JP2008204923A - Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing above nonaqueous electrolyte - Google Patents

Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing above nonaqueous electrolyte Download PDF

Info

Publication number
JP2008204923A
JP2008204923A JP2007042948A JP2007042948A JP2008204923A JP 2008204923 A JP2008204923 A JP 2008204923A JP 2007042948 A JP2007042948 A JP 2007042948A JP 2007042948 A JP2007042948 A JP 2007042948A JP 2008204923 A JP2008204923 A JP 2008204923A
Authority
JP
Japan
Prior art keywords
group
mass
compound
electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007042948A
Other languages
Japanese (ja)
Other versions
JP5080101B2 (en
Inventor
Tetsuya Murai
村井  哲也
Akio Hibara
昭男 檜原
Takashi Hayashi
剛史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Mitsui Chemicals Inc
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Sanyo Electric Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Mitsui Chemicals Inc
Priority to JP2007042948A priority Critical patent/JP5080101B2/en
Publication of JP2008204923A publication Critical patent/JP2008204923A/en
Application granted granted Critical
Publication of JP5080101B2 publication Critical patent/JP5080101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide nonaqueous electrolyte with electrode expansion restrained and having excellent charge/discharge cycle life, and a nonaqueous electrolyte secondary battery. <P>SOLUTION: The nonaqueous electrolyte contains a compound (A) expressed in a formula given. In the formula, X is hydrogen, a halogen, an isocyanate group, a hydrocarbon group which may contain a hetero element, a halogenated hydrocarbon group, and a base compound itself of the compound (A). Y is a substituent selected from an oxy group, a carbonyl group, an oxycarbonyl group, a carbonate group, a sulfide group, a sulfonyl group, a sulfite group, a phosphate group, a boric acid ester group, an amide group, or the like, m is 0 or 1, n is an integer from 0 to 5, and R1, R2 express hydrogen, a hydrocarbon group, or a fluoroalkyl group, at least either being a fluoroalkyl group. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解質、及び該非水電解質を含み、ビデオカメラ,モバイルコンピュータ,携帯電話機等の主として携帯電子機器の電源として利用される充放電可能な非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery that includes the non-aqueous electrolyte and is used mainly as a power source for portable electronic devices such as video cameras, mobile computers, and mobile phones.

非水電解質を含む電池は、高電圧であり、かつ高エネルギー密度を有し、また貯蔵安定性等の信頼性も高いので、民生用電子機器の電源として広く用いられている。
非水電解質を含む電池の代表例として、リチウム電池及びリチウムイオン二次電池が挙げられる。これらの電池は、金属リチウム又はリチウムの吸蔵・放出が可能である活物質からなる負極と、遷移金属酸化物、弗化黒鉛、及びリチウムと遷移金属との複合酸化物等からなる正極と、非水電解質とを有する。
非水電解質は、非プロトン性有機溶媒にLiBF4、LiPF6、LiClO4、LiA
sF6、LiCF3SO3、Li2SiF6等のLi電解質を混合してなる溶液である。
A battery containing a non-aqueous electrolyte is widely used as a power source for consumer electronic devices because it has a high voltage, a high energy density, and high reliability such as storage stability.
As a typical example of a battery containing a nonaqueous electrolyte, a lithium battery and a lithium ion secondary battery can be given. These batteries include a negative electrode made of metal lithium or an active material capable of occluding and releasing lithium, a positive electrode made of transition metal oxide, fluorinated graphite, a composite oxide of lithium and transition metal, and the like. A water electrolyte.
The non-aqueous electrolyte is LiBF 4 , LiPF 6 , LiClO 4 , LiA in an aprotic organic solvent.
It is a solution obtained by mixing a Li electrolyte such as sF 6 , LiCF 3 SO 3 , Li 2 SiF 6 or the like.

非水電解質二次電池において、非水電解質は正極と負極との間のイオンの受け渡しを行う。電池の充放電特性を高めるためには正極と負極との間のイオンの受け渡し速度を出来るだけ速くする必要があり、電解質のイオン伝導度を高くしたり、電解質の粘度を低くしたりして、拡散による物質移動を起こりやすくする必要がある。また、非水電解質は、電池の保存性、及び充放電を繰り返した場合のサイクル安定性を高めるために、化学的、電気化学的に反応性が高い正極及び負極に対して安定である必要がある。
このような要件を満たす電解質として、非特許文献1には、プロピレンカーボネート、エチレンカーボネート等の高誘電率カーボネート溶媒、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート等の低粘度カーボネート溶媒にLiPF6等の
リチウム塩を溶解したものが示されている。
In the nonaqueous electrolyte secondary battery, the nonaqueous electrolyte transfers ions between the positive electrode and the negative electrode. In order to improve the charge / discharge characteristics of the battery, it is necessary to increase the ion transfer speed between the positive electrode and the negative electrode as much as possible, increase the ionic conductivity of the electrolyte, decrease the viscosity of the electrolyte, It is necessary to facilitate mass transfer due to diffusion. In addition, the non-aqueous electrolyte needs to be stable with respect to the positive electrode and the negative electrode that are chemically and electrochemically reactive in order to improve the storage stability of the battery and the cycle stability when charging and discharging are repeated. is there.
As an electrolyte satisfying such requirements, Non-Patent Document 1 includes a high dielectric constant carbonate solvent such as propylene carbonate and ethylene carbonate, a low viscosity carbonate solvent such as diethyl carbonate, methyl ethyl carbonate, and dimethyl carbonate, and lithium such as LiPF 6. The salt dissolved is shown.

非水電解質二次電池の高エネルギー密度化に伴い、電池中に含有される電解質の量が相対的に少なくなるために、上述したような電解質を使用しても、化学的、電気化学的に反応性が高い電極に対する安定性が不十分になり、電池の保存性、及び充放電サイクル寿命特性等の充放電サイクル特性が不十分になるという問題があった。
これらの性能を改善するために、電極表面を安定化する機能を有する添加剤を非水電解質に添加することが行われている。このような添加剤として、ビニレンカーボネート等の炭素炭素不飽和結合を有する炭酸エステル化合物、1,3−プロパンスルトン、亜硫酸エチレン、硫酸エチレン等の硫酸エステル化合物が特許文献1乃至3に開示されている。
ジーン・ポール(Jean Paul),ガバノ(Gabano)編「リチウム バッテリ(Lithium Battery)」,アカデミック・プレス(ACADEMIC PRESS),1983 特開平08−045545号公報 特開2002−329528号公報 特開平10−189042号公報
With the increase in energy density of non-aqueous electrolyte secondary batteries, the amount of electrolyte contained in the battery becomes relatively small. Therefore, even if the electrolyte as described above is used, it is chemically and electrochemically used. There was a problem that the stability with respect to the electrode having high reactivity was insufficient, and the storage stability of the battery and the charge / discharge cycle characteristics such as the charge / discharge cycle life characteristics became insufficient.
In order to improve these performances, an additive having a function of stabilizing the electrode surface is added to the nonaqueous electrolyte. As such additives, carbonate compounds having a carbon-carbon unsaturated bond such as vinylene carbonate, and sulfate compounds such as 1,3-propane sultone, ethylene sulfite, and ethylene sulfate are disclosed in Patent Documents 1 to 3. .
Jean Paul, edited by Gabano “Lithium Battery”, ACADEMIC PRESS, 1983 Japanese Patent Application Laid-Open No. 08-045545 JP 2002-329528 A JP-A-10-189042

しかしながら、最近の非水電解質二次電池のさらなる高エネルギー密度化に伴い、前記添加剤を非水電解質に含有させても、電池の保存性及び充放電サイクル特性が不十分であるという問題があった。特に、低温で、又は常温で充放電を繰り返した場合に、電池厚みが増大し、使用電子機器への電池の装着性が悪くなったり、充放電サイクルの容量保持率が低下し、すなわち充放電サイクル寿命が短くなるという問題が発生していた。   However, with the recent increase in energy density of non-aqueous electrolyte secondary batteries, there has been a problem that even if the additive is contained in the non-aqueous electrolyte, the storage stability and charge / discharge cycle characteristics of the battery are insufficient. It was. In particular, when charging / discharging is repeated at a low temperature or at a normal temperature, the battery thickness increases, the battery mounting property to the electronic device used deteriorates, or the capacity retention rate of the charging / discharging cycle decreases, that is, charging / discharging. There was a problem that the cycle life was shortened.

本発明は斯かる事情に鑑みてなされたものであり、下記化1の化合物(A)を含有することにより、非水電解質二次電池を作製した場合に、電池が高エネルギー密度化されても、低温及び常温で充放電を繰り返したときの電極の膨れが抑制されており、充放電サイクル寿命特性が良好である非水電解質を提供することを目的とする。   The present invention has been made in view of such circumstances, and even when the non-aqueous electrolyte secondary battery is produced by containing the compound (A) of the following chemical formula 1, even if the battery has a high energy density, An object of the present invention is to provide a non-aqueous electrolyte in which swelling of an electrode when charging / discharging is repeated at low temperature and normal temperature is suppressed and charge / discharge cycle life characteristics are good.

また、本発明は、総質量に対し、前記化合物(A)を0.001質量%以上5質量%以下含有することにより、非水電解質二次電池を作製した場合に、低温及び常温で充放電を繰り返したときの電極の膨れがさらに抑制され、充放電サイクル寿命特性がさらに良好である非水電解質を提供することを目的とする。   Further, in the present invention, when the non-aqueous electrolyte secondary battery is produced by containing 0.001% by mass to 5% by mass of the compound (A) with respect to the total mass, charging and discharging are performed at a low temperature and a normal temperature. An object of the present invention is to provide a nonaqueous electrolyte in which the swelling of the electrode when the above is repeated is further suppressed, and the charge / discharge cycle life characteristics are further improved.

そして、本発明は、前記化合物(A)に加え、炭素炭素不飽和結合を有する炭酸エステル化合物(B)をさらに含有することにより、非水電解質二次電池を作製した場合に、常温で充放電を繰り返したときの電極の膨れがさらに抑制され、充放電サイクル寿命特性がさらに良好である非水電解質を提供することを目的とする。   And this invention is charging / discharging at normal temperature, when a nonaqueous electrolyte secondary battery is produced by further containing the carbonic acid ester compound (B) which has a carbon-carbon unsaturated bond in addition to the said compound (A). An object of the present invention is to provide a nonaqueous electrolyte in which the swelling of the electrode when the above is repeated is further suppressed, and the charge / discharge cycle life characteristics are further improved.

さらに、本発明は、前記化合物(A)に加え、硫酸エステル化合物(C)を非水電解質にさらに含有することにより、非水電解質二次電池を作製した場合に、常温で充放電を繰り返したときの電極の膨れがさらに抑制され、充放電サイクル寿命特性がさらに良好である非水電解質を提供することを目的とする。   Furthermore, in the present invention, when a nonaqueous electrolyte secondary battery was produced by further containing a sulfate ester compound (C) in addition to the compound (A), charging and discharging were repeated at room temperature. An object of the present invention is to provide a non-aqueous electrolyte in which the swelling of the electrode is further suppressed and the charge / discharge cycle life characteristics are further improved.

また、本発明は、上述のいずれかの非水電解質を含むことにより、電池の保存性及び充放電サイクル特性が良好であり、特に、低温及び常温における充放電サイクル寿命特性が良好であり、膨れが抑制され、使用電子機器への装着性が悪くなることが抑制されている非水電解質二次電池を提供することを目的とする。   In addition, since the present invention contains any of the above non-aqueous electrolytes, the battery has good storage stability and charge / discharge cycle characteristics, in particular, good charge / discharge cycle life characteristics at low temperatures and normal temperatures, and swelling. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that is suppressed from being deteriorated and is less likely to be attached to an electronic device.

本発明者は、前記課題を解決するために鋭意検討を行なった結果、下記化合物を含有する非水電解質を使用することにより、前記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、第1発明に係る非水電解質は、下記化1の化合物(A)を含有することを特徴とする。
As a result of intensive studies to solve the above problems, the present inventor has found that the above problems can be solved by using a non-aqueous electrolyte containing the following compound, and has completed the present invention.
That is, the nonaqueous electrolyte according to the first invention is characterized by containing the compound (A) represented by the following chemical formula (1).

Figure 2008204923
Figure 2008204923

(式中、Xは、水素、ハロゲン基、イソシアネート基、ヘテロ元素を含み得る炭化水素基,及びハロゲン化炭化水素基を表し、また、化合物(A)の母化合物自体も含む。そして、Yは、オキシ基、カルボニル基、カルボニルオキシ基、カーボネート基、スルフィド基、スルフィニル基、スルホニル基、スルホニルオキシ基、亜硫酸エステル基、硫酸エステル基、リン酸エステル基、ホウ酸エステル基、並びにアミド基からなる群から選択される置換基である。mは0又は1である。nは0〜5の整数である。nが2以上の場合は、Xは互いに同一であっても異なっていてもよい。
さらに、R1、R2は、水素、炭化水素基、又はフルオロアルキル基を表し、少なくとも一方はフルオロアルキル基である。)
(In the formula, X represents hydrogen, a halogen group, an isocyanate group, a hydrocarbon group that may contain a hetero element, and a halogenated hydrocarbon group, and also includes the mother compound itself of the compound (A). , Oxy group, carbonyl group, carbonyloxy group, carbonate group, sulfide group, sulfinyl group, sulfonyl group, sulfonyloxy group, sulfite group, sulfate group, phosphate group, borate group, and amide group It is a substituent selected from the group, m is 0 or 1. n is an integer of 0 to 5. When n is 2 or more, Xs may be the same or different.
Furthermore, R1 and R2 represent hydrogen, a hydrocarbon group, or a fluoroalkyl group, and at least one is a fluoroalkyl group. )

本発明においては、非水電解質に前記化合物(A)を添加しているので、この非水電解質を用いて非水電解質二次電池を作製した場合に、低温及び常温で充放電を繰り返したときに電極の厚みが増加するのが抑制され、充放電サイクル寿命特性が良好であり、高エネルギー密度化した電池においても、電子機器への装着性が悪くなったり、電池の寿命が短くなることが抑制されている。
このような効果が得られる詳細な理由は不明であるが、化合物(A)が電極の表面に作用することで、電極と電解質との界面抵抗が低減し、負極における析出物の発生が減じるので、容量保持率が良好になるとともに、負極における堆積物の量が減じて負極板の膨れが減じ、電池厚みの増加が抑制されると考えられる。この効果は化合物(A)の添加により初めて発現される。
In the present invention, since the compound (A) is added to the non-aqueous electrolyte, when a non-aqueous electrolyte secondary battery is produced using this non-aqueous electrolyte, when charging and discharging are repeated at low and normal temperatures The increase in the electrode thickness is suppressed, the charge / discharge cycle life characteristics are good, and even in a battery with a high energy density, the mounting property to an electronic device is deteriorated or the life of the battery is shortened. It is suppressed.
Although the detailed reason why such an effect is obtained is unknown, since the compound (A) acts on the surface of the electrode, the interface resistance between the electrode and the electrolyte is reduced, and the generation of precipitates in the negative electrode is reduced. It is considered that the capacity retention ratio is improved, the amount of deposits in the negative electrode is reduced, the swelling of the negative electrode plate is reduced, and the increase in battery thickness is suppressed. This effect is first manifested by the addition of compound (A).

第2発明に係る非水電解質は、第1発明において、総質量に対し、前記化合物(A)を0.001質量%以上5質量%以下含有することを特徴とする。   The non-aqueous electrolyte according to the second invention is characterized in that, in the first invention, the compound (A) is contained in an amount of 0.001% by mass to 5% by mass with respect to the total mass.

本発明においては、非水電解質の総質量に対し化合物(A)を0.001質量%以上5質量%以下含有するので、この非水電解質を用いて非水電解質二次電池を作製した場合に、低温及び常温で充放電を繰り返したときの電極の膨れの抑制効果がより良好であり、充放電サイクル寿命特性がさらに良好である。   In the present invention, since the compound (A) is contained in an amount of 0.001% by mass to 5% by mass with respect to the total mass of the nonaqueous electrolyte, a nonaqueous electrolyte secondary battery is produced using this nonaqueous electrolyte. Further, the effect of suppressing the swelling of the electrode when charging / discharging is repeated at low temperature and normal temperature is better, and the charge / discharge cycle life characteristics are even better.

第3発明に係る非水電解質は、第1又は第2発明において、炭素炭素不飽和結合を有する炭酸エステル化合物(B)をさらに含有することを特徴とする。   The nonaqueous electrolyte according to the third invention is characterized in that, in the first or second invention, the nonaqueous electrolyte further contains a carbonic acid ester compound (B) having a carbon-carbon unsaturated bond.

本発明においては、非水電解質に、化合物(A)に加えて前記炭酸エステル化合物(B)を添加しており、この非水電解質を用いて非水電解質二次電池を作製した場合に、常温で充放電を繰り返したときの電極の膨れがさらに抑制され、充放電サイクル寿命特性がさらに良好になる。   In the present invention, the carbonic acid ester compound (B) is added to the nonaqueous electrolyte in addition to the compound (A), and when a nonaqueous electrolyte secondary battery is produced using this nonaqueous electrolyte, When the charging and discharging are repeated, the swelling of the electrode is further suppressed, and the charge / discharge cycle life characteristics are further improved.

第4発明に係る非水電解質は、第1乃至第3発明のいずれかにおいて、硫酸エステル化合物(C)をさらに含有することを特徴とする。   The nonaqueous electrolyte according to the fourth invention is characterized in that in any one of the first to third inventions, the non-aqueous electrolyte further contains a sulfate ester compound (C).

本発明においては、非水電解質に、化合物(A)に加えて硫酸エステル化合物(C)を添加しており、この非水電解質を用いて非水電解質二次電池を作製した場合に、常温で充放電を繰り返したときの電極の膨れがさらに抑制され、充放電サイクル寿命特性がさらに良好になる。
また、非水電解質に化合物(A)に加えて、前記炭酸エステル化合物(B)及び硫酸エステル化合物(C)を組み合わせて添加した場合に、この非水電解質を用いて非水電解質二次電池を作製したとき、常温における充放電サイクル寿命特性がさらに良好になる。
In the present invention, in addition to the compound (A), the sulfate ester compound (C) is added to the non-aqueous electrolyte, and when a non-aqueous electrolyte secondary battery is produced using this non-aqueous electrolyte, at room temperature. When the charge / discharge is repeated, the swelling of the electrode is further suppressed, and the charge / discharge cycle life characteristics are further improved.
In addition, in addition to the compound (A) in addition to the compound (A), when the carbonate ester compound (B) and the sulfate ester compound (C) are added in combination, a nonaqueous electrolyte secondary battery is manufactured using this nonaqueous electrolyte. When produced, the charge / discharge cycle life characteristics at room temperature are further improved.

第5発明に係る非水電解質二次電池は、第1乃至第4発明のいずれかの非水電解質を含むことを特徴とする。   A nonaqueous electrolyte secondary battery according to a fifth invention includes the nonaqueous electrolyte according to any one of the first to fourth inventions.

本発明においては、第1乃至第4発明のいずれかの非水電解質を含むので、電池の保存性及び充放電サイクル特性が良好であり、特に、低温又は常温の充放電サイクル寿命特性が良好であり、膨れが抑制され、使用電子機器への装着性が悪くなることが抑制されている。   In the present invention, since the nonaqueous electrolyte according to any one of the first to fourth inventions is included, the storage stability and charge / discharge cycle characteristics of the battery are good, and in particular, the charge / discharge cycle life characteristics at low temperature or normal temperature are good. Yes, swelling is suppressed, and deterioration of the mounting property to the used electronic device is suppressed.

本発明の非水電解質によれば、この非水電解質を用いて非水電解質二次電池を作製した場合に、低温及び常温における充放電サイクル中の電極の厚みの増加が抑制され、充放電サイクル寿命特性が良好である非水電解質二次電池が得られる。   According to the non-aqueous electrolyte of the present invention, when a non-aqueous electrolyte secondary battery is produced using this non-aqueous electrolyte, an increase in the thickness of the electrode during the charge / discharge cycle at a low temperature and a normal temperature is suppressed, and the charge / discharge cycle A non-aqueous electrolyte secondary battery having good life characteristics can be obtained.

本発明の非水電解質二次電池によれば、低温及び常温における充放電サイクル中に電池厚みの増加が抑制されており、充放電サイクル寿命特性が良好である。   According to the nonaqueous electrolyte secondary battery of the present invention, the increase in battery thickness is suppressed during the charge / discharge cycle at low temperature and room temperature, and the charge / discharge cycle life characteristics are good.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
本発明の非水電解質二次電池(以下、電池と称す)は、正極、負極、セパレータ及び非水電解質とを有する。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
The nonaqueous electrolyte secondary battery (hereinafter referred to as a battery) of the present invention has a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte.

(1)非水電解質
本発明に係る非水電解質は、上記化1に示される化合物(A)を含有する。
化合物(A)において、R1、R2の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等のアルキル基、フェニル基、トリル基等の芳香族炭化水素基等が例示される。フルオロアルキル基としては、トリフルオロメチル基、ジフルオロメチル基、フルオロメチル基、ペンタフルオロエチル基、1,1,2,2-テトラフルオロエチル基、2,2,2-トリフルオロエチル基、2,2-ジフルオロエチル基、2-フルオロエチル基、ヘプタフルオロプロピル基等が例示される。
これらのうち、本発明の効果の良好な発現、及び負極への化学的安定性という観点から、R1、R2ともにフルオロアルキル基であることが好ましく、トリフルオロメチル基であることがさらに好ましい。
(1) Nonaqueous electrolyte The nonaqueous electrolyte which concerns on this invention contains the compound (A) shown by the said Chemical formula 1.
In the compound (A), examples of the hydrocarbon groups of R1 and R2 include alkyl groups such as methyl, ethyl, propyl, butyl, and hexyl groups, and aromatic hydrocarbon groups such as phenyl and tolyl groups. Is done. As the fluoroalkyl group, a trifluoromethyl group, a difluoromethyl group, a fluoromethyl group, a pentafluoroethyl group, a 1,1,2,2-tetrafluoroethyl group, a 2,2,2-trifluoroethyl group, 2, Examples include 2-difluoroethyl group, 2-fluoroethyl group, heptafluoropropyl group and the like.
Among these, from the viewpoint of good expression of the effect of the present invention and chemical stability to the negative electrode, both R1 and R2 are preferably a fluoroalkyl group, and more preferably a trifluoromethyl group.

本発明の効果の良好な発現及び化合物(A)の電解質への溶解性という観点から、nは0〜2であるのが好ましく、nは1であるのがさらに好ましい。   From the viewpoint of good expression of the effect of the present invention and solubility of the compound (A) in the electrolyte, n is preferably 0 to 2, and n is more preferably 1.

化合物(A)において、X−(Y)mとしては芳香族環に結合し得る置換基全てを含み
得る。Xとして、具体的には、水素、ハロゲン基(フッ素、塩素、臭素、ヨウ素)、イソシアネート基、ヘテロ元素を含み得る炭化水素基,及びハロゲン化炭化水素基が挙げられ、また、化合物(A)の母化合物自体も含まれる。
Yは、Xと母化合物の芳香族環との連結基であり、オキシ基(−O−)、カルボニル基(−C(=O)−)、カルボニルオキシ基(−OC(=O)−)、カーボネート基(−OC(=O)O−)、スルフィド基(−S−)、スルフィニル基(−S(=O)−)、スルホニル基(−S(=O)2−)、スルホニルオキシ基(−OS(=O)2−)、亜硫酸エステル基(−OS(=O)O−)、硫酸エステル基(−OS(=O)2O−)、リン酸エステル基(−
O(XO)P(=O)O−)、ホウ酸エステル基(−O(XO)BO−)、及びアミド基(−N(X)C(=O)−)からなる群から選択される置換基を挙げることができる。式中、Xは前記Xと同一である。mは0または1である。
X−(Y)mとして具体的には、HO−、F−、CH3−、CF3−、C65−、C64
F−、CH3O−、HOC(=O)−、CH3OC(=O)−、CH3C(=O)O−、C
3OC(=O)O−、HS−、CH3S−、CH3S(=O)−、CH3S(=O)2−、
CH3S(=O)2O−、CH3OS(=O)2−、CH3OS(=O)2O−、(CH3O)2P(=O)O−、(CH3O)2BO−、(CH32NC(=O)−、CH3C(=O)N
(CH3)−、(HO)C(CF3265−が挙げられる。また、上記例示のCH3(メチル基)をトリフルオロメチル基、エチル基、ビニル基、プロパルギル基、フェニル基や(HO)C(CF3265−で置き換えたもの等も例示される。
例示した置換基のうち、本発明の効果の良好な発現という観点から、化合物(A)は正極への作用性が良好になるものが好ましく、アルキルオキシ基、アルケニル基及びアルキニル基等の炭素炭素不飽和結合を有する炭化水素基等の電子供与性基が好ましく、低温及
び常温で充放電を繰り返した場合の電極厚み増加の抑制のみでなく、高温で充放電を繰り返した場合の電極の厚み増加の抑制にも寄与することからビニル基、プロペニル基、エチニル基、プロパルギル基、アリル基等の炭素炭素不飽和結合を有する炭化水素基であることがさらに好ましく、ビニル基であることが特に好ましい。
In the compound (A), X— (Y) m may include all substituents that can be bonded to the aromatic ring. Specific examples of X include hydrogen, halogen groups (fluorine, chlorine, bromine, iodine), isocyanate groups, hydrocarbon groups that may contain heteroelements, and halogenated hydrocarbon groups. Also, compound (A) The parent compound itself is also included.
Y is a linking group between X and the aromatic ring of the mother compound, and is an oxy group (—O—), a carbonyl group (—C (═O) —), or a carbonyloxy group (—OC (═O) —). , Carbonate group (—OC (═O) O—), sulfide group (—S—), sulfinyl group (—S (═O) —), sulfonyl group (—S (═O) 2 —), sulfonyloxy group (-OS (= O) 2 - ), sulfurous ester group (-OS (= O) O-) , sulfate group (-OS (= O) 2 O- ), phosphoric acid ester group (-
O (XO) P (═O) O—), a borate group (—O (XO) BO—), and an amide group (—N (X) C (═O) —) A substituent can be mentioned. In the formula, X is the same as X. m is 0 or 1.
Specific examples X- (Y) m, HO-, F-, CH 3 -, CF 3 -, C 6 H 5 -, C 6 H 4
F-, CH 3 O-, HOC ( = O) -, CH 3 OC (= O) -, CH 3 C (= O) O-, C
H 3 OC (═O) O—, HS—, CH 3 S—, CH 3 S (═O) —, CH 3 S (═O) 2 —,
CH 3 S (═O) 2 O—, CH 3 OS (═O) 2 —, CH 3 OS (═O) 2 O—, (CH 3 O) 2 P (═O) O—, (CH 3 O ) 2 BO—, (CH 3 ) 2 NC (═O) —, CH 3 C (═O) N
(CH 3 ) —, (HO) C (CF 3 ) 2 C 6 H 5 —. Also exemplified are those in which CH 3 (methyl group) exemplified above is replaced with trifluoromethyl group, ethyl group, vinyl group, propargyl group, phenyl group or (HO) C (CF 3 ) 2 C 6 H 5 —. Is done.
Among the exemplified substituents, the compound (A) is preferably a compound (A) that has a good effect on the positive electrode from the viewpoint of good expression of the effect of the present invention, and carbon carbon such as alkyloxy group, alkenyl group, and alkynyl group. An electron donating group such as a hydrocarbon group having an unsaturated bond is preferable, not only suppressing the increase in electrode thickness when charging and discharging are repeated at low and normal temperatures, but also increasing the thickness of electrodes when charging and discharging are repeated at high temperatures. Since it contributes also to suppression of carbon, it is more preferably a hydrocarbon group having a carbon-carbon unsaturated bond such as vinyl group, propenyl group, ethynyl group, propargyl group or allyl group, and particularly preferably a vinyl group.

化合物(A)を、具体的に以下に例示する。なお、化合物14、化合物15、化合物21、化合物22は、Xが化合物(A)の母化合物自体である構造の例示である。それぞれ、化合物14はXが化合物Aの母化合物自体で、m=0である構造に相当し、化合物15はXが化合物Aの母化合物自体で、Yがオキシ基である構造に相当し、化合物21はXが化合物Aの母化合物自体で、Yがスルホニル基である構造に相当し、化合物22はXが化合物Aの母化合物自体でYがカーボネート基である構造に相当する。   The compound (A) is specifically exemplified below. In addition, the compound 14, the compound 15, the compound 21, and the compound 22 are illustrations of the structure where X is the mother compound itself of the compound (A). Compound 14 corresponds to a structure in which X is the mother compound itself of compound A and m = 0, and compound 15 corresponds to a structure in which X is the mother compound itself of compound A and Y is an oxy group. 21 corresponds to a structure in which X is the mother compound itself of compound A and Y is a sulfonyl group, and compound 22 corresponds to a structure in which X is the mother compound itself of compound A and Y is a carbonate group.

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

以上に例示した化合物のうち、本発明の効果が良好に発現されるという観点及びコスト上の観点から、化合物1、9、10、11が好ましく、化合物1、11がさらに好ましく、化合物11が特に好ましい。   Among the compounds exemplified above, from the viewpoint that the effects of the present invention are well expressed and from the viewpoint of cost, compounds 1, 9, 10, and 11 are preferable, compounds 1 and 11 are more preferable, and compound 11 is particularly preferable. preferable.

化合物(A)の非水電解質中の含有量は、0.001質量%以上5質量%以下であるのが好ましい。さらには、0.002質量%以上3質量%以下であるのが好ましい。
添加量が5質量%を超える場合、低温及び常温における充放電サイクル試験の容量保持率が小さくなる。
添加量が0.001質量%未満である場合、本発明の効果が奏されないおそれがある。
従来の添加剤は1質量%前後の添加量で効果が最も有効に現れる傾向があるが、本発明で使用する化合物(A)は、従来の添加剤と比較して、非常に少量の添加量で効果が発現されるという特徴があり、より良好な性能が発揮されるという観点から、添加量は0.005質量%以上0.5質量%以下であるのが特に好ましい。
The content of the compound (A) in the nonaqueous electrolyte is preferably 0.001% by mass or more and 5% by mass or less. Furthermore, it is preferable that it is 0.002 mass% or more and 3 mass% or less.
When the addition amount exceeds 5% by mass, the capacity retention rate of the charge / discharge cycle test at low temperature and normal temperature becomes small.
When the addition amount is less than 0.001% by mass, the effects of the present invention may not be achieved.
The conventional additive tends to exhibit the effect most effectively at an addition amount of about 1% by mass, but the compound (A) used in the present invention has a very small addition amount compared to the conventional additive. From the standpoint that the effect is exhibited and better performance is exhibited, the addition amount is particularly preferably 0.005% by mass or more and 0.5% by mass or less.

本発明に係る非水電解質は、炭素炭素不飽和結合を有する炭酸エステル化合物(B)を
含有することが好ましい。
炭酸エステル化合物(B)を非水電解質に含有させることにより、特に負極における電解質の安定性が高まる効果があるが、エネルギー密度を高めた非水電解質二次電池においては、低温における充放電サイクル時に電極の厚みが増加するという問題があった。
しかしながら、本発明の化合物(A)と併用することにより、電極の厚みの増加が大幅に抑制され、低温における充放電サイクルの容量保持率が向上し、負極における電解質の安定性と電極の厚みの増加の抑制性とが両立し、低温から常温における充放電サイクル特性に優れた非水電解質を得ることができる。
The nonaqueous electrolyte according to the present invention preferably contains a carbonate ester compound (B) having a carbon-carbon unsaturated bond.
By including the carbonate ester compound (B) in the non-aqueous electrolyte, there is an effect of increasing the stability of the electrolyte, particularly in the negative electrode. However, in the non-aqueous electrolyte secondary battery with an increased energy density, during the charge / discharge cycle at a low temperature There was a problem that the thickness of the electrode increased.
However, when used in combination with the compound (A) of the present invention, the increase in the thickness of the electrode is greatly suppressed, the capacity retention rate of the charge / discharge cycle at low temperature is improved, and the stability of the electrolyte in the negative electrode and the thickness of the electrode are improved. A non-aqueous electrolyte excellent in charge / discharge cycle characteristics from a low temperature to a normal temperature can be obtained, which is compatible with increase suppression.

少なくとも1種の炭素炭素不飽和結合を有する炭酸エステル化合物(B)としては、ビニレンカーボネート、ジメチルビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート等が例示される。これらの化合物は単独で加えてもよく、2種類以上を併用してもよい。
これらのうち、ビニレンカーボネート、ジメチルビニレンカーボネート等の環内に炭素炭素不飽和結合を有する炭酸エステル化合物が好ましい。
炭酸エステル化合物(B)の含有量は、非水電解質の総質量に対して0.1〜10質量%であるのが好ましく、0.5〜5質量%であるのがさらに好ましい。
Examples of the carbonate compound (B) having at least one carbon-carbon unsaturated bond include vinylene carbonate, dimethyl vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate and the like. These compounds may be added alone or in combination of two or more.
Of these, carbonate compounds having a carbon-carbon unsaturated bond in the ring such as vinylene carbonate and dimethyl vinylene carbonate are preferred.
The content of the carbonate ester compound (B) is preferably 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass with respect to the total mass of the nonaqueous electrolyte.

本発明に係る非水電解質は、さらに、硫酸エステル化合物(C)を含有することが好ましい。硫酸エステル化合物(C)を非水電解質に含有させることにより、特に正極における非水電解質の安定性が高まる効果があるが、エネルギー密度を高めた非水電解質二次電池においては、常温における充放電サイクル時の電極の厚みが大きくなるという問題があった。
しかしながら、本発明で使用される化合物(A)を併用することにより、電極の厚みの増加が大幅に抑制され、低温における充放電サイクルの容量保持率が向上し、正極における電解質の安定性と電極の厚み増加抑制性とが両立し、低温から常温におけるサイクル充放電特性に優れた非水電解質を得ることができる。
The non-aqueous electrolyte according to the present invention preferably further contains a sulfate ester compound (C). By containing the sulfate ester compound (C) in the non-aqueous electrolyte, there is an effect of increasing the stability of the non-aqueous electrolyte particularly in the positive electrode. However, in the non-aqueous electrolyte secondary battery having an increased energy density, charging / discharging at normal temperature is performed. There was a problem that the thickness of the electrode during the cycle was increased.
However, by using the compound (A) used in the present invention in combination, the increase in the thickness of the electrode is greatly suppressed, the capacity retention rate of the charge / discharge cycle at low temperature is improved, and the stability of the electrolyte in the positive electrode and the electrode Thus, a nonaqueous electrolyte excellent in cycle charge / discharge characteristics from low temperature to room temperature can be obtained.

硫酸エステル化合物(C)としては、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロパ−1−エンスルトン、1−メチル−1,3−プロパ−1−エンスルトン、亜硫酸エチレン、亜硫酸プロピレン、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ヘキセン、硫酸ビニレン、3−スルホレン、ジビニルスルホン、硫酸ジメチル、硫酸ジエチル等が例示される。これらの化合物は単独で加えてもよく、2種類以上併用してもよい。これらのうち、1,3−プロパ−1−エンスルトン、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ヘキセンが好ましい。
硫酸エステル化合物(C)の含有量は、非水電解質の総質量に対して0.1〜10質量%であるのが好ましく、0.5〜5質量%であるのがさらに好ましい。
As the sulfate ester compound (C), 1,3-propane sultone, 1,4-butane sultone, 1,3-prop-1-ene sultone, 1-methyl-1,3-prop-1-ene sultone, ethylene sulfite, sulfurous acid Examples include propylene, ethylene sulfate, propylene sulfate, butene sulfate, hexene sulfate, vinylene sulfate, 3-sulfolene, divinyl sulfone, dimethyl sulfate, and diethyl sulfate. These compounds may be added alone or in combination of two or more. Of these, 1,3-prop-1-ene sultone, ethylene sulfate, propylene sulfate, butene sulfate, and hexene sulfate are preferable.
The content of the sulfate ester compound (C) is preferably 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass with respect to the total mass of the nonaqueous electrolyte.

本発明の非水電解質に用いられる非水溶媒としては、少なくとも、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。
環状の非プロトン性溶媒としては、エチレンカーボネート等の環状カーボネート、γ−ブチロラクトン等の環状エステル、スルホラン等の環状スルホン、ジオキソラン等の環状エーテルが例示される。
鎖状の非プロトン性溶媒としては、ジメチルカーボネート等の鎖状カーボネート、プロピオン酸メチル等の鎖状カルボン酸エステル、ジメトキシエタン等の鎖状エーテルが例示される。
The nonaqueous solvent used in the nonaqueous electrolyte of the present invention preferably contains at least a cyclic aprotic solvent and / or a chain aprotic solvent.
Examples of the cyclic aprotic solvent include cyclic carbonates such as ethylene carbonate, cyclic esters such as γ-butyrolactone, cyclic sulfones such as sulfolane, and cyclic ethers such as dioxolane.
Examples of the chain aprotic solvent include chain carbonates such as dimethyl carbonate, chain carboxylic acid esters such as methyl propionate, and chain ethers such as dimethoxyethane.

特に電池の負荷特性、及び低温特性の向上を意図する場合には、非水溶媒を環状の非プロトン性溶媒と鎖状の非プロトン性溶媒との混合物にすることが好ましい。さらに、電解質の電気化学的安定性を重視する場合には、環状の非プロトン性溶媒として環状カーボネ
ートを、鎖状の非プロトン性溶媒として鎖状カーボネートを用いることが好ましい。
環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2‐ブチレンカーボネート、トランス−2,3‐ブチレンカーボネート、シス−2,3‐ブチレンカーボネート、1,2‐ペンチレンカーボネート、トランス−2,3‐ペンチレンカーボネート、シス−2,3‐ペンチレンカーボネート、トリフルオロメチルエチレンカーボネート、フルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート等が挙げられる。
これらのうち、誘電率が高いエチレンカーボネート及びプロピレンカーボネートが好ましい。負極活物質に黒鉛を使用する場合、エチレンカーボネートを使用するのがさらに好ましい。また、これらの環状カーボネートは2種以上混合して使用してもよい。
In particular, when the load characteristics and low temperature characteristics of the battery are intended to be improved, the non-aqueous solvent is preferably a mixture of a cyclic aprotic solvent and a chain aprotic solvent. Furthermore, when importance is attached to the electrochemical stability of the electrolyte, it is preferable to use a cyclic carbonate as the cyclic aprotic solvent and a chain carbonate as the chain aprotic solvent.
Specific examples of cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, trans-2,3-butylene carbonate, cis-2,3-butylene carbonate, 1,2-pentylene carbonate, trans Examples include -2,3-pentylene carbonate, cis-2,3-pentylene carbonate, trifluoromethylethylene carbonate, fluoroethylene carbonate, 4,5-difluoroethylene carbonate.
Of these, ethylene carbonate and propylene carbonate having a high dielectric constant are preferable. When graphite is used for the negative electrode active material, it is more preferable to use ethylene carbonate. Moreover, you may use these cyclic carbonates in mixture of 2 or more types.

鎖状カーボネートとして、具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート、メチルトリフルオロエチルカーボネート等が挙げられる。これらのうち、粘度が低い、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートが好ましい。これらの鎖状カーボネートは2種以上混合して使用してもよい。   Specific examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, ethyl propyl carbonate, and methyl trifluoroethyl carbonate. Can be mentioned. Of these, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate having low viscosity are preferable. These chain carbonates may be used in combination of two or more.

環状カーボネートと鎖状カーボネートとの混合割合は、環状カーボネート:鎖状カーボネート(体積比)が、好ましくは1:99〜80:20であり、さらに好ましくは5:95〜70:30であり、特に好ましくは10:90〜60:40である。このような比率にすることにより、電解質の粘度上昇を抑制し、電解質の解離度を高めることができるので、電池の充放電特性に寄与する電解質の伝導度を高めることができる。   The mixing ratio of the cyclic carbonate and the chain carbonate is such that the cyclic carbonate: chain carbonate (volume ratio) is preferably 1:99 to 80:20, more preferably 5:95 to 70:30, particularly Preferably it is 10: 90-60: 40. By setting such a ratio, an increase in the viscosity of the electrolyte can be suppressed and the degree of dissociation of the electrolyte can be increased, so that the conductivity of the electrolyte contributing to the charge / discharge characteristics of the battery can be increased.

本発明に係る非水電解質においては、本発明の目的を妨げない範囲で、非水溶媒中に、上記以外の他の化合物を含んでいてもよく、他の化合物として具体的にはジメチルホルムアミド等のアミド類、メチル−N,N−ジメチルカーバメート等の鎖状カーバメート類、N−メチルピロリドン等の環状アミド類、N,N−ジメチルイミダゾリジノン等の環状ウレア類、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリブチル、ホウ酸トリオクチル、ホウ酸トリ(トリメチルシリル)等のホウ酸エステル類、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリ(トリメチルシリル)等のリン酸エステル類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテル等のエチレングリコール誘導体、ビフェニル、フルオロビフェニル、o−ターフェニル、トルエン、エチルベンゼン、フルオロベンゼン等の芳香族炭化水素等、及び無水マレイン酸、ノルボルネンジカルボン酸無水物などの炭素炭素不飽和結合を有するカルボン酸無水物を挙げることができる。これらのうち、炭素炭素不飽和結合を有するカルボン酸無水物を含む場合には、負極における電解質の安定性がさらに高まり、かつ、電極の厚みの増加も大幅に抑制されるので望ましい。   In the non-aqueous electrolyte according to the present invention, other compounds than the above may be contained in the non-aqueous solvent as long as the object of the present invention is not hindered. Specific examples of the other compounds include dimethylformamide and the like. Amides, chain carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, cyclic ureas such as N, N-dimethylimidazolidinone, trimethylborate, triethylborate , Borate esters such as tributyl borate, trioctyl borate, tri (trimethylsilyl) borate, phosphate esters such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tri (trimethylsilyl) phosphate , Ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, polyethylene group Carbon-carbon unsaturated bonds such as ethylene glycol derivatives such as coal dimethyl ether, aromatic hydrocarbons such as biphenyl, fluorobiphenyl, o-terphenyl, toluene, ethylbenzene and fluorobenzene, and maleic anhydride and norbornene dicarboxylic acid anhydride. The carboxylic anhydride which has can be mentioned. Of these, when a carboxylic acid anhydride having a carbon-carbon unsaturated bond is included, the stability of the electrolyte in the negative electrode is further enhanced, and an increase in the thickness of the electrode is greatly suppressed, which is desirable.

本発明の非水電解質に使用されるリチウム塩としては、通常の非水電解質として使用されているものであれば、いずれも使用することができる。
リチウム塩の具体例としては、LiPF6 、LiBF4 、LiClO4、LiAsF6
、Li2 SiF6 、LiOSO2k(2k+1)(k=1〜8の整数)、LiN(SO2k
(2k+1)2(k=1〜8の整数)、LiPFn (Ck(2k+1)(6-n)(n=1〜5、
k=1〜8の整数)、LiBFn(Ck(2k+1)(n=1〜3、k=1〜8の整数)、L
iB(C222 (リチウムビスオキサリルボレ−ト)、LiBF2 (C22 )(リ
チウムジフルオロオキサリルボレ−ト)、LiPF3(C22 )(リチウムトリフルオ
ロオキサリルフォスフェート)が挙げられる。本発明の非水電解質に使用されるリチウム
塩としては、通常の非水電解質として使用されているものであれば、いずれも使用することができる。
また、次の一般式で示されるリチウム塩も使用することができる。
LiC(SO211)(SO212)(SO213
LiN(SO2OR14)(SO2OR15
LiN(SO216)(SO2OR17
(式中、R11〜R17は、互いに同一であっても異なっていてもよく、炭素数1〜8のパーフルオロアルキル基である)。
これらのリチウム塩は単独で使用してもよく、また2種以上を混合して使用してもよい。
これらのうち、特に、LiPF6 、LiBF4、LiN(SO2k(2k+1)2(k=1〜8の整数)が好ましい。
As the lithium salt used in the non-aqueous electrolyte of the present invention, any lithium salt that is used as a normal non-aqueous electrolyte can be used.
Specific examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6.
, Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiN (SO 2 C k
F (2k + 1)) 2 (k = 1~8 integer), LiPF n (C k F (2k + 1)) (6-n) (n = 1~5,
k = 1 to 8), LiBF n (C k F (2k + 1) (n = 1 to 3, k = 1 to 8), L
iB (C 2 O 2 ) 2 (lithium bisoxalyl borate), LiBF 2 (C 2 O 2 ) (lithium difluorooxalyl borate), LiPF 3 (C 2 O 2 ) (lithium trifluorooxalyl phosphate) Is mentioned. As the lithium salt used in the non-aqueous electrolyte of the present invention, any lithium salt that is used as a normal non-aqueous electrolyte can be used.
Moreover, the lithium salt shown by the following general formula can also be used.
LiC (SO 2 R 11 ) (SO 2 R 12 ) (SO 2 R 13 )
LiN (SO 2 OR 14 ) (SO 2 OR 15 )
LiN (SO 2 R 16 ) (SO 2 OR 17 )
(In formula, R < 11 > -R < 17 > may mutually be same or different, and is a C1-C8 perfluoroalkyl group).
These lithium salts may be used alone or in combination of two or more.
Of these, LiPF 6 , LiBF 4 , and LiN (SO 2 C k F (2k + 1) ) 2 (k = 1 to 8) are particularly preferable.

以上の電解質は、好ましくは0.1〜3モル/リットル、より好ましくは0.5〜2モル/リットルの濃度で非水電解質中に含有させる。   The above electrolyte is preferably contained in the nonaqueous electrolyte at a concentration of 0.1 to 3 mol / liter, more preferably 0.5 to 2 mol / liter.

(2)正極
本発明の電池に用いられる正極活物質としては、リチウムを吸蔵・放出可能な化合物である、組成式Lix MO2 、Liy24 (但し、Mは遷移金属から選ばれる一種又は
複数種、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造及び層状構造の金属カルコゲン化物又は金属酸化物を用いることができる。その具体例としては、LiCoO2 、LiCoxNi1-x2、LiMn24、Li2Mn24、MnO2、FeO2、V2
5、V613 、TiO2、TiS2等が挙げられる。
また、有機化合物としては、例えばポリアニリン等の導電性ポリマー等が挙げられる。
さらに、無機化合物及び有機化合物を問わず、上記各種の活物質を混合して用いてもよい。
粒状の正極活物質を用いる場合には、正極は、例えば、正極活物質粒子と導電助剤と結着剤とからなる合剤をアルミニウム等の金属集電体上に形成することで作製される。
(2) Positive electrode As the positive electrode active material used in the battery of the present invention, a composition formula Li x MO 2 , Li y M 2 O 4 (where M is selected from transition metals), which is a compound capable of inserting and extracting lithium. Or a composite oxide represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), a metal chalcogenide or a metal oxide having a tunnel structure and a layered structure can be used. Specific examples thereof include LiCoO 2 , LiCo x Ni 1-x O 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2.
O 5, V 6 O 13, TiO 2, TiS 2 and the like.
Examples of the organic compound include conductive polymers such as polyaniline.
Furthermore, regardless of an inorganic compound or an organic compound, the above various active materials may be mixed and used.
When a granular positive electrode active material is used, the positive electrode is produced, for example, by forming a mixture of positive electrode active material particles, a conductive additive and a binder on a metal current collector such as aluminum. .

(3)負極
本発明の負極活物質には、金属リチウム、リチウム合金、リチウムの吸蔵放出が可能な炭素材料等、一般に知られているものすべてを使用することができる。この負極活物質としては、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe23
WO2、MoO2 、SiO、CuO等の金属酸化物、グラファイト、カーボン等の炭素質
材料、Li3N等の窒化リチウム、若しくは金属リチウム、又はこれらの混合物を用いる
ことができる。
(3) Negative electrode As the negative electrode active material of the present invention, all generally known materials such as metallic lithium, lithium alloys, and carbon materials capable of occluding and releasing lithium can be used. Examples of the negative electrode active material include Al, Si, Pb, Sn, Zn, Cd and lithium alloys, LiFe 2 O 3 ,
Metal oxides such as WO 2 , MoO 2 , SiO, and CuO, carbonaceous materials such as graphite and carbon, lithium nitride such as Li 3 N, or lithium metal, or a mixture thereof can be used.

(4)セパレータ
本発明のセパレータとしては、織布、不織布、合成樹脂微多孔膜等を用いることができ、合成樹脂微多孔膜を好適に用いることができる。中でもポリエチレン及びポリプロピレン製の微多孔膜、又はこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚み、膜強度、膜抵抗等の面で好適に用いられる。
また、高分子固体電解質等の固体電解質を用いることで、セパレータを兼ねさせることもできる。
さらに、合成樹脂微多孔膜と高分子固体電解質等とを組み合わせて使用してもよい。この場合、高分子固体電解質として有孔性高分子固体電解質膜を用い、高分子固体電解質にさらに電解液を含有させることにしてもよい。
(4) Separator As the separator of the present invention, a woven fabric, a nonwoven fabric, a synthetic resin microporous membrane, or the like can be used, and a synthetic resin microporous membrane can be suitably used. Among these, a microporous membrane made of polyethylene and polypropylene, or a polyolefin microporous membrane such as a microporous membrane composed of these is preferably used in terms of thickness, membrane strength, membrane resistance, and the like.
Moreover, it can also serve as a separator by using solid electrolytes, such as a polymer solid electrolyte.
Further, a synthetic resin microporous membrane and a polymer solid electrolyte may be used in combination. In this case, a porous polymer solid electrolyte membrane may be used as the polymer solid electrolyte, and the polymer solid electrolyte may further contain an electrolytic solution.

本発明の電池の形状は特に限定されるものではなく、角形、長円筒形、コイン形、ボタン形、シート形、円筒型電池等の様々な形状の非水電解質二次電池に適用することが可能
であるが、角形、長円筒形、コイン形、ボタン形、シート形等、電池ケースが変形しやすい電池において、効果が良好に発現される。
The shape of the battery of the present invention is not particularly limited, and can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a square, a long cylinder, a coin, a button, a sheet, and a cylindrical battery. Although it is possible, the effect is satisfactorily exhibited in a battery in which the battery case is easily deformed, such as a square, long cylindrical, coin, button, and sheet.

以下、本発明を好適な実施例を用いて説明するが、本発明は、本実施例により、何ら限定されるものではなく、その主旨を変更しない範囲において、適宜変更して実施することができる。   Hereinafter, the present invention will be described with reference to preferred embodiments. However, the present invention is not limited to the embodiments in any way, and can be implemented with appropriate modifications within a range not changing the gist thereof. .

(実施例1)
図1は、本発明に係る非水電解質二次電池を示す断面図である。図1において、1は角型の非水電解質二次電池(以下、電池という)、2は電極群、3は負極、4は正極、5はセパレータ、6は電池ケース、7は電池蓋、8は安全弁、9は負極端子、10は負極リードである。電極群2は、負極3と正極4とをセパレータ5を介して扁平状に巻回して得られる。電極群2及び電解質は電池ケース6に収納され、電池ケース6の開口部は、安全弁8が設けられた電池蓋7をレーザー溶接することで密閉される。負極端子9は負極リード10を介して負極3と接続され、正極4は電池ケース6内面と接続されている。
(Example 1)
FIG. 1 is a cross-sectional view showing a nonaqueous electrolyte secondary battery according to the present invention. In FIG. 1, 1 is a rectangular nonaqueous electrolyte secondary battery (hereinafter referred to as a battery), 2 is an electrode group, 3 is a negative electrode, 4 is a positive electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 Is a safety valve, 9 is a negative electrode terminal, and 10 is a negative electrode lead. The electrode group 2 is obtained by winding the negative electrode 3 and the positive electrode 4 in a flat shape with the separator 5 interposed therebetween. The electrode group 2 and the electrolyte are housed in a battery case 6, and the opening of the battery case 6 is sealed by laser welding a battery lid 7 provided with a safety valve 8. The negative electrode terminal 9 is connected to the negative electrode 3 through the negative electrode lead 10, and the positive electrode 4 is connected to the inner surface of the battery case 6.

正極4は、以下のようにして作製した。
正極活物質としてのLiCoO2 90質量%と、導電助剤としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVDF)5質量%とを混合して正極合剤とし、これをN−メチル−2−ピロリドンに分散させることによりペーストを得た。このペーストを厚み20μmのアルミニウム集電体に均一に塗布して乾燥させた後、ロールプレスで圧縮成型することにより正極4を得た。
The positive electrode 4 was produced as follows.
90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder are mixed to form a positive electrode mixture. A paste was obtained by dispersing in N-methyl-2-pyrrolidone. This paste was uniformly applied to an aluminum current collector with a thickness of 20 μm and dried, and then compression molding was performed with a roll press to obtain the positive electrode 4.

負極3は次のようにして作製した。
負極活物質としての黒鉛97質量%と、結着剤としてのカルボキシメチルセルロース1.5質量%及びスチレンブタジエンゴム1.5質量%とを混合し、蒸留水を適宜加えて分散させ、スラリーを調製した。このスラリーを厚み15μmの銅集電体に均一に塗布、乾燥させ、100℃で5時間乾燥させた後、結着剤及び活物質からなる負極活物質層の密度が1.40g/cm3 になるように、ロールプレスで圧縮成形することにより負極3を得た。
The negative electrode 3 was produced as follows.
A slurry was prepared by mixing 97% by mass of graphite as a negative electrode active material, 1.5% by mass of carboxymethyl cellulose and 1.5% by mass of styrene butadiene rubber as a binder, and adding and dispersing distilled water as appropriate. . This slurry was uniformly applied to a 15 μm thick copper current collector, dried, dried at 100 ° C. for 5 hours, and then the density of the negative electrode active material layer composed of the binder and the active material was 1.40 g / cm 3 . Thus, the negative electrode 3 was obtained by compression molding with a roll press.

セパレータとしては、厚み20μmの微多孔性ポリエチレンフィルムを用いた。電解質としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジエチルカーボネートとの体積比3:3:3の混合溶媒に、LiPF6 を1.1mol/L溶解させ、さらに電解質の総質量に対して前記化2で示される化合物1を0.001質量%添加したものを用いた。なお、電池の設計容量は800mAhである。 As the separator, a microporous polyethylene film having a thickness of 20 μm was used. As an electrolyte, 1.1 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate in a volume ratio of 3: 3: 3, and the total mass of the electrolyte was further increased. On the other hand, a compound added with 0.001% by mass of the compound 1 represented by the chemical formula 2 was used. The design capacity of the battery is 800 mAh.

(実施例2)
電解質の総質量に対して化合物1を0.002質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例3)
電解質の総質量に対して化合物1を0.005質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例4)
電解質の総質量に対して化合物1を0.01質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例5)
電解質の総質量に対して化合物1を0.02質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that 0.002% by mass of Compound 1 was added to the total mass of the electrolyte.
(Example 3)
A battery was fabricated in the same manner as in Example 1 except that 0.005 mass% of Compound 1 was added to the total mass of the electrolyte.
Example 4
A battery was fabricated in the same manner as in Example 1 except that 0.01% by mass of Compound 1 was added to the total mass of the electrolyte.
(Example 5)
A battery was fabricated in the same manner as in Example 1 except that 0.02% by mass of Compound 1 was added to the total mass of the electrolyte.

(実施例6)
電解質の総質量に対して化合物1を0.05質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例7)
電解質の総質量に対して化合物1を0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例8)
電解質の総質量に対して化合物1を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例9)
電解質の総質量に対して化合物1を0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例10)
電解質の総質量に対して化合物1を1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 6)
A battery was fabricated in the same manner as in Example 1 except that 0.05% by mass of Compound 1 was added to the total mass of the electrolyte.
(Example 7)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1 was added to the total mass of the electrolyte.
(Example 8)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of Compound 1 was added to the total mass of the electrolyte.
Example 9
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of Compound 1 was added to the total mass of the electrolyte.
(Example 10)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of Compound 1 was added to the total mass of the electrolyte.

(実施例11)
電解質の総質量に対して化合物1を2質量%添加し、それ以外は、実施例1にして同様の電池を作製した。
(実施例12)
電解質の総質量に対して化合物1を3質量%添加し、それ以外は、実施例1にして同様の電池を作製した。
(実施例13)
電解質の総質量に対して化合物1を5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例14)
電解質の総質量に対して化合物2を0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例15)
電解質の総質量に対して化合物7を0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 11)
A battery was prepared in the same manner as in Example 1 except that 2% by mass of Compound 1 was added to the total mass of the electrolyte.
(Example 12)
A battery was prepared in the same manner as in Example 1 except that 3% by mass of Compound 1 was added to the total mass of the electrolyte.
(Example 13)
A battery was fabricated in the same manner as in Example 1 except that 5% by mass of Compound 1 was added to the total mass of the electrolyte.
(Example 14)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 2 was added to the total mass of the electrolyte.
(Example 15)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 7 was added to the total mass of the electrolyte.

(実施例16)
電解質の総質量に対して化合物8を0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例17)
電解質の総質量に対して化合物9を0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例18)
電解質の総質量に対して化合物10を0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例19)
電解質の総質量に対して化合物11を0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例20)
電解質の総質量に対して化合物14を0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 16)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 8 was added to the total mass of the electrolyte.
(Example 17)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 9 was added based on the total mass of the electrolyte.
(Example 18)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 10 was added based on the total mass of the electrolyte.
(Example 19)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 11 was added based on the total mass of the electrolyte.
(Example 20)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 14 was added to the total mass of the electrolyte.

(実施例21)
電解質の総質量に対して化合物1を0.1質量%、ビニレンカーボネート(VC)を1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例22)
電解質の総質量に対して化合物1を0.1質量%、ビニルエチレンレンカーボネート(VEC)を1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例23)
電解質の総質量に対して化合物1を0.1質量%、ジビニルエチレンカーボネート(DVEC)を1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例24)
電解質の総質量に対して化合物1を0.1質量%、ジメチルビニレンカーボネート(DMVC)を1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例25)
電解質の総質量に対して化合物1を0.1質量%、1,3−プロパ−1−エンスルトン(PRS)を1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 21)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1 and 1% by mass of vinylene carbonate (VC) were added to the total mass of the electrolyte.
(Example 22)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1 and 1% by mass of vinylethylenelene carbonate (VEC) were added to the total mass of the electrolyte.
(Example 23)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1 and 1% by mass of divinylethylene carbonate (DVEC) were added to the total mass of the electrolyte.
(Example 24)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1 and 1% by mass of dimethyl vinylene carbonate (DMVC) were added to the total mass of the electrolyte.
(Example 25)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1 and 1% by mass of 1,3-prop-1-ene sultone (PRS) were added to the total mass of the electrolyte.

(実施例26)
電解質の総質量に対して化合物1を0.1質量%、1,3−プロパンスルトン(PS)を1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例27)
電解質の総質量に対して化合物1を0.1質量%、硫酸エチレン(GLST)を1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例28)
電解質の総質量に対して化合物1を0.1質量%、硫酸プロピレン(PGLST)を1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例29)
電解質の総質量に対して化合物1を0.1質量%、VCを0.5質量%、VECを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例30)
電解質の総質量に対して化合物1を0.1質量%、VCを0.5質量%、DVECを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 26)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1 and 1% by mass of 1,3-propane sultone (PS) were added to the total mass of the electrolyte.
(Example 27)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1 and 1% by mass of ethylene sulfate (GLST) were added to the total mass of the electrolyte.
(Example 28)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1 and 1% by mass of propylene sulfate (PGLST) were added to the total mass of the electrolyte.
(Example 29)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VC, and 0.5% by mass of VEC were added to the total mass of the electrolyte.
(Example 30)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VC, and 0.5% by mass of DVEC were added to the total mass of the electrolyte.

(実施例31)
電解質の総質量に対して化合物1を0.1質量%、VCを0.5質量%、DMVCを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例32)
電解質の総質量に対して化合物1を0.1質量%、VCを0.5質量%、PRSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例33)
電解質の総質量に対して化合物1を0.1質量%、VCを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例34)
電解質の総質量に対して化合物1を0.1質量%、VCを0.5質量%、GLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例35)
電解質の総質量に対して化合物1を0.1質量%、VCを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 31)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VC, and 0.5% by mass of DMVC were added to the total mass of the electrolyte.
(Example 32)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VC, and 0.5% by mass of PRS were added to the total mass of the electrolyte.
(Example 33)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VC, and 0.5% by mass of PS were added to the total mass of the electrolyte.
(Example 34)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VC, and 0.5% by mass of GLST were added to the total mass of the electrolyte.
(Example 35)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VC, and 0.5% by mass of PGLST were added to the total mass of the electrolyte.

(実施例36)
電解質の総質量に対して化合物1を0.1質量%、VECを0.5質量%、DVECを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例37)
電解質の総質量に対して化合物1を0.1質量%、VECを0.5質量%、DMVCを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例38)
電解質の総質量に対して化合物1を0.1質量%、VECを0.5質量%、PRSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例39)
電解質の総質量に対して化合物1を0.1質量%、VECを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例40)
電解質の総質量に対して化合物1を0.1質量%、VECを0.5質量%、GLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 36)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VEC, and 0.5% by mass of DVEC were added to the total mass of the electrolyte.
(Example 37)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VEC, and 0.5% by mass of DMVC were added to the total mass of the electrolyte.
(Example 38)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VEC, and 0.5% by mass of PRS were added to the total mass of the electrolyte.
(Example 39)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VEC, and 0.5% by mass of PS were added to the total mass of the electrolyte.
(Example 40)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VEC, and 0.5% by mass of GLST were added to the total mass of the electrolyte.

(実施例41)
電解質の総質量に対して化合物1を0.1質量%、VECを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例42)
電解質の総質量に対して化合物1を0.1質量%、DVECを0.5質量%、DMVCを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例43)
電解質の総質量に対して化合物1を0.1質量%、DVECを0.5質量%、PRSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例44)
電解質の総質量に対して化合物1を0.1質量%、DVECを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例45)
電解質の総質量に対して化合物1を0.1質量%、DVECを0.5質量%、GLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 41)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of VEC, and 0.5% by mass of PGLST were added to the total mass of the electrolyte.
(Example 42)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of DVEC, and 0.5% by mass of DMVC were added to the total mass of the electrolyte.
(Example 43)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of DVEC, and 0.5% by mass of PRS were added to the total mass of the electrolyte.
(Example 44)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of DVEC, and 0.5% by mass of PS were added to the total mass of the electrolyte.
(Example 45)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of DVEC, and 0.5% by mass of GLST were added to the total mass of the electrolyte.

(実施例46)
電解質の総質量に対して化合物1を0.1質量%、DVECを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例47)
電解質の総質量に対して化合物1を0.1質量%、DMVCを0.5質量%、PRSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例48)
電解質の総質量に対して化合物1を0.1質量%、DMVCを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例49)
電解質の総質量に対して化合物1を0.1質量%、DMVCを0.5質量%、GLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例50)
電解質の総質量に対して化合物1を0.1質量%、DMVCを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 46)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of DVEC, and 0.5% by mass of PGLST were added to the total mass of the electrolyte.
(Example 47)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of DMVC, and 0.5% by mass of PRS were added to the total mass of the electrolyte.
(Example 48)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of DMVC, and 0.5% by mass of PS were added to the total mass of the electrolyte.
(Example 49)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of DMVC, and 0.5% by mass of GLST were added to the total mass of the electrolyte.
(Example 50)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of DMVC, and 0.5% by mass of PGLST were added to the total mass of the electrolyte.

(実施例51)
電解質の総質量に対して化合物1を0.1質量%、PRSを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例52)
電解質の総質量に対して化合物1を0.1質量%、PRSを0.5質量%、GLSTを
0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例53)
電解質の総質量に対して化合物1を0.1質量%、PRSを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 51)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of PRS, and 0.5% by mass of PS were added to the total mass of the electrolyte.
(Example 52)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of PRS, and 0.5% by mass of GLST were added to the total mass of the electrolyte.
(Example 53)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 1, 0.5% by mass of PRS, and 0.5% by mass of PGLST were added to the total mass of the electrolyte.

(比較例1)
電解質に添加剤を添加せず、それ以外は実施例1と同様にして電池を作製した。
(比較例2)
電解質に化合物(A)を添加せず、電解質の総質量に対してVCを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例3)
電解質に化合物(A)を添加せず、電解質の総質量に対してVECを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例4)
電解質に化合物(A)を添加せず、電解質の総質量に対してDVECを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例5)
電解質に化合物(A)を添加せず、電解質の総質量に対してDMVCを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that no additive was added to the electrolyte.
(Comparative Example 2)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of VC was added to the total mass of the electrolyte without adding the compound (A) to the electrolyte.
(Comparative Example 3)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of VEC was added to the total mass of the electrolyte without adding the compound (A) to the electrolyte.
(Comparative Example 4)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of DVEC was added to the total mass of the electrolyte without adding the compound (A) to the electrolyte.
(Comparative Example 5)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of DMVC was added to the total mass of the electrolyte without adding the compound (A) to the electrolyte.

(比較例6)
電解質に化合物(A)を添加せず、電解質の総質量に対してPRSを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例7)
電解質に化合物(A)を添加せず、電解質の総質量に対してPSを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例8)
電解質に化合物(A)を添加せず、電解質の総質量に対してGLSTを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例9)
電解質に化合物(A)を添加せず、電解質の総質量に対してPGLSTを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例10)
電解質に化合物(A)を添加せず、電解質の総質量に対してVCを0.5質量%、VECを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 6)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of PRS was added to the total mass of the electrolyte without adding the compound (A) to the electrolyte.
(Comparative Example 7)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of PS was added to the total mass of the electrolyte without adding the compound (A) to the electrolyte.
(Comparative Example 8)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of GLST was added to the total mass of the electrolyte without adding the compound (A) to the electrolyte.
(Comparative Example 9)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of PGLST was added to the total mass of the electrolyte without adding the compound (A) to the electrolyte.
(Comparative Example 10)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of VC and 0.5% by mass of VEC were added to the electrolyte without adding the compound (A) to the electrolyte. .

(比較例11)
電解質に化合物(A)を添加せず、電解質の総質量に対してVCを0.5質量%、DVECを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例12)
電解質に化合物(A)を添加せず、電解質の総質量に対してVCを0.5質量%、DMVCを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例13)
電解質に化合物(A)を添加せず、電解質の総質量に対してVCを0.5質量%、PRSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例14)
電解質に化合物(A)を添加せず、電解質の総質量に対してVCを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例15)
電解質に化合物(A)を添加せず、電解質の総質量に対してVCを0.5質量%、GL
STを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 11)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of VC and 0.5% by mass of DVEC were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .
(Comparative Example 12)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of VC and 0.5% by mass of DMVC were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .
(Comparative Example 13)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of VC and 0.5% by mass of PRS were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .
(Comparative Example 14)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5% by mass of VC and 0.5% by mass of PS were added to the total mass of the electrolyte. .
(Comparative Example 15)
Without adding the compound (A) to the electrolyte, VC is 0.5% by mass with respect to the total mass of the electrolyte, GL
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of ST was added.

(比較例16)
電解質に化合物(A)を添加せず、電解質の総質量に対してVCを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例17)
電解質に化合物(A)を添加せず、電解質の総質量に対してVECを0.5質量%、DVECを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例18)
電解質に化合物(A)を添加せず、電解質の総質量に対してVECを0.5質量%、DMVCを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例19)
電解質に化合物(A)を添加せず、電解質の総質量に対してVECを0.5質量%、PRSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例20)
電解質に化合物(A)を添加せず、電解質の総質量に対してVECを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 16)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5% by mass of VC and 0.5% by mass of PGLST were added to the total mass of the electrolyte. .
(Comparative Example 17)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of VEC and 0.5% by mass of DVEC were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .
(Comparative Example 18)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, 0.5% by mass of VEC and 0.5% by mass of DMVC were added to the total mass of the electrolyte. .
(Comparative Example 19)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5% by mass of VEC and 0.5% by mass of PRS were added to the total mass of the electrolyte. .
(Comparative Example 20)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5% by mass of VEC and 0.5% by mass of PS were added to the total mass of the electrolyte. .

(比較例21)
電解質に化合物(A)を添加せず、電解質の総質量に対してVECを0.5質量%、GLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例22)
電解質に化合物(A)を添加せず、電解質の総質量に対してVECを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例23)
電解質に化合物(A)を添加せず、電解質の総質量に対してDVECを0.5質量%、DMVCを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例24)
電解質に化合物(A)を添加せず、電解質の総質量に対してDVECを0.5質量%、PRSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例25)
電解質に化合物(A)を添加せず、電解質の総質量に対してDVECを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 21)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5% by mass of VEC and 0.5% by mass of GLST were added to the total mass of the electrolyte. .
(Comparative Example 22)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5% by mass of VEC and 0.5% by mass of PGLST were added to the total mass of the electrolyte. .
(Comparative Example 23)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by weight of DVEC and 0.5% by weight of DMVC were added to the total weight of the electrolyte without adding the compound (A) to the electrolyte. .
(Comparative Example 24)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of DVEC and 0.5% by mass of PRS were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .
(Comparative Example 25)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of DVEC and 0.5% by mass of PS were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .

(比較例26)
電解質に化合物(A)を添加せず、電解質の総質量に対してDVECを0.5質量%、GLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例27)
電解質に化合物(A)を添加せず、電解質の総質量に対してDVECを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例28)
電解質に化合物(A)を添加せず、電解質の総質量に対してDMVCを0.5質量%、PRSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例29)
電解質に化合物(A)を添加せず、電解質の総質量に対してDMVCを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例30)
電解質に化合物(A)を添加せず、電解質の総質量に対してDMVCを0.5質量%、GLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 26)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of DVEC and 0.5% by mass of GLST were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .
(Comparative Example 27)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of DVEC and 0.5% by mass of PGLST were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .
(Comparative Example 28)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of DMVC and 0.5% by mass of PRS were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .
(Comparative Example 29)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5% by mass of DMVC and 0.5% by mass of PS were added to the total mass of the electrolyte. .
(Comparative Example 30)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of DMVC and 0.5% by mass of GLST were added to the total mass of the electrolyte without adding the compound (A) to the electrolyte. .

(比較例31)
電解質に化合物(A)を添加せず、電解質の総質量に対してDMVCを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例32)
電解質に化合物(A)を添加せず、電解質の総質量に対してPRSを0.5質量%、PSを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例33)
電解質に化合物(A)を添加せず、電解質の総質量に対してPRSを0.5質量%、GLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例34)
電解質に化合物(A)を添加せず、電解質の総質量に対してPRSを0.5質量%、PGLSTを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 31)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5% by mass of DMVC and 0.5% by mass of PGLST were added to the total mass of the electrolyte. .
(Comparative Example 32)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5 mass% of PRS and 0.5 mass% of PS were added to the total mass of the electrolyte. .
(Comparative Example 33)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5 mass% of PRS and 0.5 mass% of GLST were added to the total mass of the electrolyte. .
(Comparative Example 34)
A battery was fabricated in the same manner as in Example 1 except that the compound (A) was not added to the electrolyte, and 0.5 mass% of PRS and 0.5 mass% of PGLST were added to the total mass of the electrolyte. .

[初期容量確認試験]
上述した各実施例及び各比較例の電池に対して、初期容量(mAh)及び初期電池厚み(mm)を測定した。各実施例及び各比較例の電池を夫々5セルずつ作製し、各電池につき、800mAの電流で4.2Vまで3時間定電流定電圧充電を行い、その後800mAの電流で3Vまで放電を行い、放電容量(初期容量)と電池厚み(初期電池厚み)とを測定し、5セルの平均値を求めた。
[Initial capacity check test]
The initial capacity (mAh) and the initial battery thickness (mm) were measured for the batteries of the above-described examples and comparative examples. The batteries of each Example and each Comparative Example were prepared in 5 cells, and each battery was charged at a constant current and a constant voltage for 3 hours up to 4.2 V at a current of 800 mA, and then discharged to 3 V at a current of 800 mA. The discharge capacity (initial capacity) and battery thickness (initial battery thickness) were measured, and the average value of 5 cells was determined.

[低温充放電サイクル試験]
また、各電池に対して、低温充放電サイクル試験の容量保持率(%)、及び試験前後の電池厚みの差(電池厚み増分)を測定した。
低温充放電サイクル試験は、以下に示す条件で実施した。
初期容量確認試験後の電池を、−10℃の恒温槽中で、初期容量の測定と同一の条件で充放電のサイクルを50サイクル繰り返した後、電池を25℃で5時間放置し、初期容量の測定と同一の条件で放電容量を測定し、初期容量に対する50サイクル目の容量保持率(=測定した放電容量÷初期容量×100)を求めた。また、試験前後の電池厚みを測定し、試験前後の電池厚みの差(電池厚み増分)も求めた。
[Low-temperature charge / discharge cycle test]
Moreover, the capacity retention rate (%) of the low-temperature charge / discharge cycle test and the difference in battery thickness before and after the test (battery thickness increment) were measured for each battery.
The low temperature charge / discharge cycle test was performed under the following conditions.
The battery after the initial capacity confirmation test was repeated in a constant temperature bath at -10 ° C. under the same conditions as the measurement of the initial capacity for 50 cycles, and then the battery was left at 25 ° C. for 5 hours to obtain the initial capacity. The discharge capacity was measured under the same conditions as the above, and the capacity retention rate at the 50th cycle with respect to the initial capacity (= measured discharge capacity / initial capacity × 100) was obtained. Further, the battery thickness before and after the test was measured, and the difference in battery thickness before and after the test (battery thickness increment) was also obtained.

[常温充放電サイクル試験]
常温充放電サイクル試験は、以下に示す条件で行った。
初期容量確認試験後の電池を、25℃の恒温槽中で、初期容量の測定と同一の条件の充放電サイクルを500サイクル繰り返した後、初期容量に対する500サイクル目の容量保持率(=500サイクル目の放電容量÷初期容量×100)を求めた。また、試験前後での電池厚さを測定し、試験前後での電池厚さの差(厚さ増分)も求めた。
[Room temperature charge / discharge cycle test]
The room temperature charge / discharge cycle test was performed under the following conditions.
The battery after the initial capacity confirmation test was repeated 500 cycles of charge / discharge cycles under the same conditions as the measurement of the initial capacity in a constant temperature bath at 25 ° C., and then the capacity retention rate at the 500th cycle relative to the initial capacity (= 500 cycles). The discharge capacity of the eye ÷ initial capacity × 100) was determined. Moreover, the battery thickness before and after the test was measured, and the difference (thickness increment) in the battery thickness before and after the test was also obtained.

下記の表1−1〜表1−4に、初期容量確認試験、低温充放電サイクル試験、及び常温充放電サイクル試験の結果を示す。   Tables 1-1 to 1-4 below show the results of the initial capacity confirmation test, the low temperature charge / discharge cycle test, and the room temperature charge / discharge cycle test.

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

Figure 2008204923
Figure 2008204923

実施例1〜13においては、非水電解質に対する化合物1の添加量を0.001〜5質量%の範囲で変えている。
電解質に化合物1を0.001〜5質量%の範囲で添加した実施例1〜13は、低温充放電サイクル試験の容量保持率が80〜91%、電池の厚み増分が0.34〜0.43mmであり、常温充放電サイクル試験の容量保持率が66〜87%、電池厚みの増分が0.40〜0.51mmであり、化合物1を添加していない比較例1の電池と比較して、性能が大きく向上している。
そして、添加量が0.002〜3質量%である実施例2〜12においては、常温充放電サイクル試験の容量保持率が81%以上であり、電池の厚み増分が0.50mm未満であるので、添加量は0.002〜3質量%であるのがさらに好ましい。また、初期容量が大きいという観点から0.005〜0.5質量%であるのが特に好ましい。
In Examples 1-13, the addition amount of the compound 1 with respect to a nonaqueous electrolyte is changed in 0.001-5 mass%.
In Examples 1 to 13 in which Compound 1 was added to the electrolyte in the range of 0.001 to 5 mass%, the capacity retention rate in the low-temperature charge and discharge cycle test was 80 to 91%, and the battery thickness increment was 0.34 to 0.00. Compared with the battery of Comparative Example 1 in which the capacity retention of the normal temperature charge / discharge cycle test is 66 to 87%, the battery thickness increment is 0.40 to 0.51 mm, and no compound 1 is added. The performance has been greatly improved.
And in Examples 2-12 whose addition amount is 0.002-3 mass%, since the capacity | capacitance retention of a normal temperature charging / discharging cycle test is 81% or more, and the thickness increment of a battery is less than 0.50 mm. The addition amount is more preferably 0.002 to 3% by mass. Moreover, it is especially preferable that it is 0.005-0.5 mass% from a viewpoint that an initial stage capacity | capacitance is large.

実施例7、14〜20においては、非水電解質に対し化合物1、2、7、8、9、10、11及び14をそれぞれ0.1質量%添加している。
化合物2を添加した実施例14の場合、負極上における化合物2の分解によって、初期充放電時の不可逆容量が増大し、初期容量が小さくなっている。しかし、比較例1と比較して、低温充放電サイクル試験及び常温充放電サイクル試験で電池厚みの増加が抑制され、低温充放電サイクル試験の容量保持率が改善されており、化合物1を添加した実施例7より、両サイクル試験で電池厚みの増加が抑制されている。
In Example 7, 14-20, 0.1 mass% of compounds 1, 2, 7, 8, 9, 10, 11 and 14 are added with respect to the nonaqueous electrolyte, respectively.
In Example 14 to which compound 2 was added, the irreversible capacity during initial charge / discharge increased and the initial capacity decreased due to decomposition of compound 2 on the negative electrode. However, compared with the comparative example 1, the increase in battery thickness was suppressed in the low temperature charge / discharge cycle test and the room temperature charge / discharge cycle test, the capacity retention of the low temperature charge / discharge cycle test was improved, and the compound 1 was added. From Example 7, the increase in battery thickness is suppressed in both cycle tests.

化合物7、及び化合物8は、2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2プロピル基の位置が異なる。
化合物7及び化合物8をそれぞれ添加した実施例15及び16を比較した場合、2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2プロピル基の配位する位置が1,4位である実施例15の方が、1,3位に配位している実施例16よりも低温充放電サイクル試験の容量保持率の改善効果が大きく、常温充放電サイクル試験に対する効果は変わらなかった。
Compound 7 and Compound 8 differ in the position of the 2-hydroxy-1,1,1,3,3,3-hexafluoro-2propyl group.
When Examples 15 and 16 to which Compound 7 and Compound 8 were added respectively were compared, the coordinate position of the 2-hydroxy-1,1,1,3,3,3-hexafluoro-2propyl group was 1,4. In Example 15, which is a higher position, the effect of improving the capacity retention rate of the low-temperature charge / discharge cycle test is larger than that of Example 16 coordinated in the first and third positions, and the effect on the room temperature charge / discharge cycle test is unchanged. It was.

化合物9はメチル基を、化合物10はメトキシ基を、化合物11はビニル基を有する。化合物10を添加した実施例18は、化合物1を添加した実施例7と同等の性能を示し、化合物11を添加した実施例19は実施例7よりも性能が向上しており、特にビニル基を有する化合物11が好ましいことが分かった。これは、ビニル基を有する化合物11は負極で還元される際に形成する被膜の安定性が良好であったためであると考えられる。
化合物9を添加した実施例17は、低温充放電サイクル特性が実施例7よりも若干優れている。これは、化合物9を使用した場合、負極の被膜抵抗が低くなるためと考えられる。
Compound 9 has a methyl group, compound 10 has a methoxy group, and compound 11 has a vinyl group. Example 18 to which Compound 10 was added showed the same performance as Example 7 to which Compound 1 was added, and Example 19 to which Compound 11 was added had improved performance over Example 7, in particular vinyl groups. It has been found that the compound 11 is preferable. This is considered to be because the stability of the film formed when the compound 11 having a vinyl group is reduced at the negative electrode.
In Example 17 to which Compound 9 was added, the low-temperature charge / discharge cycle characteristics were slightly better than Example 7. This is considered to be because when the compound 9 is used, the film resistance of the negative electrode is lowered.

化合物14は、化合物1の母化合物自体を置換基として有している。
化合物14を用いた実施例20は、化合物1を用いた実施例7より、常温充放電サイクル試験の容量保持率及び電池の厚み抑制効果が若干向上している。
Compound 14 has the parent compound itself of Compound 1 as a substituent.
In Example 20 using Compound 14, the capacity retention rate and the battery thickness suppression effect in the room temperature charge / discharge cycle test are slightly improved as compared to Example 7 using Compound 1.

実施例21〜実施例53においては、化合物(A)として化合物1を添加し、さらに炭素炭素不飽和結合を有する炭酸エステル化合物(B)、及び硫酸エステル化合物(C)のうちの少なくとも1種を添加している。比較例2〜34は化合物1は添加せず、実施例21〜53それぞれに対応させて、前記炭酸エステル化合物(B)及び硫酸エステル化合物(C)のうちの少なくとも1種を添加している。   In Example 21 to Example 53, compound 1 is added as compound (A), and at least one of carbonate ester compound (B) having a carbon-carbon unsaturated bond and sulfate ester compound (C) is added. It is added. In Comparative Examples 2-34, Compound 1 is not added, and at least one of the carbonate ester compound (B) and the sulfate ester compound (C) is added corresponding to each of Examples 21-53.

実施例21〜24、29〜31、36、37、42においては、非水電解質に前記炭酸エステル化合物(B)を添加し、比較例2〜5、10〜12、17、18、23においては、各実施例に対応して、同種・同量の炭酸エステル化合物(B)をそれぞれ添加している。
炭素炭素不飽和結合を有する炭酸エステル化合物(B)を非水電解質に添加した場合、
形成される負極被膜が電解液の分解を抑制するので、比較例2〜5、10〜12、17、18、23に示されるように、常温充放電サイクル試験の容量保持率が大きくなり、電池の膨れも小さくなるが、低温充放電サイクル試験の容量保持率は低くなり、電池厚みが大きくなる。しかし、実施例21〜24、29〜31、36、37、42に示されるように、化合物1を添加することにより、低温充放電サイクル試験の容量保持率が高くなり、電池厚みも小さくなる。
そして、実施例21〜24、29〜31、36、37、42を実施例7と比較すると、常温充放電サイクル試験において、全て容量保持率が向上しており、電池の膨れが抑制されていることが分かる。
In Examples 21-24, 29-31, 36, 37, 42, the carbonate ester compound (B) is added to the nonaqueous electrolyte, and in Comparative Examples 2-5, 10-12, 17, 18, 23. Corresponding to each example, the same kind and the same amount of carbonate compound (B) is added.
When the carbonic acid ester compound (B) having a carbon-carbon unsaturated bond is added to the non-aqueous electrolyte,
Since the formed negative electrode film suppresses decomposition of the electrolytic solution, as shown in Comparative Examples 2 to 5, 10 to 12, 17, 18, and 23, the capacity retention rate of the room temperature charge / discharge cycle test is increased, and the battery However, the capacity retention in the low-temperature charge / discharge cycle test is lowered, and the battery thickness is increased. However, as shown in Examples 21 to 24, 29 to 31, 36, 37, and 42, the addition of Compound 1 increases the capacity retention rate of the low-temperature charge / discharge cycle test and decreases the battery thickness.
And when Examples 21-24, 29-31, 36, 37, and 42 are compared with Example 7, in the normal temperature charge / discharge cycle test, the capacity retention rate is all improved, and the swelling of the battery is suppressed. I understand that.

実施例25〜28、51〜53においては、非水電解質に硫酸エステル化合物(C)を添加し、比較例6〜9、32〜34においては、各実施例に対応して、同種・同量の硫酸エステル化合物(C)を添加している。
比較例6〜9、32〜34に示されるように、硫酸エステル化合物(C)を非水電解質に添加した場合、常温充放電サイクル試験の容量保持率は大きくなるが、電池厚みが大きくなる。また、炭素炭素不飽和結合を有する炭酸エステル化合物(B)よりは悪影響は少ないが、低温充放電サイクル試験の容量保持率が低くなり、電池厚みが大きくなる。
しかし、実施例25〜28、51〜53に示されるように、化合物1を添加することにより、低温充放電サイクル試験の容量保持率が高くなり、低温充放電サイクル試験後、及び常温充放電サイクル試験後の電池の膨れが抑制されている。
そして、実施例25〜28、51〜53を実施例7と比較すると、常温充放電サイクル試験において、実施例26は若干低下しているが他の実施例は容量保持率が向上しており、電池の膨れの抑制効果は全て実施例7より大きいことが分かる。
In Examples 25-28 and 51-53, the sulfate ester compound (C) is added to the non-aqueous electrolyte, and in Comparative Examples 6-9 and 32-34, the same kind and the same amount correspond to each Example. The sulfuric ester compound (C) is added.
As shown in Comparative Examples 6 to 9 and 32 to 34, when the sulfate ester compound (C) is added to the nonaqueous electrolyte, the capacity retention rate of the room temperature charge / discharge cycle test is increased, but the battery thickness is increased. Moreover, although there are few adverse effects than the carbonic acid ester compound (B) which has a carbon-carbon unsaturated bond, the capacity retention rate of a low-temperature charging / discharging cycle test becomes low, and battery thickness becomes large.
However, as shown in Examples 25-28 and 51-53, the addition of Compound 1 increases the capacity retention rate of the low-temperature charge / discharge cycle test, after the low-temperature charge / discharge cycle test, and at the room temperature charge / discharge cycle. The swelling of the battery after the test is suppressed.
And when Examples 25-28 and 51-53 are compared with Example 7, in the room temperature charge / discharge cycle test, Example 26 is slightly reduced, but the capacity retention rate of other Examples is improved, It can be seen that all the effects of suppressing the swelling of the battery are larger than those of Example 7.

実施例32〜35、38〜41、43〜50においては、非水電解質に炭酸エステル化合物(B)及び硫酸エステル化合物(C)を組み合わせて添加し、比較例13〜16、19〜22、24〜31においては、各実施例に対応して、同種・同量の炭酸エステル化合物(B)及び硫酸エステル化合物(C)を添加している。
炭酸エステル化合物(B)と硫酸エステル化合物(C)とを混合すると、相乗効果により常温充放電サイクル試験の容量保持率は大きくなるが、低温充放電サイクル試験の容量保持率が著しく小さくなり、さらに、低温充放電サイクル試験後及び常温充放電サイクル試験後の電池の膨れも大きくなる。しかし、実施例32〜35、38〜41、43〜50に示されるように、化合物1を添加することにより、低温充放電サイクル試験の容量保持率が向上し、低温充放電サイクル試験後、及び常温充放電サイクル試験後の電池の膨れは大幅に低減している。
そして、実施例32〜35、38〜41、43〜50と実施例7とを比較すると、常温充放電サイクル試験の容量保持率が向上していることが分かる。
In Examples 32-35, 38-41, 43-50, the carbonate ester compound (B) and the sulfate ester compound (C) were added in combination to the nonaqueous electrolyte, and Comparative Examples 13-16, 19-22, 24 In 31, the same kind and the same amount of the carbonic acid ester compound (B) and the sulfuric acid ester compound (C) are added corresponding to each Example.
When the carbonate compound (B) and the sulfate ester compound (C) are mixed, the capacity retention rate of the room temperature charge / discharge cycle test is increased due to a synergistic effect, but the capacity retention rate of the low temperature charge / discharge cycle test is remarkably reduced. Further, the swelling of the battery after the low temperature charge / discharge cycle test and after the room temperature charge / discharge cycle test also increases. However, as shown in Examples 32-35, 38-41, 43-50, the addition of Compound 1 improves the capacity retention of the low temperature charge / discharge cycle test, after the low temperature charge / discharge cycle test, and The swelling of the battery after the room temperature charge / discharge cycle test is greatly reduced.
And when Examples 32-35, 38-41, 43-50 and Example 7 are compared, it turns out that the capacity | capacitance retention of a normal temperature charging / discharging cycle test is improving.

本発明に係る非水電解質二次電池を示す断面図である。It is sectional drawing which shows the nonaqueous electrolyte secondary battery which concerns on this invention.

符号の説明Explanation of symbols

1 非水電解質二次電池
2 電極群
3 負極
4 正極
5 セパレータ
6 電池ケース
7 電池蓋
8 安全弁
9 負極端子
10 負極リード
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Negative electrode 4 Positive electrode 5 Separator 6 Battery case 7 Battery cover 8 Safety valve 9 Negative electrode terminal 10 Negative electrode lead

Claims (5)

下記化1で表される化合物(A)を含有することを特徴とする非水電解質。
Figure 2008204923
(式中、Xは、水素、ハロゲン基、イソシアネート基、ヘテロ元素を含み得る炭化水素基,及びハロゲン化炭化水素基を表し、また、化合物(A)の母化合物自体も含む。そして、Yは、オキシ基、カルボニル基、カルボニルオキシ基、カーボネート基、スルフィド基、スルフィニル基、スルホニル基、スルホニルオキシ基、亜硫酸エステル基、硫酸エステル基、リン酸エステル基、ホウ酸エステル基、並びにアミド基からなる群から選択される置換基である。mは0又は1である。nは0〜5の整数である。nが2以上の場合は、Xは互いに同一であっても異なっていてもよい。
さらに、R1、R2は、水素、炭化水素基、又はフルオロアルキル基を表し、少なくとも一方はフルオロアルキル基である。)
A nonaqueous electrolyte comprising a compound (A) represented by the following chemical formula 1:
Figure 2008204923
(In the formula, X represents hydrogen, a halogen group, an isocyanate group, a hydrocarbon group that may contain a hetero element, and a halogenated hydrocarbon group, and also includes the mother compound itself of the compound (A). , Oxy group, carbonyl group, carbonyloxy group, carbonate group, sulfide group, sulfinyl group, sulfonyl group, sulfonyloxy group, sulfite group, sulfate group, phosphate group, borate group, and amide group It is a substituent selected from the group, m is 0 or 1. n is an integer of 0 to 5. When n is 2 or more, Xs may be the same or different.
Furthermore, R1 and R2 represent hydrogen, a hydrocarbon group, or a fluoroalkyl group, and at least one is a fluoroalkyl group. )
総質量に対し、前記化合物(A)を0.001質量%以上5質量%以下含有する請求項1に記載の非水電解質。   The nonaqueous electrolyte according to claim 1, wherein the compound (A) is contained in an amount of 0.001% by mass to 5% by mass with respect to the total mass. 炭素炭素不飽和結合を有する炭酸エステル化合物(B)をさらに含有する請求項1又は2に記載の非水電解質。   The nonaqueous electrolyte according to claim 1 or 2, further comprising a carbonic acid ester compound (B) having a carbon-carbon unsaturated bond. 硫酸エステル化合物(C)をさらに含有する請求項1乃至3のいずれかに記載の非水電解質。   The nonaqueous electrolyte according to any one of claims 1 to 3, further comprising a sulfate ester compound (C). 請求項1乃至4のいずれかに記載の非水電解質を含むことを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the nonaqueous electrolyte according to claim 1.
JP2007042948A 2007-02-22 2007-02-22 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte Active JP5080101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042948A JP5080101B2 (en) 2007-02-22 2007-02-22 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042948A JP5080101B2 (en) 2007-02-22 2007-02-22 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte

Publications (2)

Publication Number Publication Date
JP2008204923A true JP2008204923A (en) 2008-09-04
JP5080101B2 JP5080101B2 (en) 2012-11-21

Family

ID=39782178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042948A Active JP5080101B2 (en) 2007-02-22 2007-02-22 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte

Country Status (1)

Country Link
JP (1) JP5080101B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204885A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
WO2014104126A1 (en) * 2012-12-26 2014-07-03 セントラル硝子株式会社 Novolak resin containing hexafluoroisopropanol group, method for producing same, and composition of same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298909A (en) * 2001-01-24 2002-10-11 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2004087282A (en) * 2002-08-27 2004-03-18 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using it
JP2007005293A (en) * 2005-05-26 2007-01-11 Sony Corp Electrolyte and battery
JP2007299543A (en) * 2006-04-27 2007-11-15 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298909A (en) * 2001-01-24 2002-10-11 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2004087282A (en) * 2002-08-27 2004-03-18 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using it
JP2007005293A (en) * 2005-05-26 2007-01-11 Sony Corp Electrolyte and battery
JP2007299543A (en) * 2006-04-27 2007-11-15 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204885A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
WO2014104126A1 (en) * 2012-12-26 2014-07-03 セントラル硝子株式会社 Novolak resin containing hexafluoroisopropanol group, method for producing same, and composition of same
US9464163B2 (en) 2012-12-26 2016-10-11 Central Glass Company, Limited Novolak resin containing hexafluoroisopropanol group, method for producing same, and composition of same

Also Published As

Publication number Publication date
JP5080101B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5364890B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP5080118B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP6252486B2 (en) Lithium ion secondary battery
JP6332033B2 (en) Lithium ion secondary battery
JP5463581B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
EP1892789B1 (en) Lithium secondary battery
JP6285332B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP5112148B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte for secondary battery
JP2009176534A (en) Non-aqueous electrolyte secondary battery
JP6368501B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP2009245828A (en) Nonaqueous electrolyte secondary battery
JP7247112B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
US20200203768A1 (en) Lithium secondary battery and nonaqueous electrolyte solution
JP2016051600A (en) Nonaqueous electrolytic solution for power storage device
JP7034292B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2022126851A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
JP2019175577A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP5063448B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP5499359B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP2017157327A (en) Nonaqueous electrolyte solution for power storage device
JP5080101B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
WO2020203322A1 (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
JP5107118B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP2017045722A (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350