JP2008206915A - Sterilization method for compound and manufacturing method of medical material using it - Google Patents

Sterilization method for compound and manufacturing method of medical material using it Download PDF

Info

Publication number
JP2008206915A
JP2008206915A JP2007048838A JP2007048838A JP2008206915A JP 2008206915 A JP2008206915 A JP 2008206915A JP 2007048838 A JP2007048838 A JP 2007048838A JP 2007048838 A JP2007048838 A JP 2007048838A JP 2008206915 A JP2008206915 A JP 2008206915A
Authority
JP
Japan
Prior art keywords
compound
radiation
sterilizing
compound according
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007048838A
Other languages
Japanese (ja)
Other versions
JP5327826B2 (en
JP2008206915A5 (en
Inventor
Hirokazu Sakaguchi
博一 坂口
Hiroshi Takahashi
博 高橋
Hiroyuki Sugaya
博之 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007048838A priority Critical patent/JP5327826B2/en
Publication of JP2008206915A publication Critical patent/JP2008206915A/en
Publication of JP2008206915A5 publication Critical patent/JP2008206915A5/ja
Application granted granted Critical
Publication of JP5327826B2 publication Critical patent/JP5327826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sterilization method for a compound being labile in relation to radiation, which suppresses functional decline due to the degeneration or the like of the compound by radiation sterilization, does not need processing such as freezing because of few generation of deleterious by-products, and causes little degeneration of the compound by drying. <P>SOLUTION: The radiation is emitted in the state of dissolving and/or dispersing the compound labile in relation to the radiation in a solution containing a buffer solution whose pH is ≥3 and <10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、医薬、医療、プロテオーム解析および食品製造などの分野で好適に用いられる化合物の滅菌技術に関するものである。   The present invention relates to a compound sterilization technique suitably used in fields such as medicine, medicine, proteome analysis and food production.

医薬品や医療器具が医療の現場で使用されるとき、それらは滅菌された状態でなければならない。すなわち、医薬品や医療器具を生産するとき最終的に滅菌する必要がある。日本薬局方において、医薬品や医療用具の最終滅菌方法として加熱法、ガス法および照射法が示されている。   When pharmaceuticals and medical devices are used in the medical setting, they must be sterilized. That is, it is necessary to finally sterilize when producing pharmaceuticals and medical instruments. In the Japanese Pharmacopoeia, a heating method, a gas method, and an irradiation method are shown as final sterilization methods for pharmaceuticals and medical devices.

照射法は、大きく分けて放射線法と高周波法がある。そのうち放射線法は、熱による滅菌対象物の変性も少なく、残留ガスによる毒性の問題も少ないので近年広く用いられている滅菌方法である。照射線には高エネルギー放射線が用いられ、γ線が標準的に用いられる。γ線のエネルギーが物質に吸収されると、物質の分子は電離したり、励起状態になる。そして解離反応を起こし、その結果として、非常に反応性に富んだラジカルが生成され、通常の分子と次々と反応を起こす。この一連の反応が、微生物の生命を維持するのに最も重要な核酸で発生すると、核酸分子が切断され、直接的に微生物を死滅させる。   Irradiation methods are broadly classified into radiation methods and high-frequency methods. Among them, the radiation method is a sterilization method which has been widely used in recent years because it hardly causes modification of an object to be sterilized by heat and causes less problem of toxicity due to residual gas. High-energy radiation is used for irradiation, and γ-ray is used as standard. When γ-ray energy is absorbed by a substance, the molecule of the substance is ionized or excited. Then, a dissociation reaction occurs, and as a result, highly reactive radicals are generated and react one after another with ordinary molecules. When this series of reactions occurs with the most important nucleic acid to maintain the life of a microorganism, the nucleic acid molecule is cleaved and directly kills the microorganism.

しかしながら、γ線照射により発生したラジカルは微生物だけでなく、医薬品や医療材料を構成する分子とも反応し、その機能や物理特性を劣化させることがある。また近年、基材表面に、化学的または生化学的修飾を行い、特異的な吸着、反応性や生体適合性を付与することが行われるが、放射線に対して不安定な化合物を用いて化学的または生化学的修飾を行った場合、これらにより得られた表面特性は、γ線照射により、それら機能が低下することが問題となっている。   However, radicals generated by γ-ray irradiation may react not only with microorganisms but also with molecules constituting pharmaceuticals and medical materials, thereby deteriorating their functions and physical properties. In recent years, the surface of substrates has been chemically or biochemically modified to give specific adsorption, reactivity, or biocompatibility. When chemical or biochemical modification is performed, the surface characteristics obtained by these methods have a problem that their functions are lowered by γ-ray irradiation.

かかる問題に対して、基材にピロ亜硫酸ナトリウムやアスコルビン酸などの抗酸化剤を含浸させた状態で放射線滅菌する方法(特許文献1参照)や、凍結した状態で放射線滅菌する方法(特許文献2参照)や、残留溶媒量を低下させた状態で放射線滅菌する方法(特許文献3参照)が提案されている。また近年では有機溶媒含率を増加させ、水分率を低下させた状態で放射線滅菌する方法(特許文献4参照)も提案されている。   With respect to such problems, a method of radiation sterilization with a base material impregnated with an antioxidant such as sodium pyrosulfite or ascorbic acid (see Patent Document 1), or a method of radiation sterilization in a frozen state (Patent Document 2). And a method of radiation sterilization in a state in which the amount of residual solvent is reduced (see Patent Document 3). In recent years, a method of radiation sterilization in a state where the organic solvent content is increased and the moisture content is decreased (see Patent Document 4) has also been proposed.

上記の抗酸化剤を基材に含浸させる方法では、抗酸化剤が放射線に対して不安定な化合物であるため、放射線照射により変性し有害な物質になることが問題となっている。例えば、ピロ亜硫酸ナトリウムを用いると亜硫酸や二酸化硫黄などの有害物質が発生するので、医薬品や医療機器の最終滅菌に用いるのは好ましくない。また、抗酸化剤の原材料費以外にも抗酸化剤を添加するプロセスが増えたり、それに伴う設備が必要となるためコスト的にも不利である。   In the method of impregnating the base material with the above-mentioned antioxidant, since the antioxidant is a compound unstable to radiation, there is a problem that it becomes a harmful substance by being modified by irradiation. For example, when sodium pyrosulfite is used, harmful substances such as sulfurous acid and sulfur dioxide are generated. Therefore, it is not preferable to use it for final sterilization of pharmaceuticals and medical devices. In addition to the cost of raw materials for antioxidants, it is also disadvantageous in terms of cost because the number of processes for adding antioxidants increases and the associated equipment is required.

また、凍結した状態で放射線照射する方法は、生理活性を有する化合物などを凍結した場合、生理活性を失ってしまうという大きな問題がある。また、凍結させるために必要な設備やそれに必要な電力、そして凍結状態での輸送などコスト増加が問題となる。   In addition, the method of irradiating with radiation in a frozen state has a big problem that the physiological activity is lost when a compound having physiological activity is frozen. Further, there is a problem of cost increase such as equipment necessary for freezing, electric power necessary for the freezing, and transportation in a frozen state.

また、残留溶媒を低下させた状態で放射線滅菌する方法は、すなわち水分率を2%以下にするということであり、湿潤状態に保つ必要のある化合物に対しては用いることはできない。例えば、血液透析膜などは材料の微多孔構造に依存しており、乾燥によりこれら構造が変化して当初計画した性能が得られないという問題がある。   In addition, the method of radiation sterilization in a state where the residual solvent is lowered is that the moisture content is 2% or less, and it cannot be used for a compound that needs to be kept in a wet state. For example, hemodialysis membranes and the like depend on the microporous structure of the material, and there is a problem that the originally planned performance cannot be obtained because these structures change due to drying.

さらに、有機溶媒含率を増加させ、水分率を低下させた状態で放射線滅菌する方法では、水分率を20重量%以下まで低下させているため、本方法を医療材料の製造等に用いる際、洗浄後の有機溶媒残留が生体適合性に影響を与えることや、材料の性能が低下することについて記載も示唆もなく、例えば放射線グラフトに用いる場合にグラフト効率が低下することについて考慮がされていなかったため、実用に適さないことがあった。   Further, in the method of radiation sterilization in a state where the organic solvent content is increased and the moisture content is reduced, the moisture content is reduced to 20% by weight or less, so when this method is used for the production of medical materials, etc. There is no description or suggestion that the organic solvent residue after washing affects biocompatibility or the performance of the material deteriorates, for example, there is no consideration about the decrease in graft efficiency when used for radiation grafting. For this reason, it may not be suitable for practical use.

さらに生理活性を有する化合物は溶液のpHの変動によって活性を大きく損なうことが懸念されることや、溶液のpHの変動によって共存する材料の性能が低下することが危惧されることから、溶液状態にあるときはpHの変動を抑制することが必要である。
特許第3432240号公報 米国特許4620908号公報 特表2003−527210号公報 特開2006−289071号公報
Furthermore, compounds having physiological activity are in a solution state because there is a concern that the activity may be greatly impaired due to fluctuations in the pH of the solution, and the performance of coexisting materials may be reduced due to fluctuations in the pH of the solution. Sometimes it is necessary to suppress pH fluctuations.
Japanese Patent No. 3432240 U.S. Pat. No. 4,620,908 Special table 2003-527210 gazette JP 2006-289071 A

本発明の目的は、放射線に対して不安定な化合物において、放射線滅菌により該化合物の変性などによる機能低下を抑制し、かつ有害な副生成物の発生が少なく凍結などの処理を必要とせず、かつ乾燥による化合物の変性が少ない化合物の滅菌方法およびかかる方法を用いた医療材料の製造方法を提供することにある。   The object of the present invention is to suppress functional degradation due to denaturation of the compound by radiation sterilization in a compound unstable to radiation, and there is little generation of harmful by-products, and no treatment such as freezing is required. It is another object of the present invention to provide a method for sterilizing a compound with less modification of the compound by drying and a method for producing a medical material using the method.

上記目的を達成するために、本発明は以下の構成を有するものである。
1.放射線に対して不安定な化合物をpH3以上10未満の緩衝液を含む溶液に溶解および/または分散させた状態で放射線を照射することを特徴とする化合物の滅菌方法。
2.前記緩衝液を含む溶液が有機溶媒を含有することを特徴とする前記1記載の化合物の滅菌方法。
3.前記緩衝液のpHが4以上9以下であることを特徴とする前記1または2記載の化合物の滅菌方法。
4.前記緩衝液のpHが5以上8以下であることを特徴とする前記1〜3のいずれかに記載の化合物の滅菌方法。
5.前記有機溶媒が水酸基を含有し、少なくとも一つが2級または3級の水酸基であることを特徴とする前記1〜4のいずれかに記載の化合物の滅菌方法。
6.前記放射線に対して不安定な化合物がアミノ酸を構成要素とするものであることを特徴とする前記1〜5のいずれかに記載の化合物の滅菌方法。
7.前記放射線に対して不安定な化合物が血液抗凝固活性を有することを特徴とする前記1〜6のいずれかに記載の化合物の滅菌方法。
8.前記血液抗凝固活性を有する化合物が血液抗凝固活性を有する部分および高分子鎖部分を含むことを特徴とする前記1〜7のいずれかに記載の化合物の滅菌方法。
9.前記高分子鎖部分がポリエチレングリコール残基、ポリビニルピロリドン残基、ポリプロピレングリコール残基、ポリビニルアルコール残基およびそれらのいずれかの共重合体の残基から選ばれる少なくともひとつを含むことを特徴とする前記8に記載の化合物の滅菌方法。
10.前記放射線に対して不安定な化合物が抗トロンビン活性を有することを特徴とする前記7〜9のいずれかに記載の化合物の滅菌方法。
11.前記1〜10のいずれかに記載の化合物の滅菌方法を用いて前記放射線に対して不安定な化合物を基材に固定化させることを特徴とする医療材料の製造方法。
12.前記11に記載の医療材料を容器に内蔵することを特徴とする医療用具の製造方法。
13.前記医療用具が人工腎臓であることを特徴とする前記12に記載の医療用具の製造方法。
In order to achieve the above object, the present invention has the following configuration.
1. A method for sterilizing a compound, comprising irradiating a compound unstable to radiation with radiation in a state of being dissolved and / or dispersed in a solution containing a buffer solution having a pH of 3 or more and less than 10.
2. 2. The method for sterilizing a compound according to 1 above, wherein the solution containing the buffer contains an organic solvent.
3. 3. The method for sterilizing a compound according to 1 or 2 above, wherein the pH of the buffer solution is 4 or more and 9 or less.
4). 4. The method for sterilizing a compound according to any one of 1 to 3, wherein the buffer solution has a pH of 5 or more and 8 or less.
5. 5. The method for sterilizing a compound according to any one of 1 to 4 above, wherein the organic solvent contains a hydroxyl group, and at least one is a secondary or tertiary hydroxyl group.
6). 6. The method for sterilizing a compound according to any one of 1 to 5 above, wherein the radiation labile compound comprises an amino acid as a constituent element.
7). 7. The method for sterilizing a compound according to any one of 1 to 6 above, wherein the compound unstable to radiation has blood anticoagulant activity.
8). 8. The method for sterilizing a compound according to any one of 1 to 7 above, wherein the compound having blood anticoagulant activity comprises a portion having blood anticoagulant activity and a polymer chain portion.
9. The polymer chain portion contains at least one selected from polyethylene glycol residues, polyvinyl pyrrolidone residues, polypropylene glycol residues, polyvinyl alcohol residues, and residues of any copolymer thereof, 9. A method for sterilizing the compound according to 8.
10. 10. The method for sterilizing a compound according to any one of 7 to 9, wherein the compound unstable to radiation has antithrombin activity.
11. A method for producing a medical material, wherein the compound unstable to radiation is immobilized on a substrate using the method for sterilizing a compound according to any one of 1 to 10 above.
12 A method for producing a medical device, wherein the medical material according to 11 is incorporated in a container.
13. 13. The method for producing a medical device as described in 12 above, wherein the medical device is an artificial kidney.

本発明によれば、放射線に対して不安定な化合物を放射線滅菌する際に、該化合物を緩衝液に溶解および/または分散することで、溶液のpH変動を抑制でき該化合物の変性などによる機能低下を防ぎ、かつ有害な副生成物の発生が少なく凍結などの処理を必要とせず、かつ乾燥による化合物の変性が少ない滅菌を行うことが可能となる。さらに、例えば放射線グラフトにより該化合物を基材に固定化して医療材料を製造する場合、溶液のpHの変動を抑制することで、化合物の活性を維持した状態で固定化することが可能になる。   According to the present invention, when a compound unstable to radiation is sterilized by radiation, the pH of the solution can be suppressed by dissolving and / or dispersing the compound in a buffer solution. It is possible to prevent sterilization, prevent generation of harmful by-products, do not require a treatment such as freezing, and reduce the compound denaturation by drying. Further, when a medical material is produced by immobilizing the compound on a substrate by, for example, radiation grafting, it is possible to immobilize the compound while maintaining the activity of the compound by suppressing the change in pH of the solution.

本発明で用いられる放射線とは、高エネルギーの粒子線および電磁波のことであり、例えば、α線、β線、γ線、X線、紫外線、電子線および中性子線などが挙げられる。これらのうち、γ線、電子線およびX線が効率よく微生物を殺滅できるので滅菌に好適である。放射線の照射線量は5kGy以上であることが好ましく、10kGy以上がより好ましく、15kGy以上がさらに好ましい。ただし、過剰な放射線の照射は化合物を変性させるだけでなく、照射に要する時間も長くなり生産性が低下するので、5000kGy以下が好ましく、1000kGy以下がより好ましく、100kGy以下がさらに好ましい。   The radiation used in the present invention refers to high-energy particle beams and electromagnetic waves, and examples include α rays, β rays, γ rays, X rays, ultraviolet rays, electron beams, and neutron rays. Of these, γ-rays, electron beams and X-rays are suitable for sterilization because they can kill microorganisms efficiently. The radiation dose is preferably 5 kGy or more, more preferably 10 kGy or more, and further preferably 15 kGy or more. However, irradiation with excessive radiation not only denatures the compound, but also increases the time required for irradiation and decreases productivity, so 5000 kGy or less is preferable, 1000 kGy or less is more preferable, and 100 kGy or less is more preferable.

本発明において、放射線に対して不安定な化合物とは、放射線を照射されたときに化合物中の少なくとも一部の分子構造に変化を生じ、物理的機能および/または化学的な機能および/または生物的な機能が変化する化合物のことをさす。放射線に対して不安定な化合物は、単独で滅菌してもよいし、医療材料などの基材と共に滅菌してもよい。放射線照射により、かかる放射線に不安定な化合物を基材に固定化して基材を改質することも可能である。このように、本発明に係る医療材料の製造方法においては、化合物の固定化と医療材料の滅菌も同時に行うことができるので生産工程数を減少させることができる。この場合、放射線に対して不安定な化合物を基材表面に化学的にグラフトすることも可能である。   In the present invention, a compound that is unstable to radiation means that when irradiated with radiation, at least a part of the molecular structure in the compound is changed, and a physical function and / or a chemical function and / or an organism It refers to a compound that changes its functional function. A compound unstable to radiation may be sterilized alone or together with a substrate such as a medical material. It is also possible to modify the substrate by immobilizing the compound unstable to the radiation on the substrate by irradiation. Thus, in the method for producing a medical material according to the present invention, since the compound can be immobilized and the medical material can be sterilized at the same time, the number of production steps can be reduced. In this case, it is also possible to chemically graft a compound unstable to radiation onto the substrate surface.

本発明で用いられる基材とは、放射線に対して不安定な化合物を付与させたい材料のことを指し、高分子化合物材料が好ましく用いられる。高分子化合物材料を構成する高分子化合物の例としては、例えば、ポリメチルメタクリレート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリ酢酸ビニル、ポリカーボネート、セルロース、セルロースアセテート、セルローストリアセテート、ポリアクリロニトリル、ポリスルホン、ポリエーテルスルホン、ポリスチレンおよびポリウレタン等が挙げられるが、これらに限定されるものではない。   The base material used in the present invention refers to a material to which a compound unstable to radiation is to be imparted, and a polymer compound material is preferably used. Examples of the polymer compound constituting the polymer compound material include, for example, polymethyl methacrylate, polypropylene, polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl acetate, polycarbonate, cellulose, cellulose acetate, and cellulose triacetate. , Polyacrylonitrile, polysulfone, polyethersulfone, polystyrene, polyurethane and the like, but are not limited thereto.

本発明では、基材として、医療用基材を用いることができる。医療用基材としては、人工血管、カテーテル、血液バッグ、コンタクトレンズ、眼内レンズおよび手術用補助器具等が挙げられ、生体成分分離用モジュールや血液浄化用モジュール、好ましくは人工腎臓等の医療用具等に内蔵されて用いられる分離膜なども含まれる。ここで、生体成分分離用の分離膜とは、濾過もしくは透析により生体物質を分離し、一部を回収する膜のことをいう。   In the present invention, a medical base material can be used as the base material. Examples of medical base materials include artificial blood vessels, catheters, blood bags, contact lenses, intraocular lenses, and surgical aids. Biological component separation modules and blood purification modules, preferably medical devices such as artificial kidneys In addition, a separation membrane that is used by being incorporated in a device is also included. Here, the separation membrane for separating biological components refers to a membrane for separating a biological material by filtration or dialysis and collecting a part thereof.

本発明で用いられる緩衝液とは、少量の酸や塩基を加えたり、多少濃度が変化したりしてもpHが変化しないようにした溶液のことであり、例えば、リン酸緩衝液、トリスヒドロキシメチルアミノメタン緩衝液、ビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン緩衝液、酢酸緩衝液、クエン酸緩衝液およびホウ酸緩衝液などが挙げられる。これらのうち、リン酸緩衝液、トリスヒドロキシメチルアミノメタン緩衝液およびビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン緩衝液は中性および/または酸性領域における緩衝作用を有することと、生理活性を有する化合物の溶媒として添加されることが多いことから好適である。ただし、pH3未満のような強酸性条件下やpH10以上のような強塩基性条件下では、生理活性を有する化合物中の一部の分子構造に変化を生じ、物理的機能および/または化学的な機能および/または生物的な機能が変化することや例えばグラフト固定化材料を創製する場合に材料自体の性能が低下することが考えられるので、緩衝範囲はpH3以上であり、5以上が好ましい。また、上限としてはpH10未満であり、8以下が好ましい。pHの測定にはガラス電極法を用いるが、同等の精度で測定できるものであれば、これに限定されるものではない。   The buffer used in the present invention is a solution in which the pH does not change even when a small amount of acid or base is added or the concentration slightly changes. For example, phosphate buffer, trishydroxy Examples include methylaminomethane buffer, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane buffer, acetate buffer, citrate buffer, and borate buffer. Among these, phosphate buffer, trishydroxymethylaminomethane buffer and bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane buffer have a buffering action in neutral and / or acidic regions, and have physiological activity. This is preferable because it is often added as a solvent for a compound having the above. However, under strongly acidic conditions such as less than pH 3 or strongly basic conditions such as pH 10 or more, some molecular structures in the compound having physiological activity change, resulting in physical functions and / or chemical properties. Since it is considered that the function and / or biological function is changed or the performance of the material itself is lowered when, for example, a graft-immobilized material is created, the buffering range is pH 3 or more, preferably 5 or more. Moreover, as an upper limit, it is less than pH10 and 8 or less is preferable. The glass electrode method is used for measuring the pH, but it is not limited to this as long as it can be measured with the same accuracy.

また、本発明で用いられる緩衝液を含む溶液とは、上記緩衝液の水溶液や、他の溶媒、溶液を含む溶液を意味するものであるが、緩衝液を含む溶液全体として上記した緩衝液のpHの範囲を超えて変動するものを意味するものではなく、好ましくは緩衝液のpHが変動しないものである。   In addition, the solution containing the buffer solution used in the present invention means an aqueous solution of the above buffer solution, other solvent, or a solution containing the solution. It does not mean anything that fluctuates beyond the pH range, and preferably the pH of the buffer solution does not fluctuate.

本発明では緩衝液を含む溶液に下記の有機溶媒を含むことが好ましく、かかる好適に用いられる有機溶媒としては、分子中に炭素原子および/またはケイ素原子を含む溶媒が挙げられる。水酸基は、放射線照射により発生したラジカルを安定化する効果が高く、かつ非イオン性の官能基であり強い表面電荷を有する化合物との相互作用が小さく、かつ酸化還元力も小さく、化合物の変性も少ないので、分子中に水酸基を有する有機溶媒、例えばメタノール、エタノール、1−プロパノール、1−ブタノール、1,4−ブタンジオールなどが好ましく用いられる。特に2級および3級の水酸基は、ラジカルを安定化する効果がより高いので、2級および/または3級の水酸基を有する有機溶媒、例えば、グリセリンやプロピレングリコールやイソプロパノール、2−ブタノール、2,3−ブタンジオール、1,3−ブタンジオールなどが好ましく用いられる。ただし、エチレングリコールやポリエチレングリコールのような1級の水酸基のみを有する有機溶媒はラジカルを安定化する効果が低いので、本発明でいう有機溶媒には含まれない。また、本発明の化合物の滅菌方法を医療材料、またはこれが内蔵される医療用具の製造に用いる際は、その安全性を考慮する必要があるため、非水溶媒は毒性の低いものが好適に用いられる。   In the present invention, the following organic solvent is preferably contained in the solution containing the buffer solution, and examples of the organic solvent that is suitably used include a solvent containing a carbon atom and / or a silicon atom in the molecule. Hydroxyl groups are highly effective in stabilizing radicals generated by radiation irradiation, are nonionic functional groups, have little interaction with compounds with strong surface charges, have little redox power, and have little modification of compounds. Therefore, an organic solvent having a hydroxyl group in the molecule, for example, methanol, ethanol, 1-propanol, 1-butanol, 1,4-butanediol and the like are preferably used. In particular, secondary and tertiary hydroxyl groups are more effective in stabilizing radicals, so organic solvents having secondary and / or tertiary hydroxyl groups such as glycerin, propylene glycol, isopropanol, 2-butanol, 2, 3-butanediol, 1,3-butanediol and the like are preferably used. However, an organic solvent having only a primary hydroxyl group such as ethylene glycol or polyethylene glycol is not included in the organic solvent referred to in the present invention because the effect of stabilizing radicals is low. In addition, when the method for sterilizing a compound of the present invention is used for the production of a medical material or a medical device in which the compound is incorporated, it is necessary to consider its safety. Therefore, a non-aqueous solvent having low toxicity is preferably used. It is done.

また、本発明に係る緩衝液を含む溶液における水分率の上限は90vol%であり、90vol%を超えると有機溶媒のラジカル安定化の効果が十分に得られない。90vol%以下の範囲においては、水分率が多い方が好ましい。一方、水分率が低い場合、例えば医療用具などに用いる際、洗浄後の有機溶媒残留が生体適合性に影響を与えることが懸念される他、例えば放射線グラフトに用いる場合にグラフト効率が低下することが考えられる。よって水分量は全溶媒量の25vol%以上であることが好ましく、より好ましくは50vol%以上である。   Moreover, the upper limit of the moisture content in the solution containing the buffer solution according to the present invention is 90 vol%, and if it exceeds 90 vol%, the effect of radical stabilization of the organic solvent cannot be sufficiently obtained. In the range of 90 vol% or less, it is preferable that the moisture content is larger. On the other hand, when the moisture content is low, for example, when used for medical devices, there is a concern that the residual organic solvent after washing may affect the biocompatibility, and for example, when used for radiation grafting, the grafting efficiency decreases. Can be considered. Therefore, the water content is preferably 25 vol% or more, more preferably 50 vol% or more of the total solvent amount.

本発明における水分率とは、次式で定義されるものである。
(放射線に不安定な化合物および該化合物を溶解および/または分散している緩衝液を含む溶液に含まれる水の体積)/(放射線に対して不安定な化合物および該化合物を溶解および/または分散している緩衝液を含む溶液の体積)×100(%)
本発明において、放射線に対して不安定な化合物が溶解するとは、化合物が緩衝液を含む溶液に溶けて均一混合物、すなわち溶液になることを指す。また、化合物が分散するとは、化合物が緩衝液を含む溶液中に散在することを指す。化合物の濃度については特に限定されるものではないが、化合物によっては濃度が濃すぎると化合物間で架橋反応が進行してゲル化などにより、化合物本来の物性が失われるおそれがあるので、化合物の緩衝液を含む溶液の水溶液における50重量%以下が好ましく、より好ましくは30重量%以下であり、さらに好ましくは20重量%以下である。
The moisture content in the present invention is defined by the following equation.
(Volume of water contained in a solution containing a radiation labile compound and a buffer solution in which the compound is dissolved and / or dispersed) / (Radiation labile compound and the compound dissolved and / or dispersed) Solution volume containing buffer solution) x 100 (%)
In the present invention, dissolution of a compound unstable to radiation means that the compound dissolves in a solution containing a buffer solution to form a uniform mixture, that is, a solution. In addition, the dispersion of a compound means that the compound is scattered in a solution containing a buffer solution. The concentration of the compound is not particularly limited, but depending on the compound, if the concentration is too high, the cross-linking reaction proceeds between the compounds and the original physical properties of the compound may be lost due to gelation or the like. It is preferably 50% by weight or less, more preferably 30% by weight or less, and still more preferably 20% by weight or less in an aqueous solution of a solution containing a buffer solution.

本発明における放射線に不安定な化合物は、アミノ酸を構成要素とすることが好ましい。アミノ酸を構成要素としている化合物は、生体適合性が高いことから医療用途に使用する際、安全性が高い。さらにアミノ酸を構成要素としている化合物は生理活性を有しており、それ自身を用いても効果があるものの、医療材料の表面に固定化して用いても効果があり、その用途は限定されるものではない。アミノ酸を構成要素としている化合物とは、天然に存在するアミノ酸を含有する化合物のことであり、例えば、タンパク質やペプチドなどのアミノ酸だけから構成されるものや、糖タンパク質、アミノ酸錯体およびアミノアシルアデニル酸等のアミノ酸とアミノ酸以外のものから構成されるものも挙げられるが、これらに限定されるものではない。   The radiation-labile compound in the present invention preferably contains an amino acid as a constituent element. A compound containing an amino acid as a constituent element has high biocompatibility, and therefore has high safety when used for medical purposes. Furthermore, compounds containing amino acids as a constituent element have physiological activity and are effective even when used on their own, but are also effective when immobilized on the surface of medical materials, and their uses are limited. is not. A compound having an amino acid as a constituent element is a compound containing a naturally occurring amino acid, such as a compound composed only of an amino acid such as a protein or a peptide, a glycoprotein, an amino acid complex, an aminoacyl adenylic acid, or the like. Although what is comprised from a thing other than these amino acids and amino acids is mentioned, It is not limited to these.

血液抗凝固活性を有する化合物とは、血液に化合物を10μg/mlの濃度となるように加えたとき未添加の血液と比較してプロトロンビン時間が30%以上延長するような化合物を指す。プロトロンビン時間の測定は、次の文献に記載の方法で行うことができる。   The compound having blood anticoagulant activity refers to a compound in which the prothrombin time is prolonged by 30% or more when the compound is added to blood so as to have a concentration of 10 μg / ml as compared with unadded blood. The prothrombin time can be measured by the method described in the following document.

金井正光ら、「臨床検査法提要 改訂第30版」、金原出版、1993年、pp.416−418
すなわち、3.2vol%クエン酸ナトリウム1容と血液の9容を混じて、分取したクエン酸血漿0.1mlを小試験管(内径8mm、長さ7.5cm)にとり、37℃恒温水槽に入れ約3分間加熱する。同温度に保温した組織トロンボプラスチン・カルシウム試薬0.2mlを加えると同時に秒時計を始動し軽く振とうし、傾斜させながらフィブリンが析出するまでの時間を測定する。
Masamitsu Kanai et al., “Proposal for Clinical Examination Revised 30th Edition”, Kanehara Publishing, 1993, pp. 416-418
That is, mix 1 volume of 3.2 vol% sodium citrate and 9 volumes of blood, and take 0.1 ml of citrated plasma collected in a small test tube (inner diameter 8 mm, length 7.5 cm) in a 37 ° C. constant temperature water bath. Heat for about 3 minutes. At the same time as adding 0.2 ml of tissue thromboplastin / calcium reagent kept at the same temperature, start the second clock, shake gently, and measure the time until fibrin precipitates while tilting.

また、本発明における放射線に不安定な化合物は、血液抗凝固活性を有する化合物であることが好ましい。一般的に血液は材料と接触すると凝固反応が進行するため、血液と接触する材料、特に長時間血液と接触する材料を医療用途に用いる際には血液の凝固を抑制する必要がある。本発明は血液と接触させて用いる材料の製造を考慮していることから化合物は、血液抗凝固活性を有する化合物であることが好ましい。血液抗凝固活性を有する化合物としては、ヘパリン、ナファモスタットメシレート、クエン酸ナトリウム、シュウ酸ナトリウム、αアンチトリプシン、αマクログロブリン、C1インヒビタ、トロンボモジュリンおよびプロテインC等が挙げられるが、これらに限定されるものではない。血液抗凝固活性を有する化合物として、血液抗凝固活性を有する部分および高分子鎖部分を含む化合物が挙げられ、このような高分子鎖部分として好適には、ポリエチレングリコール残基、ポリビニルピロリドン残基、ポリプロピレングリコール残基、ポリビニルアルコール残基およびそれらを含む共重合体の残基からなる群から選択された高分子鎖が挙げられる。 In addition, the radiation labile compound in the present invention is preferably a compound having blood anticoagulant activity. In general, when blood comes into contact with a material, a coagulation reaction proceeds. Therefore, when a material that comes into contact with blood, particularly a material that comes into contact with blood for a long time, is used for medical purposes, it is necessary to suppress blood coagulation. Since the present invention considers the production of a material to be used in contact with blood, the compound is preferably a compound having blood anticoagulant activity. Examples of the compound having anticoagulant activity, heparin, nafamostat mesylate, sodium citrate, sodium oxalate, alpha 1 antitrypsin, alpha 2 macroglobulin, C1 inhibitor, but thrombomodulin and protein C, etc., in these It is not limited. Examples of the compound having blood anticoagulant activity include a compound having a portion having blood anticoagulant activity and a polymer chain portion. Such a polymer chain portion preferably includes a polyethylene glycol residue, a polyvinylpyrrolidone residue, Examples thereof include a polymer chain selected from the group consisting of a polypropylene glycol residue, a polyvinyl alcohol residue, and a copolymer residue containing them.

また、血液抗凝固活性を有する化合物の中で、トロンビンの活性を抑制することで強力な血液抗凝固作用を示す化合物がある。従って、化合物が抗トロンビン活性を有する化合物であることがより好ましい。本発明における抗トロンビン活性を有する化合物とは、血液中の凝固関連物質であるトロンビンの活性を抑制する化合物のことであり、化合物を10μg/mlの濃度で加えた血漿のHaemoSys社「ECA−Tkit」における測定値が、化合物未添加血漿のものと比較して50%以上増加するような化合物を指す。測定装置は同等の精度で測定できるものであれば、これに限定されるものではない。抗トロンビン活性を有する化合物の例として、下記の化学式で示される4−メトキシ−ベンゼンスルホニル−Asn(PEG2000−Ome)−Pro−4−アミジノベンジルアミド(以下、化合物Aと略す。)、アンチトロンビンIII、およびヒルジンなどが挙げられる。   In addition, among compounds having blood anticoagulant activity, there are compounds that exhibit strong blood anticoagulant activity by suppressing thrombin activity. Accordingly, the compound is more preferably a compound having antithrombin activity. The compound having antithrombin activity in the present invention is a compound that suppresses the activity of thrombin, which is a coagulation-related substance in blood, and plasma of HaemoSys "ECA-Tkit" added with the compound at a concentration of 10 µg / ml. Refers to a compound whose measured value increases by 50% or more compared to that of plasma without compound. The measuring device is not limited to this as long as it can measure with the same accuracy. As examples of compounds having antithrombin activity, 4-methoxy-benzenesulfonyl-Asn (PEG2000-Ome) -Pro-4-amidinobenzylamide (hereinafter abbreviated as Compound A) represented by the following chemical formula, antithrombin III , And hirudin.

Figure 2008206915
Figure 2008206915

(式中、PEGはポリエチレングリコール残基、Meはメチル基を表す。)
以下、実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
(In the formula, PEG represents a polyethylene glycol residue, and Me represents a methyl group.)
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited by these examples.

(抗トロンビン活性値の測定)
放射線に不安定な化合物として化合物Aを用いたので、抗トロンビンの活性を示す指標として抗トロンビン活性値の放射線照射後の残存率を用いた。抗トロンビン活性値の測定には、試薬にHaemoSys社製のECA−Tキットを使用し、装置にTECO Medical Instruments Production社製のCOATRON M1(code 80 800 000)を使用した。先ず、ヒト血漿(コスモバイオHuman Plasma 12271210, lot.16878)80μlに測定対象溶液を20μl加え攪拌した。この溶液をサンプル溶液とする。サンプル溶液は、測定の直前まで氷浴上で冷却しておく。ECA prothrombin buffer 100μl、サンプル溶液30μl、ECA−T substrate 25μlを混合し37℃の温度で60秒間インキュベートし、装置にセッティングした。これにECA ecarin reagent 50μl加えて測定を行った。ブランクの測定対象溶液として超純水を用い調製したサンプルで測定を行った。残存率は下式(1)にて求めた。
(Measurement of antithrombin activity value)
Since compound A was used as a radiation labile compound, the residual ratio after irradiation of the antithrombin activity value was used as an index indicating the activity of antithrombin. For measurement of the antithrombin activity value, an ECA-T kit manufactured by HaemoSys was used as a reagent, and COATRON M1 (code 80 800 000) manufactured by TECO Medical Instruments Production was used as an apparatus. First, 20 μl of the solution to be measured was added to 80 μl of human plasma (Cosmo Bio Human Plasma 12271210, lot.16878) and stirred. This solution is used as a sample solution. The sample solution is cooled on an ice bath until immediately before the measurement. 100 μl of ECA prothrombin buffer, 30 μl of sample solution and 25 μl of ECA-T substrate were mixed, incubated at a temperature of 37 ° C. for 60 seconds, and set in the apparatus. To this, 50 μl of ECA ecarin reagent was added for measurement. Measurement was performed on a sample prepared using ultrapure water as a blank measurement target solution. The residual rate was calculated by the following formula (1).

(緩衝液の調製)
pH5の緩衝液はビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(同仁化学製)と塩化ナトリウム(シグマアルドリッチ製)を超純水に溶解させ、6規定塩酸(シグマアルドリッチ製)を滴下しながらpH5となるように調製した。pHの測定にはガラス電極法を用い、装置はHORIBA製pHメータ カスタニーLAB F−22を用いて測定した。その結果、pHは5.0であった。また、別のpH5の緩衝液として酢酸緩衝液も調製した。酢酸と酢酸ナトリウムを超純水に溶解させ調製した。上記と同法でpHを測定した結果、5.0であった。
(Preparation of buffer)
The pH 5 buffer solution is obtained by dissolving bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (manufactured by Dojin Chemical) and sodium chloride (manufactured by Sigma Aldrich) in ultrapure water, and dropping 6N hydrochloric acid (manufactured by Sigma Aldrich) dropwise. The solution was adjusted to pH 5. The glass electrode method was used for measuring pH, and the apparatus was measured using a HORIBA pH meter Castany LAB F-22. As a result, the pH was 5.0. In addition, an acetate buffer was also prepared as another pH 5 buffer. Acetic acid and sodium acetate were dissolved in ultrapure water and prepared. It was 5.0 as a result of measuring pH by the same method as the above.

pH7.8と10の緩衝液はトリスヒドロキシメチルアミノメタン(片山化学株式会社製)と塩化ナトリウム(シグマアルドリッチ製)を超純水に溶解させ、6規定塩酸(シグマアルドリッチ製)を滴下しながら各pHとなるように調製した。pHの測定はpH5の緩衝液と同法を用いた。その結果、pHはそれぞれ7.8、10.0であった。   The pH 7.8 and 10 buffer solutions were prepared by dissolving trishydroxymethylaminomethane (manufactured by Katayama Chemical Co., Ltd.) and sodium chloride (manufactured by Sigma-Aldrich) in ultrapure water, and dropping 6N hydrochloric acid (manufactured by Sigma-Aldrich) dropwise. The pH was adjusted. The pH was measured using the same method as the pH 5 buffer. As a result, the pH was 7.8 and 10.0, respectively.

(実施例1)
化合物Aを超純水に溶解して濃度5000重量ppmの化合物A水溶液を調製した。該化合物A水溶液、超純水、イソプロパノール(シグマアルドリッチ製)、2倍濃度のpH5の緩衝液を表1に記載の容量で混合した。該化合物A緩衝液にγ線を照射した。このときγ線の吸収線量は25kGyであった。放射線照射前の化合物A緩衝液および放射線照射後の化合物A緩衝液の抗トロンビン活性値を測定し、次式(1)から、抗トロンビン活性値の残存率を計算した。その結果、イソプロパノール分率が0.1、1、10、50%の時の抗トロンビン残存率は各々15.3、19.4、37.8、76.8%であった。
A=100×(B−D)/(C−D) 式(1)
式(1)中の記号
A:抗トロンビン活性残存率(%)
B:放射線照射後のサンプル測定値(sec)
C:放射線照射前のサンプル測定値(sec)
D:ブランク測定値(sec)。
(Example 1)
Compound A was dissolved in ultrapure water to prepare a Compound A aqueous solution having a concentration of 5000 ppm by weight. The aqueous solution of Compound A, ultrapure water, isopropanol (manufactured by Sigma-Aldrich), and a buffer solution having a double concentration of pH 5 were mixed in the volumes shown in Table 1. The compound A buffer was irradiated with γ rays. At this time, the absorbed dose of γ rays was 25 kGy. The antithrombin activity values of the compound A buffer before irradiation and the compound A buffer after irradiation were measured, and the residual ratio of the antithrombin activity value was calculated from the following equation (1). As a result, when the isopropanol fraction was 0.1, 1, 10, and 50%, the antithrombin residual ratios were 15.3, 19.4, 37.8, and 76.8%, respectively.
A = 100 × (BD) / (CD) Formula (1)
Symbol in formula (1) A: Antithrombin activity remaining rate (%)
B: Sample measured value after irradiation (sec)
C: Sample measurement value before irradiation (sec)
D: Blank measurement value (sec).

(実施例2)
化合物Aを超純水に溶解して濃度5000重量ppmの化合物A水溶液を調製した。該化合物A水溶液、超純水、イソプロパノール(シグマアルドリッチ製)、2倍濃度のpH7.8の緩衝液を表1に記載の容量で混合した。該化合物A緩衝液にγ線を照射した。このときγ線の吸収線量は25kGyであった。放射線照射前の化合物A緩衝液および放射線照射後の化合物A緩衝液の抗トロンビン活性値を測定し、上記の式(1)から、抗トロンビン活性値の残存率を計算した。その結果、イソプロパノール分率が0.1、1、10、50%の時の抗トロンビン残存率は各々12.9、13.6、17.6、66.4%であった。
(Example 2)
Compound A was dissolved in ultrapure water to prepare a Compound A aqueous solution having a concentration of 5000 ppm by weight. The aqueous solution of Compound A, ultrapure water, isopropanol (manufactured by Sigma Aldrich), and a buffer solution of pH 7.8 having a double concentration were mixed in the volumes shown in Table 1. The compound A buffer was irradiated with γ rays. At this time, the absorbed dose of γ rays was 25 kGy. The antithrombin activity values of the compound A buffer before irradiation and the compound A buffer after irradiation were measured, and the residual ratio of the antithrombin activity value was calculated from the above formula (1). As a result, when the isopropanol fraction was 0.1, 1, 10, and 50%, the antithrombin residual rates were 12.9, 13.6, 17.6, and 66.4%, respectively.

(比較例1)
化合物Aを超純水に溶解して濃度5000重量ppmの化合物A水溶液を調製した。該化合物A水溶液、超純水、イソプロパノール(シグマアルドリッチ製)、2倍濃度のpH10の緩衝液を表1に記載の容量で混合した。該化合物A緩衝液にγ線を照射した。このときγ線の吸収線量は25kGyであった。放射線照射前の化合物A緩衝液および放射線照射後の化合物A緩衝液の抗トロンビン活性値を測定し、上記の式(1)から、抗トロンビン活性値の残存率を計算した。その結果、イソプロパノール分率が0.1、1、10、50%の時の抗トロンビン残存率は各々2.1、2.4、1.5、4.8%であった。
(Comparative Example 1)
Compound A was dissolved in ultrapure water to prepare a Compound A aqueous solution having a concentration of 5000 ppm by weight. The aqueous solution of Compound A, ultrapure water, isopropanol (manufactured by Sigma Aldrich), and a buffer solution having a double concentration of pH 10 were mixed in the volumes shown in Table 1. The compound A buffer was irradiated with γ rays. At this time, the absorbed dose of γ rays was 25 kGy. The antithrombin activity values of the compound A buffer before irradiation and the compound A buffer after irradiation were measured, and the residual ratio of the antithrombin activity value was calculated from the above formula (1). As a result, when the isopropanol fraction was 0.1, 1, 10, 50%, the antithrombin residual ratios were 2.1, 2.4, 1.5, and 4.8%, respectively.

Figure 2008206915
Figure 2008206915

本発明は、放射線に対して不安定な生理活性を有する化合物を、その活性を維持しつつ放射線滅菌する方法であり、抗酸化剤を用いることなく滅菌が可能で有害な抗酸化剤分解物のリスクを減らすことが期待できる。また、pH変動を抑えられることから放射線に対して不安定な生理活性を有する化合物の生理活性の低下を抑えることができる。このように、本発明によれば、種々の放射線に対して不安定な生理活性物質を、変性を抑制しつつ滅菌することが可能である。   The present invention is a method of radiation sterilizing a compound having physiological activity unstable to radiation while maintaining its activity, and can be sterilized without using an antioxidant and is a harmful antioxidant decomposition product. It can be expected to reduce the risk. Moreover, since the pH fluctuation can be suppressed, it is possible to suppress a decrease in physiological activity of a compound having physiological activity unstable to radiation. Thus, according to the present invention, it is possible to sterilize physiologically active substances that are unstable to various radiations while suppressing denaturation.

Claims (13)

放射線に対して不安定な化合物をpH3以上10未満の緩衝液を含む溶液に溶解および/または分散させた状態で放射線を照射することを特徴とする化合物の滅菌方法。   A method for sterilizing a compound, comprising irradiating a compound unstable to radiation with radiation in a state of being dissolved and / or dispersed in a solution containing a buffer solution having a pH of 3 or more and less than 10. 該緩衝液を含む溶液が有機溶媒を含有することを特徴とする請求項1記載の化合物の滅菌方法。   2. The method for sterilizing a compound according to claim 1, wherein the solution containing the buffer contains an organic solvent. 該緩衝液のpHが4以上9以下であることを特徴とする請求項1または2記載の化合物の滅菌方法。   The method for sterilizing a compound according to claim 1 or 2, wherein the pH of the buffer solution is 4 or more and 9 or less. 該緩衝液のpHが5以上8以下であることを特徴とする請求項1〜3のいずれかに記載の化合物の滅菌方法。   The method for sterilizing a compound according to any one of claims 1 to 3, wherein the pH of the buffer solution is 5 or more and 8 or less. 該有機溶媒が水酸基を含有し、少なくとも一つが2級または3級の水酸基であることを特徴とする請求項1〜4のいずれかに記載の化合物の滅菌方法。   The method for sterilizing a compound according to any one of claims 1 to 4, wherein the organic solvent contains a hydroxyl group, and at least one is a secondary or tertiary hydroxyl group. 該放射線に対して不安定な化合物がアミノ酸を構成要素とするものであることを特徴とする請求項1〜5のいずれかに記載の化合物の滅菌方法。   The method for sterilizing a compound according to any one of claims 1 to 5, wherein the compound unstable to radiation comprises an amino acid as a constituent element. 該放射線に対して不安定な化合物が血液抗凝固活性を有することを特徴とする請求項1〜6のいずれかに記載の化合物の滅菌方法。   The method for sterilizing a compound according to any one of claims 1 to 6, wherein the compound unstable to radiation has blood anticoagulant activity. 該血液抗凝固活性を有する化合物が血液抗凝固活性を有する部分および高分子鎖部分を含むことを特徴とする請求項1〜7のいずれかに記載の化合物の滅菌方法。   The method for sterilizing a compound according to any one of claims 1 to 7, wherein the compound having blood anticoagulant activity comprises a portion having blood anticoagulant activity and a polymer chain portion. 該高分子鎖部分がポリエチレングリコール残基、ポリビニルピロリドン残基、ポリプロピレングリコール残基、ポリビニルアルコール残基およびそれらのいずれかの共重合体の残基から選ばれる少なくともひとつを含むことを特徴とする請求項8に記載の化合物の滅菌方法。   The polymer chain portion contains at least one selected from a polyethylene glycol residue, a polyvinyl pyrrolidone residue, a polypropylene glycol residue, a polyvinyl alcohol residue, and a residue of any copolymer thereof. Item 9. A method for sterilizing a compound according to Item 8. 該放射線に対して不安定な化合物が抗トロンビン活性を有することを特徴とする請求項7〜9のいずれかに記載の化合物の滅菌方法。   10. The method for sterilizing a compound according to any one of claims 7 to 9, wherein the compound unstable to radiation has antithrombin activity. 請求項1〜10のいずれかに記載の化合物の滅菌方法を用いて該放射線に対して不安定な化合物を基材に固定化させることを特徴とする医療材料の製造方法。   A method for producing a medical material, wherein the compound unstable to radiation is immobilized on a substrate using the method for sterilizing a compound according to any one of claims 1 to 10. 請求項11に記載の医療材料を容器に内蔵することを特徴とする医療用具の製造方法。   A method for producing a medical device, comprising incorporating the medical material according to claim 11 in a container. 該医療用具が人工腎臓であることを特徴とする請求項12に記載の医療用具の製造方法。   The method for producing a medical device according to claim 12, wherein the medical device is an artificial kidney.
JP2007048838A 2007-02-28 2007-02-28 Method for sterilizing compound and method for producing medical material using the same Expired - Fee Related JP5327826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048838A JP5327826B2 (en) 2007-02-28 2007-02-28 Method for sterilizing compound and method for producing medical material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048838A JP5327826B2 (en) 2007-02-28 2007-02-28 Method for sterilizing compound and method for producing medical material using the same

Publications (3)

Publication Number Publication Date
JP2008206915A true JP2008206915A (en) 2008-09-11
JP2008206915A5 JP2008206915A5 (en) 2010-04-02
JP5327826B2 JP5327826B2 (en) 2013-10-30

Family

ID=39783721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048838A Expired - Fee Related JP5327826B2 (en) 2007-02-28 2007-02-28 Method for sterilizing compound and method for producing medical material using the same

Country Status (1)

Country Link
JP (1) JP5327826B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507213A (en) * 2009-10-13 2013-03-04 バイエル・ファルマ・アクチェンゲゼルシャフト Method for inactivating undesirable contaminants in medical leech extract
KR101322712B1 (en) 2011-09-01 2013-10-28 한국원자력연구원 Hygienic method of flower by combined treatment of irradiation with ethanol
JP2014062060A (en) * 2012-09-20 2014-04-10 Nihon Denshi Shosha Service Kk Chlorhexidine gluconate formulation, disinfection kit and method of sterilization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224363A (en) * 1986-03-27 1987-10-02 鐘淵化学工業株式会社 Sterilization of adsorbent
JP2005323652A (en) * 2004-05-12 2005-11-24 Asahi Kasei Medical Co Ltd Irradiation-sterilizing method for cell adsorbing material, and cell adsorbing material which is irradiation-sterilized
WO2006061990A1 (en) * 2004-12-06 2006-06-15 Menicon Co., Ltd. Liquid agent composition for contact lens
JP2006191863A (en) * 2005-01-14 2006-07-27 Menicon Co Ltd Stabilized enzyme composition
JP2006291193A (en) * 2005-03-17 2006-10-26 Toray Ind Inc Reformed substrate and manufacturing method thereof
JP2006289071A (en) * 2005-03-18 2006-10-26 Toray Ind Inc Sterilization method for compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224363A (en) * 1986-03-27 1987-10-02 鐘淵化学工業株式会社 Sterilization of adsorbent
JP2005323652A (en) * 2004-05-12 2005-11-24 Asahi Kasei Medical Co Ltd Irradiation-sterilizing method for cell adsorbing material, and cell adsorbing material which is irradiation-sterilized
WO2006061990A1 (en) * 2004-12-06 2006-06-15 Menicon Co., Ltd. Liquid agent composition for contact lens
JP2006191863A (en) * 2005-01-14 2006-07-27 Menicon Co Ltd Stabilized enzyme composition
JP2006291193A (en) * 2005-03-17 2006-10-26 Toray Ind Inc Reformed substrate and manufacturing method thereof
JP2006289071A (en) * 2005-03-18 2006-10-26 Toray Ind Inc Sterilization method for compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507213A (en) * 2009-10-13 2013-03-04 バイエル・ファルマ・アクチェンゲゼルシャフト Method for inactivating undesirable contaminants in medical leech extract
JP2016104123A (en) * 2009-10-13 2016-06-09 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Inactivation method for unwanted contaminant in medical leech extract
KR101322712B1 (en) 2011-09-01 2013-10-28 한국원자력연구원 Hygienic method of flower by combined treatment of irradiation with ethanol
JP2014062060A (en) * 2012-09-20 2014-04-10 Nihon Denshi Shosha Service Kk Chlorhexidine gluconate formulation, disinfection kit and method of sterilization

Also Published As

Publication number Publication date
JP5327826B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
EP2072070B1 (en) Substrate and method for production thereof
JP5105734B2 (en) Stable thrombin composition
JP2006291193A (en) Reformed substrate and manufacturing method thereof
JP5343377B2 (en) Substrate and method for producing the same
RU2539566C2 (en) Hydrophilic polymer compound possessing anticoagulation effect
JP5327826B2 (en) Method for sterilizing compound and method for producing medical material using the same
JP5320941B2 (en) Method for producing membrane for biocomponent contact application
EP3845573B1 (en) Copolymer and medical material containing the same
JP2006289071A (en) Sterilization method for compound
JP2008206914A (en) Sterilization method for compound and manufacturing method of medical material using it
KR101342198B1 (en) Modified substrate and process for production thereof
Kung et al. The effect of covalently bonded conjugated linoleic acid on the reduction of oxidative stress and blood coagulation for polysulfone hemodialyzer membrane
KR102583766B1 (en) Separators for blood collection tubes
JPWO2015093160A1 (en) Separation membrane for blood treatment and blood treatment device comprising the same
JPWO2007010961A1 (en) Modified substrate and production method thereof
WO2008032400A1 (en) Process for producing modified substrate
Alula et al. Preparation characterization and blood compatibility studies of silk fibroin/gelatin/curcumin injectable hydrogels
CN111454408B (en) Pre-radiation grafting synthesis method of nano oxide-based blood rapid coagulant
Chuang et al. The effect of calcium ions on the properties of factor IX and its activated form
JPH08105885A (en) Blood coagulation accelerating agent, blood coagulation accelerating method, and blood inspection container
JP2952351B1 (en) Ceramic having excellent blood compatibility and method for producing the same
RU2473913C1 (en) METHOD FOR PREPARING WEAKLY POSITIVE REFERENCE SERUM CONTAINING AD AND AY SUBTYPES OF HBsAg
JP2005239761A (en) Modified substrate
Mamadalievich Influence Of Nanoporous Carbon Hemosorbent On Blood Collection System
CN117165580A (en) Composition for stabilizing nucleic acid in sample, preparation method and application thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120313

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

LAPS Cancellation because of no payment of annual fees