JP2008208083A - Fullerene derivative and method for producing the same - Google Patents

Fullerene derivative and method for producing the same Download PDF

Info

Publication number
JP2008208083A
JP2008208083A JP2007047618A JP2007047618A JP2008208083A JP 2008208083 A JP2008208083 A JP 2008208083A JP 2007047618 A JP2007047618 A JP 2007047618A JP 2007047618 A JP2007047618 A JP 2007047618A JP 2008208083 A JP2008208083 A JP 2008208083A
Authority
JP
Japan
Prior art keywords
group
fullerene derivative
fullerene
bonded
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007047618A
Other languages
Japanese (ja)
Inventor
Kyoji Kimoto
協司 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCIENCE LAB Inc
SCIENCE LABORATORIES Inc
Original Assignee
SCIENCE LAB Inc
SCIENCE LABORATORIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCIENCE LAB Inc, SCIENCE LABORATORIES Inc filed Critical SCIENCE LAB Inc
Priority to JP2007047618A priority Critical patent/JP2008208083A/en
Publication of JP2008208083A publication Critical patent/JP2008208083A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fullerene derivative electrolyte soluble in organic solvents and easily and uniformly miscible and dispersible with a binder polymer for producing a proton conductive membrane free from deionization exchange reaction by an electrophilic substitution reaction by proton attack even under a high-temperature acidic condition and to provide a method for producing the electrolyte. <P>SOLUTION: The invention provides a fullerene derivative having a phosphonic acid ester group -PO(OR)<SB>2</SB>(R is a 1-5C alkyl group or a phenyl group) bonded to the derivative and essentially free from bonded organic compound, preferably a fullerene derivative having a sulfonic acid group -SO<SB>3</SB>M (M is H or an alkali metal ion) bonded together with the above group. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体高分子型燃料電池で使用されるプロトン伝導膜の電解質用として有用なフラーレン誘導体及びその製造方法に関する。   The present invention relates to a fullerene derivative useful for an electrolyte of a proton conductive membrane used in a polymer electrolyte fuel cell and a method for producing the same.

従来、固体高分子型燃料電池の性能を支配する電解質膜として、パ−フロロスルホン酸樹脂膜(DuPont社製,商品名Nafion膜)が用いられてきたが、該膜は高価なため、最近では炭化水素ポリマーをベースとした電解質膜が検討されている。この膜はスルホン酸基が芳香族環に直接結合した構造を有するが、非特許文献1に記載されているように、100℃以上の酸性条件下で長期間使用すると次第に脱スルホン酸基反応が生じ、性能が劣化してしまう欠陥がある。そのメカニズムは、芳香族環にプロトンが攻撃して親電子置換反応が生じるためであり、芳香族環とは異なった基体にスルホン酸基を直接結合する方法が求められている。   Conventionally, a perfluorosulfonic acid resin membrane (manufactured by DuPont, trade name Nafion membrane) has been used as an electrolyte membrane that governs the performance of a polymer electrolyte fuel cell. An electrolyte membrane based on a hydrocarbon polymer has been studied. This membrane has a structure in which a sulfonic acid group is directly bonded to an aromatic ring. However, as described in Non-Patent Document 1, when the membrane is used for a long time under acidic conditions of 100 ° C. or higher, the desulfonic acid group reaction gradually increases. There are defects that arise and degrade performance. The mechanism is that protons attack the aromatic ring to cause an electrophilic substitution reaction, and a method for directly bonding a sulfonic acid group to a substrate different from the aromatic ring is required.

この問題の解決に役立つ電解質として、フラーレンにスルホン酸基を直接結合したフラーレン誘導体が特許文献1に開示されているが、反応溶媒に使用するジメチルホルムアミドもスルホン酸化反応時に結合してしまい、目的物が得られないという問題があった。そのため、特許文献2や特許文献3には、基体のフラーレンとスルホン酸基を炭化水素系やフッ素系のスペーサー分子で結合する方法が開示されているが、製造方法が複雑になる上に、イオン交換容量を高くできないという欠点があった。   As an electrolyte useful for solving this problem, a fullerene derivative in which a sulfonic acid group is directly bonded to fullerene is disclosed in Patent Document 1, but dimethylformamide used as a reaction solvent is also bonded during the sulfonation reaction, and the target product There was a problem that could not be obtained. For this reason, Patent Document 2 and Patent Document 3 disclose a method of bonding a fullerene and a sulfonic acid group of a substrate with a hydrocarbon-based or fluorine-based spacer molecule. There was a drawback that the exchange capacity could not be increased.

本発明者は、スルホン酸化試薬としてKSOを用い、(ジメチルアセトアミド+水)という特定の反応溶媒を用いることで、反応溶媒の結合無しに、スルホン酸基をフラーレンに直接結合することに成功した。しかしながら、こうして得られたスルホン酸化フラーレンは水溶性であって有機溶媒に難溶であり、有機溶媒可溶性のバインダーポリマー内に均一に混合・分散させることが困難であった。本発明者は更に研究を進め、ホスホン酸エステル基をスルホン酸基と共存させて有機溶媒に可溶にすることで、この問題を解決した。 The present inventor uses K 2 SO 3 as a sulfonating reagent and uses a specific reaction solvent (dimethylacetamide + water) to directly bond a sulfonic acid group to fullerene without bonding of the reaction solvent. Successful. However, the sulfonated fullerene thus obtained is water-soluble and hardly soluble in an organic solvent, and it has been difficult to uniformly mix and disperse it in an organic solvent-soluble binder polymer. The present inventor further studied and solved this problem by making the phosphonic acid ester group coexist with the sulfonic acid group and making it soluble in an organic solvent.

従来、ホスホン酸化フラーレンは特許文献2などに一般的には開示されているが、具体的な製造方法は記載されておらず、また直接結合型の化学構造は明示されていない。また、特許文献4には、直接結合型の構造が一般的には示されているが、その具体的な製造方法は示されていない。また、スルホン酸基とホスホン酸基の共存型も、特許文献4の一般式には含まれるが、本発明のスルホン酸基とホスホン酸エステル基の共存型は示されていない。   Conventionally, phosphonated fullerenes are generally disclosed in Patent Document 2 and the like, but a specific production method is not described, and a direct bond type chemical structure is not specified. Patent Document 4 generally shows a direct bond type structure, but does not show a specific manufacturing method thereof. A coexistence type of a sulfonic acid group and a phosphonic acid group is also included in the general formula of Patent Document 4, but the coexistence type of the sulfonic acid group and the phosphonic acid ester group of the present invention is not shown.

本発明者は、ホスホン酸エステル化試薬としてLiPO(OR)(RはC〜Cのアルキル基又はフェニル基)を用い、反応溶媒としてジオキサンを用いることで、反応溶媒の結合無しに、直接結合型のホスホン酸エステル化フラーレンを得ることに成功して本発明を完成した。なお、バインダーポリマーと混合・分散されたフラーレン誘導体のホスホン酸エステル基は、必要により加水分解でホスホン酸基に変換され、スルホン酸基と同様にプロトン伝導に寄与するので、目的によってはホスホン酸エステル基単独が結合したフラーレン誘導体も本発明では有用である。 The present inventor has used LiPO as phosphonate reagent (OR) 2 (R is alkyl or phenyl C 1 -C 5), by using dioxane as the reaction solvent, without binding of the reaction solvent, The present invention has been completed by successfully obtaining a direct-linked phosphonate esterified fullerene. The phosphonate ester group of the fullerene derivative mixed and dispersed with the binder polymer is converted to a phosphonic acid group by hydrolysis if necessary, and contributes to proton conduction like the sulfonic acid group. A fullerene derivative having a single group bonded thereto is also useful in the present invention.

特開2002−326984号公報JP 2002-326984 A 特開2005−093417号公報JP 2005-093417 A 特開2005−068124号公報Japanese Patent Laying-Open No. 2005-068124 特開2005−194304号公報JP-A-2005-194304 木本協司監修,「PEFC用電解質膜の開発」,シーエムシー出版,2005年12月発行,P.30Supervised by Kyoji Kimoto, “Development of electrolyte membrane for PEFC”, CMC Publishing, published in December 2005, P.A. 30

本発明においては、高温の酸性条件下においてもプロトン攻撃による親電子置換反応で脱イオン交換反応を起さないプロトン伝導膜を製造するために、バインダーポリマーと均一に混合・分散させやすい有機溶媒可溶性のフラーレン誘導体電解質及びその製造方法を提供することを目的とする。   In the present invention, in order to produce a proton conducting membrane that does not cause deion exchange reaction by electrophilic substitution reaction by proton attack even under high temperature acidic conditions, it is soluble in an organic solvent that is easy to mix and disperse uniformly with a binder polymer. It is an object of the present invention to provide a fullerene derivative electrolyte and a method for producing the same.

上記の目的を達成するために、本発明は、ホスホン酸エステル基−PO(OR)(RはC〜Cのアルキル基又はフェニル基)が結合し、有機化合物が実質的に結合していないフラーレン誘導体であり、好ましくは、スルホン酸基−SOM(MはH又はアルカリ金属イオン)が同時に結合したフラーレン誘導体である。
また、ホスホン酸エステル基の結合数mとスルホン酸基の結合数nが、次の範囲にある前記フラーレン誘導体も本発明である。

Figure 2008208083
また、部分構造X−C−C−H(Xはホスホン酸エステル基又はスルホン酸基)を1〜12個含む前記フラーレン誘導体も本発明である。
また、反応溶媒としてジオキサンを用い、フラーレン又はスルホン酸化フラーレンとホスホン酸エステル化試薬LiPO(OR)(RはC〜Cのアルキル基又はフェニル基)を反応させることを特徴とする、前記フラーレン誘導体の製造方法も本発明である。 In order to achieve the above-described object, the present invention provides a phosphonic acid ester group —PO (OR) 2 (wherein R is a C 1 -C 5 alkyl group or phenyl group) and an organic compound is substantially bonded. The fullerene derivative is preferably a fullerene derivative in which a sulfonic acid group —SO 3 M (M is H or an alkali metal ion) is bonded at the same time.
The fullerene derivative in which the number of bonds m of the phosphonic acid ester group and the number of bonds n of the sulfonic acid group are in the following ranges is also the present invention.
Figure 2008208083
Moreover, the fullerene derivative containing 1 to 12 partial structures XC-C-H (X is a phosphonic acid ester group or a sulfonic acid group) is also the present invention.
In addition, using dioxane as a reaction solvent, fullerene or sulfonated fullerene and phosphonate esterification reagent LiPO (OR) 2 (R is a C 1 to C 5 alkyl group or phenyl group) are reacted, A method for producing a fullerene derivative is also the present invention.

本発明のフラーレン誘導体を用いることで、芳香族環にプロトンが攻撃して生じる親電子置換反応により脱イオン交換基反応を起こさないプロトン伝導膜を製造することができる。本発明のフラーレン誘導体は有機溶媒に可溶なので、電解質としてバインダーポリマーに均一に混合・分散することが容易である。本発明のフラーレン誘導体は、リチウム電池の電解質、バイオ分野の固体酸触媒、医用材料や医薬の原料として使用することも可能である。   By using the fullerene derivative of the present invention, it is possible to produce a proton conducting membrane that does not cause a deion exchange group reaction due to an electrophilic substitution reaction caused by proton attack on an aromatic ring. Since the fullerene derivative of the present invention is soluble in an organic solvent, it can be easily mixed and dispersed uniformly in a binder polymer as an electrolyte. The fullerene derivative of the present invention can also be used as a lithium battery electrolyte, a bioacid solid acid catalyst, a medical material, or a raw material for medicine.

本発明は、ホスホン酸エステル基−PO(OR)(RはC〜Cのアルキル基又はフェニル基)が結合し、有機化合物が実質的に結合していないフラーレン誘導体であり、好ましくはスルホン酸基−SOM(MはH又はアルカリ金属イオン)が同時に結合したフラーレン誘導体である。ホスホン酸エステル基の結合数mとスルホン酸基の結合数nは、原料フラーレンに含まれる五員環の数から通常次の範囲にあるが、官能基の総数(m+n)は反応条件によって更に大きくすることも可能である。

Figure 2008208083
本発明のフラーレン誘導体は、反応方法に由来してX−C−C−H(Xはホスホン酸エステル基又はスルホン酸基)という部分構造を1〜12個含む。上記のフラーレン誘導体は、精製して官能基の種類と数が実質的に単一なフラーレン誘導体でもよく、また官能基の種類と数が異なるフラーレン誘導体の混合物でも構わない。 The present invention is a fullerene derivative to which a phosphonic acid ester group —PO (OR) 2 (R is a C 1 to C 5 alkyl group or phenyl group) is bonded and an organic compound is not substantially bonded, It is a fullerene derivative in which a sulfonic acid group —SO 3 M (M is H or an alkali metal ion) is simultaneously bonded. The number of bonds m of phosphonic acid ester groups and the number of bonds n of sulfonic acid groups are usually in the following range from the number of five-membered rings contained in the raw material fullerene, but the total number of functional groups (m + n) is larger depending on the reaction conditions. It is also possible to do.
Figure 2008208083
The fullerene derivative of the present invention includes 1 to 12 partial structures of XC-C-H (X is a phosphonic acid ester group or a sulfonic acid group) derived from the reaction method. The fullerene derivative may be purified to be a fullerene derivative having substantially a single type and number of functional groups, or a mixture of fullerene derivatives having different types and numbers of functional groups.

本発明のフラーレン誘導体は、基体としてC60,C70,C76,C78,C84などのフラーレンを、特定の有機溶媒を用いて、スルホン酸化試薬KSO又はホスホン酸エステル化試薬LiPO(OR)と反応させることで製造することができる。反応は常圧または加圧下で、50〜200℃の反応温度を用いて、通常10〜200時間行わせる。
本発明者の研究によれば、フラーレンとスルホン酸化試薬との反応結果は、使用する有機溶媒によって表1のように大きく異なることが、生成物の赤外吸収スペクトルを測定することで判明した。表1の溶媒結合の場合は、反応溶媒に由来する有機化合物がフラーレンに結合するので、複雑なピークが赤外吸収スペクトルに現れ、単純なスペクトルを示す目的反応の生成物と容易に区別することができる。ちなみに、DMFは(CHNCOHであり、DMAcは(CHNCOCHで同じアミド系溶媒に属していて、両者の化学構造の差は僅かであるにもかかわらず、反応結果が全く異なることは驚くべき発見である。
The fullerene derivative of the present invention comprises a fullerene such as C 60 , C 70 , C 76 , C 78 , and C 84 as a substrate, a sulfonated reagent K 2 SO 3 or a phosphonate esterifying reagent LiPO using a specific organic solvent. (OR) It can be produced by reacting with 2 . The reaction is usually carried out for 10 to 200 hours at a normal pressure or under pressure using a reaction temperature of 50 to 200 ° C.
According to the study of the present inventor, it was found by measuring the infrared absorption spectrum of the product that the reaction result of the fullerene and the sulfonating reagent varies greatly as shown in Table 1 depending on the organic solvent used. In the case of the solvent bond shown in Table 1, the organic compound derived from the reaction solvent binds to the fullerene, so that a complex peak appears in the infrared absorption spectrum and can be easily distinguished from the product of the target reaction showing a simple spectrum. Can do. By the way, DMF is (CH 3 ) 2 NCOH, DMAc is (CH 3 ) 2 NCOCH 3 and belongs to the same amide solvent. It is a surprising discovery that is quite different.

Figure 2008208083
※(特許文献1の実施例参照,溶媒はDMF)
Figure 2008208083
* (Refer to Examples in Patent Document 1, solvent is DMF)

ここで、有機溶媒に水を添加する一つの理由は、スルホン酸化試薬の有機溶媒に対する溶解度を高めるためである。水を添加するもう一つの理由は、下記に示すように、反応時に生成するカルバニオンが、溶媒分子と結合する前に水からプロトンを引き抜いて安定化するためである。

Figure 2008208083
反応後のSOK型は、必要により、イオン交換法でSOH型や他のアルカリ金属イオン型に変換することが可能である。 Here, one reason for adding water to the organic solvent is to increase the solubility of the sulfonating reagent in the organic solvent. Another reason for adding water is that, as will be described below, the carbanion produced during the reaction is stabilized by extracting protons from the water before combining with the solvent molecules.
Figure 2008208083
The SO 3 K type after the reaction can be converted into an SO 3 H type or other alkali metal ion type by an ion exchange method if necessary.

次に、ホスホン酸エステル化反応について説明する。ホスホン酸エステル化試薬LiPO(OR)(RはC〜Cのアルキル基又はフェニル基)は、非プロトン系極性有機溶媒を用い、通常25〜100℃の条件で次の反応により調製される。

Figure 2008208083
この中にフラーレン又は上記の方法で製造されたスルホン酸基SOKが結合したフラーレン誘導体を加えてホスホン酸エステル化反応を行うが、溶媒としてジメチルホルムアミドを用いると溶媒結合が生じるので、ジオキサンを用いる必要があることが生成物の赤外吸収スペクトル分析から判明した。この場合、同じ環状エーテル系のテトラヒドロフランを使用することも可能であるが、沸点が低いため反応温度が低くなるので、ジオキサンを用いることが好ましい。 Next, the phosphonic acid esterification reaction will be described. Phosphonate esterification reagent LiPO (OR) 2 (R is a C 1 -C 5 alkyl group or phenyl group) is prepared by the following reaction using an aprotic polar organic solvent and usually at 25-100 ° C. The
Figure 2008208083
A fullerene or a fullerene derivative to which a sulfonic acid group SO 3 K produced by the above method is bonded is added to this to carry out a phosphonic acid esterification reaction. When dimethylformamide is used as a solvent, solvent bonding occurs. It was found from the infrared absorption spectrum analysis of the product that it was necessary to use it. In this case, it is possible to use the same cyclic ether-based tetrahydrofuran, but it is preferable to use dioxane because the reaction temperature is lowered because the boiling point is low.

ホスホン酸エステル化反応時に生成するカルバニオンは、溶媒のジオキサンからプロトンを引き抜いて安定化する。

Figure 2008208083
本発明においては、反応中間体として生じるカルバニオンが溶媒と結合する前にプロトンを引き抜いて安定化するように、スルホン化反応時の水の添加やホスホン酸エステル化反応時のジオキサンの使用が行われる。
Figure 2008208083
本発明に係わるフラーレン誘導体においては、Xのβ位にプロトンが結合した上記の部分構造が主に含まれるが、一部の部分構造で、Hの代わりに水酸基OHやカルボン酸基COHが結合していても、有機化合物ではないので構わない。また次式のように、2個のXがフラーレンに付加する際に2重結合が生成するため、プロトンが結合していない部分構造が含まれていても、有機化合物が結合しないので構わない。
Figure 2008208083
The carbanion produced during the phosphonic acid esterification reaction is stabilized by extracting a proton from the solvent dioxane.
Figure 2008208083
In the present invention, water is added during the sulfonation reaction and dioxane is used during the phosphonate esterification reaction so that the carbanion produced as a reaction intermediate is extracted and stabilized before binding to the solvent. .
Figure 2008208083
The fullerene derivative according to the present invention mainly includes the above partial structure in which a proton is bonded to the β-position of X. In some partial structures, a hydroxyl group OH or a carboxylic acid group CO 2 H is substituted for H. Even if they are bonded, they are not organic compounds. Further, as shown in the following formula, a double bond is generated when two Xs are added to the fullerene, and therefore, even if a partial structure to which no proton is bonded is included, the organic compound may not be bonded.
Figure 2008208083

本発明のフラーレン誘導体を用いてプロトン伝導膜を製造する一つの方法は、バインダーポリマーであるパーフロロスルホン酸樹脂(DuPont社製,商品名Nafion樹脂)の含水アルコール溶液と、本発明のフラーレン誘導体のテトラヒドロフラン溶液を混合し、キャステイング法で成膜するか、ガラス繊維不織布や延伸多孔質ポリテトラフロロエチレン膜などの補強材に塗布含浸して乾燥することである。
上記の方法において、ポリフッ化ビニリデンなどのフッ素化樹脂やポリエーテルスルホン,ポリエーテルエーテルケトン,ポリイミドなどの炭化水素樹脂をパーフロロスルホン酸樹脂の替りにバインダーポリマーとして用いることができる。その場合、該樹脂と本発明のフラーレン誘導体をジメチルホルムアミド,ジメチルアセトアミド,テトラヒドロフランなどの有機溶媒に溶かして混合し、キャステイング法で成膜するか、ガラス繊維不織布や延伸多孔質ポリテトラフロロエチレン膜などの補強材に塗布含浸して乾燥することで成膜することができる。
One method for producing a proton conducting membrane using the fullerene derivative of the present invention includes a hydroalcoholic solution of perfluorosulfonic acid resin (manufactured by DuPont, trade name Nafion resin) as a binder polymer, and a fullerene derivative of the present invention. A tetrahydrofuran solution is mixed and a film is formed by a casting method, or a reinforcing material such as a glass fiber nonwoven fabric or a stretched porous polytetrafluoroethylene film is applied and impregnated and dried.
In the above method, a fluorinated resin such as polyvinylidene fluoride or a hydrocarbon resin such as polyethersulfone, polyetheretherketone, or polyimide can be used as a binder polymer instead of perfluorosulfonic acid resin. In that case, the resin and the fullerene derivative of the present invention are dissolved and mixed in an organic solvent such as dimethylformamide, dimethylacetamide, tetrahydrofuran, etc. to form a film by a casting method, or a glass fiber nonwoven fabric or a stretched porous polytetrafluoroethylene film. A film can be formed by coating and impregnating the reinforcing material and drying.

本発明のフラーレン誘導体は、スルホン酸基/ホスホン酸エステル基の比が充分に小さいと非水溶性なので、上記の方法で得られた膜を室温で塩酸水溶液に浸漬し、スルホン酸基のSOKをSOHに変換することでプロトン伝導膜を得ることができる。しかしながら、ホスホン酸エステル基を加水分解し、ホスホン酸基に変えてプロトン伝導に寄与させる場合や、長期間の使用中に物理的に押し出される可能性を低下させる場合は、NaS,HO−C−OH,HS−C−SHなどの二官能性化合物を用いて架橋し,不溶化することが好ましい。この場合、架橋を行うには次の三つの方式が可能である。
1)本発明のフラーレン誘導体の有機溶媒溶液に架橋剤を加えて加熱撹拌し、架橋したものをバインダーポリマーの有機溶媒溶液に添加してホモジナイザーで激しく撹拌混合した後、キャステイング法で成膜するか、ガラス繊維不織布や延伸多孔質ポリテトラフロロエチレン膜などの補強材に塗布含浸して乾燥することで成膜する。
2)本発明のフラーレン誘導体とバインダーポリマーの有機溶媒溶液に架橋剤を加え、加熱撹拌して架橋させた後、キャステイング法で成膜するか、ガラス繊維不織布や延伸多孔質ポリテトラフロロエチレン膜などの補強材に塗布含浸して乾燥することで成膜する。
3)本発明のフラーレン誘導体とバインダーポリマーの有機溶媒溶液に架橋剤を添加し、キャステイング法で成膜するか、ガラス繊維不織布や延伸多孔質ポリテトラフロロエチレン膜などの補強材に塗布含浸して成膜した後、加熱して溶媒を除去すると同時に架橋を行う。
Since the fullerene derivative of the present invention is water-insoluble when the ratio of the sulfonic acid group / phosphonic acid ester group is sufficiently small, the membrane obtained by the above method is immersed in an aqueous hydrochloric acid solution at room temperature to obtain SO 3 of the sulfonic acid group. A proton conducting membrane can be obtained by converting K to SO 3 H. However, when hydrolyzing the phosphonic acid ester group and converting it to a phosphonic acid group to contribute to proton conduction, or when reducing the possibility of physical extrusion during long-term use, Na 2 S, HO— It is preferable to crosslink and insolubilize using a bifunctional compound such as C 6 H 4 —OH or HS—C 6 H 4 —SH. In this case, the following three methods are possible for crosslinking.
1) Add a cross-linking agent to the organic solvent solution of the fullerene derivative of the present invention and heat and stir. Add the cross-linked material to the organic solvent solution of the binder polymer and vigorously stir and mix with a homogenizer. A film is formed by applying and impregnating a reinforcing material such as a glass fiber nonwoven fabric or a stretched porous polytetrafluoroethylene film and drying.
2) A crosslinking agent is added to the organic solvent solution of the fullerene derivative and binder polymer of the present invention, and after crosslinking by heating and stirring, a film is formed by a casting method, or a glass fiber nonwoven fabric or a stretched porous polytetrafluoroethylene film is used. A film is formed by coating and impregnating the reinforcing material and drying.
3) A crosslinking agent is added to the organic solvent solution of the fullerene derivative and the binder polymer of the present invention, and a film is formed by a casting method, or a reinforcing material such as a glass fiber nonwoven fabric or a stretched porous polytetrafluoroethylene film is coated and impregnated. After film formation, heating is performed to remove the solvent and simultaneously perform crosslinking.

上述した三方式の成膜後に膜中に残存する架橋剤は、水やメタノールでよく洗浄して除去することが好ましい。膜中のホスホン酸エステル基PO(OR)は、塩酸/メタノール中で加熱して加水分解し、ホスホン酸基PO(OH)に変換することができる。この操作中に、共存するスルホン酸基SOKはSOH型に変換されるので、スルホン酸基とホスホン酸基を有するプロトン伝導膜を得ることができる。
次に実施例を示すが、本発明はこれらに限定されるものではない。
It is preferable to remove the cross-linking agent remaining in the film after the above-described three types of film formation by thoroughly washing with water or methanol. The phosphonic acid ester group PO (OR) 2 in the membrane can be converted into the phosphonic acid group PO (OH) 2 by hydrolysis in hydrochloric acid / methanol. During this operation, the coexisting sulfonic acid group SO 3 K is converted to the SO 3 H type, so that a proton conductive membrane having a sulfonic acid group and a phosphonic acid group can be obtained.
Examples are shown below, but the present invention is not limited thereto.

300mlの三口フラスコにジエチルホスファイトHPO(OEt)を690mg、ジオキサンを200ml入れ、LiHを40mg添加した。80℃で加熱撹拌するとHが発生し、やがて溶液が透明になったので、フラーレンC60を720mg加え、そのまま80℃で4日間加熱撹拌した。反応終了後、溶媒を乾燥除去して残渣を(エタノール+THF)で抽出して固形分を濾別し、濾液の(エタノール+THF)を乾燥除去した後、KBrで赤外吸収スペクトルを測定したところ、2926cm−1にC,1209cm−1にP=O,1043cm−1にP−O−Cの吸収が表れ、ホスホン酸エステル基PO(OEt)が結合していることが確認された(図1参照)。
更に構造を確認するために、このホスホン酸エステル化フラーレン500mgにトリメチルシリルブロマイドを1g加えて室温で一晩エステル交換を行った後、水を加えて加水分解した。得られた生成物を乾燥後、KBrで赤外吸収スペクトルを測定したところ、Cの吸収は消失しており、3348cm−1にOH,1184cm−1にP=O.1074cm−1にP−O−Cの吸収が表れた。得られたホスホン酸化フラーレンをICP−AES(誘導結合プラズマ原子発光スペクトル法)でP分析を行い、燃焼法でC,H,Oの元素分析を行った結果は、C73.9%,P10.6%,H1.4%,O15.5%であり、ホスホン酸基PO(OH)とHが3〜4個程度結合していることが確認された。さらに、試料をDOに溶解してNMRを測定したところ、β位のプロトンと推定されるピークが確認された。得られたホスホン酸化フラーレンの収率は、フラーレンベースでおよそ35%であった。
690 mg of diethyl phosphite HPO (OEt) 2 and 200 ml of dioxane were placed in a 300 ml three-necked flask, and 40 mg of LiH was added. When heated and stirred at 80 ° C., H 2 was generated and eventually the solution became transparent. Thus, 720 mg of fullerene C 60 was added, and the mixture was heated and stirred at 80 ° C. for 4 days. After completion of the reaction, the solvent was removed by drying, the residue was extracted with (ethanol + THF), the solid content was filtered off, and the filtrate (ethanol + THF) was removed by drying, and then the infrared absorption spectrum was measured with KBr. C 2 H 5 to 2926cm -1, to 1209cm -1 P = O, appear absorption of PO-C to 1043 -1, it was confirmed that a phosphonic acid ester group PO (OEt) 2 is bonded (See FIG. 1).
In order to further confirm the structure, 1 g of trimethylsilyl bromide was added to 500 mg of this phosphonate esterified fullerene, and the ester exchange was carried out overnight at room temperature, followed by hydrolysis with water. After drying the obtained product was measured with infrared absorption spectrum in KBr, absorption of C 2 H 5 is lost, OH to 3348cm -1, to 1184cm -1 P = O. Absorption of P—O—C appeared at 1074 cm −1 . The obtained phosphonated fullerene was subjected to P analysis by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy), and the results of elemental analysis of C, H, O by combustion method were C73.9%, P10.6. %, H1.4%, and O15.5%, and it was confirmed that about 3 to 4 phosphonic acid groups PO (OH) 2 and H were bonded. Furthermore, when the sample was dissolved in D 2 O and NMR was measured, a peak presumed to be a β-position proton was confirmed. The yield of the phosphonated fullerene obtained was approximately 35% on a fullerene basis.

(比較例1)
実施例1において、ジオキサンの代わりにジメチルホルムアミドを用いて同様に操作し、生成物の赤外吸収スペクトルを測定したところ多くのピークが表れ、溶媒のジメチルホルムアミドが結合していることが確認された(図2参照)。
(Comparative Example 1)
In Example 1, the same operation was performed using dimethylformamide instead of dioxane, and the infrared absorption spectrum of the product was measured. As a result, many peaks appeared, and it was confirmed that the solvent dimethylformamide was bound. (See FIG. 2).

300mlの三口フラスコに、フラーレンC60を720mg、ジメチルアセトアミドを200ml入れた。ここに亜硫酸カリウムKSO 790mg(フラーレンの5倍モル)を水10mlに溶かして添加した後、80℃で4日間加熱撹拌した。反応終了後、溶媒を乾燥除去して残渣をエタノールで抽出した。固形分を濾別し、濾液のエタノールを乾燥除去した後、赤外吸収スペクトルをKBrを用いて測定したところ、1117cm−1にSO伸縮,619cm−1にCS伸縮のピークが表れた(図3参照)。また、ICP−AESによりS、K分析を行い、燃焼法でC,H,Oの元素分析を行った結果は、C57.5%,S11.4%,K14.7%,H0.55%,O13.0%であり、スルホン酸基SOKとHが4〜5個程度結合していることが確認された。さらに、試料をDOに溶解してNMRを測定したところ、β位のプロトンと推定されるピークが確認された。得られたスルホン酸化フラーレンの収率は、フラーレンベースでおよそ30%であった。
上記のスルホン酸化フラーレンを原料として、実施例1と同様な操作を行ったところ、赤外吸収スペクトルにはスルホン酸基とホスホン酸エステル基の吸収が表れ、両者が共存していることが確認された。またICP−AESを用いたP分析により、ホスホン酸エステル基は2個程度結合していることが確認され、水に難溶性であった。
In a 300 ml three-necked flask, 720 mg of fullerene C 60 and 200 ml of dimethylacetamide were placed. To this was added 790 mg of potassium sulfite K 2 SO 3 (5 mol of fullerene) dissolved in 10 ml of water, and the mixture was heated and stirred at 80 ° C. for 4 days. After completion of the reaction, the solvent was removed by drying and the residue was extracted with ethanol. The solid was filtered off, after which the filtrate ethanol was removed by drying, The infrared absorption spectrum was measured using a KBr, SO 2 stretch to 1117cm -1, a peak of CS stretch to 619cm -1 appeared (Fig. 3). Moreover, S, K analysis was performed by ICP-AES, and the results of elemental analysis of C, H, O by the combustion method were C57.5%, S11.4%, K14.7%, H0.55%, O 13.0%, and it was confirmed that about 4 to 5 sulfonic acid groups SO 3 K and H were bonded. Furthermore, when the sample was dissolved in D 2 O and NMR was measured, a peak presumed to be a β-position proton was confirmed. The yield of the sulfonated fullerene obtained was approximately 30% on a fullerene basis.
When the same operation as in Example 1 was performed using the above sulfonated fullerene as a raw material, absorption of a sulfonic acid group and a phosphonic acid ester group appeared in the infrared absorption spectrum, and both were confirmed to coexist. It was. Moreover, it was confirmed by P analysis using ICP-AES that about two phosphonate ester groups were bonded, and it was hardly soluble in water.

(比較例2)
実施例2において、ジメチルアセトアミドの代わりにジメチルホルムアミドを用いてKSOによるスルホン酸化反応を行い、生成物の赤外吸収スペクトルを測定したところ多くのピークが表れ、溶媒のジメチルホルムアミドが結合していることが確認された(図4参照)。
(Comparative Example 2)
In Example 2, dimethylformamide was used in place of dimethylacetamide to carry out sulfonation with K 2 SO 3 , and when the infrared absorption spectrum of the product was measured, many peaks appeared, and the solvent dimethylformamide was bound. (See FIG. 4).

(使用例1)
50mlのビーカーに、5%Nafion溶液(アルドリッチ社製,EW=1100)を20g入れ、実施例2で得られた2個程度のホスホン酸エステル基PO(OEt)と4〜5個程度のスルホン酸基SOKが結合したフラーレン誘導体500mgをテトラヒドロフラン5mlに溶かした溶液を添加した。ホモジナイザーで撹拌後、得られた溶液を100ミクロンのガラス繊維不織布(日本バイリーン社製)上に刷毛を用いて塗布し、間隙に含浸させた。この操作を10回繰り返した後、100℃で乾燥させて半透明の膜を得た。該膜を1規定の塩酸水溶液に室温で一晩浸漬して、スルホン酸基SOKをSOHに変換し、プロトン伝導膜とした。
(Usage example 1)
In a 50 ml beaker, 20 g of 5% Nafion solution (Aldrich, EW = 1100) was added, and about 2 phosphonate ester groups PO (OEt) 2 obtained in Example 2 and about 4 to 5 sulfones were obtained. A solution prepared by dissolving 500 mg of a fullerene derivative having an acid group SO 3 K bonded thereto in 5 ml of tetrahydrofuran was added. After stirring with a homogenizer, the resulting solution was applied onto a 100-micron glass fiber nonwoven fabric (manufactured by Japan Vilene Co., Ltd.) using a brush and impregnated in the gaps. This operation was repeated 10 times and then dried at 100 ° C. to obtain a translucent film. The membrane was immersed in a 1 N aqueous hydrochloric acid solution at room temperature overnight to convert the sulfonic acid group SO 3 K into SO 3 H to obtain a proton conductive membrane.

(使用例2)
実施例1で得られたホスホン酸エステル化フラーレン0.5gを、ジメチルアセトアミド150g中でNaS・9HO 0.12gと80℃で3日間反応させ、架橋して不溶化させた。これを濾過して取り出し500mgを秤量して、50mlのビーカーに入れた5%Nafion溶液(アルドリッチ社製,EW=1100)20gの中に添加し、ホモジナイザーで撹拌した。得られた分散液を、100ミクロンのガラス繊維不織布(日本バイリーン社製)上に刷毛を用いて塗布し、間隙に含浸させた。この操作を10回繰り返した後、100℃で乾燥させて半透明の膜を得た。該膜を1規定塩酸/メタノール中で90℃一晩加熱してホスホン酸エステル基を加水分解し、プロトン伝導膜とした。
(Usage example 2)
0.5 g of the phosphonate esterified fullerene obtained in Example 1 was reacted with 0.12 g of Na 2 S · 9H 2 O in 150 g of dimethylacetamide at 80 ° C. for 3 days to crosslink and insolubilize. This was filtered out, 500 mg was weighed and added to 20 g of a 5% Nafion solution (Aldrich, EW = 1100) in a 50 ml beaker, and stirred with a homogenizer. The obtained dispersion was applied onto a 100-micron glass fiber nonwoven fabric (manufactured by Nippon Vilene Co., Ltd.) using a brush and impregnated in the gaps. This operation was repeated 10 times and then dried at 100 ° C. to obtain a translucent film. The membrane was heated in 1N hydrochloric acid / methanol at 90 ° C. overnight to hydrolyze the phosphonate ester group to obtain a proton conducting membrane.

実施例1で得られたフラーレン誘導体の赤外吸収スペクトルを示す図である。2 is a graph showing an infrared absorption spectrum of a fullerene derivative obtained in Example 1. FIG. 比較例1で得られたフラーレン誘導体の赤外吸収スペクトルを示す図である。4 is a diagram showing an infrared absorption spectrum of a fullerene derivative obtained in Comparative Example 1. FIG. 実施例2で得られたフラーレン誘導体の赤外吸収スペクトルを示す図である。2 is a graph showing an infrared absorption spectrum of a fullerene derivative obtained in Example 2. FIG. 比較例2で得られたフラーレン誘導体の赤外吸収スペクトルを示す図である。6 is a graph showing an infrared absorption spectrum of a fullerene derivative obtained in Comparative Example 2. FIG.

Claims (5)

ホスホン酸エステル基−PO(OR)(RはC〜Cのアルキル基又はフェニル基)が結合し、有機化合物が実質的に結合していないフラーレン誘導体。 A fullerene derivative to which a phosphonic acid ester group —PO (OR) 2 (R is a C 1 to C 5 alkyl group or phenyl group) is bonded and an organic compound is not substantially bonded. スルホン酸基−SOM(MはH又はアルカリ金属イオン)が結合した請求項1に記載のフラーレン誘導体。 The fullerene derivative according to claim 1, wherein a sulfonic acid group —SO 3 M (M is H or an alkali metal ion) is bonded thereto. ホスホン酸エステル基の結合数mとスルホン酸基の結合数nが、次の範囲にある請求項1又は2に記載のフラーレン誘導体。
Figure 2008208083
The fullerene derivative according to claim 1 or 2, wherein the number of bonds m of the phosphonic acid ester group and the number of bonds n of the sulfonic acid group are in the following ranges.
Figure 2008208083
部分構造X−C−C−H(Xはホスホン酸エステル基又はスルホン酸基)を1〜12個含む請求項1〜3のいずれかに記載のフラーレン誘導体。   The fullerene derivative according to any one of claims 1 to 3, comprising 1 to 12 partial structures XC-C-H (X is a phosphonic acid ester group or a sulfonic acid group). 反応溶媒としてジオキサンを用い、フラーレン又はスルホン酸化フラーレンとホスホン酸エステル化試薬LiPO(OR)(RはC〜Cのアルキル基又はフェニル基)を反応させることを特徴とする、請求項1〜4のいずれかに記載のフラーレン誘導体の製造方法。 2. Dioxane is used as a reaction solvent, and fullerene or sulfonated fullerene is reacted with a phosphonic esterification reagent LiPO (OR) 2 (R is a C 1 to C 5 alkyl group or phenyl group). The manufacturing method of the fullerene derivative in any one of -4.
JP2007047618A 2007-02-27 2007-02-27 Fullerene derivative and method for producing the same Pending JP2008208083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047618A JP2008208083A (en) 2007-02-27 2007-02-27 Fullerene derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047618A JP2008208083A (en) 2007-02-27 2007-02-27 Fullerene derivative and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008208083A true JP2008208083A (en) 2008-09-11

Family

ID=39784712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047618A Pending JP2008208083A (en) 2007-02-27 2007-02-27 Fullerene derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008208083A (en)

Similar Documents

Publication Publication Date Title
JP3984280B1 (en) CHEMICALLY MODIFIED FULLERENE AND METHOD FOR PRODUCING THE SAME, PROTON CONDUCTIVE MEMBRANE CONTAINING CHEMICALLY MODIFIED FULLERENE
JP6191135B2 (en) POLYMER ELECTROLYTE COMPOSITION MOLDED BODY AND SOLID POLYMER TYPE FUEL CELL USING THE SAME
JP4611956B2 (en) Solid acid, polymer electrolyte membrane and fuel cell
JP5848379B2 (en) Proton conductive material
JP2018502180A (en) Novel polymer and production method thereof
WO2009136631A1 (en) Novel sulfonic acid group-containing segmentalized block copolymer, use thereof, and method for producing novel block copolymer
JP5998790B2 (en) POLYMER ELECTROLYTE COMPOSITION MOLDED BODY AND SOLID POLYMER TYPE FUEL CELL USING THE SAME
JP2011241299A (en) Block copolymer, and proton-exchange membrane for fuel cell using the copolymer
JP2001307752A (en) Manufacturing method for protic conduction membrane and fuel cell consisting of the same
JP4099968B2 (en) Proton conductor and fuel cell, and method for producing proton conductor
JP4985041B2 (en) Aromatic sulfonate esters and sulfonated polyarylene polymers
JP2003147075A (en) Sulfonated fluorine-containing polymer, resin composition containing the same and polymer electrolyte membrane
JP2008208083A (en) Fullerene derivative and method for producing the same
JP5893714B2 (en) Ion conductive polymers used in electrochemical devices
JP2010037277A (en) Method for producing chemically modified fullerene
JP2003303513A (en) Proton conductor and its manufacturing method, proton conductive polymer and its manufacturing method, proton conductive polymer composition, and electrochemical device
JP4104646B1 (en) Metal ion-crosslinked phosphonated fullerene, method for producing the same, and proton conducting membrane including the same
JP2009084497A (en) Bonding method of chemically modified fullerene, and film
JP4171056B1 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2003147076A (en) Sulfonated fluorine-containing polymer, resin composition containing the same and polymer electrolyte membrane
CN113675450A (en) Carboxyl-containing sulfonated polyaryletherketone sulfone/Uio-66-AS composite proton exchange membrane and preparation method thereof
JP2013177522A (en) Polymer electrolyte molding and polymer electrolyte membrane, membrane electrode complex and solid polymer type fuel cell obtained by using the molding
KR100668357B1 (en) Polymer electrolyte membrane, and fuel cell using the same
CN114685794B (en) Synthesis and application of naphthalene-containing polybenzimidazole material
JP2011238406A (en) Ionomer for electrode catalyst of fuel cell and method for manufacturing electrode catalyst with the same