JP2008208202A - Phosphor, wavelength converter and light emitting device - Google Patents

Phosphor, wavelength converter and light emitting device Download PDF

Info

Publication number
JP2008208202A
JP2008208202A JP2007045600A JP2007045600A JP2008208202A JP 2008208202 A JP2008208202 A JP 2008208202A JP 2007045600 A JP2007045600 A JP 2007045600A JP 2007045600 A JP2007045600 A JP 2007045600A JP 2008208202 A JP2008208202 A JP 2008208202A
Authority
JP
Japan
Prior art keywords
phosphor
light
wavelength converter
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007045600A
Other languages
Japanese (ja)
Inventor
Toshiaki Shigeoka
俊昭 重岡
Fujito Nakakawaji
藤人 中川路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007045600A priority Critical patent/JP2008208202A/en
Publication of JP2008208202A publication Critical patent/JP2008208202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor emitting a yellowish green color having a high light-emitting efficiency, a wavelength converter and a light-emitting device. <P>SOLUTION: This phosphor containing Sr, Ba, Si, Eu and O is equipped with a Sr<SB>2-x-y</SB>Ba<SB>x</SB>Eu<SB>y</SB>SiO<SB>4</SB>crystal (0≤x≤1, 0.01≤y≤0.10) as a main crystal, the molar ratio of the Eu<SP>2+</SP>to Eu<SP>3+</SP>in the Eu satisfies (Eu<SP>2+</SP>)/(Eu<SP>2+</SP>+Eu<SP>3+</SP>)<0.9, and also (Sr+Ba+Eu)/Si=2.02 to 2.07 by the molar ratio is satisfied. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、紫外線又は可視光を吸収し可視光を発する蛍光体およびLED(Light Emitting Diode:発光ダイオード)などの発光素子から発せられる光を波長変換して外部に取り出す蛍光体を含有する波長変換器、さらに波長変換器を搭載した発光装置に関する。   The present invention relates to a wavelength converter including a phosphor that absorbs ultraviolet light or visible light and emits visible light and a phosphor that converts light emitted from a light emitting element such as an LED (Light Emitting Diode) and extracts the light to the outside. And a light emitting device equipped with a wavelength converter.

半導体材料からなる発光素子(以下「LEDチップ」とも言う)は、小型で電力効率が良く鮮やかに発色する。LEDチップは、製品寿命が長い、オン・オフ点灯の繰り返しに強い、消費電力が低い、という優れた特徴を有するため、液晶等のバックライト光源や蛍光ランプ等の照明用光源への応用が期待されている。   A light-emitting element made of a semiconductor material (hereinafter also referred to as “LED chip”) is small in size, has high power efficiency, and vividly colors. LED chips have excellent characteristics such as long product life, strong on / off lighting repeatability, and low power consumption, so they are expected to be applied to backlight sources such as liquid crystals and lighting sources such as fluorescent lamps. Has been.

LEDチップの発光装置への応用は、LEDチップの光の一部を蛍光体で波長変換し、当該波長変換された光と波長変換されないLEDの光とを混合して放出することにより、LEDの光とは異なる色を発光する発光装置として既に製造されている。   The application of the LED chip to the light emitting device is that the wavelength of part of the light of the LED chip is converted with a phosphor, and the wavelength-converted light and the light of the LED that is not wavelength-converted are mixed and emitted, thereby It has already been manufactured as a light emitting device that emits a color different from that of light.

この発光装置は、青色LEDチップ上に(Y,Gd)(Al,Ga)12の組成式で表されるYAG系蛍光体等の黄色成分の蛍光体を形成したものである。 In this light emitting device, a yellow component phosphor such as a YAG phosphor represented by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 is formed on a blue LED chip.

この発光装置では、発光素子から発する光が黄色成分の蛍光体に照射されると、黄色成分の蛍光体は励起されて可視光を発し、この可視光が出力として利用される。   In this light-emitting device, when the light emitted from the light-emitting element is irradiated onto the yellow component phosphor, the yellow component phosphor is excited to emit visible light, and this visible light is used as an output.

ところが、発光素子の明るさを変えると、青色と黄色との光量比が変化するため、白色の色調が変化し、演色性に劣るといった問題があった。   However, when the brightness of the light emitting element is changed, the light quantity ratio between blue and yellow changes, so that there is a problem that the color tone of white changes and the color rendering property is inferior.

そこで、このような課題を解決するために、発光素子として400nm以下のピークを有する紫色LEDチップを用いるとともに、波長変換器には3種類の蛍光体を高分子樹脂中に混ぜ込んだ構造を採用し、紫色光を赤色、黄緑色、青色の各波長に変換して白色を発光することが提案されている(特許文献1参照)。これにより、演色性を向上することができる。発光素子400nm以下にピーク波長を有するLEDチップと組み合わせて用いることができる黄緑色の蛍光体としてEuを含む蛍光体等の開発が盛んに行なわれている(特許文献2参照)。   Therefore, in order to solve such problems, a purple LED chip having a peak of 400 nm or less is used as a light emitting element, and the wavelength converter employs a structure in which three types of phosphors are mixed in a polymer resin. In addition, it has been proposed to emit white light by converting purple light into red, yellow-green, and blue wavelengths (see Patent Document 1). Thereby, a color rendering property can be improved. As a yellowish green phosphor that can be used in combination with an LED chip having a peak wavelength of 400 nm or less of a light emitting element, phosphors containing Eu have been actively developed (see Patent Document 2).

そして、特許文献2に記載されたSr2−x−yBaEuSiO4結晶を含む蛍光体は、(Sr+Ba+Eu)/Siが2となるように製造されている。
特開2002−314142号公報 特開2004−115633号公報
Then, phosphor comprising been Sr 2-x-y Ba x Eu y SiO 4 crystal described in Patent Document 2 is manufactured such that 2 (Sr + Ba + Eu) / Si.
JP 2002-314142 A JP 2004-115633 A

しかしながら、(Sr+Ba+Eu)/Siが2であるSr2−x−yBaEuSiO結晶を含む蛍光体は、発光素子400nm以下にピーク波長を有するLEDチップと組み合わせることにより演色性の高い発光装置が製造できるものの、さらに、発光効率を向上させる要望があった。 However, a phosphor containing Sr2 -xy Ba x Eu y SiO 4 crystal in which (Sr + Ba + Eu) / Si is 2 emits light with high color rendering by combining with a LED chip having a peak wavelength of 400 nm or less. Although the device can be manufactured, there has been a demand for further improving the luminous efficiency.

本発明の目的は、発光効率の高い黄緑色を発する蛍光体および波長変換器ならびに発光装置を提供することにある。   An object of the present invention is to provide a phosphor that emits yellowish green with high luminous efficiency, a wavelength converter, and a light emitting device.

本発明の蛍光体は、Sr、Ba、Si、EuおよびOを含有してなる蛍光体であって、主結晶としてSr2−x−yBaEuSiO4結晶(0≦x≦1、0.01≦y≦0.10)を備え、EuのEu2+とEu3+とがモル比でEu2+/(Eu2++Eu3+)<0.9を満たし、モル比で(Sr+Ba+Eu)/Si=2.02〜2.07を満たすことを特徴とする。 The phosphor of the present invention is a phosphor containing Sr, Ba, Si, Eu, and O, and has Sr 2-xy Ba x Eu y SiO 4 crystal (0 ≦ x ≦ 1, 0.01 ≦ y ≦ 0.10), and Eu 2+ and Eu 3+ in Eu satisfy Eu 2+ / (Eu 2+ + Eu 3+ ) <0.9 in molar ratio and (Sr + Ba + Eu) / Si = in molar ratio 2.02 to 2.07 are satisfied.

本発明の波長変換器は、上述した蛍光体が透明マトリックス中に分散していることを特徴とする。   The wavelength converter of the present invention is characterized in that the phosphor described above is dispersed in a transparent matrix.

本発明の発光装置は、上述した波長変換器と励起光を発する発光素子とを具備してなり、前記励起光を前記波長変換器の蛍光体に照射するようにしてあることを特徴とする。   The light-emitting device of the present invention comprises the above-described wavelength converter and a light-emitting element that emits excitation light, and irradiates the phosphor of the wavelength converter with the excitation light.

本発明の蛍光体によれば、Sr、Ba、Si、EuおよびOを含有してなる蛍光体であって、主結晶としてSr2−x−yBaEuSiO4結晶(0≦x≦1、0.01≦y≦0.10)を備え、EuのEu2+とEu3+とがEu2+/(Eu2++Eu3+)<0.9を満たし、(Sr+Ba+Eu)/Si=2.02〜2.07を満たすことで、従来用いられていたEu2+/(Eu2++Eu3+)<0.9であり、(Sr+Ba+Eu)/Si=2の蛍光体よりも高い発光効率の蛍光体となる。 According to the phosphor of the present invention, it is a phosphor containing Sr, Ba, Si, Eu, and O, and a Sr 2-xy Ba x Eu y SiO 4 crystal (0 ≦ x ≦) as a main crystal. 1, 0.01 ≦ y ≦ 0.10), Eu Eu 2+ and Eu 3+ satisfy Eu 2+ / (Eu 2+ + Eu 3+ ) <0.9, and (Sr + Ba + Eu) /Si=2.02 By satisfying 2.07, Eu 2+ / (Eu 2+ + Eu 3+ ) <0.9, which has been conventionally used, becomes a phosphor with higher luminous efficiency than the phosphor of (Sr + Ba + Eu) / Si = 2.

そして、上述した本発明の蛍光体を透明マトリクス中に分散させた本発明の波長変換器によれば、黄緑色成分の光の発光効率を向上することができる。   And according to the wavelength converter of this invention which disperse | distributed the fluorescent substance of this invention mentioned above in the transparent matrix, the light emission efficiency of the light of a yellow-green component can be improved.

また、本発明の発光装置によれば、波長変換器と励起光を発する発光素子とを具備してなり、前記励起光を前記波長変換器の蛍光体に照射するようにしてあることで、発光効率に優れた発光装置を提供することができる。   In addition, according to the light emitting device of the present invention, the light emitting device includes a wavelength converter and a light emitting element that emits excitation light, and the excitation light is emitted to the phosphor of the wavelength converter. A light-emitting device with excellent efficiency can be provided.

本発明の蛍光体は、Sr、Ba、Si、EuおよびOを含有してなる蛍光体であって、この蛍光体は主結晶としてSr2−x−yBaEuSiO結晶(0≦x<1、0.01≦y≦0.10)を備えるとともに、この蛍光体に含まれるEuのEu2+とEu3+とが、モル比でEu2+/(Eu2++Eu3+)<0.9を満たし、モル比で(Sr+Ba+Eu)/Si=2.02〜2.07を満たすことが重要である。 The phosphor of the present invention is a phosphor containing Sr, Ba, Si, Eu, and O, and this phosphor is composed of Sr 2-xy Ba x Eu y SiO 4 crystal (0 ≦ 0) as a main crystal. x <1, 0.01 ≦ y ≦ 0.10), and Eu 2+ and Eu 3+ contained in the phosphor have a molar ratio of Eu 2+ / (Eu 2+ + Eu 3+ ) <0.9. It is important to satisfy (Sr + Ba + Eu) /Si=2.02 to 2.07 in terms of molar ratio.

すなわち、特許文献2に開示されているSr2−x−yBaEuSiO結晶を主結晶とする蛍光体においては(Sr+Ba+Eu)/Si=2であるが、モル比でEu2+/(Eu2++Eu3+)<0.9を満たす領域では、(Sr+Ba+Eu)/Siを2よりも大きくし、2.02以上とすることで、特許文献2に開示されている(Sr+Ba+Eu)/Si=2の蛍光体よりも優れた発光効率を実現することができる。 That is, in the phosphor having the main crystal of the Sr2 -xy Ba x Eu y SiO 4 crystal disclosed in Patent Document 2, (Sr + Ba + Eu) / Si = 2, but Eu 2+ / ( In a region satisfying (Eu 2+ + Eu 3+ ) <0.9, (Sr + Ba + Eu) / Si is made larger than 2 and set to 2.02 or more, which is disclosed in Patent Document 2 (Sr + Ba + Eu) / Si = 2. Luminous efficiency superior to that of the phosphor can be realized.

ここで言う(Sr+Ba+Eu)/Siの値は蛍光体中のSr2−x−yBaEuSiO結晶の構成元素組成から求められる値ではなく、蛍光体全体の構成元素組成から求められる値を指す。 Here, the value of (Sr + Ba + Eu) / Si is not a value obtained from the constituent element composition of the Sr 2-xy Ba x Eu y SiO 4 crystal in the phosphor, but a value obtained from the constituent element composition of the entire phosphor. Point to.

蛍光を発する理想的なSr2−x−yBaEuSiO結晶では、化学量論比が、モル比で(Sr+Ba+Eu)/Si=2となるため、蛍光体の組成も(Sr+Ba+Eu)/Si=2とすることが望ましいように思われるが、理由については現在のところ不明であるが、EuのEu2+とEu3+とが、Eu2+/(Eu2++Eu3+)<0.9の領域では、(Sr+Ba+Eu)/Si=2ではなく、むしろ化学量論比からずれた(Sr+Ba+Eu)/Si=2.02〜2.07の範囲で発光効率の高い蛍光体が得られることが明らかとなった。 In an ideal Sr2 -xy Ba x Eu y SiO 4 crystal that emits fluorescence, the stoichiometric ratio is (Sr + Ba + Eu) / Si = 2 in terms of molar ratio, so the phosphor composition is also (Sr + Ba + Eu) / Although it seems desirable to set Si = 2, the reason is currently unknown, but the Eu 2+ and Eu 3+ of Eu is a region where Eu 2+ / (Eu 2+ + Eu 3+ ) <0.9. Then, it is clear that a phosphor with high luminous efficiency can be obtained in the range of (Sr + Ba + Eu) /Si=2.02 to 2.07 which is not (Sr + Ba + Eu) / Si = 2 but rather deviated from the stoichiometric ratio. It was.

(Sr+Ba+Eu)/Si≧2.02の場合には、蛍光体中にSr3−x−yBaEuSiO結晶の存在が確認されている。蛍光体中にSr3−x−yBaEuSiO結晶が存在することが蛍光体の発光効率を高めていると考えられる。この理由については現在のところ不明であるが、Sr3−x−yBaEuSiOの存在により、蛍光体中のSr、Ba、Euの欠陥が補われるため、Sr3−x−yBaEuSiOの存在が、蛍光体中に副生して目的の発光特性を示さないSr1−x−yBaEuSiO結晶の生成を抑制する効果があるためと考えられる。 In the case of (Sr + Ba + Eu) /Si≧2.02, the presence of Sr 3−xy Ba x Eu y SiO 5 crystals in the phosphor is confirmed. The presence of Sr3 -xy Ba x Eu y SiO 5 crystals in the phosphor is considered to increase the luminous efficiency of the phosphor. The reason for this is currently unknown, but the presence of Sr 3-xy Ba x Eu y SiO 5 compensates for Sr, Ba, Eu defects in the phosphor, so Sr 3-xy It is thought that the presence of Ba x Eu y SiO 5 has the effect of suppressing the formation of Sr 1-xy Ba x Eu y SiO 3 crystals that are by-produced in the phosphor and do not exhibit the desired light emission characteristics. .

一方、(Sr+Ba+Eu)/Si<2.02の場合には、主にEuを含むSr1−xBaSiO結晶が生成するため、蛍光体の発光効率が低下する。 On the other hand, in the case of (Sr + Ba + Eu) / Si <2.02, since the Sr 1-x Ba x SiO 4 crystal mainly containing Eu is generated, the luminous efficiency of the phosphor is lowered.

本発明の蛍光体におけるxの値は0〜1の範囲で任意に選ぶことが可能であり、x=0の場合、黄色、x=1の場合緑色の蛍光体とすることができる。ここで、x≦1としたのは、x>1とすることも可能であるが、この場合、蛍光体の耐水性が低下するからである。   The value of x in the phosphor of the present invention can be arbitrarily selected within the range of 0 to 1. When x = 0, the phosphor can be yellow, and when x = 1, the phosphor can be green. Here, x ≦ 1 is set because x> 1 is possible, but in this case, the water resistance of the phosphor is lowered.

本発明の蛍光体において、EuのEu2+とEu3+とを、Eu2+/(Eu2++Eu3+)<0.9とするには、SrCl、BaCl、NHCl、SrFなどのハロゲン化物やNaOH、KOHなどのアルカリ化合物のような、いわゆるフラックスを用いずに原料粉末を加熱処理すればよい。 In the phosphor of the present invention, in order to set Eu 2+ and Eu 3+ of Eu to Eu 2+ / (Eu 2+ + Eu 3+ ) <0.9, halogens such as SrCl 2 , BaCl 2 , NH 4 Cl, and SrF 2 are used. The raw material powder may be heat-treated without using a so-called flux such as a chemical compound or an alkali compound such as NaOH or KOH.

このように、フラックスを用いずに加熱処理すると、フラックスを用いた場合よりもEu2+/(Eu2++Eu3+)が小さくなり、発光効率は低くなる傾向にあるが、フラックスを除去する必要がなくなる。そのため、フラックスを用いずに作製された蛍光体は、アルカリ元素やハロゲン元素の存在が問題となる用途では、好適に用いられる。 Thus, when heat treatment is performed without using a flux, Eu 2+ / (Eu 2+ + Eu 3+ ) tends to be smaller and luminous efficiency tends to be lower than when flux is used, but it is not necessary to remove the flux. . For this reason, a phosphor manufactured without using a flux is suitably used in applications where the presence of alkali elements or halogen elements is a problem.

なお、本発明の蛍光体は、粒子状としてもよいし、この蛍光体粒子を成形し、さらに焼成して任意の形状とすることもできる。   The phosphor of the present invention may be in the form of particles, or the phosphor particles may be formed and further baked into an arbitrary shape.

そして、例えば、本発明の蛍光体を透明な樹脂などからなるマトリックス中に分散させることで、発光効率に優れた本発明の波長変換器となる。なお、本発明の波長変換器においては、本発明の蛍光体に加えて、従来周知の赤色や青色などの蛍光を発する蛍光体を加えてもよく、その場合には演色性に優れた波長変換器を提供することができる。   For example, by dispersing the phosphor of the present invention in a matrix made of a transparent resin or the like, the wavelength converter of the present invention having excellent luminous efficiency can be obtained. In the wavelength converter of the present invention, in addition to the phosphor of the present invention, a conventionally known fluorescent material such as red or blue may be added, and in that case, wavelength conversion with excellent color rendering properties may be added. Can be provided.

また、本発明の波長変換器をLEDなどの発光素子と組み合わせることで、本発明の発光装置となり、この発光装置は発光効率に優れたものとなる。   Further, by combining the wavelength converter of the present invention with a light emitting element such as an LED, the light emitting device of the present invention is obtained, and this light emitting device has excellent luminous efficiency.

以下、本発明の蛍光体の製造方法について説明する。本発明の蛍光体は、Sr、Ba、Eu、Siの元素を含む化合物、例えば炭酸ストロンチウム、炭酸バリウム、酸化ユーロピウム、シリカの粉末を各元素のモル比がEu/Si=0.01〜0.1、(Sr+Ba+Eu)/Si=2.02〜2.07、Ba/(Sr+Eu)=0〜1となるように各粉末を秤量した混合粉末を、以下の(A)又は(B)の混合法により調整したのち、加熱処理して製造することができる。このとき、加熱による各元素の揮発などによる消失は小さいため、予め前記の比率で各粉末を秤量すればよい。   Hereinafter, the method for producing the phosphor of the present invention will be described. The phosphor of the present invention comprises a compound containing elements of Sr, Ba, Eu and Si, for example, powders of strontium carbonate, barium carbonate, europium oxide and silica, and the molar ratio of each element is Eu / Si = 0.01 to 0.00. 1, (Sr + Ba + Eu) /Si=2.02 to 2.07, Ba / (Sr + Eu) = 0 to 1, each mixed powder was weighed and mixed powder of the following (A) or (B) After adjusting by, it can manufacture by heat-processing. At this time, since disappearance due to volatilization of each element by heating is small, each powder may be weighed in advance at the above ratio.

(A):ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒を用いる粉砕とリボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒を用いる混合と合わせた乾式混合法。   (A): Dry pulverizer such as hammer mill, roll mill, ball mill, jet mill, etc., pulverization using mortar and pestle and mixer such as ribbon blender, V-type blender, Henschel mixer, or mixing using mortar and pestle And dry mixing method.

(B):粉砕機、又は、乳鉢と乳棒等を用いて、水等を加えてスラリー状態又は溶液状態で、粉砕機、乳鉢と乳棒、又は蒸発皿と攪拌棒等により混合し、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。   (B): Using a pulverizer or a mortar and pestle or the like, add water or the like in a slurry state or a solution state, mix with a pulverizer, mortar and pestle, or evaporating dish and stirring rod, A wet mixing method in which drying is performed by heat drying or natural drying.

これらの混合法の中で、各原料粉末を全体に均一に混合、分散させる必要があることから液体媒体を用いるのが好ましい。   Among these mixing methods, it is preferable to use a liquid medium because each raw material powder needs to be mixed and dispersed uniformly throughout.

このようにして調整した原料粉末を加熱処理することで、本発明の蛍光体を作製することができる。   The phosphor of the present invention can be produced by heat-treating the raw material powder thus adjusted.

加熱処理方法としてはアルミナや石英製の坩堝やトレイ等の耐熱容器中で、1000℃〜1300℃で、酸素、窒素、水素、アルゴン、等の気体の単独或いは混合雰囲気下、1〜24時間、加熱する。   As a heat treatment method, in a heat-resistant container such as a crucible or tray made of alumina or quartz, 1000 ° C to 1300 ° C, and a gas such as oxygen, nitrogen, hydrogen, argon, etc. alone or in a mixed atmosphere for 1 to 24 hours, Heat.

また、加熱プロセス中の構成成分の蒸発を抑制するために、埋め焼き、マイクロ波焼成
、共剤を用いて熱処理を行っても良い。
In addition, in order to suppress evaporation of the constituent components during the heating process, heat treatment may be performed using filling baking, microwave baking, or a co-agent.

なお、加熱の雰囲気としては、Eu元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明の蛍光体のように、モル比でEu2+/(Eu2++Eu3+)<0.9とするためには、水素または一酸化炭素を含む、窒素、アルゴン等の還元性雰囲気で加熱処理することが好ましい。 なお、本発明の蛍光体の構成元素の組成比はICP分析などの手法で測定することができ、Eu2+とEu3+の比率はXANES分析などにより求めることができる。 Note that an atmosphere necessary for obtaining an ion state (valence) in which the Eu element contributes to light emission is selected as the heating atmosphere. In order to obtain Eu 2+ / (Eu 2+ + Eu 3+ ) <0.9 in the molar ratio as in the phosphor of the present invention, heat treatment is performed in a reducing atmosphere containing hydrogen or carbon monoxide, such as nitrogen or argon. It is preferable to do. The composition ratio of the constituent elements of the phosphor of the present invention can be measured by a technique such as ICP analysis, and the ratio of Eu 2+ and Eu 3+ can be obtained by XANES analysis or the like.

次に、本発明の蛍光体を具備する本発明の波長変換器ならびにその波長変換器を搭載した発光装置を、図面を用いて説明する。図1は、本発明の発光装置1の一実施形態を示す概略断面図である。図1によれば、本発明の発光装置1は、電極3が形成された基板5と、基板5上に設けられている発光素子7と、基板5上に発光素子7を覆うように形成された1層の波長変換器9と、光を反射する反射部材11とを備えている。   Next, the wavelength converter of the present invention comprising the phosphor of the present invention and a light emitting device equipped with the wavelength converter will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing an embodiment of a light emitting device 1 of the present invention. According to FIG. 1, the light emitting device 1 of the present invention is formed so as to cover the light emitting element 7 on the substrate 5, the light emitting element 7 provided on the substrate 5, and the substrate 5. In addition, a single-layer wavelength converter 9 and a reflecting member 11 that reflects light are provided.

波長変換器9は、透明マトリクス中に、例えば430nmから490nmの蛍光を発する青色蛍光体(図示せず)、520nmから570nmの蛍光を発する黄緑色蛍光体(図示せず)、黄緑色の蛍光を発する蛍光体(図示せず)を具備している。これらの蛍光体は、光源である発光素子7から発せられる光の波長を変換して、波長が変換された光を含む出力光を出力する。   The wavelength converter 9 includes, for example, a blue phosphor (not shown) emitting fluorescence of 430 nm to 490 nm, a yellow green phosphor (not shown) emitting fluorescence of 520 nm to 570 nm, and a yellow green fluorescence in a transparent matrix. A phosphor (not shown) that emits light is provided. These phosphors convert the wavelength of light emitted from the light emitting element 7 that is a light source, and output output light including the light whose wavelength has been converted.

本発明の波長変換器9は、黄緑色蛍光体として、本発明の蛍光体を用いたことを特徴とするものであり、また、本発明の発光装置1は、本発明の波長変換器9を用いたことを特徴とするものである。   The wavelength converter 9 of the present invention is characterized by using the phosphor of the present invention as a yellow-green phosphor, and the light-emitting device 1 of the present invention includes the wavelength converter 9 of the present invention. It is characterized by being used.

青色蛍光体は、400nm前後の光で励起されて、430nmから490nmの蛍光を発するものであれば、特に限定されないが、(Sr,Ca,Ba,Mg)10(POCl:Eu、BaMgAl1017:Eu,Mn、BaMgAl1017:Eu、(Ba,Eu)MgAl1017、(Sr,Ca,Ba,Mg)10(POCl17:Eu、Sr10(POCl12:Eu、(Ba,Sr,Eu)(Mg,Mn)Al1017、10(Sr,Ca,Ba,Eu)・6PO・Cl、BaMgAl1625:Eu、等が用いられる。なお、青色蛍光体は、〔(M,Mg)10(POCl:Eu、〕(MはCa,Sr,Baの内少なくとも1種)または〔BaMgAl1017:Eu〕が好適に用いられる。 The blue phosphor is not particularly limited as long as it is excited by light of around 400 nm and emits fluorescence of 430 nm to 490 nm, but (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu , BaMgAl 10 O 17: Eu, Mn, BaMgAl 10 O 17: Eu, (Ba, Eu) MgAl 10 O 17, (Sr, Ca, Ba, Mg) 10 (PO 4) 6 Cl 17: Eu, Sr 10 ( PO 4) 6 Cl 12: Eu , (Ba, Sr, Eu) (Mg, Mn) Al 10 O 17, 10 (Sr, Ca, Ba, Eu) · 6PO 4 · Cl 2, BaMg 2 Al 16 O 25: Eu, etc. are used. The blue phosphor is preferably [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] (M is at least one of Ca, Sr, Ba) or [BaMgAl 10 O 17 : Eu]. Used for.

赤色蛍光体は、400〜550nm前後の光で励起されて、600nmから750nmの蛍光を発するものであれば、特に限定されないが、WO:Eu、MMgSi:Eu、Mn(MはCa、Sr、Baから選ばれる少なくとも1種)が用いられる。 The red phosphor is not particularly limited as long as it is excited by light of around 400 to 550 nm and emits fluorescence of 600 to 750 nm, but WO 3 : Eu, M 3 MgSi 2 O 8 : Eu, Mn (M Is at least one selected from Ca, Sr, and Ba).

蛍光体の平均粒子径は、0.1〜50μm、特に0.1〜20μm、さらに1〜20μmとすることが望ましい。平均粒子径が50μmより大きい場合は、波長変換器9の光透過性が著しく低下することによって、蛍光体によって発せられた光が波長変換器9から出射せず、その結果、発光装置1の発光効率が著しく低下する。   The average particle diameter of the phosphor is preferably 0.1 to 50 μm, particularly preferably 0.1 to 20 μm, and more preferably 1 to 20 μm. When the average particle diameter is larger than 50 μm, the light transmittance of the wavelength converter 9 is remarkably lowered, so that the light emitted by the phosphor does not exit from the wavelength converter 9, and as a result, the light emission of the light emitting device 1. Efficiency is significantly reduced.

また、波長変換器9の厚みは、変換効率の観点から、0.1〜5.0mm、好ましくは0.2〜1mmとするのがよい。厚みをこの範囲内とすれば、蛍光体による波長変換効率を向上でき、変換された光が他の蛍光体により吸収されることを抑制することができる。その結果、発光素子7から発せられる光を可視光に高効率で変換することができ、さらに変換された可視光を外部に高効率で透過させることができる。   Further, the thickness of the wavelength converter 9 is 0.1 to 5.0 mm, preferably 0.2 to 1 mm, from the viewpoint of conversion efficiency. If the thickness is within this range, the wavelength conversion efficiency of the phosphor can be improved, and the converted light can be suppressed from being absorbed by other phosphors. As a result, light emitted from the light emitting element 7 can be converted into visible light with high efficiency, and the converted visible light can be transmitted to the outside with high efficiency.

波長変換器9内で変換された出力光のピーク波長は、400〜750nm、特に450〜650nmであることが好ましい。これにより、幅広い範囲で発光波長をカバーし、演色性を向上することができる。このように演色性を向上させるためには、発光波長の異なる複数の蛍光体を組み合わせて用いればよい。   The peak wavelength of the output light converted in the wavelength converter 9 is preferably 400 to 750 nm, particularly 450 to 650 nm. Thereby, the emission wavelength can be covered in a wide range, and the color rendering can be improved. Thus, in order to improve color rendering, a plurality of phosphors having different emission wavelengths may be used in combination.

波長変換器9は、蛍光体を均一に分散および担持し、かつ蛍光体の光劣化を抑制することができるため、高分子樹脂やガラス材料などの透明マトリクス中に分散して形成することが好ましい。高分子樹脂膜、ゾルゲルガラス薄膜などのガラス材料としては、透明性が高く、かつ加熱や光によって容易に変色しない耐久性を有するものが望ましい。   The wavelength converter 9 is preferably formed by being dispersed in a transparent matrix such as a polymer resin or a glass material because the wavelength converter 9 can uniformly disperse and carry the phosphor and suppress light deterioration of the phosphor. . As a glass material such as a polymer resin film or a sol-gel glass thin film, a material having high transparency and durability that is not easily discolored by heating or light is desirable.

高分子樹脂膜は、材料は特に限定されるものではなく、例えば、エポキシ樹脂、シリコーン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、酢酸セルロース、ポリアリレート、さらにこれら材料の誘導体が用いられる。特に、350nm以上の波長域において優れた光透過性を有していることが好ましい。このような透明性に加え、耐熱性の観点から、シリコーン樹脂がより好適に用いられる。   The material of the polymer resin film is not particularly limited. For example, epoxy resin, silicone resin, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, cellulose acetate, polyarylate, Derivatives of these materials are used. In particular, it is preferable to have excellent light transmittance in a wavelength region of 350 nm or more. In addition to such transparency, a silicone resin is more preferably used from the viewpoint of heat resistance.

ガラス材料は、シリカ、チタニア、ジルコニア、さらにそれらのコンポジット系を例示できる。ガラス材料中に蛍光体をそれぞれ単独で分散させて形成する。高分子樹脂膜と比較して、光、特に紫外光に対する耐久性が高く、さらに熱に対する耐久性が高いことから、製品の長寿命化を実現できる。また、ガラス材料は、安定性を向上させることができることから、信頼性に優れた発光装置を実現できる。   Examples of the glass material include silica, titania, zirconia, and composite materials thereof. Each of the phosphors is formed in the glass material by dispersing it alone. Compared to a polymer resin film, it has a high durability against light, particularly ultraviolet light, and further has a high durability against heat, so that the product life can be extended. In addition, since the glass material can improve stability, a light-emitting device with excellent reliability can be realized.

波長変換器9は、ゾルゲルガラス膜などのガラス材料または高分子樹脂膜を用いて、塗布法により形成することができる。一般的な塗布法であれば限定されないが、ディスペンサーによる塗布が好ましい。例えば、液状で未硬化の樹脂、ガラス材料、または溶剤で可塑性を持たせた樹脂およびガラス材料に、蛍光体を混合することにより製造することができる。未硬化の樹脂としては、例えばシリコーン樹脂が使用できる。これらの樹脂は2液を混合して硬化させるタイプのものであっても1液で硬化するタイプのものであっても良く、2液を混合して硬化させるタイプの場合、両液にそれぞれ蛍光体を混練してもよく、あるいはどちらか一方の液に蛍光体を混練しても構わない。また、溶剤で可塑性を持たせた樹脂としては例えばアクリル樹脂を使用することができる。   The wavelength converter 9 can be formed by a coating method using a glass material such as a sol-gel glass film or a polymer resin film. Although it will not be limited if it is a general coating method, the application | coating by a dispenser is preferable. For example, it can be produced by mixing a phosphor with a liquid uncured resin, a glass material, or a resin and a glass material plasticized with a solvent. As the uncured resin, for example, a silicone resin can be used. These resins may be of a type that is cured by mixing two liquids, or a type that is cured by one liquid. The body may be kneaded, or the phosphor may be kneaded in either one of the liquids. In addition, as a resin made plastic with a solvent, for example, an acrylic resin can be used.

硬化した波長変換器9は、未硬化状態でディスペンサー等の塗布法を使用するなどして、フィルム状に成形したり、所定の型に流し込んで固めることで得られる。樹脂およびガラス材料を硬化させる方法としては、熱エネルギーや光エネルギーを使う方法がある他、溶剤を揮発させる方法がある。   The cured wavelength converter 9 can be obtained by forming it into a film shape by using a coating method such as a dispenser in an uncured state, or pouring it into a predetermined mold and hardening it. As a method of curing the resin and the glass material, there are a method of using heat energy and light energy, and a method of volatilizing the solvent.

電極3は、発光素子7を電気的に接続するための導電路としての機能を有し、導電性接合材で発光素子7と接続されている。電極3としては、例えば、W,Mo,Cu,Ag等の金属粉末を含むメタライズ層を用いることができる。電極3は、基板5がセラミックスから成る場合、その上面に配線導体がタングステン(W),モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成され、基板5が樹脂から成る場合、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子がモールド成型されて基板5の内部に設置固定される。   The electrode 3 has a function as a conductive path for electrically connecting the light emitting element 7 and is connected to the light emitting element 7 with a conductive bonding material. As the electrode 3, for example, a metallized layer containing a metal powder such as W, Mo, Cu, or Ag can be used. When the substrate 5 is made of ceramics, the electrode 3 is formed by firing a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn) or the like on the upper surface of the substrate 5 at a high temperature. , Lead terminals made of copper (Cu), iron (Fe) -nickel (Ni) alloy, etc. are molded and fixed inside the substrate 5.

基板5は、熱伝導性に優れ、かつ全反射率の大きいことが求められるため、例えばアルミナ、窒素アルミニウム等のセラミック材料の他に、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。   Since the substrate 5 is required to have excellent thermal conductivity and a high total reflectance, for example, a polymer resin in which metal oxide fine particles are dispersed is suitably used in addition to a ceramic material such as alumina or nitrogen aluminum. It is done.

発光素子7は、蛍光体の励起を効率的に行なうことができるため、中心波長が370〜420nmの光を発する半導体材料を備えた発光素子を用いている。これにより、出力光の強度を高め、より発光強度の高い発光装置を得ることが可能となる。   The light-emitting element 7 uses a light-emitting element including a semiconductor material that emits light having a center wavelength of 370 to 420 nm because phosphors can be excited efficiently. As a result, it is possible to increase the intensity of the output light and obtain a light emitting device with higher emission intensity.

発光素子7は、上記中心波長を発するものが好ましいが、発光素子基板表面に、半導体材料からなる発光層を備える構造(不図示)を有していることが、高い外部量子効率を有する点で好ましい。このような半導体材料として、ZnSeや窒化物半導体(GaN等)等種々の半導体を挙げることができるが、発光波長が上記波長範囲であれば、特に半導体材料の種類は限定されない。これらの半導体材料を有機金属気相成長法(MOCVD法)や分子線エピタシャル成長法等の結晶成長法により、発光素子基板上に半導体材料からなる発光層を有する積層構造を形成すれば良い。発光素子基板は、結晶性の良い窒化物半導体を量産性よく形成させるために、例えば窒化物半導体からなる発光層を表面に形成する場合、サファイア、スピネル、SiC、Si、ZnO、ZrB、GaNおよび石英等の材料が好適に用いられる。 The light emitting element 7 preferably emits the above-mentioned center wavelength, but having a structure (not shown) having a light emitting layer made of a semiconductor material on the surface of the light emitting element substrate has a high external quantum efficiency. preferable. Examples of such semiconductor materials include various semiconductors such as ZnSe and nitride semiconductors (GaN, etc.), but the type of the semiconductor material is not particularly limited as long as the emission wavelength is in the above wavelength range. A stacked structure including a light-emitting layer made of a semiconductor material may be formed over a light-emitting element substrate using a crystal growth method such as a metal organic chemical vapor deposition method (MOCVD method) or a molecular beam epitaxial growth method. In order to form a nitride semiconductor with good crystallinity with high productivity, for example, when a light emitting layer made of a nitride semiconductor is formed on the surface of the light emitting element substrate, sapphire, spinel, SiC, Si, ZnO, ZrB 2 , GaN And materials such as quartz are preferably used.

発光素子7と波長変換器9の側面には、必要に応じて、光を反射する反射部材11を設け、側面に逃げる光を前方に反射し、出力光の強度を高めることができる。反射部材11の材料としては、例えばアルミニウム(Al)、ニッケル(Ni)、銀(Ag)、クロム(Cr)、チタン(Ti)、銅(Cu)、金(Au)、鉄(Fe)およびこれらの積層構造物や合金、さらにアルミナセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂を用いることができる。   If necessary, a reflection member 11 that reflects light is provided on the side surfaces of the light emitting element 7 and the wavelength converter 9, and the light escaping to the side surface can be reflected forward to increase the intensity of the output light. Examples of the material of the reflecting member 11 include aluminum (Al), nickel (Ni), silver (Ag), chromium (Cr), titanium (Ti), copper (Cu), gold (Au), iron (Fe), and these. These laminated structures and alloys, ceramics such as alumina ceramics, or resins such as epoxy resins can be used.

本発明の発光装置は、図1に示すように、波長変換器9を発光素子7上に設置することにより得られる。波長変換器9を発光素子7上に設置する方法としては硬化したシート状の波長変換器9を発光素子7上に設置することが可能であるほか、液状の未硬化の材料を発光素子7上に設置した後、硬化させて設置することも可能である。   The light emitting device of the present invention can be obtained by installing a wavelength converter 9 on a light emitting element 7 as shown in FIG. As a method of installing the wavelength converter 9 on the light emitting element 7, it is possible to install the cured sheet-like wavelength converter 9 on the light emitting element 7, and a liquid uncured material is applied on the light emitting element 7. It is also possible to harden and install after installation.

以下、実施例および比較例を挙げて本発明の蛍光体及び波長変換器ならびに発光装置を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。   Hereinafter, the phosphor, the wavelength converter, and the light emitting device of the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited only to the following Examples.

まず、炭酸ストロンチウム、炭酸バリウム、シリカ、酸化ユウロピウムの各粉末を、モル比でSr、Ba、Eu、Siの比率が表1に示す比率となるように調合した。さらに、これらの粉末の総量に対して、150質量%の2−プロピルアルコールと、1000質量部のジルコニア製のメディアボールをポリポットに入れ、48hr時間攪拌混合した。   First, powders of strontium carbonate, barium carbonate, silica, and europium oxide were prepared so that the molar ratios of Sr, Ba, Eu, and Si were as shown in Table 1. Furthermore, 150% by mass of 2-propyl alcohol and 1000 parts by mass of zirconia media balls were put in a polypot with respect to the total amount of these powders, and the mixture was stirred and mixed for 48 hours.

得られた混合溶液を目開き190μmのナイロンメッシュを用いてメディアボールを除去しながら排出し、その後110℃にて8時間加熱して2−プロピルアルコールを除去した。   The resulting mixed solution was discharged using a nylon mesh having an opening of 190 μm while removing the media balls, and then heated at 110 ° C. for 8 hours to remove 2-propyl alcohol.

次に、2−プロピルアルコールを除去した原料混合粉末をアルミナ製坩堝に入れて、大気雰囲気下1200℃で3時間加熱した。その後、12%の水素を含む窒素ガス流中、1350℃で9時間加熱してSr2−x−yBaEuSiO結晶を主結晶とする蛍光体を合成した。 Next, the raw material mixed powder from which 2-propyl alcohol was removed was placed in an alumina crucible and heated at 1200 ° C. for 3 hours in an air atmosphere. Thereafter, the phosphor was synthesized by heating at 1350 ° C. for 9 hours in a nitrogen gas flow containing 12% hydrogen to synthesize a phosphor having Sr 2-xy Ba x Eu y SiO 4 crystal as a main crystal.

また、比較例として、フラックス(塩化ストロンチウム)を添加して、モル比でEu2+/(Eu2++Eu3+)が0.9以上の蛍光体も作製した。そして、これらの蛍光体に対して水洗処理を施した。 In addition, as a comparative example, a phosphor (strontium chloride) was added to produce a phosphor having a molar ratio of Eu 2+ / (Eu 2+ + Eu 3+ ) of 0.9 or more. Then, these phosphors were washed with water.

この水洗処理を施した蛍光体をXANES分析し、6975eV付近のピークをEu2+、6985eV付近のピークをEu3+としてその面積比率よりEu2+/(Eu2++Eu3+)の値を求めた。 Subjecting the phosphor and the the washing process and XANES analysis, Eu 2+ a peak near 6975EV, determined the value of Eu 2+ / (Eu 2+ + Eu 3+) from the area ratio of the peak in the vicinity of 6985eV as Eu 3+.

また、水洗処理を施した蛍光体をICP分析して蛍光体の組成比を求め、その結果から(Sr+Ba+Eu)/Si(モル比率)を求めたところ、調合組成と変化がなかったため、蛍光体の組成は省略した。

Figure 2008208202
Further, the phosphor subjected to the water washing treatment was subjected to ICP analysis to determine the composition ratio of the phosphor, and from the result, (Sr + Ba + Eu) / Si (molar ratio) was obtained. The composition was omitted.
Figure 2008208202

表1に示す通り、本発明の範囲外である試料No.1、2の蛍光体は発光効率が29%以下と低かった。また、本発明の範囲外であるEu2+/(Eu2++Eu3+)の値が0.9以上の試料No.8、9の蛍光体では発光効率は24〜28%と低い値となった。 As shown in Table 1, Sample No. which is outside the scope of the present invention. The phosphors 1 and 2 had a low luminous efficiency of 29% or less. In addition, the sample No. 2 having a Eu 2+ / (Eu 2+ + Eu 3+ ) value of 0.9 or more, which is outside the scope of the present invention. With the phosphors of 8 and 9, the luminous efficiency was a low value of 24 to 28%.

これに対して、本発明の範囲内の試料である試料No.3〜6の蛍光体は発光効率35〜36%と高い発光効率を示した。   On the other hand, sample No. which is a sample within the scope of the present invention. The phosphors 3 to 6 showed high luminous efficiency of 35 to 36%.

本発明の蛍光体を備える波長変換器を具備した発光装置の一例を示す断面図である。It is sectional drawing which shows an example of the light-emitting device which comprised the wavelength converter provided with the fluorescent substance of this invention.

符号の説明Explanation of symbols

1・・・発光装置
3・・・電極
5・・・基板
7・・・発光素子
9・・・波長変換器
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 3 ... Electrode 5 ... Substrate 7 ... Light-emitting element 9 ... Wavelength converter

Claims (3)

Sr、Ba、Si、EuおよびOを含有してなる蛍光体であって、主結晶としてSr2−x−yBaEuSiO4結晶(0≦x≦1、0.01≦y≦0.10)を備え、EuのEu2+とEu3+とがモル比でEu2+/(Eu2++Eu3+)<0.9を満たし、モル比で(Sr+Ba+Eu)/Si=2.02〜2.07を満たすことを特徴とする蛍光体。 A phosphor containing Sr, Ba, Si, Eu, and O, and a Sr 2-xy Ba x Eu y SiO 4 crystal (0 ≦ x ≦ 1, 0.01 ≦ y ≦ 0) as a main crystal. 10), and Eu 2+ and Eu 3+ of Eu satisfy Eu 2+ / (Eu 2+ + Eu 3+ ) <0.9 in molar ratio, and (Sr + Ba + Eu) /Si=2.02 to 2.07 in molar ratio A phosphor characterized by satisfying 請求項1に記載の蛍光体が透明マトリックス中に分散していることを特徴とする波長変換器。 A wavelength converter, wherein the phosphor according to claim 1 is dispersed in a transparent matrix. 請求項2に記載の波長変換器と励起光を発する発光素子とを具備してなり、前記励起光を前記波長変換器の蛍光体に照射するようにしてあることを特徴とする発光装置。 A light-emitting device comprising the wavelength converter according to claim 2 and a light-emitting element that emits excitation light, wherein the phosphor of the wavelength converter is irradiated with the excitation light.
JP2007045600A 2007-02-26 2007-02-26 Phosphor, wavelength converter and light emitting device Pending JP2008208202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045600A JP2008208202A (en) 2007-02-26 2007-02-26 Phosphor, wavelength converter and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045600A JP2008208202A (en) 2007-02-26 2007-02-26 Phosphor, wavelength converter and light emitting device

Publications (1)

Publication Number Publication Date
JP2008208202A true JP2008208202A (en) 2008-09-11

Family

ID=39784802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045600A Pending JP2008208202A (en) 2007-02-26 2007-02-26 Phosphor, wavelength converter and light emitting device

Country Status (1)

Country Link
JP (1) JP2008208202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013564A1 (en) * 2009-07-31 2011-02-03 株式会社ネモト・ルミマテリアル Phosphor and light-emitting device
CN102899037A (en) * 2012-10-25 2013-01-30 江苏博睿光电有限公司 preparation method of green fluorescent powder for LED
JP2020035934A (en) * 2018-08-30 2020-03-05 日亜化学工業株式会社 Light-emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013564A1 (en) * 2009-07-31 2011-02-03 株式会社ネモト・ルミマテリアル Phosphor and light-emitting device
JP5369286B2 (en) * 2009-07-31 2013-12-18 株式会社ネモト・ルミマテリアル Phosphor and light emitting device
CN102899037A (en) * 2012-10-25 2013-01-30 江苏博睿光电有限公司 preparation method of green fluorescent powder for LED
CN102899037B (en) * 2012-10-25 2014-11-12 江苏博睿光电有限公司 preparation method of green fluorescent powder for LED
JP2020035934A (en) * 2018-08-30 2020-03-05 日亜化学工業株式会社 Light-emitting device
US11508779B2 (en) 2018-08-30 2022-11-22 Nichia Corporation Light emitting element

Similar Documents

Publication Publication Date Title
JP5230594B2 (en) Phosphor, its manufacturing method, wavelength converter, light emitting device, and lighting device
JP5641384B2 (en) LIGHTING DEVICE FOR DISPLAY DEVICE AND DISPLAY DEVICE
JP2011071404A (en) Light-emitting device and illumination apparatus
JP5137850B2 (en) Phosphor and wavelength converter, light emitting device, and illumination device using the same
JP4420021B2 (en) White light emitting diode device
TWI391472B (en) Phosphor, production method thereof, and light-emitting apparatus using phosphor
JP2007273498A (en) Wavelength converter and light emitting device
JP2001308393A (en) Light-emitting diode
JP2010006850A (en) Wavelength converter, light emitter, and illuminating device
JP2010225960A (en) Light emitting device and illumination apparatus
JP6057231B2 (en) Phosphor, light emitting device, image display device, pigment and ultraviolet absorber
JP4949793B2 (en) Phosphor, wavelength converter and light emitting device
JP2007059898A (en) Semiconductor light-emitting device
JP2011155125A (en) Light-emitting device, and illumination apparatus
JP2010155891A (en) Nitride red phosphor and white light emitting diode utilizing the same
JP2009280793A (en) Fluorescent substance, wavelength converter, light emitter and lighting installation
JP2010199273A (en) Light-emitting device and lighting device
JP5004616B2 (en) Phosphor, method for manufacturing the same, wavelength converter and light emitting device
JP2008208202A (en) Phosphor, wavelength converter and light emitting device
JP5036454B2 (en) Phosphor particles, wavelength converter and light emitting device
JP2009203264A (en) Fluorescent substance, wavelength converter and light emitting device, and illuminating device
JP2010118620A (en) Light-emitting device
JP4948015B2 (en) Aluminate blue phosphor and light emitting device using the same
JP2009238887A (en) Wavelength converter and light-emitting device, and lighting device
JP4991362B2 (en) Phosphor, method for manufacturing the same, wavelength converter and light emitting device