載の水添ブロック共重合体と、他のゴム質重合体と、を含む制振材、
[8] 架橋して得られる前項[7]に記載の制振材、
[9] 前項[2]〜[5]のいずれか一項に記載の水添ブロック共重合体と、アスファルトと
を含むアスファルト制振材組成物、
[10] 成分(イ)として、前項[2]〜[5]のいずれか一項に記載の制振材用水添ブロック共重合体、又は該水添ブロック共重合体と他のゴム質重合体との組成物と、成分(ニ)として、アスファルトと、を含むアスファルト制振材組成物、
[11] 成分(ロ)として、粘着付与材樹脂を、さらに含む前項[10]に記載のアスファルト制振材組成物、
[12] 成分(ハ)として、軟化剤を、さらに含む前項[10]または[11]に記載のアスファルト制振材組成物、
を提供する。
As a result of intensive studies to solve the above problems, the present inventors have obtained a non-hydrogenated random copolymer containing a specific conjugated diene monomer unit and a vinyl aromatic monomer unit. The inventors have found that the above object can be achieved by the hydrogenated copolymer obtained by addition and the asphalt vibration damping composition containing the hydrogenated copolymer, and have completed the present invention.
That is, the present invention
[1] A hydrogenated copolymer for damping material (A) obtained by hydrogenating a non-hydrogenated random copolymer containing a conjugated diene monomer unit and a vinyl aromatic monomer unit, The hydrogenated copolymer for damping material (A) has the following characteristics (1) to (4):
(1) The peak molecular weight by GPC of the hydrogenated copolymer (A) is 40,000 to 400,000 in terms of standard polystyrene,
(2) The content of the vinyl aromatic monomer unit contained in the hydrogenated copolymer (A) is in the range of 20 to 80% by weight,
(3) The vinyl bond amount of the non-hydrogenated polymer containing the conjugated diene monomer unit in the hydrogenated copolymer (A) is less than 40%,
(4) In the dynamic viscoelastic spectrum obtained for the hydrogenated copolymer (A), at least one peak of loss factor (tan δ) exists in the range of −40 ° C. or more and less than 70 ° C.
[2] A hydrogenated block copolymer for damping material, comprising at least one hydrogenated copolymer for damping material (A) according to [1] above as a block,
[3] The hydrogenated block copolymer for a vibration damping material according to the above item [2], further comprising at least one polymer block (B) mainly composed of a vinyl aromatic monomer unit,
[4] The hydrogenated block copolymer for a damping material according to [3], wherein the content of all vinyl aromatic monomer units in the block copolymer is 40 to 80% by weight,
[5] The hydrogenation for damping material according to the above [3] or [4], wherein the ratio of the polymer block (B) containing vinyl aromatic monomer units in the block copolymer is less than 40% by weight Block copolymer,
[6] A vibration damping material obtained by crosslinking the hydrogenated block copolymer according to any one of [2] to [5],
[7] A vibration-damping material comprising the hydrogenated block copolymer according to any one of [2] to [5] above and another rubbery polymer,
[8] The vibration damping material according to [7], obtained by crosslinking,
[9] An asphalt vibration damping composition comprising the hydrogenated block copolymer according to any one of [2] to [5] above and asphalt,
[10] The hydrogenated block copolymer for a vibration damping material according to any one of the above items [2] to [5], or the hydrogenated block copolymer and another rubbery polymer as the component (a) An asphalt vibration-damping material composition comprising, as a component, and asphalt as a component (d),
[11] The asphalt damping material composition according to [10], further including a tackifier resin as a component (b),
[12] The asphalt vibration damping composition according to the above item [10] or [11], further comprising a softener as the component (c),
I will provide a.

本発明によれば、成形加工性に優れ、より軽量化を可能にし、且つ各温度に優れた制振・遮音性能にも優れる制振材及びアスファルト制振材組成物が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the damping material and asphalt damping material composition which are excellent in molding processability, enable weight reduction, and are excellent also in the damping and sound-insulating performance excellent in each temperature can be provided.

以下の実施形態は、本発明を説明するための例示であり、本発明をこの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。   The following embodiment is an example for explaining the present invention, and is not intended to limit the present invention only to this embodiment. The present invention can be implemented in various forms without departing from the gist thereof.

以下に、本発明を詳細に説明する。
本発明の制振材用水添共重合体は、共役ジエン単量体単位とビニル芳香族単量体単位とを含む非水添ランダム共重合体を水添して得られる水添共重合体(A)である。制振材用水添共重合体(A)をブロックとして少なくとも1個含む、制振材用水添ブロック共重合体とすることもできる。
The present invention is described in detail below.
The hydrogenated copolymer for damping material of the present invention is a hydrogenated copolymer obtained by hydrogenating a non-hydrogenated random copolymer containing a conjugated diene monomer unit and a vinyl aromatic monomer unit ( A). A hydrogenated block copolymer for a damping material containing at least one hydrogenated copolymer for damping material (A) as a block may be used.

共役ジエン単量体単位とは、単量体である共役ジエンを重合して結果生じる、重合体の構成単位を意味し、その構造は、共役ジエン単量体に由来するオレフィンの二つの炭素が結合部位となっている分子構造である。共役ジエンとしては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−ブタジエン、3−ブチル−1,3−オクタジエン、フェニル1,3−ブタジエン等の単量体が挙げられ、1,3−ブタジエン及びイソプレンが好ましく、1,3−ブタジエンがより好ましい。これらの単量体は、単独でも2種以上の併用でもよい。   The conjugated diene monomer unit means a structural unit of a polymer resulting from polymerization of a conjugated diene monomer, and its structure is composed of two olefins derived from the conjugated diene monomer. It is the molecular structure that is the binding site. Examples of the conjugated diene include monomers such as 1,3-butadiene, isoprene, 2,3-dimethyl-butadiene, 3-butyl-1,3-octadiene, phenyl 1,3-butadiene, and the like. 3-butadiene and isoprene are preferred, and 1,3-butadiene is more preferred. These monomers may be used alone or in combination of two or more.

また、ビニル芳香族単量体単位とは、単量体であるビニル芳香族化合物を重合して結果生じる、重合体の構成単位を意味し、その構造は、置換ビニル基に由来する置換エチレン基の二つの炭素が結合部位となっている分子構造である。ビニル芳香族としては、例えばスチレン、P−メチルスチレン、第三級ブチルスチレン、α−メチルスチレン、1,1−ジフェニルエチレン等の単量体が挙げられ、中でもスチレンが好ましい。これらの単量体は、単独でも2種以上の併用でもよい。   Further, the vinyl aromatic monomer unit means a structural unit of a polymer resulting from polymerization of a vinyl aromatic compound as a monomer, and the structure thereof is a substituted ethylene group derived from a substituted vinyl group. This is a molecular structure in which the two carbons are binding sites. Examples of the vinyl aromatic include monomers such as styrene, P-methylstyrene, tertiary butylstyrene, α-methylstyrene, 1,1-diphenylethylene, and among them, styrene is preferable. These monomers may be used alone or in combination of two or more.

さらに、水添共重合体(A)中に含まれる該ビニル芳香族単量体単位の含有量は、得られる水添共重合体(A)の制振性能の観点から、20〜80重量%の範囲であり、好ましくは25〜75重量%、より好ましくは30〜70重量%、さらに好ましくは35〜50重量%の範囲である。   Furthermore, the content of the vinyl aromatic monomer unit contained in the hydrogenated copolymer (A) is 20 to 80% by weight from the viewpoint of vibration damping performance of the resulting hydrogenated copolymer (A). The range is preferably 25 to 75% by weight, more preferably 30 to 70% by weight, and still more preferably 35 to 50% by weight.

またさらに、水添共重合体(A)の水添前重合体における共役ジエン単量体単位のミクロ構造(シス、トランス、ビニルの比率)は、後述する極性化合物の使用により任意に変えることができる。本発明において、共役ジエン単量体単位とビニル芳香族単量体単位とを含む非(水添前)水添ランダム共重合体ブロック中の共役ジエン単量体単位のビニル結合量は得られる水添共重合体の制振性能の観点から、40%未満であり、好ましくは30%未満、より好ましい範囲としては20%未満である。なお、ビニル結合量は水添後においても、NMRを使用することにより測定できる。   Furthermore, the microstructure (the ratio of cis, trans, vinyl) of the conjugated diene monomer unit in the pre-hydrogenation polymer of the hydrogenated copolymer (A) can be arbitrarily changed by using a polar compound described later. it can. In the present invention, the vinyl bond amount of the conjugated diene monomer unit in the non- (pre-hydrogenation) hydrogenated random copolymer block containing the conjugated diene monomer unit and the vinyl aromatic monomer unit is obtained water. From the viewpoint of vibration damping performance of the additive copolymer, it is less than 40%, preferably less than 30%, and more preferably less than 20%. The vinyl bond amount can be measured by using NMR even after hydrogenation.

本発明の水添共重合体(A)のピーク分子量は、4万〜40万である。本発明の水添共重合体(A)は、ピーク分子量が上記範囲にあることにより、機械的強度と成形加工性とのバランスに優れる。機械的強度や衝撃吸収性と成形加工性とのバランスの点からは、本発明の水添共重合体(A)のピーク分子量は、好ましくは6万〜35万、より好ましくは8万〜30万である。   The peak molecular weight of the hydrogenated copolymer (A) of the present invention is 40,000 to 400,000. The hydrogenated copolymer (A) of the present invention has an excellent balance between mechanical strength and molding processability when the peak molecular weight is in the above range. From the viewpoint of the balance between mechanical strength, impact absorbability and moldability, the peak molecular weight of the hydrogenated copolymer (A) of the present invention is preferably 60,000 to 350,000, more preferably 80,000 to 30. Ten thousand.

本発明の水添共重合体(A)は、該水添共重合体(A)に関して得られた動的粘弾性スペクトルにおいて、損失正接(tanδ)のピークが−40℃以上、70℃未満、好ましくは−30℃〜60℃、より好ましくは−20〜50℃、さらに好ましくは0〜50℃の範囲に少なくとも1つ存在する。損失正接のピークが、−40℃以上、70℃未満の範囲に少なくとも1つ存在することは、水添共重合体(A)の低温特性、衝撃吸収性と柔軟性とのバランスの点で必要である。なお、動的粘弾性スペクトルにおける損失正接(tanδ)のピークは、粘弾性測定解析装置を用い、周波数を10Hzとして測定される。   The hydrogenated copolymer (A) of the present invention has a loss tangent (tan δ) peak of −40 ° C. or higher and lower than 70 ° C. in the dynamic viscoelastic spectrum obtained for the hydrogenated copolymer (A). Preferably at least one exists in the range of -30 degreeC-60 degreeC, More preferably, -20-50 degreeC, More preferably, it is 0-50 degreeC. The presence of at least one loss tangent peak in the range of -40 ° C. or higher and lower than 70 ° C. is necessary in terms of the balance between the low temperature characteristics, impact absorption and flexibility of the hydrogenated copolymer (A). It is. Note that the peak of loss tangent (tan δ) in the dynamic viscoelastic spectrum is measured using a viscoelasticity measuring and analyzing apparatus with a frequency of 10 Hz.

本発明の水添共重合体(A)のtanδ値は、1.0以上が好ましく、1.1以上がより好ましく、1.2以上がさらに好ましい。tanδの値が1.0以上でかつその値が大きいほど制振性能が優れる。   The tan δ value of the hydrogenated copolymer (A) of the present invention is preferably 1.0 or more, more preferably 1.1 or more, and further preferably 1.2 or more. The greater the value of tan δ is 1.0 and the greater the value, the better the damping performance.

本発明の水添ブロック共重合体は、前述の水添共重合体(A)からなるブロックと、ビニル芳香族単量体単位を主体とする少なくとも1個の重合体ブロック(B)とを含む水添ブロック共重合体である。   The hydrogenated block copolymer of the present invention comprises a block comprising the above-mentioned hydrogenated copolymer (A) and at least one polymer block (B) mainly composed of vinyl aromatic monomer units. It is a hydrogenated block copolymer.

ここで、ビニル芳香族単量体単位を主体とする重合体ブロックとは、ビニル芳香族単量体単独重合体ブロックまたはビニル芳香族単量体を50重量%以上含有する実質的にビニル芳香族単量体を主成分とする共重合体ブロックを示す。水添ブロック共重合体中における重合体ブロック(B)の含有量は、得られる水添共重合体の機械的強度と衝撃吸収性とのバランスの点から、好ましくは40〜80重量%、より好ましくは50〜70重量%である。   Here, the polymer block mainly composed of a vinyl aromatic monomer unit is a vinyl aromatic monomer homopolymer block or a substantially vinyl aromatic monomer containing 50% by weight or more of a vinyl aromatic monomer. The copolymer block which has a monomer as a main component is shown. The content of the polymer block (B) in the hydrogenated block copolymer is preferably 40 to 80% by weight from the viewpoint of the balance between the mechanical strength and the impact absorbability of the resulting hydrogenated copolymer. Preferably it is 50 to 70% by weight.

また、水添ブロック共重合体におけるビニル芳香族単量体単位からなる重合体ブロック(B)の割合は、機械的強度と衝撃吸収性とのバランスの点から好ましくは40重量%未満である。   The proportion of the polymer block (B) composed of vinyl aromatic monomer units in the hydrogenated block copolymer is preferably less than 40% by weight from the viewpoint of the balance between mechanical strength and impact absorption.

本発明において、水添共重合体(A)とビニル芳香族単量体単位からなる重合体ブロック(B)とを含む水添共重合体の具体的な構造としては、
(A−B)n、 A−(B−A)n、 B−(A−B)n
[(B−A)n]m+1−X、 [(A−B)n]m+1−X
[(B−A)n−B]m+1−X、[(A−B)n−A]m+1−X
(上式において、Aは水添共重合体ブロックであり、Bはビニル芳香族単量体単位を含む重合体ブロックである。AブロックとBブロックとの境界は必ずしも明瞭に区別される必要はない。また、nは1以上の正数、一般に1〜5の整数である。mは1以上の正数、一般に1〜10の整数である。Xは、例えば四塩化ケイ素等の多価ハロゲン化有機ケイ素化合物、四塩化スズ等の多価ハロゲン化有機スズ化合物、エポキシ化大豆油、2〜6官能のエポキシ基含有化合物、ポリハロゲン化炭化水素、カルボン酸エステル、ジビニルベンゼン等のポリビニル化合物、炭酸ジメチル等の炭酸ジアルキル類等のカップリング剤残基又は多官能有機リチウム化合物等の開始剤の残基を示す。)
In the present invention, the specific structure of the hydrogenated copolymer containing the hydrogenated copolymer (A) and the polymer block (B) composed of vinyl aromatic monomer units is as follows:
(AB) n, A- (BA) n, B- (AB) n
[(B−A) n] m + 1−X, [(A−B) n] m + 1−X
[(B−A) n−B] m + 1−X, [(A−B) n−A] m + 1−X
(In the above formula, A is a hydrogenated copolymer block, B is a polymer block containing vinyl aromatic monomer units. The boundary between the A block and the B block is not necessarily clearly distinguished. N is a positive number of 1 or more, generally an integer of 1 to 5. m is a positive number of 1 or more, generally an integer of 1 to 10. X is a polyvalent halogen such as silicon tetrachloride, for example. Organosilicon compounds, polyvalent halogenated organotin compounds such as tin tetrachloride, epoxidized soybean oil, 2-6 functional epoxy group-containing compounds, polyhalogenated hydrocarbons, carboxylic acid esters, polyvinyl compounds such as divinylbenzene, (Represents a residue of a coupling agent such as dialkyl carbonates such as dimethyl carbonate or an initiator such as a polyfunctional organolithium compound.)

本発明を構成する水添共重合体(A)の水添前共重合体ブロックは、例えば不活性炭化水素溶媒中で、有機リチウム化合物を重合開始剤として所定比率のスチレンとブタジエンを同時に仕込み、重合させることにより得られる。その際、分子量は有機リチウム化合物量を制御することにより調整される。   The pre-hydrogenation copolymer block of the hydrogenated copolymer (A) constituting the present invention, for example, in an inert hydrocarbon solvent, simultaneously charged a predetermined ratio of styrene and butadiene using an organolithium compound as a polymerization initiator, It is obtained by polymerizing. At that time, the molecular weight is adjusted by controlling the amount of the organolithium compound.

本発明で使用される不活性炭化水素溶媒としては、ブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン、イソオクタン等の脂肪族炭化水素、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素等の炭化水素溶媒が使用できる。これらは一種のみならず二種以上を混合して使用してもよい。   Examples of the inert hydrocarbon solvent used in the present invention include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, octane and isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane and the like. Hydrocarbon solvents such as alicyclic hydrocarbons, aromatic hydrocarbons such as benzene, toluene, ethylbenzene and xylene can be used. These may be used alone or in combination of two or more.

また、本発明で使用される有機リチウム化合物としては、公知の化合物、例えばエチルリチウム、プロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、フェニルリチウム、プロペニルリチウム、ヘキシルリチウム等があげられる。中でもn−ブチルリチウム、sec−ブチルリチウムが好ましい。有機リチウム化合物は1種のみならず、2種以上の混合物としても用いられる。その使用量は、所望のピーク分子量が得られるような範囲で選択される。   Examples of the organic lithium compound used in the present invention include known compounds such as ethyl lithium, propyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, phenyl lithium, propenyl lithium, hexyl lithium and the like. can give. Of these, n-butyllithium and sec-butyllithium are preferable. The organolithium compound is used not only as one type but also as a mixture of two or more types. The amount used is selected within a range that provides a desired peak molecular weight.

水添共重合体(A)中の共役ジエン化合物のビニル結合量を調整するために、例えば、エーテル類や第三級アミン類等、具体的には、エチレングリコールジメチルエーテル、テトラヒドロフラン、α−メトキシテトラヒドロフラン、N,N,N’,N’−テトラメチルエチレンジアミン等から選ばれる1種または2種以上の混合物が使用される。   In order to adjust the vinyl bond amount of the conjugated diene compound in the hydrogenated copolymer (A), for example, ethers and tertiary amines, such as ethylene glycol dimethyl ether, tetrahydrofuran, α-methoxytetrahydrofuran. , N, N, N ′, N′-tetramethylethylenediamine or the like, or a mixture of two or more thereof is used.

上記の方法で重合した非水添重合体の共役ジエンに由来する不飽和二重結合の水素化することにより得られる。水素化触媒に特に限定されるものではなく、公知の水素化触媒技術を用いることができる。水添触媒の例として次のものが挙げられる:
(1)Ni、Pt、Pd、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等に担持した担持型不均一系水添触媒;
(2)Ni、Co、Fe、Cr等の有機酸塩又はアセチルアセトン塩等の遷移金属塩を有機アルミニウム等の還元剤とともに用いる、いわゆるチーグラー型水添触媒;及び
(3)Ti、Ru、Rh、Zr等の有機金属化合物等のいわゆる有機金属錯体等の均一系水添触媒。
It is obtained by hydrogenating an unsaturated double bond derived from a conjugated diene of a non-hydrogenated polymer polymerized by the above method. It does not specifically limit to a hydrogenation catalyst, A well-known hydrogenation catalyst technique can be used. Examples of hydrogenation catalysts include the following:
(1) A supported heterogeneous hydrogenation catalyst in which a metal such as Ni, Pt, Pd, or Ru is supported on carbon, silica, alumina, diatomaceous earth, or the like;
(2) a so-called Ziegler type hydrogenation catalyst using an organic acid salt such as Ni, Co, Fe, Cr or a transition metal salt such as acetylacetone salt together with a reducing agent such as organoaluminum; and (3) Ti, Ru, Rh, Homogeneous hydrogenation catalysts such as so-called organometallic complexes such as organometallic compounds such as Zr.

具体的な水添触媒としては、特公昭42−8704号公報、特公昭43−6636号公報、特公昭63−4841号公報(米国特許第4,501,857号に対応)、特公平1−37970号公報(米国特許第4,673,714号に対応)、特公平1−53851号公報、特公平2−9041号公報に記載された水添触媒を使用することができる。好ましい水添触媒の例としては、チタノセン化合物、及びチタノセン化合物と還元性有機金属化合物との混合物が挙げられる。   Specific hydrogenation catalysts include Japanese Patent Publication No. 42-8704, Japanese Patent Publication No. 43-6636, Japanese Patent Publication No. 63-4841 (corresponding to US Pat. No. 4,501,857), Japanese Patent Publication No. Hydrogenation catalysts described in Japanese Patent No. 37970 (corresponding to US Pat. No. 4,673,714), Japanese Patent Publication No. 1-53851 and Japanese Patent Publication No. 2-9041 can be used. Examples of preferred hydrogenation catalysts include titanocene compounds and mixtures of titanocene compounds and reducing organometallic compounds.

チタノセン化合物としては、特開平8−109219号公報に記載された化合物が使用できる。具体的には、ビスシクロペンタジエニルチタンジクロライド、モノペンタメチルシクロペンタジエニルチタントリクロライド等の(置換)シクロペンタジエニル骨格、インデニル骨格あるいはフルオレニル骨格を有する配位子を少なくとも1つ以上有する化合物が挙げられる。また、還元性有機金属化合物の例としては、有機リチウム等の有機アルカリ金属化合物、有機マグネシウム化合物、有機アルミニウム化合物、有機ホウ素化合物、有機亜鉛化合物が挙げられる。   As the titanocene compound, compounds described in JP-A-8-109219 can be used. Specifically, it has at least one ligand having a (substituted) cyclopentadienyl skeleton, indenyl skeleton or fluorenyl skeleton such as biscyclopentadienyl titanium dichloride and monopentamethylcyclopentadienyl titanium trichloride. Compounds. Examples of the reducing organometallic compound include organoalkali metal compounds such as organolithium, organomagnesium compounds, organoaluminum compounds, organoboron compounds, and organozinc compounds.

上記の水添反応により、水添共重合体の溶液が得られる。水添共重合体(A)の溶液から必要に応じて触媒残査を除去し、水添共重合体(A)を溶液から分離する。溶媒を分離する方法の例としては、水添後の反応液にアセトンまたはアルコール等の水添共重合体(A)に対する貧溶媒となる極性溶媒を加えて重合体を沈澱させて回収する方法;反応液を撹拌下熱湯中に投入し、スチームストリッピングにより溶媒を除去して回収する方法;及び重合体溶液を直接加熱して溶媒を留去する方法、が挙げられる。   A hydrogenated copolymer solution is obtained by the above hydrogenation reaction. The catalyst residue is removed from the hydrogenated copolymer (A) solution as necessary, and the hydrogenated copolymer (A) is separated from the solution. As an example of a method for separating the solvent, a method of adding a polar solvent which is a poor solvent for the hydrogenated copolymer (A) such as acetone or alcohol to the reaction solution after hydrogenation to precipitate and recover the polymer; Examples thereof include a method in which the reaction solution is poured into hot water with stirring and the solvent is removed by steam stripping; and a method in which the solvent is distilled off by directly heating the polymer solution.

本発明の水添共重合体(A)の水添率は、特に限定されるものではないが、10%以上、好ましくは20%以上、より好ましくは30%以上である。特に熱安定性が要求される用途では少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上である。また、加工性が要求される用途では、水添率は10〜90%、好ましくは20〜80%、より好ましくは30〜70%である。   Although the hydrogenation rate of the hydrogenated copolymer (A) of this invention is not specifically limited, It is 10% or more, Preferably it is 20% or more, More preferably, it is 30% or more. Particularly in applications where thermal stability is required, it is at least 80% or more, preferably 90% or more, more preferably 95% or more. In applications where processability is required, the hydrogenation rate is 10 to 90%, preferably 20 to 80%, more preferably 30 to 70%.

水添共重合体(A)からなるブロックとビニル芳香族単量体重合体ブロック(B)とを含む水添ブロック共重合体は、例えば不活性炭化水素溶媒中で、有機リチウム化合物を重合開始剤としてスチレンを重合させ、次いで、所定比率のスチレンとブタジエンを同時に仕込み、重合させ、さらに場合によりこれらの操作を繰り返す方法により得られる。   A hydrogenated block copolymer containing a block comprising a hydrogenated copolymer (A) and a vinyl aromatic monomer polymer block (B) is prepared by, for example, polymerizing an organolithium compound in an inert hydrocarbon solvent. Styrene is polymerized, and then a predetermined ratio of styrene and butadiene are simultaneously charged, polymerized, and optionally, these operations are repeated.

本発明の水添ブロック共重合体をカップリング方法により得られる場合、カップリング剤としては、例えば2官能性のエポキシ化合物、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメトキシメチルシラン、トリエトキシシラン、テトラメトキシシラン、テトラエトキシシランのようなアルコキシケイ素化合物、安息香酸メチル、安息香酸エチルのようなエステル化合物、ジビニルベンゼン等のようなビニルアレン類、ジクロルジメチルシラン、フェニルメチルジクロロシランのようなハロゲン化ケイ素化合物、ジクロルジメチルスズ、テトラクロロスズのようなスズ化合物、テトラクロロシランのようなケイ素化合物等が挙げられる。カップリング剤化合物は単独で使用してもよいし、2種以上の混合物で使用してもよい。   When the hydrogenated block copolymer of the present invention is obtained by a coupling method, examples of the coupling agent include bifunctional epoxy compounds, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethoxymethylsilane, triethoxysilane, Tetramethoxysilane, alkoxysilicon compounds such as tetraethoxysilane, methyl benzoate, ester compounds such as ethyl benzoate, vinyl allenes such as divinylbenzene, halogens such as dichlorodimethylsilane and phenylmethyldichlorosilane Silicon compound, dichlorodimethyltin, tin compound such as tetrachlorotin, silicon compound such as tetrachlorosilane, and the like. The coupling agent compound may be used alone or in a mixture of two or more.

本発明において、架橋してなる水添ブロック共重合体は、架橋物の状態で耐熱性、耐屈曲性や耐油性を発揮する。架橋剤の種類は特に限定されるものではなく、一般的に使用されるものでよい。架橋剤として具体的なものは、粉末硫黄、沈降硫黄、コロイド硫黄、コロイド硫黄、表面処理硫黄、不活性硫黄等の硫黄、塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノール、ジスルフィド、高分子多硫化物等の硫黄化合物、セレニウム、テリリウム、酸化マグネシウム、リサージ、亜鉛華等の無機加硫剤、p−キノンジオキシム、p,p’−ジベンゾイル・キノンジオキシム、テトラクロロ−p−ベンゾキノン、ポリ−p−ジニトロソベンゼン等のオキシム類、ニトロソ化合物、ヘキサメチレン・ジアミン、トリエチレン・テトラミン、テトラエチレン・ペンタミン、ヘキメチレンジアミン・カルバメート、N,N’−ジシンナミリデン−1,6−ヘキサンジアミン、4,4’−メチレンビス(シクロヘキシルアミン)カルバメート、4,4’−メチレンビス−(2−クロロアニリン)等のポリアミン、第三ブチルヒドロペルオキシド、1,1,3,3,テトラメチルブチルヒドロペルオキシド、p−メンタンヒドロペルオキシド、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、2,5−ジメチルヘキサン2,5−ジヒドロペルオキシド、ジ−第三ブチルペルオキシド、ジクミルペルオキシド、第三ブチルクミルペルオキシド、1,1−ビス(第三ブチルペルオキシ)シクロドデカン等の有機ペルオキシド、アルキルフェノール・ホルムアルデヒド樹脂、メラミン−ホルムアルデヒド縮合物およびトリアジン−ホルムアルデヒド縮合物、オクチルフェノール・ホルムアルデヒド樹脂、アリキルフェノール・スルフィド樹脂、ヘキサメトキシメチル・メラミン樹脂等の樹脂加硫剤等が挙げられる。架橋剤の配合量は、水添ブロック共重合体100重量部に対して、0.1〜5重量部、好ましくは0.2〜3重量部、より好ましくは0.5〜2重量部である。0.1重量部未満の場合には架橋剤添加効果がなく、5重量部を超えても本発明が目的とする効果を超える効果は発現されない。架橋剤で水添ブロック共重合体を架橋する方法は、通常実施される方法で行うことができる。例えば、120〜200℃、好ましくは140〜180℃の温度で架橋する。   In the present invention, the hydrogenated block copolymer obtained by crosslinking exhibits heat resistance, bending resistance and oil resistance in the state of a crosslinked product. The kind of the crosslinking agent is not particularly limited and may be generally used. Specific examples of cross-linking agents include powdered sulfur, precipitated sulfur, colloidal sulfur, colloidal sulfur, surface-treated sulfur, inert sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol, disulfide, and many polymers. Sulfur compounds such as sulfides, inorganic vulcanizing agents such as selenium, terium, magnesium oxide, risurge, zinc white, p-quinonedioxime, p, p'-dibenzoylquinonedioxime, tetrachloro-p-benzoquinone, poly Oximes such as p-dinitrosobenzene, nitroso compounds, hexamethylene diamine, triethylene tetramine, tetraethylene pentamine, hexamethylene diamine carbamate, N, N′-dicinnamylidene-1,6-hexanediamine, 4 , 4'-Methylenebis (cyclohexylamine) Carbamate, polyamines such as 4,4'-methylenebis- (2-chloroaniline), tert-butyl hydroperoxide, 1,1,3,3, tetramethylbutyl hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide, diisopropyl Benzene hydroperoxide, 2,5-dimethylhexane 2,5-dihydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide, 1,1-bis (tertiary butyl peroxy) cyclododecane, etc. Organic peroxides, alkylphenol-formaldehyde resins, melamine-formaldehyde condensates and triazine-formaldehyde condensates, octylphenol-formaldehyde resins, alkylphenol-sulfide resins, hexa Resin vulcanizing agents such as Tokishimechiru melamine resins. The amount of the crosslinking agent is 0.1 to 5 parts by weight, preferably 0.2 to 3 parts by weight, more preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the hydrogenated block copolymer. . When the amount is less than 0.1 part by weight, there is no effect of adding a crosslinking agent, and even when the amount exceeds 5 parts by weight, an effect exceeding the effect intended by the present invention is not exhibited. The method of crosslinking the hydrogenated block copolymer with a crosslinking agent can be carried out by a commonly practiced method. For example, crosslinking is performed at a temperature of 120 to 200 ° C, preferably 140 to 180 ° C.

本発明の水添ブロック共重合体と他のゴム質重合体とを含む制振材は、柔軟性に富み、耐衝撃性に優れる。ゴム質重合体は、特に限定されるものではないが、具体的なものとしては、天然ゴム、合成ゴム(SBR、IR、NBR、EPDM等)、熱可塑性エラストマー(スチレン系、オレフィン系、エステル系、塩ビ系等)等が挙げられる。ゴム質重合体の配合量は、水添共重合体100重量部に対して、200重量部未満、好ましくは100重量部未満である。200重量部以上だと本発明が目的とする効果を超える効果は発現されない。このように水添共重合体にゴム質重合体を配合したものを前述の架橋剤を用いて架橋体として用いることもできる。   The vibration damping material containing the hydrogenated block copolymer of the present invention and another rubber polymer is rich in flexibility and excellent in impact resistance. The rubbery polymer is not particularly limited, but specific examples include natural rubber, synthetic rubber (SBR, IR, NBR, EPDM, etc.), thermoplastic elastomer (styrene-based, olefin-based, ester-based). , Vinyl chloride, etc.). The compounding amount of the rubber polymer is less than 200 parts by weight, preferably less than 100 parts by weight with respect to 100 parts by weight of the hydrogenated copolymer. When the amount is 200 parts by weight or more, the effect exceeding the intended effect of the present invention is not exhibited. Thus, what mixed the rubbery polymer with the hydrogenated copolymer can also be used as a crosslinked body using the above-mentioned crosslinking agent.

本発明のアスファルト制振材組成物とは、本発明の水添ブロック共重合体とアスファルトを必須成分とし、溶融粘度が低く加工性、広範な温度領域での制振性、基材との接着力特に低温接着力に優れる性質を示す組成物をいう。具体的には、動的粘弾性スペクトルにおいて、0℃以上70℃以下の範囲では、動的弾性率(G’)が10000Pa以上、損失係数(tanδ)が0.2以上であるアスファルト制振材組成物をいう。   The asphalt damping material composition of the present invention comprises the hydrogenated block copolymer of the present invention and asphalt as essential components, has low melt viscosity, processability, vibration damping in a wide temperature range, adhesion to a substrate It refers to a composition exhibiting properties that are particularly excellent in low-temperature adhesive strength. Specifically, in the dynamic viscoelastic spectrum, in the range of 0 ° C. or higher and 70 ° C. or lower, the asphalt damping material having a dynamic elastic modulus (G ′) of 10,000 Pa or more and a loss coefficient (tan δ) of 0.2 or more. Refers to the composition.

本発明のアスファルト制振材組成物では、成分(イ)としては、前記の水添ブロック共重合体、又は該水添ブロック共重合体と他のゴム質重合体との組成物が使用され、他のゴム質重合体としては、天然ゴム、合成ゴム(SBR、IR、NBR、EPDM等)、熱可塑性エラストマー(スチレン系、オレフィン系、エステル系、塩ビ系等)等が挙げられる。成分(イ)の配合量は3〜40重量部、好ましくは5〜30重量部である。   In the asphalt vibration damping composition of the present invention, as the component (a), the hydrogenated block copolymer, or a composition of the hydrogenated block copolymer and another rubber polymer is used, Examples of other rubbery polymers include natural rubber, synthetic rubber (SBR, IR, NBR, EPDM, etc.), thermoplastic elastomer (styrene, olefin, ester, vinyl chloride, etc.). The compounding quantity of a component (I) is 3-40 weight part, Preferably it is 5-30 weight part.

本発明のアスファルト制振材組成物では、成分(ロ)としては、得られるアスファルト制振材の用途、要求性能によって、多種多様の粘着付与剤樹脂が選択される。例えば、クマロン系樹脂、芳香族系炭化水素樹脂、ロジン系樹脂、テルペン系樹脂、石油樹脂、フェノール系樹脂、テルペン−フェノール系樹脂、脂環族系炭化水素樹脂、水添脂環族系炭化水素樹脂、水添テルペン系樹脂、水添ロジン系樹脂等の公知の粘着付与剤樹脂が挙げられ、これらの粘着付与剤樹脂は2種以上の混合使用も可能である。成分(ロ)を使用する場合は、0〜60重量部、1〜50重量部が好ましい。   In the asphalt vibration damping composition of the present invention, a wide variety of tackifier resins are selected as the component (b) depending on the use and required performance of the obtained asphalt vibration damping material. For example, coumarone resin, aromatic hydrocarbon resin, rosin resin, terpene resin, petroleum resin, phenol resin, terpene-phenol resin, alicyclic hydrocarbon resin, hydrogenated alicyclic hydrocarbon Known tackifier resins such as resins, hydrogenated terpene resins, and hydrogenated rosin resins can be used, and these tackifier resins can be used in combination of two or more. When using a component (b), 0-60 weight part and 1-50 weight part are preferable.

本発明のアスファルト制振材組成物では、成分(ハ)として軟化剤を使用することができる。軟化剤の種類は制限されるものではなく、公知のパラフィン系やナフテン系、アロマ系のプロセスオイル及びこれらの混合オイルを使用することができる。成分(ハ)を使用する場合は、0〜50重量部、1〜40重量部が好ましい。   In the asphalt vibration damping composition of the present invention, a softener can be used as the component (c). The kind of the softening agent is not limited, and known paraffinic, naphthenic, and aromatic process oils and mixed oils thereof can be used. When using a component (ha), 0-50 weight part and 1-40 weight part are preferable.

本発明のアスファルト制振材組成物では、また、成分(ニ)としてアスファルトは、石油精製の際の副産物(石油アスファルト)、天然の産出物(天然アスファルト)として得られるもの、もしくはこれらと石油類を混合したものなどを挙げることができ、その主成分は瀝青(ビチューメン)と呼ばれるものである。具体的には、ストレートアスファルト、セミブローンアスファルト、ブローンアスファルト、タール、ピッチ、オイルを添加したカットバックアスファルト、アスファルト乳剤等を使用することができる。これらは混合して使用してもよい。本発明においては、針入度が30〜300のストレートアスファルトが好ましい。成分(ニ)の配合量は5〜97重量部、10〜80重量部が好ましい。   In the asphalt damping material composition of the present invention, as the component (d), asphalt is obtained as a by-product (petroleum asphalt), a natural product (natural asphalt) during petroleum refining, or these and petroleum The main component is what is called bitumen. Specifically, straight asphalt, semi-blown asphalt, blown asphalt, tar, pitch, cutback asphalt added with oil, asphalt emulsion and the like can be used. These may be used as a mixture. In the present invention, straight asphalt having a penetration of 30 to 300 is preferable. The compounding amount of component (d) is preferably 5 to 97 parts by weight and 10 to 80 parts by weight.

本発明の水添ブロック共重合体及びアスファルト制振材組成物には、必要により、所定量の酸化防止剤を添加する。また、本発明の制振材組成物のさらなる熱安定性の向上をはかるために制振材組成物配合時に酸化防止剤を添加することも可能である。酸化防止剤は、ブロック共重合体酸化防止剤としては、例えば、2,4−ビス(n−オクチルチオメチル)−O−クレゾール、2,4−ビス(n−ドデシルチオメチル)−O−クレゾール、2,4−ビス(フェニルチオメチル)−3−メチル−6−tert−ブチルフェノール、n−オクタデシル−3−(3’,5’ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、2,2‘−メチレンビス(4−エチル−6−tert−ブチルフェノール)、テトラキス−〔メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート〕−メタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2,4−ジ−tert−アミル−6−〔1−(3,5−ジ−tert−アミル−2−ヒドロキシフェニル)エチル〕フェニルアクリレート、2−〔1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)−エチル〕−4,6−ジ−tert−ペンチルフェニルアクリレート、3,9−ビス[2−〔3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)−プロピオニルオキシ〕−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ〔5,5〕ウンデカン等のヒンダードフェノール系化合物、ペンタエリストール−テトラキス−(β−ラウリル−チオ−プロピオネート )、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート等のイオウ系化合物、トリス(ノニルフェニル)フォスファイト、サイクリックネオペンタンテトライルビス(オクタデシルフォスファイト)、トリス(2,4−ジ−tert−ブチルフェニル)フォスファイト等のリン系化合物等が挙げられる。これらは単独又は2種以上混合して使用できる。これらの添加量は用途により任意であるが、好ましくはアスファルト制振材組成物100重量部に対して5重量部以下である。   A predetermined amount of an antioxidant is added to the hydrogenated block copolymer and the asphalt vibration damping composition of the present invention, if necessary. In order to further improve the thermal stability of the vibration damping composition of the present invention, it is possible to add an antioxidant when blending the vibration damping composition. Antioxidants include, for example, 2,4-bis (n-octylthiomethyl) -O-cresol, 2,4-bis (n-dodecylthiomethyl) -O-cresol as block copolymer antioxidants. 2,4-bis (phenylthiomethyl) -3-methyl-6-tert-butylphenol, n-octadecyl-3- (3 ′, 5′di-tert-butyl-4′-hydroxyphenyl) propionate, 2, 2′-methylenebis (4-ethyl-6-tert-butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate] -methane, 1,3 , 5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 2,6-di-tert-butyl 4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methyl Phenyl acrylate, 2,4-di-tert-amyl-6- [1- (3,5-di-tert-amyl-2-hydroxyphenyl) ethyl] phenyl acrylate, 2- [1- (2-hydroxy-3) , 5-Di-tert-pentylphenyl) -ethyl] -4,6-di-tert-pentylphenyl acrylate, 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5- Hindered fe such as methylphenyl) -propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane Compound, pentaerythritol-tetrakis- (β-lauryl-thio-propionate), dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3, Sulfur compounds such as 3′-thiodipropionate, tris (nonylphenyl) phosphite, cyclic neopentanetetraylbis (octadecyl phosphite), tris (2,4-di-tert-butylphenyl) phosphite, etc. And the like. These can be used alone or in admixture of two or more. These addition amounts are arbitrary depending on the use, but are preferably 5 parts by weight or less with respect to 100 parts by weight of the asphalt vibration damping composition.

上記の酸化防止剤、光安定剤以外に、本発明の制振材用組成物には、必要により各種添加剤、例えばシリカ、タルク、炭酸カルシウム、鉱物質粉末、ガラス繊維等の充填剤や補強剤、鉱物質の骨材、ベンガラ、二酸化チタン等の顔料、パラフィンワックス、マイクロクリスタリンワックス、低分子量ポリエチレンワックス等のワックス類、あるいは、アゾジカルボンアミド等の発泡剤、ポリエチレン、ポリプロピレン、汎用ポリスチレン、耐衝撃性ポリスチレン、ポリフェニレンエーテル、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ポリ塩化ビニル、ポリメチルメタクリレート、ポリアミド、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、エポキシ樹脂等の合成樹脂を添加してもよい。   In addition to the above-mentioned antioxidants and light stabilizers, the composition for vibration damping materials of the present invention includes various additives such as silica, talc, calcium carbonate, mineral powder, glass fiber and other fillers and reinforcements as necessary. Agents, mineral aggregates, pigments such as bengara and titanium dioxide, waxes such as paraffin wax, microcrystalline wax, low molecular weight polyethylene wax, or foaming agents such as azodicarbonamide, polyethylene, polypropylene, general-purpose polystyrene, Synthetic resins such as impact polystyrene, polyphenylene ether, acrylonitrile / styrene copolymer, acrylonitrile / butadiene / styrene copolymer, polyvinyl chloride, polymethyl methacrylate, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, epoxy resin, etc. It may be pressurized.

本発明の水添ブロック共重合体と架橋剤、ゴム質重合体、アスファルト等を混合する方法は特に限定されるものではなく、所望により前記の各種添加剤を、公知の混合機、熱溶融釜、ロール、ニーダー、バンバリーミキサー、押出機等により加熱溶融混練し、均一混合する方法で調製される。また、シート状に成形加工する場合は、カレンダーロール、押出機、プレス等により、加熱溶融させ、成形できる。   The method of mixing the hydrogenated block copolymer of the present invention with a crosslinking agent, rubbery polymer, asphalt, etc. is not particularly limited, and if desired, the various additives can be mixed with known mixers, hot melt kettles. , Roll, kneader, Banbury mixer, extruder, and the like, and are prepared by a method of heating, melt-kneading and uniformly mixing. In the case of forming into a sheet, it can be molded by heating and melting with a calendar roll, an extruder, a press or the like.

本発明を更に詳細に説明するために、以下に、実施例及び比較例を示すが、これらの実施例は本発明の説明及びそれによって得られる効果などを具体的に示すものであって、本発明の範囲をなんら限定するものではない。なお、各種測定は下記の方法に従った。   In order to describe the present invention in more detail, examples and comparative examples will be shown below. These examples specifically illustrate the description of the present invention and the effects obtained thereby. It is not intended to limit the scope of the invention. Various measurements were performed according to the following methods.

重合体の特性や物性の測定は次の方法で行った。
I.各種の水添共重合体
I−1)スチレン含有量
スチレン単量体単位の水添共重合体ブロックに対する含有率は、ベース非水添共重合体を検体として、紫外線分光光度計(UV−2450:島津製作所製)を用いて測定した。スチレン単量体単位の水添共重合体ブロックに対する含有率は、スチレン単量体単位のベース非水添共重合体に対する含有率として求めた。
なお、水添共重合体を検体とする場合は、核磁気共鳴装置(ドイツ国BRUKER社製、DPX−400)を用いて測定した。
The characteristics and physical properties of the polymer were measured by the following method.
I. Various hydrogenated copolymers I-1) Styrene content The content of styrene monomer units with respect to the hydrogenated copolymer block was measured with an ultraviolet spectrophotometer (UV-2450) using the base non-hydrogenated copolymer as a specimen. : Manufactured by Shimadzu Corporation). The content of the styrene monomer unit with respect to the hydrogenated copolymer block was determined as the content of the styrene monomer unit with respect to the base non-hydrogenated copolymer.
In addition, when using a hydrogenated copolymer as a test substance, it measured using the nuclear magnetic resonance apparatus (Germany BRUKER company make, DPX-400).

I−2)スチレン重合体ブロック含有量
非水添共重合体のスチレン重合体ブロック含有量は、I.M.Kolthoff, et. ,J.Polym. Sci.1,429(1946)に記載の四酸化オスミウム分解法で測定した。非水添共重合体の分解にはオスミウム酸の0.1g/125ml第3級ブタノール溶液を用いた。ここで得られるスチレン重合体ブロック含有量をOs値とした。
なお、水添共重合体のスチレン重合体ブロック含有量を測定する場合は、核磁気共鳴装置(JMN−270WB;日本電子社製)を使用して、Y.Tanaka,et al.,RUBBER CHEMISTRY and TECHNOLOGY 54,685(1981)に記載の方法に準じて測定した。具体的には、水添共重合体の30mgを1gの重クロロホルムに溶解したものを試料とし、1H−NMRを測定した。NMR測定によって得られる水添共重合体のスチレン重合体ブロック含有量(Ns値)は、全積算値、化学シフト6.9〜6.3ppmの積算値、及び化学シフト7.5〜6.9ppmの積算値から求め、Ns値をOs値に換算した。計算方法を下記に示す。
I-2) Styrene polymer block content The styrene polymer block content of the non-hydrogenated copolymer is M.M. Kolthoff, et. Polym. Sci. 1, 429 (1946). For the decomposition of the non-hydrogenated copolymer, a 0.1 g / 125 ml tertiary butanol solution of osmic acid was used. The styrene polymer block content obtained here was defined as the Os value.
In the case of measuring the styrene polymer block content of the hydrogenated copolymer, a nuclear magnetic resonance apparatus (JMN-270WB; manufactured by JEOL Ltd.) was used. Measurement was performed according to the method described in Tanaka, et al., RUBBER CHEMISTRY and TECHNOLOGY 54, 685 (1981). Specifically, 1 H-NMR was measured using a sample obtained by dissolving 30 mg of a hydrogenated copolymer in 1 g of deuterated chloroform. The styrene polymer block content (Ns value) of the hydrogenated copolymer obtained by NMR measurement is the total integrated value, the integrated value of chemical shift 6.9 to 6.3 ppm, and the chemical shift 7.5 to 6.9 ppm. The Ns value was converted into an Os value. The calculation method is shown below.

ブロックスチレン(St)強度
=(6.9〜6.3ppm)積算値/2
ランダムスチレン(St)強度
=(7.5〜6.9ppm)積算値−3(ブロックSt強度)
エチレン・ブチレン(EB)強度
=全積算値−3{(ブロックSt強度)+(ランダムSt強度)}/8
NMR測定によって得られるスチレン重合体ブロック含有量(Ns値)
=104(ブロックSt強度)/[104{(ブロックSt強度)+(ランダムSt強度)}+56(EB強度)]
Os値=−0.012(Ns値)2 +1.8(Ns値)−13.0
Block styrene (St) strength = (6.9 to 6.3 ppm) integrated value / 2
Random styrene (St) strength = (7.5-6.9 ppm) integrated value-3 (block St strength)
Ethylene / Butylene (EB) Strength = Total Integrated Value-3 {(Block St Strength) + (Random St Strength)} / 8
Styrene polymer block content obtained by NMR measurement (Ns value)
= 104 (Block St intensity) / [104 {(Block St intensity) + (Random St intensity)} + 56 (EB intensity)]
Os value = −0.012 (Ns value) 2 +1.8 (Ns value) −13.0

I−3)ビニル結合量
水添前共重合ブロック中の共役ジエン単量体部分のビニル結合量は、水添前に赤外分光光度計(FT/IR−230;日本分光社製)を用いて測定した。共重合体ブロックである共役ジエン/スチレンランダム共重合体ブロックのビニル結合量はハンプトン法により算出した。
I-3) Vinyl bond amount The vinyl bond amount of the conjugated diene monomer portion in the copolymer block before hydrogenation was measured using an infrared spectrophotometer (FT / IR-230; manufactured by JASCO Corporation) before hydrogenation. Measured. The vinyl bond amount of the conjugated diene / styrene random copolymer block as the copolymer block was calculated by the Hampton method.

I−4)ピーク分子量
水添共重合体のピーク分子量は、GPCにより測定した(米国ウォーターズ社製の装置を用いた)。溶媒としてテトラヒドロフランを用い、温度35℃で測定した。分子量が既知の市販の標準単分散ポリスチレン系ゲルを用いて作成した検量線を使用し、GPCクロマトグラムからピーク分子量を求めた。
I-4) Peak molecular weight The peak molecular weight of the hydrogenated copolymer was measured by GPC (using an apparatus manufactured by Waters, USA). Tetrahydrofuran was used as a solvent, and the temperature was measured at 35 ° C. The peak molecular weight was determined from the GPC chromatogram using a calibration curve prepared using a commercially available standard monodisperse polystyrene gel having a known molecular weight.

I−5)共役ジエン単量体単位の二重結合の水添率
水添率は、核磁気共鳴装置(DPX−400:ドイツ国BRUKER社製)を用いて測定した。
I-5) Hydrogenation rate of double bond of conjugated diene monomer unit The hydrogenation rate was measured using a nuclear magnetic resonance apparatus (DPX-400: manufactured by BRUKER, Germany).

I−6)損失正接(tanδ)、損失係数のピーク温度及び動的弾性率(G’)
粘弾性測定解析装置(型式DVE−V4;(株)レオロジ社製)を用い、粘弾性スペクトルを測定することにより求めた。測定周波数は、10Hzであった。
I-6) Loss tangent (tan δ), peak temperature of loss factor, and dynamic modulus of elasticity (G ′)
Using a viscoelasticity measuring / analyzing apparatus (model DVE-V4; manufactured by Rheology Co., Ltd.), the viscoelasticity spectrum was measured. The measurement frequency was 10 Hz.

実施例及び比較例において共重合体の水添反応に用いる水添触媒は、次のように製造した。   In the examples and comparative examples, the hydrogenation catalyst used for the hydrogenation reaction of the copolymer was produced as follows.

参考例1;水添触媒の調製
窒素置換した反応容器に乾燥、精製したシクロヘキサン2リットルを仕込み、ビス(η5−シクロペンタジエニル)チタニウムジ−(p−トリル)40ミリモルと分子量が約1,000の1,2−ポリブタジエン(1,2−ビニル結合量約85%)150グラムとを溶解した後、n−ブチルリチウム60ミリモルを含むシクロヘキサン溶液を添加して、室温で5分反応させ、直ちにn−ブタノール40ミリモルを添加して攪拌することにより、水添触媒を得た。
Reference Example 1 Preparation of Hydrogenation Catalyst 2 liters of dried and purified cyclohexane was charged into a nitrogen-substituted reaction vessel, and 40 mmol of bis (η 5 -cyclopentadienyl) titanium di- (p-tolyl) and a molecular weight of about 1 , 1,000 1,2-polybutadiene (1,2-vinyl bond content: about 85%) 150 g, dissolved in cyclohexane solution containing 60 mmol of n-butyllithium, reacted at room temperature for 5 minutes, Immediately after adding 40 mmol of n-butanol and stirring, a hydrogenation catalyst was obtained.

[実施例1]
内容積が10リットルの攪拌装置及びジャケット付き槽型反応器を使用して、非水添共重合体の連続重合を以下の方法で行った。
ブタジエン濃度が24重量%のシクロヘキサン溶液を3.48リットル/hr、スチレン濃度が24重量%のシクロヘキサン溶液を6.43リットル/hr、モノマー(ブタジエンとスチレン合計)100重量部に対するn−ブチルリチウムの量が0.091重量部となるような濃度に調整したn−ブチルリチウムのシクロヘキサンの2.0リットル/hrで反応器の底部にそれぞれ供給し、90℃で連続重合した。反応温度はジャケット温度で調整し、反応器の底部付近の温度は約88℃、反応器の上部付近の温度は約90℃であった。重合反応器における平均滞留時間は約45分であり、ブタジエンの転化率は、ほぼ100%、スチレンの転化率は99%であった。
連続重合で得られた非水添共重合体を分析したところ、スチレン含有量が67重量%、ポリスチレンブロック含有量が2重量%、ブタジエン部分のビニル結合量が15重量%であった。
次に、連続重合で得られた非水添共重合体に、上記非水添触媒を非水添共重合体100重量部当たりチタンとして100ppm添加し、水素圧0.7MPa、温度65℃で水添反応を行った。反応終了後にメタノールを添加してオクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを重合体100重量部に対して0.3重量部添加し、水添共重合体(ポリマー1)を得た。
ポリマー1の水添率は98%、ピーク分子量は17万であった。ポリマー1の特性を表1に示した。
[Example 1]
Using a stirrer having an internal volume of 10 liters and a tank reactor with a jacket, the non-hydrogenated copolymer was continuously polymerized by the following method.
N-Butyllithium with respect to a cyclohexane solution having a butadiene concentration of 24% by weight of 3.48 liters / hr, a cyclohexane solution having a styrene concentration of 24% by weight of 6.43 liters / hr, and 100 parts by weight of monomers (total of butadiene and styrene). The n-butyllithium cyclohexane adjusted to a concentration of 0.091 parts by weight was supplied to the bottom of the reactor at 2.0 liter / hr of cyclohexane, and continuous polymerization was performed at 90 ° C. The reaction temperature was adjusted by the jacket temperature, the temperature near the bottom of the reactor was about 88 ° C., and the temperature near the top of the reactor was about 90 ° C. The average residence time in the polymerization reactor was about 45 minutes, the conversion of butadiene was almost 100%, and the conversion of styrene was 99%.
When the non-hydrogenated copolymer obtained by continuous polymerization was analyzed, the styrene content was 67% by weight, the polystyrene block content was 2% by weight, and the vinyl bond content of the butadiene portion was 15% by weight.
Next, to the non-hydrogenated copolymer obtained by continuous polymerization, the above-mentioned non-hydrogenated catalyst was added at 100 ppm as titanium per 100 parts by weight of the non-hydrogenated copolymer, and water was added at a hydrogen pressure of 0.7 MPa and a temperature of 65 ° C. Addition reaction was performed. After completion of the reaction, methanol was added and 0.3 part by weight of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate was added to 100 parts by weight of the polymer. A coalescence (polymer 1) was obtained.
Polymer 1 had a hydrogenation rate of 98% and a peak molecular weight of 170,000. The properties of polymer 1 are shown in Table 1.

[実施例2]
実施例1と同じ反応器を2基使用し、非水添共重合体の連続重合を以下の方法で行った。1基目に供給するブタジエン溶液の供給量を4.51リットル/hr、スチレン溶液の供給量を5.97リットル/hr、n−ブチルリチウムの供給量をモノマー100重量部に対して、0.082重量部となる濃度に変更し、極性化合物としてN,N,N’,N’−テトラメチルエチレンジアミン(以下、TMEDAとする。)を添加して、実施例1と同様の方法で連続重合した。
1基目から出たポリマー溶液を2基目の底部へ供給し、それと同時に、スチレン溶液の供給量を2.38リットル/hrにし、連続重合して、共重合体(非水添共重合体)を得た。2基目の出口におけるスチレンの添加率は98%であった。次に実施例1と同様に水添反応を行い、水添共重合体(ポリマー2)を得た。ポリマー2の特性を表1に示した。
[Example 2]
Two reactors identical to those in Example 1 were used, and continuous polymerization of the non-hydrogenated copolymer was carried out by the following method. The supply amount of the butadiene solution supplied to the first group is 4.51 liter / hr, the supply amount of the styrene solution is 5.97 liter / hr, and the supply amount of n-butyllithium is 0.1 part by weight with respect to 100 parts by weight of the monomer. The concentration was changed to 082 parts by weight, N, N, N ′, N′-tetramethylethylenediamine (hereinafter referred to as TMEDA) was added as a polar compound, and continuous polymerization was performed in the same manner as in Example 1. .
The polymer solution from the first unit is supplied to the bottom of the second unit, and at the same time, the supply amount of the styrene solution is set to 2.38 liters / hr, and continuous polymerization is performed to produce a copolymer (non-hydrogenated copolymer). ) The addition rate of styrene at the second outlet was 98%. Next, a hydrogenation reaction was performed in the same manner as in Example 1 to obtain a hydrogenated copolymer (Polymer 2). The properties of polymer 2 are shown in Table 1.

[実施例3]
供給するブタジエンの溶液の供給量を4.25リットル/hr、スチレン溶液の供給量を4.98リットル/hr、n−ブチルリチウムの供給量をモノマー100重量部に対して、0.044重量部となる濃度に変え、TMEDAを添加する以外は、実施例1と同様の方法で連続運転を行い、非水添共重合体を得た。次に、実施例1と同様に水添反応を行い、水添共重合体(ポリマー3)を得た。ポリマー3の特性を表1に示した。
[Example 3]
The supply amount of butadiene solution to be supplied is 4.25 liter / hr, the supply amount of styrene solution is 4.98 liter / hr, and the supply amount of n-butyllithium is 0.044 parts by weight with respect to 100 parts by weight of monomer. A non-hydrogenated copolymer was obtained by continuously operating in the same manner as in Example 1 except that TMEDA was added and the concentration was changed. Next, a hydrogenation reaction was performed in the same manner as in Example 1 to obtain a hydrogenated copolymer (Polymer 3). The properties of Polymer 3 are shown in Table 1.

[実施例4]
n−ブチルリチウムの供給量をモノマー100重量部に対して、0.167重量部となる濃度に変える以外は、実施例2と同様の方法で、反応器を2基使用し、連続運転を行い、非水添共重合体を得た。次に、実施例1と同様に水添反応を行い、水添共重合体(ポリマー4)を得た。ポリマー4の特性を表1に示した。
[Example 4]
Except for changing the supply amount of n-butyllithium to 0.167 parts by weight with respect to 100 parts by weight of the monomer, the same procedure as in Example 2 was used, and two reactors were used for continuous operation. A non-hydrogenated copolymer was obtained. Next, a hydrogenation reaction was performed in the same manner as in Example 1 to obtain a hydrogenated copolymer (Polymer 4). The properties of polymer 4 are shown in Table 1.

[実施例5]
実施例1と同じ反応器を3基使用し、非水添共重合体の連続重合を以下の方法で行った。
1基目に供給するスチレンの供給量を0.77リットル/hr、n―ブチルリチウムの供給量を0.097重量部に変更し、TMEDAを添加して、実施例1と同様の方法でスチレンだけを連続重合した。
1基目から出たポリマー溶液を2基目の底部へ供給し、それと同時に、ブタジエン溶液の供給量を3.18リットル/hr、スチレン溶液の供給量を5.59リットル/hrにし、連続重合した。
さらに、2基目から出たポリマー溶液を3基目の底部へ供給し、それと同時に、スチレン溶液の供給量を0.77リットル/hrにし、連続重合して、共重合体(非水添共重合体)を得た。3基目の出口におけるスチレンの添加率は99%であった。次に実施例1と同様に水添反応を行い、水添共重合体(ポリマー5)を得た。ポリマー5の特性を表1に示した。
[Example 5]
Three reactors identical to those in Example 1 were used, and continuous polymerization of the non-hydrogenated copolymer was carried out by the following method.
Styrene was supplied in the same manner as in Example 1 except that the amount of styrene supplied to the first unit was changed to 0.77 liter / hr, the amount of n-butyllithium supplied was changed to 0.097 parts by weight, TMEDA was added. Only was continuously polymerized.
The polymer solution from the first unit is supplied to the bottom of the second unit, and at the same time, the supply amount of the butadiene solution is 3.18 liter / hr and the supply amount of the styrene solution is 5.59 liter / hr to continuously polymerize. did.
Further, the polymer solution discharged from the second group is supplied to the bottom of the third group, and at the same time, the supply amount of the styrene solution is set to 0.77 liter / hr, and continuous polymerization is performed to produce a copolymer (non-hydrogenated copolymer). Polymer). The addition rate of styrene at the third outlet was 99%. Next, a hydrogenation reaction was performed in the same manner as in Example 1 to obtain a hydrogenated copolymer (Polymer 5). The properties of polymer 5 are shown in Table 1.

[実施例6]
供給するブタジエンの溶液の供給量を6.24リットル/hr、スチレン溶液の供給量を2.16リットル/hr、n−ブチルリチウムの供給量をモノマー100重量部に対して、0.052重量部となる濃度に変え、TMEDAを添加する以外は、実施例1と同様の方法で連続運転を行い、非水添共重合体を得た。次に、実施例2と同様に2基目のスチレン溶液の供給量を2.06リットル/hr供給し、連続重合して、非水添共重合体を得た。次に、実施例1と同様に水添反応を行い、水添共重合体(ポリマー6)を得た。ポリマー6の特性を表1に示した。
[Example 6]
The supply amount of the butadiene solution to be supplied is 6.24 liter / hr, the supply amount of the styrene solution is 2.16 liter / hr, and the supply amount of n-butyllithium is 0.052 parts by weight with respect to 100 parts by weight of the monomer. A non-hydrogenated copolymer was obtained by continuously operating in the same manner as in Example 1 except that TMEDA was added and the concentration was changed. Next, in the same manner as in Example 2, a supply amount of the second styrene solution was supplied at 2.06 liter / hr, and continuous polymerization was performed to obtain a non-hydrogenated copolymer. Next, a hydrogenation reaction was performed in the same manner as in Example 1 to obtain a hydrogenated copolymer (Polymer 6). The properties of polymer 6 are shown in Table 1.

[実施例7]
n−ブチルリチウムの供給量をモノマー100重量部に対して、0.113重量部となる濃度に変える以外は、実施例2と同様の方法で、反応器を2基使用し、連続運転を行い、得られた非水添共重合体をカップリング率が50%なるように安息香酸エチルでカップリングし、カップリングタイプの非水添共重合体を得た。次に、実施例1と同様に水添反応を行い、水添共重合体(ポリマー7)を得た。ポリマー7の特性を表1に示した。
[Example 7]
Except for changing the supply amount of n-butyllithium to a concentration of 0.113 parts by weight with respect to 100 parts by weight of the monomer, two reactors are used in the same manner as in Example 2 and continuous operation is performed. The obtained non-hydrogenated copolymer was coupled with ethyl benzoate so that the coupling rate was 50% to obtain a coupling type non-hydrogenated copolymer. Next, a hydrogenation reaction was performed in the same manner as in Example 1 to obtain a hydrogenated copolymer (Polymer 7). The properties of polymer 7 are shown in Table 1.

[実施例8]
n−ブチルリチウムの供給量をモノマー100重量部に対して、0.121重量部となる濃度に変える以外は、実施例2と同様の方法で、反応器を2基使用し、連続運転を行い、得られた非水添共重合体をカップリング率が70%なるように安息香酸エチルでカップリングし、カップリングタイプの非水添共重合体を得た。次に、チタンの添加量を30ppmとし、水添率が30%になるように水素を供給する以外は実施例1と同様に水添反応を行い、水添共重合体(ポリマー7)を得た。ポリマー7の特性を表1に示した。
[Example 8]
Except for changing the supply amount of n-butyllithium to a concentration of 0.121 parts by weight with respect to 100 parts by weight of the monomer, two reactors are used in the same manner as in Example 2 and continuous operation is performed. The obtained non-hydrogenated copolymer was coupled with ethyl benzoate so that the coupling rate was 70% to obtain a coupling type non-hydrogenated copolymer. Next, the hydrogenation reaction was carried out in the same manner as in Example 1 except that the amount of titanium added was 30 ppm and hydrogen was supplied so that the hydrogenation rate was 30% to obtain a hydrogenated copolymer (polymer 7). It was. The properties of polymer 7 are shown in Table 1.

[比較例1]
供給するブタジエンの溶液の供給量を5.82リットル/hr、スチレン溶液の供給量を1.12リットル/hr、n−ブチルリチウムの供給量をモノマー100重量部に対して、0.047重量部となる濃度に変え、TMEDAを添加する以外は、実施例1と同様の方法で連続運転を行い、非水添共重合体を得た。次に、実施例2と同様に2基目のスチレン溶液の供給量を1.73リットル/hrに変更し、連続重合して、非水添共重合体を得た。次に、実施例1と同様に水添反応を行い、水添共重合体(ポリマー9)を得た。ポリマー9の特性を表1に示した。
[Comparative Example 1]
The supply amount of butadiene solution to be supplied is 5.82 liter / hr, the supply amount of styrene solution is 1.12 liter / hr, and the supply amount of n-butyllithium is 0.047 parts by weight with respect to 100 parts by weight of monomer. A non-hydrogenated copolymer was obtained by continuously operating in the same manner as in Example 1 except that TMEDA was added and the concentration was changed. Next, in the same manner as in Example 2, the supply amount of the second styrene solution was changed to 1.73 liters / hr, and continuous polymerization was performed to obtain a non-hydrogenated copolymer. Next, a hydrogenation reaction was performed in the same manner as in Example 1 to obtain a hydrogenated copolymer (Polymer 9). The properties of polymer 9 are shown in Table 1.

[比較例2]
実施例5と同様に反応機を3基使用し、1基目に供給するスチレンの供給量を0.97リットル/hr、n―ブチルリチウムの供給量を0.065重量部に変更し、TMEDAを添加し、実施例1と同様の方法でスチレンだけを連続重合した。
1基目から出たポリマー溶液を2基目の底部へ供給し、それと同時に、ブタジエン溶液の供給量を4.32リットル/hr、スチレン溶液の供給量を3.33リットル/hrに変更し、連続重合した。
さらに、2基目から出たポリマー溶液を3基目の底部へ供給し、それと同時に、スチレン溶液の供給量を0.97リットル/hrにし、連続重合して、共重合体(非水添共重合体)を得た。3基目の出口におけるスチレンの添加率は99%であった。次に実施例1と同様に水添反応を行い、水添共重合体(ポリマー10)を得た。ポリマー10の特性を表1に示した。
[Comparative Example 2]
In the same manner as in Example 5, three reactors were used, the supply amount of styrene supplied to the first unit was changed to 0.97 liter / hr, and the supply amount of n-butyllithium was changed to 0.065 parts by weight. And styrene was continuously polymerized in the same manner as in Example 1.
The polymer solution from the first unit is supplied to the bottom of the second unit, and at the same time, the supply amount of the butadiene solution is changed to 4.32 liter / hr, and the supply amount of the styrene solution is changed to 3.33 liter / hr, Continuous polymerization.
Further, the polymer solution from the second group is supplied to the bottom of the third group, and at the same time, the supply amount of the styrene solution is set to 0.97 liter / hr, and continuous polymerization is carried out to produce a copolymer (non-hydrogenated copolymer). Polymer). The addition rate of styrene at the third outlet was 99%. Next, a hydrogenation reaction was performed in the same manner as in Example 1 to obtain a hydrogenated copolymer (Polymer 10). The properties of polymer 10 are shown in Table 1.

[比較例3]
実施例5と同様に反応機を3基使用し、1基目に供給するスチレンの供給量を0.83リットル/hr、n―ブチルリチウムの供給量を0.225重量部に変更し、TMEDAを添加する以外は、実施例1と同様の方法でスチレンだけを連続重合した。
1基目から出たポリマー溶液を2基目の底部へ供給し、それと同時に、ブタジエン溶液の供給量を4.38リットル/hrに変更し、ブタジエンだけを連続重合した。
さらに、2基目から出たポリマー溶液を3基目の底部へ供給し、それと同時に、スチレン溶液の供給量を0.83リットル/hrにし、連続重合して、共重合体(非水添共重合体)を得た。3基目の出口におけるスチレンの添加率は99%であった。次に実施例1と同様に水添反応を行い、水添共重合体(ポリマー11)を得た。ポリマー11の特性を表1に示した。
なお、ポリマー2〜ポリマー11に添加するTMEDAの量は、得られる水添前ブロック共重合体の全ブタジエン中のビニル量が表1に示される値になるように調整した。
[Comparative Example 3]
As in Example 5, three reactors were used, the supply amount of styrene supplied to the first unit was changed to 0.83 liter / hr, and the supply amount of n-butyllithium was changed to 0.225 parts by weight. Only styrene was continuously polymerized in the same manner as in Example 1 except that was added.
The polymer solution from the first unit was supplied to the bottom of the second unit, and at the same time, the supply amount of the butadiene solution was changed to 4.38 liter / hr, and only butadiene was continuously polymerized.
Further, the polymer solution from the second unit is supplied to the bottom of the third unit, and at the same time, the supply amount of the styrene solution is set to 0.83 liter / hr, and continuous polymerization is performed to produce a copolymer (non-hydrogenated copolymer). Polymer). The addition rate of styrene at the third outlet was 99%. Next, a hydrogenation reaction was performed in the same manner as in Example 1 to obtain a hydrogenated copolymer (Polymer 11). The properties of polymer 11 are shown in Table 1.
The amount of TMEDA added to the polymers 2 to 11 was adjusted so that the vinyl content in the total butadiene of the block copolymer before hydrogenation obtained would be the value shown in Table 1.

[実施例9〜12]
表2に示した組成のアスファルト組成物を製造した。具体的には、750mlの金属缶にアスファルトを400g投入し、180℃のオイルバスに金属缶を充分に浸した。次にアスファルトを完全に溶融し、攪拌されているアスファルトの中に所定量の水添共重合体(ポリマー2)、ゴム質重合体、粘着付与剤樹脂、軟化剤を少量づつ投入した。所定の添加剤を全て投入した後に、6000rpmの回転速度で90分間攪拌して組成物を得た。
得られたアスファルト組成物の特性を表2に示した。本発明のアスファルト組成物は、特に0℃〜70℃の範囲で高いtanδ値を示す。
[Examples 9 to 12]
Asphalt compositions having the compositions shown in Table 2 were produced. Specifically, 400 g of asphalt was put into a 750 ml metal can, and the metal can was sufficiently immersed in an oil bath at 180 ° C. Next, the asphalt was completely melted, and a predetermined amount of a hydrogenated copolymer (polymer 2), a rubbery polymer, a tackifier resin, and a softener were charged in small amounts into the stirred asphalt. After all the predetermined additives were added, the mixture was stirred for 90 minutes at a rotational speed of 6000 rpm to obtain a composition.
The properties of the obtained asphalt composition are shown in Table 2. The asphalt composition of the present invention exhibits a high tan δ value particularly in the range of 0 ° C to 70 ° C.

Figure 2008208213
Figure 2008208213

Figure 2008208213
Figure 2008208213

本発明の水添共重合体及びアスファルト制振材組成物は、自動車、建築物の制振材、遮音材等の分野において好適に利用できる。   The hydrogenated copolymer and the asphalt damping material composition of the present invention can be suitably used in the fields of automobiles, building damping materials, sound insulation materials and the like.

Claims (12)

共役ジエン単量体単位とビニル芳香族単量体単位とを含む非水添ランダム共重合体を水添して得られる制振材用水添共重合体(A)であって、該制振材用水添共重合体(A)が、次の特性(1)〜(4)を有する制振材用水添共重合体(A):
(1)該水添共重合体(A)のGPCによるピーク分子量が標準ポリスチレン換算で4万〜40万であり、
(2)該水添共重合体(A)中に含まれる該ビニル芳香族単量体単位の含有量が20〜80重量%の範囲であり、
(3)該水添共重合体(A)における該共役ジエン単量体単位を含む該非水添重合体のビニル結合量は40%未満であり、
(4)該水添共重合体(A)に関して得られた動的粘弾性スペクトルにおいて、損失係数(tanδ)のピークが−40℃以上、70℃未満の範囲に少なくとも1つ存在する。
A hydrogenated copolymer for damping material (A) obtained by hydrogenating a non-hydrogenated random copolymer containing a conjugated diene monomer unit and a vinyl aromatic monomer unit, the damping material The hydrogenated copolymer for vibration damping material (A) has the following characteristics (1) to (4):
(1) The peak molecular weight by GPC of the hydrogenated copolymer (A) is 40,000 to 400,000 in terms of standard polystyrene,
(2) The content of the vinyl aromatic monomer unit contained in the hydrogenated copolymer (A) is in the range of 20 to 80% by weight,
(3) The vinyl bond amount of the non-hydrogenated polymer containing the conjugated diene monomer unit in the hydrogenated copolymer (A) is less than 40%,
(4) In the dynamic viscoelastic spectrum obtained for the hydrogenated copolymer (A), at least one peak of loss factor (tan δ) exists in the range of −40 ° C. or higher and lower than 70 ° C.
請求項1に記載の該制振材用水添共重合体(A)をブロックとして少なくとも1個含む、制振材用水添ブロック共重合体。   A hydrogenated block copolymer for damping material, comprising at least one hydrogenated copolymer for damping material (A) according to claim 1 as a block. ビニル芳香族単量体単位を主体とする少なくとも1個の重合体ブロック(B)を、さらに含む、請求項2に記載の制振材用水添ブロック共重合体。   The hydrogenated block copolymer for a vibration damping material according to claim 2, further comprising at least one polymer block (B) mainly composed of vinyl aromatic monomer units. 該ブロック共重合体中における全ビニル芳香族単量体単位の含有量が40〜80重量%である請求項3に記載の制振材用水添ブロック共重合体。   The hydrogenated block copolymer for a damping material according to claim 3, wherein the content of all vinyl aromatic monomer units in the block copolymer is 40 to 80% by weight. 該ブロック共重合体中におけるビニル芳香族単量体単位を含む重合体ブロック(B)の割合が40重量%未満である請求項3又は4に記載の制振材用水添ブロック共重合体。   The hydrogenated block copolymer for a vibration damping material according to claim 3 or 4, wherein the proportion of the polymer block (B) containing a vinyl aromatic monomer unit in the block copolymer is less than 40% by weight. 請求項2〜5のいずれか一項に記載の水添ブロック共重合体を架橋してなる制振材。   A vibration damping material obtained by crosslinking the hydrogenated block copolymer according to any one of claims 2 to 5. 請求項2〜5のいずれか一項に記載の水添ブロック共重合体と、他のゴム質重合体と、を含む制振材。   A vibration damping material comprising the hydrogenated block copolymer according to any one of claims 2 to 5 and another rubbery polymer. 架橋して得られる請求項7に記載の制振材。   The vibration damping material according to claim 7 obtained by crosslinking. 請求項2〜5のいずれか一項に記載の水添ブロック共重合体と、
アスファルトと、
を含むアスファルト制振材組成物。
Hydrogenated block copolymer according to any one of claims 2 to 5,
With asphalt,
Asphalt damping material composition containing.
成分(イ)として、請求項2〜5のいずれか一項に記載の制振材用水添ブロック共重合体、又は該水添ブロック共重合体と他のゴム質重合体との組成物と、
成分(ニ)として、アスファルトと、
を含むアスファルト制振材組成物。
As component (a), a hydrogenated block copolymer for a damping material according to any one of claims 2 to 5, or a composition of the hydrogenated block copolymer and another rubbery polymer,
Asphalt as ingredient (d),
Asphalt damping material composition containing.
成分(ロ)として、粘着付与材樹脂を、さらに含む請求項10に記載のアスファルト制振材組成物。   The asphalt vibration damping composition according to claim 10, further comprising a tackifier resin as a component (b). 成分(ハ)として、軟化剤を、さらに含む請求項10または11に記載のアスファルト制振材組成物。   The asphalt damping material composition according to claim 10 or 11, further comprising a softening agent as component (c).
JP2007045900A 2007-02-26 2007-02-26 Hydrogenated copolymer for vibration-damping material, and asphalt vibration-damping material composition Pending JP2008208213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045900A JP2008208213A (en) 2007-02-26 2007-02-26 Hydrogenated copolymer for vibration-damping material, and asphalt vibration-damping material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045900A JP2008208213A (en) 2007-02-26 2007-02-26 Hydrogenated copolymer for vibration-damping material, and asphalt vibration-damping material composition

Publications (1)

Publication Number Publication Date
JP2008208213A true JP2008208213A (en) 2008-09-11

Family

ID=39784813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045900A Pending JP2008208213A (en) 2007-02-26 2007-02-26 Hydrogenated copolymer for vibration-damping material, and asphalt vibration-damping material composition

Country Status (1)

Country Link
JP (1) JP2008208213A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246378A (en) * 2011-05-26 2012-12-13 Asahi Kasei Chemicals Corp Asphalt composition
JP2014502733A (en) * 2010-12-16 2014-02-03 オートニアム マネジメント アクチエンゲゼルシャフト Constrained layer damping material
WO2017014282A1 (en) * 2015-07-22 2017-01-26 Jsr株式会社 Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire‑{}‑
JP7074227B1 (en) 2021-03-17 2022-05-24 テクノUmg株式会社 Thermoplastic composition and its molded product
JP7092273B1 (en) 2021-03-17 2022-06-28 テクノUmg株式会社 Thermoplastic composition and its molded product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101369A (en) * 1987-10-14 1989-04-19 Nippon Oil Co Ltd Vibration-damping composition
JP2001115034A (en) * 1999-10-14 2001-04-24 Nippon Mitsubishi Oil Corp Asphalt emulsion composition for cold execution
JP2003313234A (en) * 2002-02-21 2003-11-06 Asahi Kasei Corp Construction material
WO2004003027A1 (en) * 2002-06-27 2004-01-08 Asahi Kasei Chemicals Corporation Hydrogenated copolymer and composition thereof
WO2006088187A1 (en) * 2005-02-21 2006-08-24 Asahi Kasei Chemicals Corporation Hydrogenated block copolymer and composition thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101369A (en) * 1987-10-14 1989-04-19 Nippon Oil Co Ltd Vibration-damping composition
JP2001115034A (en) * 1999-10-14 2001-04-24 Nippon Mitsubishi Oil Corp Asphalt emulsion composition for cold execution
JP2003313234A (en) * 2002-02-21 2003-11-06 Asahi Kasei Corp Construction material
WO2004003027A1 (en) * 2002-06-27 2004-01-08 Asahi Kasei Chemicals Corporation Hydrogenated copolymer and composition thereof
WO2006088187A1 (en) * 2005-02-21 2006-08-24 Asahi Kasei Chemicals Corporation Hydrogenated block copolymer and composition thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012058396; 中浜精一 他: エッセンシャル高分子化学 第9版, 19950810, 第21頁-第22頁, 株式会社 講談社 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502733A (en) * 2010-12-16 2014-02-03 オートニアム マネジメント アクチエンゲゼルシャフト Constrained layer damping material
JP2012246378A (en) * 2011-05-26 2012-12-13 Asahi Kasei Chemicals Corp Asphalt composition
WO2017014282A1 (en) * 2015-07-22 2017-01-26 Jsr株式会社 Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire‑{}‑
JPWO2017014282A1 (en) * 2015-07-22 2018-05-24 Jsr株式会社 Hydrogenated conjugated diene polymer and process for producing the same, polymer composition, crosslinked polymer, and tire
JP7074227B1 (en) 2021-03-17 2022-05-24 テクノUmg株式会社 Thermoplastic composition and its molded product
JP7092273B1 (en) 2021-03-17 2022-06-28 テクノUmg株式会社 Thermoplastic composition and its molded product
WO2022195972A1 (en) * 2021-03-17 2022-09-22 テクノUmg株式会社 Thermoplastic composition and molded product thereof
JP2022143324A (en) * 2021-03-17 2022-10-03 テクノUmg株式会社 Thermoplastic composition and molded product thereof
JP2022145675A (en) * 2021-03-17 2022-10-04 テクノUmg株式会社 Thermoplastic composition and molded product thereof
US11739209B2 (en) 2021-03-17 2023-08-29 Techno-Umg Co., Ltd. Thermoplastic composition and molded article thereof

Similar Documents

Publication Publication Date Title
JP4776155B2 (en) Hydrogenated copolymer
JP4079942B2 (en) Hydrogenated copolymer and composition thereof
JP4320364B2 (en) Hydrogenated block copolymer and its crosslinking composition
JP5502319B2 (en) Hydrogenated block copolymer, hydrogenated block copolymer-containing resin composition, cross-linked product and cross-linked foam thereof
JP3949110B2 (en) Hydrogenated copolymer
JP4428555B2 (en) Modified polymer and composition thereof
WO2010018743A1 (en) Hydrogenated block copolymer composition and molded body using the same
KR101820618B1 (en) Polymer and asphalt composition
WO2012111644A1 (en) Hydrogenated block copolymer and composition comprising same
JP4656819B2 (en) Hydrogenated copolymer-containing composition, and sheet and film comprising the same
JP5378730B2 (en) Hydrogenated block copolymer and composition thereof
JP2003277560A (en) Hydrogenated copolymer composition
JP6521696B2 (en) Asphalt composition
JP2008208213A (en) Hydrogenated copolymer for vibration-damping material, and asphalt vibration-damping material composition
JP2018184589A (en) Thermoplastic resin composition and molded article
JP5236417B2 (en) Hydrogenated block copolymer composition
JP5153071B2 (en) Polymer foam containing hydrogenated copolymer
JP2021017562A (en) Hydrogenated block copolymer, hydrogenated block copolymer composition, and molded body
JP2003261772A (en) Asphalt composition
JP3902122B2 (en) Building materials
JP2003301112A (en) Modified polymer-containing asphalt composition
JP4911913B2 (en) Copolymer composition and film thereof
JP2005213281A (en) Flame retardant composition
JP4601310B2 (en) Flame retardant composition
JP4248185B2 (en) Dynamically cross-linked hydrogenated copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121108