JP2008207678A - Vehicular control device and method - Google Patents

Vehicular control device and method Download PDF

Info

Publication number
JP2008207678A
JP2008207678A JP2007046367A JP2007046367A JP2008207678A JP 2008207678 A JP2008207678 A JP 2008207678A JP 2007046367 A JP2007046367 A JP 2007046367A JP 2007046367 A JP2007046367 A JP 2007046367A JP 2008207678 A JP2008207678 A JP 2008207678A
Authority
JP
Japan
Prior art keywords
speed
vehicle
estimated
ground
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007046367A
Other languages
Japanese (ja)
Inventor
Yoichiro Yamada
陽一郎 山田
Takaomi Nishigaito
貴臣 西垣戸
Satoshi Kuragaki
智 倉垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007046367A priority Critical patent/JP2008207678A/en
Publication of JP2008207678A publication Critical patent/JP2008207678A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain a vehicle behavior from being unstable when a ground speed sensor is determined to be abnormal. <P>SOLUTION: A vehicular control device has a first vehicle body speed estimation part 3 which obtains a first estimated vehicle body speed according to a wheel speed given by an output signal from a wheel speed sensor; a ground speed sensor failure detection part 6 which detects the abnormal state of the ground speed sensor; a second vehicle body speed estimation part 5 which obtains a second estimated vehicle body speed according to a vehicle body speed given by an output signal from the ground speed sensor, the first estimated vehicle body speed and the abnormal state of the ground speed sensor; an estimated vehicle body speed selection part 7 which selects an estimated vehicle body speed used for vehicle control; and a vehicular control selection part 10 which selects either a first vehicular control part 8 which controls a vehicle according to the abnormal state of the ground speed sensor, the vehicle body speed and the wheel speed, or a second vehicular control part 9 which controls the vehicle according to the estimated vehicle body speed selected by the estimated vehicle body speed selection part 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、対地速度センサを用いた車両の制御装置及び制御方法に関する。   The present invention relates to a vehicle control apparatus and control method using a ground speed sensor.

近年の車両事故の増大を抑制するべく、車両衝突防止装置やABS(Anti-lock Brake System)、車両横滑り防止装置等の事故を未然に防ぐ予防安全技術の研究開発が各メーカーにおいて進められている。   In order to suppress the increase in the number of vehicle accidents in recent years, research and development of preventive safety technology to prevent accidents such as vehicle collision prevention devices, ABS (Anti-lock Brake System), and vehicle skid prevention devices has been promoted by each manufacturer. .

車両衝突防止装置やABS,車両横滑り防止装置等では、車両の対地速度(以後「車体速」と呼ぶ)と各車輪の回転速度(以後「車輪速」と呼ぶ)から求められる車輪のスリップ率を、車両状態に応じて適切な範囲に収まるように制御を行っている。この時、車体速は4つの車輪の車輪速から推定することにより求められているが、直接車体速を計測する対地速度センサ、及び対地速度センサを利用したABSや車両横滑り防止装置等の車両制御システムの開発も行われている。直接車体速を計測することから、従来の推定車体速に比べて車輪スリップ率や車体横すべり角の検出精度が向上するため、ABSや車両横滑り防止装置の性能が向上する。   In vehicle collision prevention devices, ABSs, vehicle skid prevention devices, etc., the wheel slip ratio obtained from the vehicle ground speed (hereinafter referred to as “body speed”) and the rotational speed of each wheel (hereinafter referred to as “wheel speed”) is calculated. The control is performed so as to be within an appropriate range according to the vehicle state. At this time, the vehicle body speed is obtained by estimating from the wheel speeds of the four wheels. The ground speed sensor that directly measures the body speed, and the vehicle control such as the ABS and the vehicle skid prevention device using the ground speed sensor. Systems are also being developed. Since the vehicle body speed is directly measured, the detection accuracy of the wheel slip ratio and the vehicle body slip angle is improved as compared with the conventional estimated vehicle body speed, so that the performance of the ABS and the vehicle skid prevention device is improved.

しかし、このような対地速度センサを利用した車両運動制御システムの場合、対地速度センサが正常に作動しなくなると、制動力が働かなくなる、車体がスピンする等、運転者が危険な状況に陥る可能性がある。そのため、対地速度センサ異常時の対策処理が非常に重要になる。   However, in the case of a vehicle motion control system using such a ground speed sensor, if the ground speed sensor does not operate normally, the driver may be in a dangerous situation, for example, the braking force will not work or the vehicle will spin. There is sex. Therefore, the countermeasure processing when the ground speed sensor is abnormal is very important.

そこで、車輪速度センサと、車輪速度センサの出力に基づいて車体速度を推定する車体速度推定手段と、対地速度センサと、対地速度センサで検出された車体速度および車体速度推定手段で求められた推定車体速度から対地速度センサの異常を検出する対地速度センサ異常検出手段と、対地速度センサで検出された車体速度および車輪速度センサの出力に基づいてABS制御を行う第1の制御手段と、車体速度推定手段で求められた推定車体速度および車輪速度センサの出力に基づいてABS制御を行う第2の制御手段と、対地速度センサ異常検出手段の出力に応じて第1の制御手段と第2の制御手段の一方を選択する選択手段を備え、対地速度センサの正常,異常状態に応じて対地速度センサおよび車輪速度センサの出力に基づく制御と車体速度推定手段および車輪速度センサに基づく制御を選択する方法が知られている(例えば特許文献1参照)。   Therefore, a wheel speed sensor, a vehicle speed estimation means for estimating the vehicle speed based on the output of the wheel speed sensor, a ground speed sensor, a vehicle speed detected by the ground speed sensor, and an estimation obtained by the vehicle speed estimation means Ground speed sensor abnormality detecting means for detecting an abnormality of the ground speed sensor from the vehicle speed, first control means for performing ABS control based on the output of the vehicle speed and wheel speed sensor detected by the ground speed sensor, and the vehicle speed Second control means for performing ABS control based on the output of the estimated vehicle speed and wheel speed sensor obtained by the estimation means, and the first control means and the second control according to the output of the ground speed sensor abnormality detection means A selection means for selecting one of the means, and control based on the outputs of the ground speed sensor and the wheel speed sensor according to the normal or abnormal state of the ground speed sensor and the vehicle Method for selecting a control based on the speed estimation means and the wheel speed sensor is known (for example, see Patent Document 1).

特開昭63−46961号公報JP 63-46961 A

対地速度センサの出力値と実際の車体速の間に計測誤差という異常が発生した場合、対地速度センサの出力値をそのまま車両制御に用いると、ABSや車両横滑り防止装置等の性能が低下してしまう。   If an abnormality called a measurement error occurs between the output value of the ground speed sensor and the actual vehicle speed, using the output value of the ground speed sensor as it is for vehicle control will degrade the performance of the ABS, vehicle skid prevention device, etc. End up.

そこで、上記公知技術では、対地速度センサが正常に働かなくなった場合は、制御で利用する車体速として対地速度センサの出力値を利用することを禁止し、車輪速に基づく推定車体速に切り替え、更にABS制御手段を対地速度センサ出力値と車輪速に基づくABS制御手段から車輪速に基づく推定車体速と車輪速に基づくABS制御手段に切り替えている。   Therefore, in the above known technique, when the ground speed sensor does not work normally, it is prohibited to use the output value of the ground speed sensor as the vehicle speed used in the control, and the estimated vehicle speed based on the wheel speed is switched, Further, the ABS control means is switched from the ABS control means based on the ground speed sensor output value and the wheel speed to the ABS control means based on the estimated vehicle speed based on the wheel speed and the wheel speed.

しかし、対地速度センサ正常時の対地速度センサ出力値と車輪速に基づくABS制御中の車輪速に基づく推定車体速と対地速度センサ出力値の間にはかなりの乖離がある。そのため、上記公知技術の様に、対地速度センサが異常と判定された瞬間に制御用車体速を車輪速に基づく推定車体速へ直接切り替えると、制御用車体速はステップ的に変化して車両の挙動が不安定になるといった問題があった。   However, there is a considerable discrepancy between the ground speed sensor output value when the ground speed sensor is normal and the estimated vehicle speed based on the wheel speed during ABS control based on the wheel speed and the ground speed sensor output value. Therefore, when the control vehicle speed is directly switched to the estimated vehicle speed based on the wheel speed at the moment when the ground speed sensor is determined to be abnormal as in the above-described known technology, the control vehicle speed changes in a stepwise manner. There was a problem that the behavior became unstable.

本発明は上記の点を鑑みてなされたものであり、対地速度センサが異常と判定された場合に、車両挙動が不安定になることを抑制することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to suppress vehicle behavior from becoming unstable when the ground speed sensor is determined to be abnormal.

車輪速センサから車輪速、対地速度センサからの車体速に基づき、対地速度センサの異常状態を判定し、当該異常状態に応じて、センサ値に基づいて車両の制御を実行する第1の車両制御と、推定車体速に基づいて車両の制御を実行する第2の車両制御のいずれかを選択し、選択した前記車両制御により演算される制御指令値に基づいて各車輪の制動力を制御する。   A first vehicle control that determines an abnormal state of the ground speed sensor based on the wheel speed from the wheel speed sensor and a vehicle body speed from the ground speed sensor, and executes control of the vehicle based on the sensor value according to the abnormal state. Then, one of the second vehicle controls for executing vehicle control is selected based on the estimated vehicle body speed, and the braking force of each wheel is controlled based on the control command value calculated by the selected vehicle control.

対地速度センサが異常と判定された場合に、車両挙動が不安定になることを抑制することができる。   When the ground speed sensor is determined to be abnormal, it is possible to suppress the vehicle behavior from becoming unstable.

本発明の実施形態を説明する。本実施形態は、例えば自動車のブレーキ制御装置に係り、ABSや車両横滑り防止装置等の作動中に、車両の対地速度を計測するセンサが正常に動作しなくなった際のブレーキ制御方法に関する。   An embodiment of the present invention will be described. The present embodiment relates to a brake control device for an automobile, for example, and relates to a brake control method when a sensor for measuring a ground speed of a vehicle does not normally operate during operation of an ABS, a vehicle skid prevention device, or the like.

図1は、本発明の一実施形態をなす車両の制御装置の機能ブロック図を示す。図2は、図1の制御装置による制御によるタイムチャートを示す。   FIG. 1 is a functional block diagram of a vehicle control apparatus according to an embodiment of the present invention. FIG. 2 shows a time chart by the control by the control device of FIG.

図1において、車輪速検出部1は、車輪の回転速度から車輪速を検出する。対地速度センサ2は、路面に対する車両の移動速度である車体速を検出する。   In FIG. 1, a wheel speed detection unit 1 detects a wheel speed from the rotational speed of the wheel. The ground speed sensor 2 detects a vehicle body speed that is a moving speed of the vehicle with respect to the road surface.

第1車体速推定部3は、車輪速検出部1により求められる車輪速に基づいて、車両の前後方向の路面に対する車両の移動速度である車体速を推定する。   The first vehicle body speed estimation unit 3 estimates the vehicle body speed, which is the moving speed of the vehicle with respect to the road surface in the front-rear direction of the vehicle, based on the wheel speed obtained by the wheel speed detection unit 1.

車体速基準値演算部4は、対地速度センサ2により検出される車体速に基づいて車体速基準値を演算する。   The vehicle speed reference value calculation unit 4 calculates the vehicle speed reference value based on the vehicle speed detected by the ground speed sensor 2.

対地速度センサ異常検出部6は、対地速度センサ2により検出される車体速と、車体速基準値演算部4により演算される車体速基準値に基づき、対地速度センサ2の異常状態を検出する。   The ground speed sensor abnormality detection unit 6 detects an abnormal state of the ground speed sensor 2 based on the vehicle speed detected by the ground speed sensor 2 and the vehicle speed reference value calculated by the vehicle speed reference value calculation unit 4.

第2車体速推定部5は、対地速度センサ2により検出される車体速と、車体速基準値演算部4により演算される車体速基準値と、第1車体速推定部3により推定される車輪速に基づく第1推定車体速と、対地速度センサ異常検出部6により検出される異常状態に基づいて車体速を推定する。   The second vehicle speed estimation unit 5 includes a vehicle speed detected by the ground speed sensor 2, a vehicle speed reference value calculated by the vehicle speed reference value calculation unit 4, and a wheel estimated by the first vehicle speed estimation unit 3. The vehicle body speed is estimated based on the first estimated vehicle body speed based on the speed and the abnormal state detected by the ground speed sensor abnormality detection unit 6.

推定車体速選択部7は、第1車体速推定部3により車輪速に基づいて推定される第1推定車体速と、第2車体速推定部5により推定される第2推定車体速と、車輪速検出部1により検出される車輪速より、車両制御において使用する推定車体速を選択する。   The estimated vehicle speed selector 7 includes a first estimated vehicle speed estimated by the first vehicle speed estimator 3 based on the wheel speed, a second estimated vehicle speed estimated by the second vehicle speed estimator 5, and wheels. Based on the wheel speed detected by the speed detection unit 1, an estimated vehicle body speed used in vehicle control is selected.

車両制御部8は、対地速度センサ2により検出される車体速と車輪速検出部1により検出される車輪速に基づいて車両の制御を実行する。   The vehicle control unit 8 controls the vehicle based on the vehicle body speed detected by the ground speed sensor 2 and the wheel speed detected by the wheel speed detection unit 1.

車両制御部9は、推定車体速選択部7により選択される第1車体速推定部3により推定される車輪速に基づく第1推定車体速、あるいは第2車体速推定部5により推定される第2推定車体速のどちらか一方の推定車体速と、車輪速検出部1により検出される車輪速に基づいて車両の制御を実行する。   The vehicle control unit 9 is the first estimated vehicle speed based on the wheel speed estimated by the first vehicle speed estimation unit 3 selected by the estimated vehicle speed selection unit 7 or the first vehicle speed estimated by the second vehicle speed estimation unit 5. Control of the vehicle is executed based on one of the two estimated vehicle body speeds and the wheel speed detected by the wheel speed detector 1.

車両制御選択部10は、対地速度センサ値に基づく車両制御部8と推定車体速に基づく車両制御部9のうちで、対地速度センサ異常検出部6により検出される異常状態に基づいて車両制御部を選択する。   The vehicle control selection unit 10 is based on an abnormal state detected by the ground speed sensor abnormality detection unit 6 among the vehicle control unit 8 based on the ground speed sensor value and the vehicle control unit 9 based on the estimated vehicle speed. Select.

制動力制御部11は、車両制御選択部10により選択される車両制御部により演算される指令値に基づいて各車輪の制動力を制御する。   The braking force control unit 11 controls the braking force of each wheel based on a command value calculated by the vehicle control unit selected by the vehicle control selection unit 10.

本実施形態の車両制御装置は、対地速度センサ値,車輪速に基づく第1推定車体,第2推定車体速という3つの車体速と、対地速度センサ値に基づく車両制御部8,推定車体速に基づく制御車両制御部9という2つの車両制御部を持ち、対地速度センサの正常・異常に応じて、図1に示す様に車体速と車両制御手段を切り替える。図2のタイムチャートについては、図12,図13で詳しく述べる。   The vehicle control apparatus according to the present embodiment includes three vehicle body speeds, ie, a first estimated vehicle body speed based on a ground speed sensor value and a wheel speed, and a second estimated vehicle body speed, a vehicle control unit 8 based on the ground speed sensor value, and an estimated vehicle body speed. It has two vehicle control units called control vehicle control unit 9 based on it, and switches the vehicle body speed and the vehicle control means as shown in FIG. 1 according to the normal / abnormality of the ground speed sensor. The time chart of FIG. 2 will be described in detail with reference to FIGS.

本実施形態によれば、対地速度センサが正常に働かなくなった際に、制御用の車体速を、第2推定車体速,第1推定車体速と切り替えて、制御用車体速の変動を抑制することにより、制御用車体速の切り替えに伴う車両挙動が不安定になるのを抑制することができる。   According to the present embodiment, when the ground speed sensor does not work normally, the control vehicle speed is switched between the second estimated vehicle speed and the first estimated vehicle speed to suppress fluctuations in the control vehicle speed. As a result, it is possible to prevent the vehicle behavior from becoming unstable due to the switching of the control vehicle body speed.

以下、本発明の実施例をさらに詳細に説明する。   Examples of the present invention will be described in further detail below.

図3は、本発明の実施例1をなすABS制御装置のシステム構成図を示す。   FIG. 3 is a system configuration diagram of the ABS control apparatus according to the first embodiment of the present invention.

この車両12は、タイヤ13(Fはフロント=前輪、Rはリア=後輪、Lはレフト=左、Rはライト=右を示し、例えば13FLは左前輪タイヤを示す)、各輪にそれぞれ設けられたブレーキキャリパ21(FR,LFはタイヤ13と同様の定義)、ブレーキキャリパの制動力を制御する電磁制御弁19、及び車輪速センサ20が設けられている。運転者によって操作されるステアリング14の舵角は、舵角センサ31で検出される。運転者によるブレーキペダル15の操作は、ブレーキブースター16によって倍力され、ブレーキマスターシリンダ17の圧力となり、油圧配管を通じて電磁制御弁19を介して各ブレーキキャリパ21の制動力が制御される。   The vehicle 12 includes tires 13 (F is front = front wheels, R is rear = rear wheels, L is left = left, R is right = right, for example, 13FL is a left front wheel tire), and each wheel is provided. The brake caliper 21 (FR and LF are the same definition as the tire 13), an electromagnetic control valve 19 for controlling the braking force of the brake caliper, and a wheel speed sensor 20 are provided. The steering angle of the steering wheel 14 operated by the driver is detected by the steering angle sensor 31. The operation of the brake pedal 15 by the driver is boosted by the brake booster 16 and becomes the pressure of the brake master cylinder 17, and the braking force of each brake caliper 21 is controlled via the electromagnetic control valve 19 through the hydraulic piping.

ここで、ABS制御は、各輪の電磁制御弁19の開閉をコントロールユニット(以下C/U)18が制御することによって得られる。C/Uには、各輪の車輪速センサ20,舵角センサ出力31,車両の前後加速度を検出する前後加速度センサ22,車両のヨーレイトを検出するヨーレイトセンサ23、そして対地速度センサ2の検出値が入力される。入力した検出値を処理し、電磁制御弁19を制御することによって、ABS制御を行う。   Here, the ABS control is obtained by the control unit (hereinafter referred to as C / U) 18 controlling the opening and closing of the electromagnetic control valve 19 of each wheel. C / U includes a wheel speed sensor 20 for each wheel, a steering angle sensor output 31, a longitudinal acceleration sensor 22 for detecting the longitudinal acceleration of the vehicle, a yaw rate sensor 23 for detecting the yaw rate of the vehicle, and detection values of the ground speed sensor 2. Is entered. ABS control is performed by processing the input detection value and controlling the electromagnetic control valve 19.

図4は、図3のC/U18のブロック構成図を示す。   FIG. 4 shows a block diagram of the C / U 18 of FIG.

C/U18はCPU,ROM,RAM,I/O回路から構成されており、ROM内に格納されているプログラムによって制御を実行する。ここでは、対地速度センサ2からセンサ値Vgss、各車輪の車輪速センサ20から入力した車輪速Vwを入力し、各輪の電磁制御弁19への制御信号を出力する。   The C / U 18 includes a CPU, a ROM, a RAM, and an I / O circuit, and executes control by a program stored in the ROM. Here, the sensor value Vgss from the ground speed sensor 2 and the wheel speed Vw input from the wheel speed sensor 20 of each wheel are input, and a control signal to the electromagnetic control valve 19 of each wheel is output.

図5は、図3のコントロールユニット18の制御フローチャートを示す。この制御フローは所定時間T毎に演算を行う。   FIG. 5 shows a control flowchart of the control unit 18 of FIG. This control flow is calculated every predetermined time T.

ステップ5−1(以下「ステップ」を「S」とする)では、対地速度センサ2,車輪速センサ20,前後加速度センサ22より対地速度センサ値Vgss,車輪速Vwを取得し、S5−2へ移る。   In step 5-1 (hereinafter “step” is referred to as “S”), the ground speed sensor value Vgss and the wheel speed Vw are acquired from the ground speed sensor 2, the wheel speed sensor 20, and the longitudinal acceleration sensor 22, and the process proceeds to S <b> 5-2. Move.

S5−2では前記車輪速Vwより第1推定車体速V′_1を求め、S5−3へ移る。   In S5-2, the first estimated vehicle speed V'_1 is obtained from the wheel speed Vw, and the process proceeds to S5-3.

S5−3では前記対地速度センサ値Vgssより車体加速度Gx_dVを演算し、S5−4へ移る。ここで、車体加速度Gx_dVは車両が加速している時を正、減速している時を負とする。   In S5-3, the vehicle body acceleration Gx_dV is calculated from the ground speed sensor value Vgss, and the process proceeds to S5-4. Here, the vehicle body acceleration Gx_dV is positive when the vehicle is accelerating and negative when the vehicle is decelerating.

S5−4では、対地速度センサ値Vgssの前回値Vgss_z1と車体加速度Gx_dVより車体速基準値V_stdを演算する。この時、車体加速度Gx_dVはメモリに記憶させておいた車体加速度Gx_dVの過去値数点の平均値を利用してもよいし、前後加速度を検出するセンサの値を利用してもよい。S5−4で車体速基準値V_stdを演算したらS5−5へ移る。   In S5-4, the vehicle body speed reference value V_std is calculated from the previous value Vgss_z1 of the ground speed sensor value Vgss and the vehicle body acceleration Gx_dV. At this time, the vehicle body acceleration Gx_dV may use the average value of several past values of the vehicle body acceleration Gx_dV stored in the memory, or may use the value of a sensor that detects longitudinal acceleration. When the vehicle body speed reference value V_std is calculated in S5-4, the process proceeds to S5-5.

S5−5では、対地速度センサ値Vgss,車体速基準値V_stdより差分値ΔV
(=Vgss−V_std)を演算し、S5−6へ移る。
In S5-5, the difference value ΔV from the ground speed sensor value Vgss and the vehicle body speed reference value V_std.
(= Vgss−V_std) is calculated, and the flow proceeds to S5-6.

S5−6では対地速度センサ値Vgss,第1推定車体速V′_1,車体速基準値V_std、差分値ΔVより第2推定車体速V′_2を推定し、S5−7へ移る。   In S5-6, the second estimated vehicle speed V'_2 is estimated from the ground speed sensor value Vgss, the first estimated vehicle speed V'_1, the vehicle speed reference value V_std, and the difference value ΔV, and the process proceeds to S5-7.

図6は、図5のS5−6での第2推定車体速V′_2の推定方法を示す。   FIG. 6 shows an estimation method of the second estimated vehicle body speed V′_2 in S5-6 of FIG.

まず、S6−1において、対地速度センサ値Vgssと車体速基準値V_stdの差分値ΔVの絶対値と所定値ΔV_thr1の大小関係を判定する。ΔVの前回値ΔV_z1が所定値ΔV_thr1以下であり、尚且つΔVがΔV_thr1より大きいという条件を満たす場合はS6−2に移り、条件を満たさない場合はS6−3に移る。S6−2に移った場合は、第2推定車体速V′_2は車体速基準値V_stdとする。一方、S6−3に移った場合は、係数k、第2推定車体速V′_2の前回値をV′_2_z1として、第2推定車体速V′_2は以下の式(1)により推定する。   First, in S6-1, the magnitude relationship between the absolute value of the difference value ΔV between the ground speed sensor value Vgss and the vehicle body speed reference value V_std and the predetermined value ΔV_thr1 is determined. If the condition that the previous value ΔV_z1 of ΔV is equal to or smaller than the predetermined value ΔV_thr1 and ΔV is greater than ΔV_thr1, the process proceeds to S6-2, and if the condition is not satisfied, the process proceeds to S6-3. When the process proceeds to S6-2, the second estimated vehicle body speed V′_2 is set to the vehicle body speed reference value V_std. On the other hand, when the process proceeds to S6-3, the coefficient k and the previous value of the second estimated vehicle speed V'_2 are set to V'_2_z1, and the second estimated vehicle speed V'_2 is estimated by the following equation (1).

V′_2=k×V′_2_z1+(1−k)×V′_1 ・・・(1)
ただし、係数kの取りうる範囲は0<k<1である。
V′_2 = k × V′_2_z1 + (1−k) × V′_1 (1)
However, the possible range of the coefficient k is 0 <k <1.

上式(1)により第2推定車体速V′_2を推定する場合、ΔVの符号により式(1)の係数kを変更する。ΔVが正の場合はS6−4に移りk=k1として、S6−5で式
(1)を演算する。一方、ΔVが負の場合はS6−6に移りk=k2としてS6−6で式(1)を演算する。なお、k1は第1推定車体速V′_1の値の影響を強く受けるような値を、k2は推定車体速V′_2_z1の影響を強く受けるような値に設定することが望ましい。以上が推定車体速V′_2の推定方法である。ただし、他の方式により第2推定車体速V′_2を推定してもよい。
When estimating the second estimated vehicle body speed V′_2 by the above equation (1), the coefficient k of the equation (1) is changed by the sign of ΔV. If ΔV is positive, the process proceeds to S6-4, k = k1, and Equation (1) is calculated in S6-5. On the other hand, if ΔV is negative, the process proceeds to S6-6, and k = k2 is set, and Expression (1) is calculated in S6-6. It is desirable to set k1 to a value that is strongly influenced by the value of the first estimated vehicle body speed V′_1, and k2 is set to a value that is strongly influenced by the estimated vehicle body speed V′_2_z1. The above is the estimation method of the estimated vehicle body speed V′_2. However, the second estimated vehicle body speed V′_2 may be estimated by other methods.

以上で推定車体速V′_2の推定が終わると、図5のS5−7に移り、推定車体速V′_1とV′_2の2つの推定車体速からの一つを選択する。   When the estimation of the estimated vehicle speed V′_2 is completed as described above, the process proceeds to S5-7 in FIG. 5 and one of the two estimated vehicle speeds of the estimated vehicle speeds V′_1 and V′_2 is selected.

図7は、図5のS5−7における選択方法を示す。   FIG. 7 shows the selection method in S5-7 of FIG.

S7−1で推定車体速V′_1とV′_2の差分値ΔV′を演算し、S7−2に移る。S7−2で差分値ΔV′の絶対値が所定値ΔV′_thr1より大きければS7−3に移り、推定車体速V′をV′_2とする。一方、ΔV′の絶対値が所定値ΔV′_thr1より小さければS7−4に移り、推定車体速V′をV′_1とする。以上が推定車体速
V′の選択方法である。
In S7-1, a difference value ΔV ′ between the estimated vehicle speeds V′_1 and V′_2 is calculated, and the process proceeds to S7-2. If the absolute value of the difference value ΔV ′ is larger than the predetermined value ΔV′_thr1 in S7-2, the process proceeds to S7-3 and the estimated vehicle speed V ′ is set to V′_2. On the other hand, if the absolute value of ΔV ′ is smaller than the predetermined value ΔV′_thr1, the process proceeds to S7-4, and the estimated vehicle speed V ′ is set to V′_1. The above is the method for selecting the estimated vehicle speed V ′.

上記の方法で推定車体速V′が選択されると、図5のS5−8に移る。S5−8では対地速度センサ値Vgssと車輪速Vwを入力として、車体速に基づくABS制御に従って、ABS制御周期T当たりの電磁制御弁駆動時間Te1を演算する。尚、車体速に基づくABS制御の詳細については後述する。電磁制御弁駆動時間Te1を演算後、S5−9に移る。   When the estimated vehicle speed V ′ is selected by the above method, the process proceeds to S5-8 in FIG. In S5-8, the ground speed sensor value Vgss and the wheel speed Vw are input, and the electromagnetic control valve drive time Te1 per ABS control cycle T is calculated according to the ABS control based on the vehicle speed. Details of the ABS control based on the vehicle speed will be described later. After calculating the electromagnetic control valve drive time Te1, the process proceeds to S5-9.

S5−9では推定車体速V′と車輪速Vwを入力として、推定車体速に基づくABS制御に従って、ABS制御周期T当たりの電磁制御弁駆動時間Te2を演算し、S5−10に移る。   In S5-9, the estimated vehicle speed V 'and the wheel speed Vw are input, the electromagnetic control valve drive time Te2 per ABS control cycle T is calculated according to the ABS control based on the estimated vehicle speed, and the process proceeds to S5-10.

S5−10ではS5−8,S5−9で演算された電磁制御弁駆動時間Te1,Te2から最終的な電磁制御弁駆動時間指令値Teを選択する。対地速度センサ値Vgssと車体速基準値V_stdの差分値ΔVが所定値ΔV_thr2より小さい場合は電磁制御弁駆動時間Te1を選択し、差分値ΔVが所定値ΔV_thr2より大きい場合は電磁制御弁駆動時間Te2を選択する。S5−10で最終的な電磁制御弁駆動時間指令値が決定されると、この指令値に基づいて電磁制御弁が駆動される。   In S5-10, the final electromagnetic control valve drive time command value Te is selected from the electromagnetic control valve drive times Te1 and Te2 calculated in S5-8 and S5-9. When the difference value ΔV between the ground speed sensor value Vgss and the vehicle body speed reference value V_std is smaller than the predetermined value ΔV_thr2, the electromagnetic control valve driving time Te1 is selected, and when the difference value ΔV is larger than the predetermined value ΔV_thr2, the electromagnetic control valve driving time Te2 is selected. Select. When the final electromagnetic control valve drive time command value is determined in S5-10, the electromagnetic control valve is driven based on this command value.

本実施例によれば、ABS制動中に対地速度センサに異常が発生した場合、制御で使用する車体速は、対地速度センサ値Vgss→車体速基準値V_std→第2推定車体速
V′_2→第1推定車体速V′_1と遷移していくことになる。
According to the present embodiment, when an abnormality occurs in the ground speed sensor during ABS braking, the vehicle speed used in the control is the ground speed sensor value Vgss → the vehicle speed reference value V_std → the second estimated vehicle speed V′_2 → The transition is made to the first estimated vehicle body speed V′_1.

次に、対地速度センサで検出した対地速度センサ値Vgssに基づく車両制御手段と推定車体速V′に基づく車両制御手段の制御例について説明する。   Next, control examples of the vehicle control means based on the ground speed sensor value Vgss detected by the ground speed sensor and the vehicle control means based on the estimated vehicle speed V ′ will be described.

図8は、図5のS5−8における、対地速度センサで検出した車対地速度センサ値
Vgssに基づく車両制御手段の制御の一例を示す。
FIG. 8 shows an example of the control of the vehicle control means based on the vehicle ground speed sensor value Vgss detected by the ground speed sensor in S5-8 of FIG.

図8(a)は横軸が時間を、縦軸が速度をそれぞれ表しており、ABS作動中の車輪速の挙動を示したものである。また、図8(b)は横軸が時間を、縦軸が圧力をそれぞれ表しており、ABS作動中のホイール圧力の様子を示したものである。対地速度センサにより常に車体速を検出することができるため、一般的なABSのように車体速を推定しているために車輪速を細かく脈動させる必要がない。そのため、ホイール圧力の増減を繰り返す必要がなくなり、電磁制御弁の作動回数が大幅に削減でき、作動音を低減することができる。また、上述の通り、車輪速を細かく脈動させる必要がないため、車輪をある一定のスリップ率で制御することができる。よって、予め最適なスリップ率を求めることにより、このスリップ率を目標スリップ率として車輪速を制御することで、ABS制動距離を短縮することもできる。   In FIG. 8A, the horizontal axis represents time, and the vertical axis represents speed, and shows the behavior of the wheel speed during ABS operation. In FIG. 8B, the horizontal axis represents time, and the vertical axis represents pressure, and shows the state of wheel pressure during ABS operation. Since the vehicle speed can always be detected by the ground speed sensor, the vehicle speed is estimated as in general ABS, so there is no need to finely pulsate the wheel speed. Therefore, it is not necessary to repeatedly increase and decrease the wheel pressure, the number of times of operation of the electromagnetic control valve can be greatly reduced, and the operation noise can be reduced. Further, as described above, since it is not necessary to finely pulsate the wheel speed, the wheel can be controlled at a certain slip ratio. Therefore, by obtaining an optimal slip ratio in advance, the ABS braking distance can be shortened by controlling the wheel speed using this slip ratio as the target slip ratio.

図9は、図5のS5−8における、対地速度センサで検出した車体速Vに基づくABS制御の制御フローチャートを示す。図9の制御フローは所定時間T毎に演算する。   FIG. 9 shows a control flowchart of the ABS control based on the vehicle speed V detected by the ground speed sensor in S5-8 in FIG. The control flow in FIG. 9 is calculated every predetermined time T.

S9−1では、車体速Vと予め求めておいた目標スリップ率Slip_target1より、車輪速Vwの制御目標値である目標車輪速Vw_targetを演算する。目標車輪速Vw_target演算後、S9−2に移る。   In S9-1, the target wheel speed Vw_target, which is the control target value of the wheel speed Vw, is calculated from the vehicle body speed V and the target slip ratio Slip_target1 obtained in advance. After the target wheel speed Vw_target is calculated, the process proceeds to S9-2.

S9−2では車輪速Vwと上記で演算した目標車輪速Vw_targetの差分値
ΔVw(=Vw−Vw_target)を演算し、S9−3に移る。
In S9-2, a difference value ΔVw (= Vw−Vw_target) between the wheel speed Vw and the target wheel speed Vw_target calculated above is calculated, and the process proceeds to S9-3.

S9−3では車輪速Vwと目標車輪速Vw_targetの差分の絶対値|ΔVw|と所定値ΔVw_thr1との大小関係を判定する。|ΔVw|が所定値ΔVw_thr1よりも小さい場合はS9−4に移り、|ΔVw|が所定値ΔVw_thr1よりも大きい場合はS9−5に移る。   In S9-3, the magnitude relationship between the absolute value | ΔVw | of the difference between the wheel speed Vw and the target wheel speed Vw_target and the predetermined value ΔVw_thr1 is determined. If | ΔVw | is smaller than the predetermined value ΔVw_thr1, the process proceeds to S9-4. If | ΔVw | is larger than the predetermined value ΔVw_thr1, the process proceeds to S9-5.

S9−3からS9−4に移った場合、車輪速Vwは目標車輪速Vw_targetに制御されていると判断し、電磁制御弁の駆動時間はゼロとし、S9−5に移ってホイール圧力を保持する。   When the process moves from S9-3 to S9-4, it is determined that the wheel speed Vw is controlled to the target wheel speed Vw_target, the drive time of the electromagnetic control valve is set to zero, and the process proceeds to S9-5 to hold the wheel pressure. .

また、S9−3からS9−6に移った場合は、S9−6で車輪速Vwと目標車輪速Vw_targetの大小関係を判定する。車輪速Vwが目標車輪速Vw_targetより小さい場合はS9−7に移り、車輪速Vwが目標車輪速Vw_targetより大きい場合はS9−9に移る。   When the process moves from S9-3 to S9-6, the magnitude relationship between the wheel speed Vw and the target wheel speed Vw_target is determined in S9-6. If the wheel speed Vw is smaller than the target wheel speed Vw_target, the process proceeds to S9-7. If the wheel speed Vw is greater than the target wheel speed Vw_target, the process proceeds to S9-9.

S9−6からS9−7に移った場合は、S9−7で目標車輪速Vw_targetと車輪速Vwの差分等に基づき電磁制御弁の駆動時間を演算し、S9−8に移る。   When the process proceeds from S9-6 to S9-7, the drive time of the electromagnetic control valve is calculated based on the difference between the target wheel speed Vw_target and the wheel speed Vw in S9-7, and the process proceeds to S9-8.

S9−8では演算された駆動時間に基づいて電磁制御弁を駆動して、ホイール圧力を減少させる。   In S9-8, the electromagnetic control valve is driven based on the calculated driving time to reduce the wheel pressure.

一方、S9−6からS9−9に移った場合は、S9−9で車輪速Vwと目標車輪速Vw_targetの差分等に基づき電磁制御弁の駆動時間を演算し、S9−10に移る。   On the other hand, when the process proceeds from S9-6 to S9-9, the drive time of the electromagnetic control valve is calculated based on the difference between the wheel speed Vw and the target wheel speed Vw_target in S9-9, and the process proceeds to S9-10.

S9−10では演算された駆動時間に基づいて電磁制御弁を駆動して、ホイール圧力を増加させる。   In S9-10, the electromagnetic control valve is driven based on the calculated driving time to increase the wheel pressure.

このようにS9−5,S9−8,S9−10の何れかに進んでホイール圧力を制御した後、S9−11に移る。   After proceeding to any of S9-5, S9-8, and S9-10 in this way to control the wheel pressure, the process proceeds to S9-11.

S9−11では、対地速度センサ値Vあるいはマスター圧に基づき、ABSの制御終了判定を行う。対地速度センサ値Vgssが所定値V_thr1以下、またはマスター圧
P_masterが所定値P_thr1以下のどちらかの条件を満たす場合ABSの制御を終了する。逆にどちらも満たさない場合はS9−1へ戻ってABSの制御を継続する。
In S9-11, the ABS control end determination is performed based on the ground speed sensor value V or the master pressure. When the ground speed sensor value Vgss satisfies the condition of the predetermined value V_thr1 or less or the master pressure P_master satisfies the condition of the predetermined value P_thr1 or less, the control of the ABS is terminated. On the contrary, when neither is satisfied, the process returns to S9-1 and the ABS control is continued.

以上が対地速度センサ値Vgssに基づくABS制御の制御フローチャートであるが、要旨を逸脱しない限り、上述の制御フローに依らず他の形態での対地速度センサにより検出の車体速Vに基づくABS制御も可能である。   The above is the control flowchart of the ABS control based on the ground speed sensor value Vgss. However, as long as it does not depart from the gist, the ABS control based on the vehicle speed V detected by the ground speed sensor in another form is also possible without depending on the above control flow. Is possible.

図10は、図5のS5−9における、推定車体速V′に基づく車両制御手段の制御の一例を示す。   FIG. 10 shows an example of the control of the vehicle control means based on the estimated vehicle body speed V ′ in S5-9 of FIG.

図10(a)は横軸が時間を、縦軸が速度をそれぞれ表しており、ABS作動中の車輪の挙動を示したものである。また、図10(b)は横軸が時間を、縦軸が圧力をそれぞれ表しており、ABS作動中のホイール圧力の様子を示したものである。推定車体速に基づくABS制御では、車輪速に基づいて車体速を推定している。そのため、車体速の推定と制動力の確保を頻繁に繰り返している。具体的には、ホイール圧を減少させることで、車輪速を実際の車体速付近まで復帰(=スリップ率を減少)させ、車体速を推定する。車体速推定後は制動力を発生させるため、ホイール圧を増加させ、車輪速を低下(=スリップ率増加)させる。   In FIG. 10A, the horizontal axis represents time and the vertical axis represents speed, and shows the behavior of the wheel during ABS operation. In FIG. 10B, the horizontal axis represents time, and the vertical axis represents pressure, and shows the state of wheel pressure during ABS operation. In the ABS control based on the estimated vehicle speed, the vehicle speed is estimated based on the wheel speed. Therefore, the estimation of the vehicle body speed and the securing of the braking force are frequently repeated. Specifically, by reducing the wheel pressure, the wheel speed is returned to near the actual vehicle speed (= slip ratio is reduced), and the vehicle speed is estimated. Since the braking force is generated after the vehicle body speed is estimated, the wheel pressure is increased and the wheel speed is decreased (= slip ratio is increased).

図11は、図5のS5−9における、推定車体速に基づくABS制御の制御フローチャートを示す。図11の制御フローは所定時間T毎に演算する。   FIG. 11 shows a control flowchart of the ABS control based on the estimated vehicle speed in S5-9 in FIG. The control flow in FIG. 11 is calculated every predetermined time T.

S11−1では、車輪速Vwの情報から推定車体速V′_1を推定する。推定方法として、4輪のうち最も高速な車輪速の値を車体速と見なすセレクトハイの手法を用いることが一般的である。S11−1で推定車体速V′_1を推定すると、S11−2へ移る。   In S11-1, the estimated vehicle body speed V'_1 is estimated from the information on the wheel speed Vw. As an estimation method, it is common to use a select high method in which the fastest wheel speed value among the four wheels is regarded as the vehicle body speed. When the estimated vehicle speed V′_1 is estimated in S11-1, the process proceeds to S11-2.

S11−2では、推定車体速V′_1や予め設定された目標スリップ率Slip_
target2より、ホイール圧を増加させる際の車輪速の目標値である増圧側目標車輪速Vw_target1、及びホイール圧を減少させる際の車輪速の目標値である減圧側目標車輪速Vw_target2を演算する。目標車輪速Vw_target1,Vw_target2の演算が終わると、S11−3へ移る。
In S11-2, the estimated vehicle body speed V′_1 and a preset target slip ratio Slip_
From the target 2, a pressure increase side target wheel speed Vw_target 1 that is a target value of the wheel speed when the wheel pressure is increased and a pressure reduction side target wheel speed Vw_target 2 that is a target value of the wheel speed when the wheel pressure is decreased are calculated. When the calculation of the target wheel speed Vw_target1, Vw_target2 is completed, the process proceeds to S11-3.

S11−3では車輪速Vwと増圧側目標車輪速Vw_target1との大小関係を判定する。車輪速Vwが増圧側目標車輪速Vw_target1より大きい場合はS11−4へ移り、小さい場合はS11−5へ移る。   In S11-3, the magnitude relation between the wheel speed Vw and the pressure increase side target wheel speed Vw_target1 is determined. If the wheel speed Vw is higher than the pressure increase side target wheel speed Vw_target1, the process proceeds to S11-4, and if it is smaller, the process proceeds to S11-5.

S11−3からS11−4に移った場合は、目標車輪速の前回値Vw_target_z1を参照する。前回値が増圧側目標車輪速Vw_target1_z1の場合は、S11−6に移り、目標車輪速Vw_targetを減圧側目標車輪速Vw_target2に切り替える。前回値が増圧側目標車輪速Vw_target1ではない場合は、S11−7に移り、目標車輪速Vw_targetの切り替えは行わない。   When the process moves from S11-3 to S11-4, the previous value Vw_target_z1 of the target wheel speed is referred to. When the previous value is the pressure increase side target wheel speed Vw_target1_z1, the process proceeds to S11-6, and the target wheel speed Vw_target is switched to the pressure reduction side target wheel speed Vw_target2. If the previous value is not the pressure increase side target wheel speed Vw_target1, the process proceeds to S11-7, and the target wheel speed Vw_target is not switched.

一方、S11−3からS11−5に移った場合は、車輪速Vwと減圧側目標車輪速Vw_target2との大小関係を判定する。車輪速Vwが減圧側目標車輪速Vw_
target2より小さい場合はS11−8へ移り、大きい場合はS11−7に移る。
On the other hand, when the process moves from S11-3 to S11-5, the magnitude relationship between the wheel speed Vw and the reduced pressure side target wheel speed Vw_target2 is determined. Wheel speed Vw is reduced pressure target wheel speed Vw_
If it is smaller than target2, the process proceeds to S11-8, and if it is greater, the process proceeds to S11-7.

S11−5からS11−8に移った場合は、目標車輪速の前回値Vw_target_z1を参照する。前回値が減圧側目標車輪速Vw_target2_z1の場合は、S11−9に移り、目標車輪速Vw_targetを増圧側目標車輪速Vw_target1に切り替える。前回値が減圧側目標車輪速Vw_target2_z1ではない場合は、
S11−7へ移り、目標車輪速Vw_targetの切り替えは行わない。
When the process moves from S11-5 to S11-8, the previous value Vw_target_z1 of the target wheel speed is referred to. When the previous value is the decompression side target wheel speed Vw_target2_z1, the process proceeds to S11-9, and the target wheel speed Vw_target is switched to the pressure increase side target wheel speed Vw_target1. When the previous value is not the decompression side target wheel speed Vw_target2_z1,
Moving to S11-7, the target wheel speed Vw_target is not switched.

一方、S11−5からS11−7へ移った場合も、目標車輪速Vw_targetの切り替えは行わない。   On the other hand, when the process moves from S11-5 to S11-7, the target wheel speed Vw_target is not switched.

以上のステップで目標車輪速Vw_targetが設定されると、S11−10へ移り、車輪速Vwと目標車輪速Vw_targetの差分値ΔV2を演算する。差分値ΔV2が演算されると、S11−11へ移り、ΔV2に基づいてABS制御周期T当たりの電磁制御弁の駆動時間Teを演算する。駆動時間Teが演算されると、S11−12に移り、電磁制御弁が駆動される。電磁制御弁駆動後、S11−13に移る。   When the target wheel speed Vw_target is set in the above steps, the process proceeds to S11-10, and the difference value ΔV2 between the wheel speed Vw and the target wheel speed Vw_target is calculated. When the difference value ΔV2 is calculated, the process proceeds to S11-11, and the drive time Te of the electromagnetic control valve per ABS control cycle T is calculated based on ΔV2. When the drive time Te is calculated, the process proceeds to S11-12, and the electromagnetic control valve is driven. After driving the electromagnetic control valve, the process proceeds to S11-13.

S11−13では、推定車体速V′あるいはマスター圧に基づき、ABSの制御終了判定を行う。推定車体速V′が所定値V_thr2以下、またはマスター圧P_masterが所定値P_thr1以下のどちらかの条件を満たす場合ABSの制御を終了する。逆にどちらも満たさない場合はS11−1へ戻ってABSの制御を継続する。   In S11-13, the ABS control end determination is performed based on the estimated vehicle speed V 'or the master pressure. When the estimated vehicle speed V ′ satisfies either the predetermined value V_thr2 or less, or the master pressure P_master satisfies the predetermined value P_thr1 or less, the ABS control is terminated. On the contrary, when neither is satisfied, the process returns to S11-1 to continue the ABS control.

以上が推定車体速V′に基づくABS制御の制御フローチャートであるが、要旨を逸脱しない限り、上述の制御フローに依らず他の形態での推定車体速V′に基づくABS制御も可能である。   The above is a control flowchart of the ABS control based on the estimated vehicle speed V ′, but ABS control based on the estimated vehicle speed V ′ in other forms is also possible without departing from the gist, without departing from the gist.

図12及び図13は、本実施形態による制御のタイムチャート例を示す。各図ともに
(a)は横軸が時間を、縦軸が速度をそれぞれ表しており、(b)は横軸が時間を、縦軸が圧力をそれぞれ表している。
12 and 13 show examples of time charts for control according to the present embodiment. In each figure, (a) shows the time on the horizontal axis and the speed on the vertical axis, and (b) shows the time on the horizontal axis and the pressure on the vertical axis.

図12は、最初は対地速度センサが正常で、対地速度センサ値Vgssに基づくABS制御を行っていたが、途中で対地速度センサが実際の車体速より高く計測する異常を発生し、推定車体速V′に基づくABS制御に切り替えた場面での車輪速とホイール圧力の挙動を示している。実際の対地速度センサ異常発生とシステムによる対地速度センサ異常検出の間には僅かながらタイムラグがある。そのため、対地速度センサ値Vgssに基づいて演算される車体速基準値V_stdは、図12のような場合では、実際の車体速よりもやや高い値となる。そのため、推定車体速V′2の初期値も実際の車体速よりやや高い値となる。よって、システムが対地速度センサの異常を検出したら、ホイール圧を徐々に減少させて、車輪速を徐々に実際の車体速に近づけるような制御を行う。これにより、推定車体速V′_2の上ずりを抑制し、スリップ率の大幅な減少による制動力減少を抑制することができる。   In FIG. 12, the ground speed sensor is initially normal and ABS control is performed based on the ground speed sensor value Vgss. However, an abnormality occurs that the ground speed sensor measures higher than the actual vehicle speed on the way. The behavior of the wheel speed and the wheel pressure when switching to the ABS control based on V ′ is shown. There is a slight time lag between the actual occurrence of ground speed sensor abnormality and the detection of ground speed sensor abnormality by the system. Therefore, the vehicle speed reference value V_std calculated based on the ground speed sensor value Vgss is slightly higher than the actual vehicle speed in the case shown in FIG. For this reason, the initial value of the estimated vehicle speed V′2 is also slightly higher than the actual vehicle speed. Therefore, when the system detects an abnormality in the ground speed sensor, the wheel pressure is gradually decreased, and the wheel speed is controlled to gradually approach the actual vehicle speed. As a result, it is possible to suppress an increase in the estimated vehicle body speed V′_2 and to suppress a decrease in braking force due to a significant decrease in the slip ratio.

図13は、最初は対地速度センサが正常で、車体速Vに基づくABS制御を行っていたが、途中で対地速度センサが実際の車体速より低く計測する異常を発生し、推定車体速
V′に基づくABS制御に切り替えた場面での車輪速とホイール圧力の挙動を示している。この場合は車体速Vに基づいて演算される車体速基準値V_stdは、実際の車体速よりやや低い値となる。そのため、推定車体速V′2の初期値も実際の車体速よりやや低い値となる。よって、システムが対地速度センサの異常を検出したら、ホイール圧を急激に減少させて、車輪速を素早く実際の車体速に近づけるような制御を行う。これにより、推定車体速V′_2の不要な下ずりを抑制し、スリップ率の増加による車輪のロックを抑制することができる。
In FIG. 13, the ground speed sensor is initially normal and ABS control based on the vehicle speed V is performed. However, an abnormality occurs that the ground speed sensor measures lower than the actual vehicle speed on the way, and the estimated vehicle speed V ′ The behavior of the wheel speed and the wheel pressure in the scene switched to the ABS control based on is shown. In this case, the vehicle body speed reference value V_std calculated based on the vehicle body speed V is slightly lower than the actual vehicle body speed. For this reason, the initial value of the estimated vehicle speed V′2 is also slightly lower than the actual vehicle speed. Therefore, when the system detects an abnormality in the ground speed sensor, the wheel pressure is sharply decreased, and control is performed so that the wheel speed is quickly brought close to the actual vehicle speed. As a result, unnecessary lowering of the estimated vehicle body speed V′_2 can be suppressed, and wheel locking due to an increase in the slip ratio can be suppressed.

図14は、図3の対地速度センサ2による車体速計測方法を示し、図15は、図3の対地使車速センサ2の設置図を示す。   FIG. 14 shows a vehicle speed measurement method by the ground speed sensor 2 of FIG. 3, and FIG. 15 shows an installation diagram of the ground vehicle speed sensor 2 of FIG.

図14は車両を上から見たものである。対地速度センサ2は車両の前部中央に2台設置する。そして、図15は車両を横から見た図であるが、地面に対して入射角θで電波を照射するように、水平面に対して角度θ方向に電波照射面を向ける。図14において、車両の前後方向をx軸、左右方向(横方向)をy軸とする。対地速度センサaをx軸に対して角度a、対地速度センサbを角度bの方向に向ける。ただし、x軸より時計周りを角度の正に取ると、角度aはa<0となる。車両重心点から対地速度センサ設置点までの距離をLとする。このとき、車両は車両横滑り角β、ヨーレイトγを発生して速度Vcで走行して、2台の対地速度センサが速度Va,Vbを計測していたと仮定する。すると、下記2式の関係が成立する。 FIG. 14 is a top view of the vehicle. Two ground speed sensors 2 are installed at the front center of the vehicle. FIG. 15 is a view of the vehicle as viewed from the side. The radio wave irradiation surface is directed in the direction of the angle θ with respect to the horizontal plane so that the radio wave is applied to the ground at an incident angle θ. In FIG. 14, the longitudinal direction of the vehicle is taken as the x-axis, and the left-right direction (lateral direction) is taken as the y-axis. The ground speed sensor a is directed to the angle a with respect to the x axis, and the ground speed sensor b is directed to the angle b. However, if the clockwise direction from the x-axis is taken as a positive angle, the angle a is a <0. Let L be the distance from the vehicle center of gravity to the ground speed sensor installation point. At this time, it is assumed that the vehicle generates a side skid angle β and a yaw rate γ, travels at a speed Vc, and the two ground speed sensors measure the speeds V a and V b . Then, the relationship of the following two formulas is established.

Figure 2008207678
Figure 2008207678

式(2),(3)より   From equations (2) and (3)

Figure 2008207678
Figure 2008207678

これにより、車両前後方向の速度Vx,左右方向速度Vyは以下の通りとなる。 As a result, the vehicle longitudinal velocity V x and the lateral velocity V y are as follows.

Figure 2008207678
Figure 2008207678

これより、例えば直進している車両においてABSを作動させた場合、β=0,γ=0の時のVx が、本実施例中の対地速度センサ値Vgssとなる。 Thus, for example, when the ABS is operated in a vehicle traveling straight, V x when β = 0 and γ = 0 is the ground speed sensor value Vgss in the present embodiment.

図16は、本発明の実施例2をなす制御フローチャートを示す。   FIG. 16 shows a control flowchart according to the second embodiment of the present invention.

これは、実施例1の図7のフローチャートの他の実施例であり、その他の構成は実施例1と同様である。S16−1で推定車体速V′_1とV′_2の差分値ΔV′を演算し、S16−2に移る。S16−2で4つの車輪のうちで最も高速の車輪速について車輪速度dVwを演算し、S16−3に移る。S16−3ではΔV′の絶対値が所定値ΔV′_
thr1より小さく、尚且つ車輪速度dVwが所定値ΔVw_thr1より小さいという条件を満たす場合はS16−5に移り、推定車体速V′をV′_1とする。一方、S16−3の条件を満たさない場合はS16−4に移り、推定車体速V′をV′_2とする。
This is another embodiment of the flowchart of FIG. 7 of the first embodiment, and other configurations are the same as those of the first embodiment. In S16-1, a difference value ΔV ′ between the estimated vehicle speeds V′_1 and V′_2 is calculated, and the process proceeds to S16-2. In S16-2, the wheel speed dVw is calculated for the fastest wheel speed among the four wheels, and the process proceeds to S16-3. In S16-3, the absolute value of ΔV ′ is a predetermined value ΔV′_.
If the condition that the wheel speed dVw is smaller than thr1 and the wheel speed dVw is smaller than the predetermined value ΔVw_thr1, the process proceeds to S16-5, and the estimated vehicle speed V ′ is set to V′_1. On the other hand, when the condition of S16-3 is not satisfied, the process proceeds to S16-4, and the estimated vehicle speed V ′ is set to V′_2.

実施例1では対地速度センサが異常であると判断された瞬間は、第2推定車体速V′_2を車体速基準値V_stdとして、式(1)における第2推定車体速V′_2の初期値としていたが、対地速度センサ出力値Vgssを初期値として計算してもよい。   In Example 1, at the moment when it is determined that the ground speed sensor is abnormal, the second estimated vehicle body speed V′_2 is used as the vehicle body speed reference value V_std, and the initial value of the second estimated vehicle body speed V′_2 in Expression (1) is used. However, the ground speed sensor output value Vgss may be calculated as an initial value.

また、式(2)において、第2推定車体速の過去値V′_2_z1を利用して演算していたが、下式(4)のように第2推定車体速の初期値V′_2_initを利用してもよい。   Further, in the equation (2), the calculation is performed using the past value V′_2_z1 of the second estimated vehicle body speed, but the initial value V′_2_init of the second estimated vehicle body speed is used as in the following equation (4). May be.

V′_2=k×V′_2_init+(1−k)×V′_1 ・・・(4)
その他の構成は実施例1と同様である。
V′_2 = k × V′_2_init + (1−k) × V′_1 (4)
Other configurations are the same as those of the first embodiment.

式(1)や式(4)の第2推定車体速の初期値として、対地速度センサが異常と判定される直前の対地速度センサ値を利用しても良い。その他の構成は実施例1と同様である。   As the initial value of the second estimated vehicle body speed in the expressions (1) and (4), the ground speed sensor value immediately before the ground speed sensor is determined to be abnormal may be used. Other configurations are the same as those of the first embodiment.

式(1)や式(4)を用いて第2推定車体速を推定する際に、推定路面摩擦係数に応じて、係数kを変更するようにしても良い。その他の構成は実施例1と同様である。   When estimating the second estimated vehicle body speed using Equation (1) or Equation (4), the coefficient k may be changed according to the estimated road surface friction coefficient. Other configurations are the same as those of the first embodiment.

第2推定車体速を式(1)により推定していたが、車体速基準値を第2推定車体速としても良い。その他の構成は実施例1と同様である。   Although the second estimated vehicle speed is estimated by the equation (1), the vehicle speed reference value may be the second estimated vehicle speed. Other configurations are the same as those of the first embodiment.

実施例1では制御用車体速を計測する手段として、対地速度センサを用いているが、
GPS(Global Positioning System) を用いて、所定時間毎の車両の移動距離から制御用車体速Vを計測しても良い。その他の構成は実施例1と同様である。
In the first embodiment, a ground speed sensor is used as a means for measuring the vehicle speed for control.
The vehicle body speed V for control may be measured from the moving distance of the vehicle every predetermined time using GPS (Global Positioning System). Other configurations are the same as those of the first embodiment.

図17は、本発明の実施例8をなす対地速度センサ2の設置図を示す。   FIG. 17 shows an installation diagram of the ground speed sensor 2 according to the eighth embodiment of the present invention.

実施例1では、2台の対地速度センサを図14のように車両前部中央に隣接するように設置していたが、図17のように2台の対地速度センサを離して設置しても良い。図17は車両を上から見た図である。この場合、2台の対地速度センサは、x軸からの角度がa,bとなるように、尚且つ、2台の対地速度センサの向きが車両重心点上で交わるように設置する。このように設定すると、横方向速度のヨーレイト成分を考慮する必要がなくなり、以下の式(5),(6)の連立方程式を解くにより、   In the first embodiment, the two ground speed sensors are installed so as to be adjacent to the center of the front of the vehicle as shown in FIG. 14. However, even if the two ground speed sensors are separated as shown in FIG. good. FIG. 17 is a view of the vehicle as viewed from above. In this case, the two ground speed sensors are installed so that the angles from the x-axis are a and b, and the directions of the two ground speed sensors intersect on the vehicle center of gravity. With this setting, it becomes unnecessary to consider the yaw rate component of the lateral velocity, and by solving the simultaneous equations of the following equations (5) and (6),

Figure 2008207678
Figure 2008207678

前後方向速度Vx,左右方向速度Vyは以下の通り求めることができる。 The longitudinal speed V x and the lateral speed V y can be obtained as follows.

Figure 2008207678
Figure 2008207678

その他の構成は実施例1と同様である。   Other configurations are the same as those of the first embodiment.

図18は、本発明の実施例9をなす対地速度センサ2の構成概略図を示す。   FIG. 18 is a schematic configuration diagram of the ground speed sensor 2 according to the ninth embodiment of the present invention.

実施例1では、対地速度センサの異常判定として、対地速度センサ値と車体速基準値の差分値、対地速度センサ値の時間微分値を利用していたが、以下のように、対地速度センサの電源電圧を利用することもできる。図18のように、電波の送受信を行う電波送受信部,信号処理部,信号出力部からなる対地速度センサに、電源電圧をモニタする電源電圧モニタ部を追加し、電源基板から対地速度センサに供給される電圧を計測する。そして、計測電圧が定格電圧より所定の範囲より離れた場合、対地速度センサが異常と判断する。その他の構成は実施例1と同様である。   In the first embodiment, the difference between the ground speed sensor value and the vehicle body speed reference value and the time differential value of the ground speed sensor value are used as the abnormality determination of the ground speed sensor. A power supply voltage can also be used. As shown in FIG. 18, a power supply voltage monitoring unit for monitoring the power supply voltage is added to the ground speed sensor composed of a radio wave transmission / reception unit that transmits and receives radio waves, a signal processing unit, and a signal output unit, and the power supply board supplies the ground speed sensor Measure the voltage to be applied. And when a measurement voltage leaves | separates from a predetermined range from a rated voltage, a ground speed sensor judges that it is abnormal. Other configurations are the same as those of the first embodiment.

本発明の一実施形態をなす車両の制御装置の機能ブロック図を示す。The functional block diagram of the control apparatus of the vehicle which makes one Embodiment of this invention is shown. 図1の制御装置による制御によるタイムチャートを示す。The time chart by control by the control apparatus of FIG. 1 is shown. 本発明の実施例1をなすABS制御装置のシステム構成図を示す。1 shows a system configuration diagram of an ABS control apparatus according to Embodiment 1 of the present invention. 図3のC/U18のブロック構成図を示す。The block block diagram of C / U18 of FIG. 3 is shown. 図3のコントロールユニット18の制御フローチャートを示す。The control flowchart of the control unit 18 of FIG. 3 is shown. 図5のS5−6での第2推定車体速V′_2の推定方法を示す。A method for estimating the second estimated vehicle body speed V′_2 in S5-6 in FIG. 5 will be described. 図5のS5−7における選択方法を示す。The selection method in S5-7 of FIG. 5 is shown. 図5のS5−8における、対地速度センサで検出した車対地速度センサ値 Vgssに基づく車両制御手段の制御の一例を示す。An example of the control of the vehicle control means based on the vehicle ground speed sensor value Vgss detected by the ground speed sensor in S5-8 in FIG. 図5のS5−8における、対地速度センサで検出した車体速Vに基づくABS制御の制御フローチャートを示す。FIG. 6 shows a control flowchart of ABS control based on the vehicle speed V detected by the ground speed sensor in S5-8 of FIG. 図5のS5−9における、推定車体速V′に基づく車両制御手段の制御の一例を示す。An example of the control of the vehicle control means based on the estimated vehicle body speed V ′ in S5-9 in FIG. 5 will be shown. 図5のS5−9における、推定車体速に基づくABS制御の制御フローチャートを示す。FIG. 6 shows a control flowchart of ABS control based on an estimated vehicle speed in S5-9 of FIG. 本実施形態による制御のタイムチャート例を示す。The example of the time chart of the control by this embodiment is shown. 本実施形態による制御のタイムチャート例を示す。The example of the time chart of the control by this embodiment is shown. 図3の対地速度センサ2による車体速計測方法を示す。The vehicle speed measurement method by the ground speed sensor 2 of FIG. 3 is shown. 図3の対地速度センサ2の設置図を示す。The installation figure of the ground speed sensor 2 of FIG. 3 is shown. 本発明の実施例2をなす制御フローチャートを示す。The control flowchart which makes Example 2 of the present invention is shown. 本発明の実施例8をなす対地速度センサ2の設置図を示す。The installation figure of the ground speed sensor 2 which makes Example 8 of this invention is shown. 本発明の実施例9をなす対地速度センサ2の構成概略図を示す。The structure schematic of the ground speed sensor 2 which comprises Example 9 of this invention is shown.

符号の説明Explanation of symbols

2 対地速度センサ
12 車両
13 タイヤ
14 ステアリング
15 ブレーキベダル
16 ブレーキブースター
17 ブレーキマスターシリンダ
18 コントロールユニット(C/U)
19 電磁制御弁
20 車輪速センサ
21 ブレーキキャリパ
22 前後加速度センサ
23 ヨーレイトセンサ
2 Ground speed sensor 12 Vehicle 13 Tire 14 Steering 15 Brake pedal 16 Brake booster 17 Brake master cylinder 18 Control unit (C / U)
19 Electromagnetic control valve 20 Wheel speed sensor 21 Brake caliper 22 Longitudinal acceleration sensor 23 Yaw rate sensor

Claims (13)

車輪速センサの出力信号から求めた車輪速に基づいて第1推定車体速を求める第1車体速推定部と、
対地速度センサの異常状態を検出する対地速度センサ異常検出部と、
前記対地速度センサの出力信号から求めた車体速,前記第1推定車体速、及び前記対地速度センサの異常状態とに基づいて第2推定車体速を求める第2車体速推定部と、
前記第1推定車体速,前記第2推定車体速、及び前記車輪速のうち、車両制御において使用する推定車体速を選択する推定車体速選択部と、
前記対地速度センサの異常状態に基づいて、前記車体速と前記車輪速に基づいて車両を制御する第1の車両制御部と、前記推定車体速選択部により選択された前記推定車体速に基づいて車両を制御する第2の車両制御部のいずれかを選択する車両制御選択部と、
前記車両制御選択部により選択された車両制御部により演算される制御指令値に基づいて各車輪の制動力を制御する信号を出力する制動力制御部と、
を有する車両の制御装置。
A first vehicle body speed estimating unit for determining a first estimated vehicle body speed based on a wheel speed obtained from an output signal of the wheel speed sensor;
A ground speed sensor abnormality detecting unit for detecting an abnormal state of the ground speed sensor;
A second vehicle speed estimation unit for obtaining a second estimated vehicle speed based on a vehicle speed obtained from an output signal of the ground speed sensor, the first estimated vehicle speed, and an abnormal state of the ground speed sensor;
An estimated vehicle speed selector that selects an estimated vehicle speed to be used in vehicle control from among the first estimated vehicle speed, the second estimated vehicle speed, and the wheel speed;
Based on the estimated vehicle speed selected by the estimated vehicle speed selection unit and a first vehicle control unit that controls the vehicle based on the vehicle speed and the wheel speed based on an abnormal state of the ground speed sensor. A vehicle control selection unit for selecting one of the second vehicle control units for controlling the vehicle;
A braking force control unit that outputs a signal for controlling the braking force of each wheel based on a control command value calculated by the vehicle control unit selected by the vehicle control selection unit;
A control device for a vehicle.
請求項1記載の車両の制御装置であって、
前記対地速度センサ異常検出部は、前記車体速に基づいて車体速基準値を演算する車体速基準値演算部と、前記車体速及び前記車体速基準値に基づき前記対地速度センサの異常状態を検出する車両の制御装置。
The vehicle control device according to claim 1,
The ground speed sensor abnormality detection unit detects a vehicle speed reference value calculation unit that calculates a vehicle speed reference value based on the vehicle speed, and detects an abnormal state of the ground speed sensor based on the vehicle speed and the vehicle speed reference value. A vehicle control device.
請求項2記載の車両の制御装置であって、
前記対地速度センサ異常検出部は、前記対地速度センサにより検出される前記車体速と前記車体速基準値演算部により演算される車体速基準値との差分値を演算し、前記差分値が所定の範囲を超えた場合に、前記対地速度センサの車体速誤計測異常を検出する車両の制御装置。
The vehicle control device according to claim 2,
The ground speed sensor abnormality detection unit calculates a difference value between the vehicle speed detected by the ground speed sensor and a vehicle speed reference value calculated by the vehicle speed reference value calculation unit, and the difference value is a predetermined value. A vehicle control device that detects a vehicle speed error measurement abnormality of the ground speed sensor when the range is exceeded.
請求項1記載の車両の制御装置であって、
前記対地速度センサ異常検出部は、前記対地速度センサにより検出される前記車体速の時間変化率を演算し、前記時間変化率が所定の範囲を超えた場合に、前記対地速度センサの異常を検出する車両の制御装置。
The vehicle control device according to claim 1,
The ground speed sensor abnormality detection unit calculates a time change rate of the vehicle body speed detected by the ground speed sensor, and detects an abnormality of the ground speed sensor when the time change rate exceeds a predetermined range. A vehicle control device.
請求項2記載の車両の制御装置であって、
前記第2車体速推定部は、前記対地速度センサ異常検出部において車体速の計測誤差発生の異常を検出した瞬間は、前記車体速基準値演算部により演算される車体速基準値を車体速と推定する車両の制御装置。
The vehicle control device according to claim 2,
The second vehicle speed estimation unit detects the vehicle speed measurement error occurrence abnormality in the ground speed sensor abnormality detection unit, and uses the vehicle speed reference value calculated by the vehicle speed reference value calculation unit as the vehicle speed. Vehicle control device to be estimated.
請求項1記載の車両の制御装置であって、
前記第2車体速推定部は、前記対地速度センサ異常検出部において実際の車体速より高く計測する誤差発生の異常を検出した際の車体速を推定する機能と、前記対地速度センサ異常検出部において実際の車体速より低く計測する誤差発生の異常を検出した際の車体速を推定する機能とを有する車両の制御装置。
The vehicle control device according to claim 1,
The second vehicle speed estimation unit has a function of estimating a vehicle speed when an error occurrence abnormality measured higher than an actual vehicle speed is detected by the ground speed sensor abnormality detection unit, and a ground speed sensor abnormality detection unit A vehicle control device having a function of estimating a vehicle body speed when an abnormality of an error occurrence that is measured lower than an actual vehicle body speed is detected.
請求項1記載の車両の制御装置であって、
前記車体速選択部は、所定の条件を満たすまでは常に前記第2車体速推定部により推定される推定車体速を選択する車両の制御装置。
The vehicle control device according to claim 1,
The vehicle body speed selection unit is a vehicle control device that always selects an estimated vehicle body speed estimated by the second vehicle body speed estimation unit until a predetermined condition is satisfied.
請求項1記載の車両の制御装置であって、
前記車体速選択部は、前記第1車体速推定部により推定される車輪速に基づく推定車体速と、前記第2車体速推定部により推定される推定車体速の差分値が所定値以内になった場合は、前記第1車体速推定部により推定される車輪速に基づく推定車体速を選択する車両の制御装置。
The vehicle control device according to claim 1,
The vehicle speed selector selects a difference value between the estimated vehicle speed based on the wheel speed estimated by the first vehicle speed estimator and the estimated vehicle speed estimated by the second vehicle speed estimator within a predetermined value. A vehicle control device that selects an estimated vehicle body speed based on a wheel speed estimated by the first vehicle body speed estimating unit.
請求項1記載の車両の制御装置であって、
前記車体速選択部は、前記第1車体速推定部により推定される車輪速に基づく推定車体速と、前記第2車体速推定部により推定される推定車体速の差分値が所定値以内になった場合、尚且つ前記車輪速検出部により検出される車輪速のうちで最高速の車輪速の時間変化率が所定値以内になった場合に、前記第1車体速推定部により推定される車輪速に基づく推定車体速を選択する車両の制御装置。
The vehicle control device according to claim 1,
The vehicle speed selector selects a difference value between the estimated vehicle speed based on the wheel speed estimated by the first vehicle speed estimator and the estimated vehicle speed estimated by the second vehicle speed estimator within a predetermined value. And the wheel estimated by the first vehicle body speed estimating unit when the temporal change rate of the highest wheel speed among the wheel speeds detected by the wheel speed detecting unit falls within a predetermined value. A vehicle control device that selects an estimated vehicle body speed based on a vehicle speed.
請求項1記載の車両の制御装置であって、
前記第2の車両制御部は、前記対地速度センサ異常検出部により異常を検出した際に、前記制動力制御部の制御指令値を減少させる車両の制御装置。
The vehicle control device according to claim 1,
The second vehicle control unit is a vehicle control device that decreases a control command value of the braking force control unit when an abnormality is detected by the ground speed sensor abnormality detection unit.
請求項1記載の車両の制御装置であって、
前記第2の車両制御部は、前記推定車体速選択部において前記第2車体速推定部により推定される推定車体速が選択された場合は、前記車輪速の制御目標値を前記第2車体速推定部により推定される推定車体速にする車両の制御装置。
The vehicle control device according to claim 1,
When the estimated vehicle speed estimated by the second vehicle speed estimation unit is selected by the estimated vehicle speed selection unit, the second vehicle control unit sets the control target value of the wheel speed to the second vehicle speed. A control device for a vehicle that makes an estimated vehicle body speed estimated by an estimation unit.
請求項1記載の車両の制御装置であって、
前記対地速度センサ異常検出部は、前記対地速度センサにおいて計測される電源電圧情報を入力し、入力した当該電源電圧が所定の範囲をはずれた場合に前記対地速度センサが異常であると判断する車両の制御装置。
The vehicle control device according to claim 1,
The ground speed sensor abnormality detection unit inputs power supply voltage information measured by the ground speed sensor, and determines that the ground speed sensor is abnormal when the input power supply voltage is out of a predetermined range. Control device.
車輪速センサの出力信号から求めた車輪速に基づいて第1推定車体速を求め、
対地速度センサの出力信号から求めた車体速と、前記第1推定車体速と、前記対地速度センサの異常状態に基づいて第2推定車体速を求め、
前記第1推定車体速,前記第2推定車体速、及び前記車輪速のうち、車両制御において使用する推定車体速を選択し、
前記対地速度センサの異常状態に基づいて、前記車体速と前記車輪速に基づいて車両を制御する第1の車両制御と、選択された前記推定車体速に基づいて車両を制御する第2の車両制御のいずれかを選択し、
選択した前記車両制御により演算される制御指令値に基づいて各車輪の制動力を制御する車両の制御方法。
The first estimated vehicle body speed is obtained based on the wheel speed obtained from the output signal of the wheel speed sensor,
Determining a second estimated vehicle speed based on the vehicle speed determined from the output signal of the ground speed sensor, the first estimated vehicle speed, and an abnormal state of the ground speed sensor;
Selecting an estimated vehicle speed to be used in vehicle control from among the first estimated vehicle speed, the second estimated vehicle speed, and the wheel speed;
A first vehicle control that controls the vehicle based on the vehicle body speed and the wheel speed based on an abnormal state of the ground speed sensor, and a second vehicle that controls the vehicle based on the selected estimated vehicle body speed. Select one of the controls,
A vehicle control method for controlling a braking force of each wheel based on a control command value calculated by the selected vehicle control.
JP2007046367A 2007-02-27 2007-02-27 Vehicular control device and method Pending JP2008207678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046367A JP2008207678A (en) 2007-02-27 2007-02-27 Vehicular control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046367A JP2008207678A (en) 2007-02-27 2007-02-27 Vehicular control device and method

Publications (1)

Publication Number Publication Date
JP2008207678A true JP2008207678A (en) 2008-09-11

Family

ID=39784360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046367A Pending JP2008207678A (en) 2007-02-27 2007-02-27 Vehicular control device and method

Country Status (1)

Country Link
JP (1) JP2008207678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866709A (en) * 2017-12-05 2019-06-11 现代自动车株式会社 Vehicle traction cranking wheel control system and the driving wheel of vehicle control method for using the system
JP2020045083A (en) * 2018-09-19 2020-03-26 現代自動車株式会社Hyundai Motor Company Control method of rear wheel steering system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866709A (en) * 2017-12-05 2019-06-11 现代自动车株式会社 Vehicle traction cranking wheel control system and the driving wheel of vehicle control method for using the system
CN109866709B (en) * 2017-12-05 2024-05-14 现代自动车株式会社 Vehicle driving wheel control system and vehicle driving wheel control method using the same
JP2020045083A (en) * 2018-09-19 2020-03-26 現代自動車株式会社Hyundai Motor Company Control method of rear wheel steering system
CN110920750A (en) * 2018-09-19 2020-03-27 现代自动车株式会社 Control method of rear wheel steering system
KR20200032815A (en) * 2018-09-19 2020-03-27 현대자동차주식회사 Control method of rear wheel steering system
US10882552B2 (en) * 2018-09-19 2021-01-05 Hyundai Motor Company Control method of a rear wheel steering system
JP7199929B2 (en) 2018-09-19 2023-01-06 現代自動車株式会社 Control method for rear wheel steering system
KR102585752B1 (en) 2018-09-19 2023-10-10 현대자동차주식회사 Control method of rear wheel steering system

Similar Documents

Publication Publication Date Title
US7416264B2 (en) Vehicle steering apparatus and vehicle steering method
CN105492288B (en) Controller of vehicle
US8977463B2 (en) Vehicle brake controller and vehicle brake control method
JP5471078B2 (en) Vehicle motion control device
US20110264349A1 (en) Travel controlling apparatus of vehicle
JPWO2018230341A1 (en) Vehicle control device
CN111959469B (en) Wheel anti-lock control method and device and vehicle
CN111727126A (en) System and method for integrated chassis control in a ground vehicle
KR101619418B1 (en) Brake appararatus of vehicle and method thereof
JP5398581B2 (en) Suspension control device
JP2015040020A (en) Estimator of road surface friction coefficient in two-wheeled motor vehicle, and anti-lock brake controller using the same
KR20200047961A (en) Integrated control system for vehicle
JP2008207678A (en) Vehicular control device and method
CN113613966A (en) Vehicle brake control device
JPS63305065A (en) Wheel speed controller
KR20160049213A (en) Braking pressure control apparatus and method for vehicle
JP2019048593A (en) Vehicle motion state estimation device, vehicle motion state estimation system, vehicle motion control device, and vehicle motion state estimation method
JP2011219010A (en) Braking force control device
JPH01254463A (en) Antiskid controller
JP6366480B2 (en) Brake control device for bar handle vehicle
JP2022021309A (en) Method for supporting driver of ego-vehicle when passing through curve ahead
JPH05105055A (en) Travel controller at braking
JP6747343B2 (en) Lane departure suppression device
KR100721046B1 (en) Electronic stability system for vehicle
JP6656049B2 (en) Vehicle brake control device